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Abstract

The primary goal of this thesis is to re-formulate various wireless networks having complex

structures from the viewpoint of the Chief Executive Officer (CEO) problem. Particularly,

we focus on the two major problems, wireless sensor networks (WSNs) and wireless mesh

networks (WMNs). The CEO problem is described as follows: a firm’s CEO aims to

estimate a source data sequence u which cannot be observed directly; the CEO deploys a

team of M agents to independently observe corrupted versions of the source data sequence

u; the agents then transmit their observations to the CEO for further processing under

sum-rate constrained channels. The CEO tries to form u based on the received M noisy

observations while keeping the distortion lower than an acceptable level. We first consider

a parallel WSN modeled by the CEO problem. We apply a very simple coding scheme

to the sensors (agents) and propose an efficient decoding technique with an algorithm

estimating the observation error probabilities. Based on the convergence and bit-error

rate (BER) performances, the proposed technique can achieve significant gains over the

scheme without utilizing the correlation knowledge among the sensors. Furthermore, the

BER and frame-error rate (FER) performances of the proposed technique using estimated

observation error probabilities is very close to that of the proposed technique using exact

observation error probabilities at the fusion center (FC).

We then focus on an issue of WMNs as a CEO problem, and provide a practical solution

to a simple case of the problem. A joint decoding technique at the final destination

(FD) is proposed by using the correlation knowledge between the originator-forwarding

node intra-links. The BER performances show that the originator’s information can be

reconstructed at the FD even by using a very simple coding scheme. Moreover, we provide

BER performance comparison between joint decoding and separate decoding strategies.

The optimization of coding rate by using irregular convolutional code at originator side is

also discussed in this thesis. The simulation results show that excellent performance can

be achieved by the proposed system. Furthermore, extrinsic information transfer (EXIT)

chart analysis is performed to investigate convergence property of the proposed technique.

Keywords: Error Probability, Estimation, CEO problem, Slepian-Wolf, wireless sensor

networks, wireless mesh networks, LLR updating function
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Chapter 1

Introduction

1.1 Motivation

Almost two decades have passed since the turbo coding technique was discovered by

Berrou at al [1], the information and coding theory community has experienced many

significant achievements. As a matter of fact, a lot of near capacity-achieving coding

techniques have been proposed for point-to-point communication systems since the dis-

covery of the Turbo codes.

Nowadays, the major focus of the research topics in information and coding theory

community has shifted from point-to-point to network communications, such as cooper-

ative communications using joint source, channel and network coding. Recently, a lot

of significant theorems/theories as well as practical algorithms that can asymptotically

achieve the performance bounds supported by the theory have been found in this category;

the new results have been utilized by many information theory communities, including

our research group, with the aim of creating a beyond-the-state-of-the-art technologies in

communications systems. The most significant achievement of our research group is that

the establishment of technological basis for distributed cooperative communications [2, 3]

where even though intra-links (source-to-relay and relay-to-relay links) suffer from errors,

still the transmitted information can be reconstructed at the destination by utilizing the

correlation knowledge between the information part sent from the originator and relayed

information.

In fact, this is a straightforward application of Slepian-Wolf theorem [4]. However, it is

based on a strong assumption that the information at the source itself does not contain

any errors. The goal of this research is to eliminate this assumption, and hence all the

links are unreliable. This problem is called Chief Executive Officer (CEO) problem [5]

1



in networks information theory. The CEO problem can be applied to many forms of

applications in wireless networks. This motivates us to work on the CEO problem and

its applications to wireless communications. Our aim is to make a paradigm shift from

the Slepian-Wolf lossless-based wireless network design to lossy link-based design, based

on the CEO problem frame work.

1.2 The CEO Problem

Many categories of wireless networks, especially wireless sensor networks (WSNs), can

be modeled as a CEO problem. This problem belongs to distributed lossy compression

problem in networks information theory and closely related to multiple description coding

problem. The terminology CEO problem originates from the situation where a firm’s CEO

is interested in a source data sequence u which cannot be observed directly. The CEO

deploys a team of M agents to observe the source data sequence u. The agents, referred to

as forwarding nodes/sensors, observe independently corrupted versions of the source data

sequence and then transmit their observations to a single fusion center (FC) for further

processing. The CEO (FC) aims to form u based on the received M noisy observations

while keeping the distortion lower than an acceptable level. Fig. 1.1 depicts the abstract

scenario of the CEO problem system. The encoders, which are not allowed to exchange

any message to utilize the correlation knowledge, are distributed in a geographical area.

Since the power and the resource are limited, M agent are required to communicate

with the FC under a finite sum rate constraint R. Therefore, it is crucial to introduce

some coding techniques requiring very low power consumption when making such data

gathering/monitoring systems.

In general, the target of the CEO problem is to determinate the minimum achievable

distortion under a given sum rate constraint R. The sum rate means that the combined

data rate at which the M agents may communicate information about their observations

to the CEO. Berger, Zhang, and Viswanathan determine the asymptotic behavior of the

minimal error occurrence probability in the limit as the number of agents M and the sum

rate constraint R tend to infinity in [5] for the case where the source and observations are

discrete and memoryless. The special case, where zero-mean Gaussian source is considered

and the observations are corrupted by identical independent memoryless Gaussian noise

with a minimummean squared-error distortion, is called quadratic Gaussian CEO problem

[6]. The rate region for this special case is studied in [7, 8, 9]. However, the rate region

is not yet found for many other cases because there are a lot of mathematical difficulties

2



+

+

+

Encoder 1

Encoder 2

Encoder M

 Fusion

 Center

Agents CEO

Figure 1.1: An abstract model of the CEO problem.

in analyzing the limit. Nowadays, the CEO problem attracts a lot of attention with

the recognition of not only an open problem of information theory, but also significant

importance on its applications to many forms of wireless communication systems, such as

distributed sensor networks.

In this thesis, we propose several practical coding and decoding strategies to a parallel

WSN and a WMN where none of the last forwarding nodes has error-free information

part. In this case, a WMN can also formulated from the viewpoint of the CEO problem.

Even though the theoretical bound of these application is not yet analyzed in this the-

sis, it is found that the our proposed technique can achieve better bit-error-rate (BER)

performance than some other techniques proposed by other research groups.

1.3 Summary of Achievements and Publications

The results of a simplified wireless mesh network (WMN) which reformulated by the

CEO problem has been accepted in 2012 International Symposium on Information Theory

and its Applications (ISITA2012), Hawaii [10]. In this paper, we analyzed the BER

performances and provide a short discussion on rate optimization.

Then, we applied the coding-decoding strategy in WSNs. The results have been ac-

cepted in IEICE Transaction on communication [11]. This paper is a joint work with a

PH.D candidate Mr. Xiaobo Zhou. The part of that multiple sensors observe a binary

Markov source is contributed by him.

Furthermore, a paper on how to estimate observation error probabilities in a WSN

3



is submitted to IEEE Communications Letters. In this paper, we propose an iterative

algorithm for the purpose of estimating observation error probabilities.

The publications are listed below:

Conference Paper:

• X. He, X. Zhou, K. Anwar and T. Matsumoto, ”Wireless Mesh Networks Allowing

Intra -Link Errors: CEO Problem Viewpoint”, 2012 International Symposium on

Information Theory and its Applications (ISITA), Hawaii, October, 2012

Journal Papers:

• X. Zhou, X. He, K. Anwar, and T. Matsumoto, ”GREAT-CEO: larGe scale dis-

tRibuted dEcision mAking Technique for wireless Chief Executive Officer prob-

lems”, IEICE Transaction on Communications, vol. E95–B, no. 12, pp. 3654–3662,

December 2012.

• X. He, X. Zhou, K. Anwar and T. Matsumoto, ”Estimation of Observation Error

Probability in Wireless Sensor Networks”, (Submitted for publication-under review),

IEEE Communications Letters

1.4 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we discuss the network topologies

from lossless to lossy for introducing our footprint from Slepian-Wolf relaying system to

the wireless communication system modeled by the CEO problem. Chapter 3 focuses

on a parallel WSN from the viewpoint of the CEO problem. Chapter 4 introduces the

coding-decoding strategies as well as the performance evaluation of a simple WMN. The

conclusion and future works are summarized in Chapter 5.
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Chapter 2

Network Topologies: Lossless to

Lossy

2.1 Lossless: Slepian-Wolf Relaying System

According to the Slepian-Wolf’s correlated source coding theorem [4], if the source infor-

mation is compressed at a coding rate less than the entropy of each source but larger than

the conditional entropy, conditioned by the other source, and if the destination knows the

correlation property, still the source information can be recovered without any distor-

tion at the destination; furthermore, this region specifies the ”result” of coding, which

means that the two decoders do not have to negotiate each other. The authors realized

[2, 12, 13, 14] that this theorem can well be utilized in the relaying systems, because, for

example in one-way relay system, the data is originated from the one single source, and

hence the signal directly transmitted and the signal forwarded by the relay are correlated,

even though the originated data is corrupted by errors in the source-relay link (intra-link).

Assuming that the error occurrence property of the intra-link can be represented by a the

bit-flipping model [15], which is equivalent to the binary symmetry channel (BSC) model,

and if the flipping probabilities are know to the destination, iterative decoding process

can well utilize the correlation property in the form of log-likelihood ratio (LLR) updating

function [12, 13].

With the Slepian-Wolf theorem based relaying system, the relay (or forwarding node)

does not have to perfectly correct the intra-link errors; it can simply extract information

part from the received frame, interleave, re-encode, and then forward it to the destina-

tion. The extracted data may contain errors, but by iterative processing with the LLR

updating function, the originators data can be fully recovered. This scheme is referred to

5
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Figure 2.1: The admissible rate region of Slepian-Wolf theorem and the rate region bound
for lossy coding cases. b1 and b2 represent two correlated sources.

as extract-and-forward (ErF) technique in this thesis. Ref. [2] applies the ErF concept to

relay systems with the aim of exploiting source-relay correlation. Reference [14] combines

the ErF concept with bit-interleaved coded modulation with iterative detection (BICM-

ID). Reference [15] proposes a very simple serially concatenated coding scheme that can

achieve near Slepian-Wolf/Shannon limit [4] performance, even though the structure is

very simple. Reference [16] evaluates the outage probability of the ErF relay system in

Rayleigh fading channels. The impacts of not only the source correlation but also the

correlation of the link variation are theoretically analyzed in [16] .

As shown in Fig. 2.1, the admissible rate region is constituted as an unbounded polygon

based on the Slepian-Wolf theorem. The source information can be recovered only when

the compressed rate pair falls into this area. For instance, we consider the case that two

binary information sequence b1 and b2 are separately encoded and jointly decoded. If

b1 is compressed at the rate R1 which is equal to its entropy H(b1), then b2 can be

compressed at the rate R2 which is less than its entropy H(b2), but must be greater

than its conditional entropy H(b2|b1), or vice versa. The admissible rate region of the

Slepian-Wolf compression is given by the following three inequalities [4]:

R1 ≥ H(b1|b2), (2.1)

R2 ≥ H(b2|b1), (2.2)

R1 +R2 ≥ H(b1,b2). (2.3)

6



Relay

DestinationSource

Extract

Figure 2.2: Extract-and-Forward Relay System. D1 and D2 denote the decoders of the
channel codes C1 and C2 used by the source and the relay, respectively. ACC and ACC−1

are the accumulator and de-accumulator, respectively.

By exploiting the correlation knowledge of the data streams at the destination, the

distributed source coding can achieve the same compression rate as the optimum single

encoder which compresses the sources jointly.

If the correlation model of the sources can be expressed as the bit-flipping mode [17],

i.e., b2 = b1 ⊕ e and Pr(e = 1) = pe, where pe is the bit-flipping probability and ⊕
denotes modulo-2 addition, the Slepian-Wolf theorem can be utilized in relaying system.

Assume that the appearance probabilities of the source information is equiprobable. Then,

H(b1) = H(b2) = 1, H(b1|b2) = H(b2|b1) = H(pe), H(b1,b2) = 1 + H(pe) with

H(pe) = −pe log2(pe)−(1−pe) log2(1−pe). Now, let us consider a one-way relaying system,

where the relay does not aim to perfectly recover the original information transmitted by

the source, but it only ”extract”1 the source information, even though the relay knows

that the extracted sequence may contain some errors. As shown in Fig. 2.2, the extracted

sequence representing an estimate of the original information sequence, which is then

interleaved and transmitted to the common destination. Obviously, the original and

extracted sequences are correlated. If we assume block fading and no heavy decoding of

the channel code which quite likely causes long burst errors is performed at the relay, it

is reasonable that the intra-link can be expressed by the bit-flipping model within the

block. Based on [2, 12, 13, 14], excellent performance can be achieved through the LLR

exchange in the vertical iterations between the two decoders, where to take into account

the correlation, represented by the error probability of the intra-link.

1Full iterative decoding is not performed at the relay with the aim of reducing the computational
burden at the relay. Instead, the relay performs Viterbi algorithm or only one iteration to get a tentative
estimate of the source information sequence. This process is referred as ”extract” according to [2].

7
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Figure 2.3: An topology of a WMN combined with Slepian-Wolf and the CEO problem.

2.2 Lossy: the CEO Problem

As mentioned in the motivation part of Chapter 1, the Slepian-Wolf relaying system

can achieve such excellent performance is because that the correlation is exploited at the

destination. We assumed that the information sequence does not contain any errors before

being encoded at the source node for the Slepian-Wolf relaying system. It hence belongs

to lossless case. However, if we apply the solutions of Slepian-Wolf relaying system to

more complicated networks, such as wireless mesh networks/wireless sensor networks, it

is quite likely that none of the forwarding nodes/sensors has error-free information part,

nevertheless, they performs re-encoding of the error-corrupted versions of the information

part, and forward it to the final destination (FD)/FC.

Fig. 2.3 illustrates a simple topology of a WMN, where the transmission chain A →
{B,C} → D belongs to Slepian-Wolf problem and D → {E,F} → G typically belongs to

the CEO problem. In reality, it is very common that the Slepian-Wolf and the CEO prob-

lem simultaneously exist in a large scale distributed wireless networks. Hence, research-

ing on the CEO problem can provide appropriate frameworks for the applications with

complexity-and/or-latency constraints, such as sensor networks and video/multimedia

compression, since the CEO problem can shift the computational complexity from en-

coder side to the joint decoder side.

The rate region bound of lossy case where satisfying the rate-distortion pairs (R1, D1)

and (R2, D2) are the major target is also included in Fig. 2.1. The inner bound and outer

bound of the admissible rate-distortion region is derived in [9]. The sum-rate distortion

function for the quadratic Gaussian CEO problem with infinite agents and the identical

SNRs is provided by Oohama in [7]. In fact, the rate-distortion region for many other cases

are still not yet known. It could be indeed great contributions with significant importance

that if we can find precise rate-distortion region completely for the CEO problem, since

8



the CEO problem is related to many other distributed source coding problems.

It should be noticed that the theoretical limit of the only a specific case is known, and

hence, for the systems investigated in this thesis, deriving the theoretical limit is still an

open question. Therefore, in many of the performance figures, we do not include the limit

lines.
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Chapter 3

Wireless Sensor Networks

WSNs which composed of a large number of sensors, deployed in a geographic area to

perform distributed tasks, have been recognized as an important technology, since WSNs

have significant impacts on the society. In WSNs, each sensor node is required to work un-

der very low power consumption restrictions when it performs specified tasks. Therefore,

the sensor nodes have to transmit their data without requiring high transmission power,

and the WSN itself has to be highly energy efficient. A technique which is effective in

reducing the power consumption is to design the system so that the FC can well exploit

the correlation knowledge among the observed data, as supported by the Slepian-Wolf

theorem. In fact, the Slepian-Wolf theorem can be used to compress the data or to reduce

the transmission power, assuming the source-channel separation [15]. Therefore, in this

chapter, no specific source encoding technique is assumed.

Distributed source coding schemes for sensor networks based on the Slepian-Wolf the-

orem are investigated in a tutorial article [18]. In practice, most of WSNs aim to observe

the same sensing object, e.g., the sensors monitor the same physical phenomenon. In

network information theory, the problem of estimating the correct data emitted from the

target over noisy observation link can be modeled by the CEO problem.

In this chapter, proposed coding and decoding strategies, and corresponding perfor-

mance for a parallel WSN are discussed.

3.1 System Model

Figure 3.1 depicts the model of the parallel WSN system, investigated in this chapter,

from the viewpoint of the CEO problem. The sensing object u is an independent binary

sequence with Pr(u(t) = 0) = Pr(u(t) = 1) = 1/2. A set of sensors S produces the error-

10
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Figure 3.1: The structure of the proposed system where M sensors independently observe
the same sensing object.

corrupted versions of the binary sequence uk, k = 1, · · · ,M , obtained after the interleaver

Π following the analog-to-digital (A/D) convertor, corresponding to the observed samples

generated by the sensing object. The observation made by each sensor is modeled by a

bit-flipping model with flipping probabilities pk for the sensor k, k = 1, · · · ,M , therefore,

the bit sequence uk can be expressed as

uk(t) = u(t)⊕ ek(t), (3.1)

where ek is the binary error sequence with probability of Pr(ek(t) = 1) = pk. Let P =

[p1, p2, · · · , pM ]T denote the vector sorting the observation error probabilities. pk denotes

the correlation parameter between sensing object and observation made by the k-th sensor,

where 0 ≤ pk ≤ 1/2.

The sensor k interleaves the observed bit sequence uk first, using interleaver Πk,1, and

then encode the interleaved bit sequence Πk,1(uk) with a channel encoder Ck. The encoded

bit sequence ck is again interleaved by the interleaver Πk,2 and doped-accumulated by

doped accumulator (ACC) [2] with doping ratio Pd for k = 1, · · · ,M . It should be noted

that the lengths of Πk,1 should not necessarily be the same as that of Π. Finally, the

doped-accumulated bit sequence is modulated by binary-phased-shift-keying (BPSK) and

transmitted to the FC over independent additive white Gaussian noise (AWGN) channels

or Rayleigh fading channels. As shown in Fig. 3.1, the signal received from the k-th sensor

11



+

D

Figure 3.2: The structure of the doped accumulator (ACC), Pd denotes the doping ratio.

can be written as

yk = hk · sk +wk, (3.2)

where, hk represents the channel coefficient. The channel is static channel if hk is a

constant, while it is a block fading channel if hk is variable over blocks-by-blocks. In the

latter one, hk ∈ C follows complex Gaussian distribution. The BPSK modulated symbol

sequence at the sensor k is denoted by sk. wk is the Gaussian noise sequence which follows

N (0, σ2), where σ2 is the noise variance per dimension.

3.1.1 Bit-flipping Model

The bit-flipping model is widely used to exploit the correlation in cooperative communi-

cations [2, 3, 17, 14]. In a parallel WSN, the k-th sensor’s observation results are A/D

converted with m-bit resolution, interleaved by interleaver Π, and then transmitted to the

FC by using BPSK. It should be emphasized that the same Π is commonly used by the M

sensors, and the size is equivalent to the m×K, where K is the number the samples. It

plays a crucial role in making the length mK bit sequence random so that the observation

error can well be represented by the random bit-flipping model after the interleaver Π.

The implementation of bit-flipping model can directly use modulo-2 addition operation.

We first randomly generate a bit sequence e with the property that Pr(e(t) = 1) = pe,

where pe is the error probability, then modulo-2 add with the bit sequence to be bit-

flipped, which is shown in (3.1).

12
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Figure 3.3: An example of ACC coding scheme with the doping ratioPd = 2.

3.1.2 Doped Accumulator (ACC)

The ACC uses a memory-1 systematic recursive convolutional code structure, every Pd-

th of the systematic bit is superseded by the accumulated-coded bit which is shown in

Fig. 3.2. An example of how ACC works is given in Fig. 3.3.

The ACC does not change the coding rate of the system. The purpose of using the

ACC is to push up the EXIT curve of inner code decoder to reach a point close enough to

(1.0, 1.0) mutual information (MI) point, therefore, BER performance can be improved

through the iteration process.

3.2 Decoding Algorithm

3.2.1 Basics

The LLR of a binary sequence u is defined as follows:

Lu = ln(
Pr (u = +1)

Pr (u = −1)
), (3.3)

where, Pr (u = +1) and Pr (u = −1) represent the probabilities of the corresponding in-

formation bit being 0 and 1, respectively. In the decoding process, the LLR is also called

soft bit, since the hard decision can be made based on the sign of the LLR value and the

reliability of this hard decision largely depends on the magnitude of the LLR value. The

probability of u = +1 and u = −1 can be straightforward calculated from the given LLR

13
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Figure 3.4: Proposed decoding strategy for a parallel sensor network.

value by:

Pr (u = +1) =
exp (Lu)

1 + exp (Lu)

Pr (u = −1) =
1

1 + exp (Lu)
. (3.4)

The a priori LLR La
u of bit sequence u expresses certain amount of knowledge on the

bit sequence u which has already been known before decoding. The a priori LLR is

usually provided by other decoders.

3.2.2 Algorithm Implementation

A block diagram of the proposed decoding algorithm is shown in Fig. 3.4. It includes

local iteration (LI ), which performs the extrinsic LLR exchange between the decoder

ACC−1 of the doped-accumulator and the channel code decoders Dk, and the global

iteration (GI ), which performs the extrinsic LLR exchange among decoders Dk. The

aim of performing GI is to utilize the correlation knowledge among the sensors through

the LLR updating function fc [15, 17], as shown in Fig. 3.4. As we can see the BER

performance curves presented in Section 3.4 ”Performance Evaluation”, the effect

of performing GI is significant, hence to achieve such large gain through GI, we need to

estimate the observation error probabilities. The Maximum A Posteriori (MAP) algorithm

is used in ACC−1 and Dk.
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The LIs are first performed for each sensor’s corresponding Dk, and then a posteriori

LLR Lp
uk

of systematic bits (information part corrupted by the observation error) output

from Dk are fed into the P estimator to obtain the observation error probabilities pk

which can be utilized in fc[·, pk]. The algorithm used in the P estimator is detailed in the

next section. Then, the extrinsic LLR Le
u,k are input into a priori LLR calculator after

performing fc, pk and de-interleaved. The a priori LLR calculator obtains Lp
u as:

Lp
u =

M∑
k=1

La
u,k. (3.5)

As indicated in Fig. 3.4, the extrinsic LLR fc[L
e
uk
, pk] is equivalent to a priori LLR La

u,k

of the a priori LLR calculator. Hence, La
u,k has to be subtracted from Lp

u. The interleaved

version of Lp
u − La

u,k is input to fc, pk as fc[Πk,1(L
p
u − La

u,k), pk], and then its output is fed

back to Dk as the a priori LLR, La
uk

= fc[Πk,1(L
p
u − La

u,k), pk].

The LI and GI are performed until no more relevant gain can be achieved in a posteriori

LLR Lp
u,final. Then hard decisions are made based on Lp

u,final given by:

Lp
u,final =

M∑
k=1

fc[Π
−1
k,1(L

p
uk
), pk]. (3.6)

It should be noticed that the proposed decoding technique is equivalent to performing

the LLR updating by fc-function between arbitrary M pairs of the sensors, however, the

computational complexity for decoding is reduced from a combinatorial order
(
M
2

)
to a

linear order M . The scalability of the proposed system model is hence guaranteed.

3.2.3 LLR Updating Function

As described above, the observed binary sequence at each sensor node is the corrupted

version of u, hence it is straightforward according to [17] that we can obtain the following

equation:

Pr(uk = 0) = (1− pk) Pr(u = 0) + pk Pr(u = 1)

Pr(uk = 1) = (1− pk) Pr(u = 1) + pk Pr(u = 0)

}
. (3.7)

Equation (3.7) is equivalent to the LLR updating function fc[·, pk] shown in (3.8), based
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on the value pk and the extrinsic LLRs of the uncoded bits obtained as the results of Dk.

La
u,1 = Π−1

k,1[fc(L
e
u1
, pk)]

= Π−1
k,1

[
ln

(1− pk) · exp(Le
u1
) + pk

(1− pk) + pk · exp(Le
u1
)

]
. (3.8)

The LLR updating function for other sensors can be derived in the similar way as shown

above.

3.2.4 Correlation between Pairs of Sensors

Since the P estimator should know the correlation between each pair of the sensors, we

can get the following equations for an example of sensor 1 and sensor 2 according to the

fact that they are observing the same sensing object but suffered from errors at different

positions.

Pr(u1 = 0) = (1− p1) Pr(u = 0) + p1 Pr(u = 1)

Pr(u1 = 1) = (1− p1) Pr(u = 1) + p1 Pr(u = 0)

}
(3.9)

Pr(u = 0) = (1− p2) Pr(u2 = 0) + p2 Pr(u2 = 1)

Pr(u = 1) = (1− p2) Pr(u2 = 1) + p2 Pr(u2 = 0)

}
(3.10)

Substituting (3.10) into (3.9), we can derive the correlation equation between sensor 1

and sensor 2, as:

Pr(u1 = 0) = (1− q12) Pr(u2 = 0) + q12 Pr(u2 = 1)

Pr(u1 = 1) = (1− q12) Pr(u2 = 1) + q12 Pr(u2 = 0)

}
, (3.11)

where q12 = p1 + p2 − 2p1p2.

The correlation equation between arbitrary pairs of the sensors can be straightforward

derived as (3.11) of sensor 1 and sensor 2. Based on these correlation equations between

pairs of the sensors, P can be easily estimated, which will be presented in the next section.
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3.3 Error Probability Estimation Algorithm

Because of the fact that all the observations made by the sensors are correlated, the

following pair-wise equations1 hold according to (3.11):

p̂i + p̂j − 2 · p̂i · p̂j = q̂ij,

where, i = 1 · · ·M,

j = i+ 1 if i = 1 · · ·M − 1,

j = 1 if i = M, (3.12)

where following [15],

q̂ij =
1

N

N∑
g=1

exp(Lp
ui,g

) + exp(Lp
uj ,g

)

[1 + exp(Lp
ui,g)] · [1 + exp(Lp

uj ,g)]
, (3.13)

with Lp
ui,g

∈ Lp
ui
, N represents the number of the a posteriori LLR pairs from the two

decoders with their absolute values larger than a given threshold T . Since the reliability

of q̂ij is influenced by N , it is very important to choose an appropriate T value. However,

how to determine the optimal T is out of the scope of this thesis.

We can reformulate (3.12) by introducing the identity matrix I of size M and a matrix

J defined by (3.15), into the following form:

[(I+ J)− 2 · diag(P̂) · J] · P̂ = q̂, (3.14)

where, P̂ = [p̂1, p̂2, · · · , p̂M ]T , and q̂ = [q̂12, q̂23, · · · , q̂M1]
T . The diag(·) is the operator

that forms a diagonal matrix from its argument vector, and J is denoted as follows:

J =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

1 0 0 0 · · · 0

 . (3.15)

Now, our objective is to find a nonnegative vector P̂ that minimizes ∥AP̂− q̂∥2, which
1q̂ij can be understood as the bit error probability of the j(i)-th sensor’s link, assuming that the

i(j)-th sensor’s link is error free. Furthermore, j should not necessarily be i+ 1. In this case, according
to the selected pairs, the form the matrix J changes.
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is formulated as follows:

min ∥AP̂− q̂∥2

s.t P̂ ≥ 0, (3.16)

where, A = [(I+ J)− 2 · diag(P̂) · J].
To solve (3.16), we propose an iterative algorithm summarized in Algorithm 1. In this

algorithm, we use the standard Nonnegative Least Squares (lsqnonneg) described in [19],

proposed by Lawson and Hanson. The algorithm of lsqnonneg is detailed in Appendix

A.

3.4 Performance Evaluation

3.4.1 Convergence Property of the Estimation

Fig. 3.5 shows the mean square estimation error of the observation error probability vector

P versus the GI times where one GI was followed by one LI. The code parameters are the

same as shown in Table 3.1. The results are plotted for sensor number 12 with per-link

SNR and LLR threshold T as parameters.

As shown in Fig. 3.5, the mean square estimation error |P̂−P|2 decreases as iteration

times increased, indicating that the more GIs performed, the more accurate the estimate

of P. Furthermore, the rate of convergence depends on the values of per-link SNR and T ,

because the values of per-link SNR and T affect the reliability of q̂ij given by (3.13). It

is interesting that with relatively low per-link SNR, the algorithm converges quickly with

small T , e.g., T = 1.5, however, with relatively high per-link SNR, large T , e.g., T = 2

can lead to fast convergence.

3.4.2 BER Performance Comparison of identical P

The gain of performing GI to utilize the correlation knowledge over the case where GI is

not involved in the proposed technique is evaluated, where the simulation results are shown

in Fig. 3.6. It can be achieved roughly 5−8 dB that the gain of performing GI depending

on the number of sensors. Hence, it is necessary to estimate the error probability P. The

simulation parameters are shown in Table 3.1. Furthermore, our proposed technique can

achieve better performances than the parallel concatenated convolutional codes scheme

proposed in [20].
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Algorithm 1: P Estimator

Input: b, ϵ, Pre-defined maximum iterations ITm

Output: P̂ ≥ 0 such that P̂=argmin ∥AP̂− q̂∥2
Initialization: P̂(0) = 0, Calculate A and ∆(0) = ∥AP̂(0) − q̂∥2
for l = 1 to ITm do

Calculate P̂(l) by using lsqnonneg algorithm;

Update A = [(I+ J)− 2 · diag(P̂(l)) · J];
∆(l) = ∥AP̂(l) − q̂∥2;
if ∆(l) ≥ ∆(l − 1) then

Stop;
end

if ∥P̂(l) − P̂(l−1)∥2 ≤ ϵ then
Stop;

end

P̂ = P̂(l);

end
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Figure 3.5: Mean square errors of estimation versus decoding iteration times.

19



−14 −12 −10 −8 −6 −4 −2 0
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

per−link SNR (dB)

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

 

 

M=16, with GI 
M=16, without GI 
M=12, with GI 
M=12, without GI 
M=7, with GI 
M=7, without GI 
M=4, with GI 
M=4, without GI 
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performed with M as a parameter: solid line is the performance of utilizing the correlation
knowledge, while the dash line is that of not utilizing the correlation knowledge.
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Item Setting
u Pr(u = 0) = Pr(u = 1) = 1/2

Ck

Rate 1/2, G = [3, 2]8,
memory-1 nonrecursive

systematic convolutional code
Block length N 104 bits

Block 1000
Decoding Algorithm BCJR

GI 25
Pd 1
T 2
ϵ 10−6

ITm 20

Table 3.1: The settings of simulation parameters.

The BER performances are evaluated for the cases where P̂ and P are used at the

FC, with the numbers M of sensors as a parameter. The simulation results are shown

in Fig. 3.7 . The other transmission parameters are the same as for Fig. 3.6. In the

observation error probability estimator, T , ϵ and the maximum iteration times, ITm were

set as in the Table 3.1.

It is found from the figure that the BER performance can be improved by increasing

the number of sensors M . With M = 4, the error floor can not be reduced to less than

10−4 even by increasing per-link SNR, however it can be reduced to less than 10−6 with

M ≥ 7. Nevertheless, we believe that it is impossible to totally eliminate the error floor,

even though it may happen at a very small BER region. The reason is because we can

not completely eliminate the distortion due to the observation error, which is common to

the CEO problems.

In the case all the elements of P have identical value p, the error floor ϖ can be

calculated by (3.17):

If M is odd:

ϖ =

(
M

M

)
pM +

(
M

M − 1

)
pM−1(1− p) + · · ·+

(
M
M+1
2

)
p

M+1
2 (1− p)

M−1
2

If M is even:

ϖ =

(
M

M

)
pM +

(
M

M − 1

)
pM−1(1− p) + · · ·+

(
M
M
2

)
p

M
2 (1− p)

M
2 /2. (3.17)

Furthermore, (3.17) can be approximated by (3.18) if P is small enough, e.g., 0.01. The
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M ϖ
2 1.00× 10−2

3 2.97× 10−4

4 2.97× 10−4

5 9.80× 10−6

6 9.80× 10−6

7 3.39× 10−7

8 3.39× 10−7

9 1.21× 10−8

16 4.20× 10−12

Table 3.2: The error floor ϖ of different number of sensors.

error floor ϖ taking the number of sensors M as the parameter is given in Table 3.2.

If M is odd:

ϖ ≈
(

M
M+1
2

)
p

M+1
2 (1− p)

M−1
2

If M is even:

ϖ ≈
(
M
M
2

)
p

M
2 (1− p)

M
2 /2. (3.18)

Compared with the case where P is known, only 0.3 − 0.5 dB loss in per-link SNR is

observed when using estimate P̂ of P, and the loss depends on the number of M of the

sensors.

3.4.3 Impact of P Variation

The results shown above are assuming that all the pk are equal to 0.01, we now consider

the cases where pk are also random variables. Fig. 3.8 shows the BER performances in

the case of 7 good observations and 1 bad observation, as well as the converse case. In the

simulations, the other parameters are kept the same as in Table 3.1. We use pk = 0.001

for the good observation and 0.1 for the bad observation. Even in these two extreme

cases, we can still estimate P to get close performance to the case of using exact P at the

FC.

The BER performance of the proposed technique with the error probability vector P

being uniformly distributed in the open interval (0, 0.1) is shown in Fig. 3.9. Based on

the obtained result, our proposed estimation technique can achieve very close performance
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Figure 3.7: BER performance comparison for different numbers of sensors with pk = 0.01,
k = 1, · · · ,M .
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compared to the case P is known to the FC.

As the results shown above, we can apply the proposed estimation technique to the

practical environment, where the observation error probability varies. The loss in BER

performance is spread slightly according to the value of each pk, where k = 1, · · · ,M .

3.4.4 FER Performance in Block Fading Sensor-FC Links

The BER and FER performance for the case where sensors-FC links suffer from Rayleigh

fading are shown in Fig. 3.10 and Fig. 3.11, respectively. In this simulation, we assume fast

block fading, where fading is static within a block, but changes block-by-block. Based

on the simulation results, we can still achieve around 4 dB performance gain in per-

link average SNR by using the proposed technique over the case of not utilizing the

correlation knowledge. Furthermore, the performance of using estimated P̂ can achieve a

close performance in both BER and FER.

In Rayleigh fading channels, we improve the estimation algorithm by utilizing the adap-

tive threshold T algorithm when estimating q̂ij based on the a posteriori LLRs from

decoder Di and Dj. The adaptive threshold T algorithm2 is summarized as follows:

Algorithm 2: Adaptive Threshold T

Input: Initial T , Block Length: N , a posteriori LLR: Lp, Step: △T
Output: Updated T
while length(|Lp| ≥ T ) < N · α% do

T = T −△T ;
end

The average SNR shown in the FER and BER performance figures is defined as:

γk = |hk|2 · Γk, (3.19)

with the constraint:

E{|hk|2} = 1, (3.20)

where γk and Γk represent instantaneous SNR and the average SNR of the channel between

the k-th sensor and FC, respectively. The channel coefficient of each channel is defined

2α = 75 was used in the simulations, and the value was found empirically.
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Figure 3.9: BER performance comparison for P following uniform distribution.
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Figure 3.10: BER performance comparison for assuming that the instantaneous SNR
changes link-by-link according to equation (3.19). Links are assumed to be Rayleigh
fading channels. Number of sensor is 8. The observation error probabilities are set to be
0.01.

27



−10 −8 −6 −4 −2 0 2 4
10

−3

10
−2

10
−1

10
0

per−link average SNR (dB)

F
ra

m
e 

E
rr

or
 R

at
e 

(F
E

R
)

 

 

M = 8. Without GI
M = 8. Known P
M = 8. Estimated P
Outage (M = 8, P = 0)

Figure 3.11: FER performance on the case of assuming the channels between sensors
and FC are Rayleigh fading channels. Number of sensor is 8. The observation error
probabilities are set to be 0.01.
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as hk. The probability density function (pdf) of γk is given by:

Pr(γk) =
1

Γk

exp(−γk
Γk

). (3.21)

3.5 Summary

In this chapter, we have investigated the transmission techniques of data gathered by

multiple sensors to the fusion center.

We first proposed a strategy that combines the local and the global iterations without

requiring heavy computational complexity, instead of exploiting the correlation knowledge

over all the possible combinations of the sensor pairs. We also proposed a nonnegative

constrained iterative algorithm to estimate the observation error probabilities.

It has been shown through simulations that the algorithm converges only after several

iterations. In addition, the results of simulations conducted to evaluate the BER perfor-

mance of the proposed techniques with the estimation algorithm can achieve only roughly

0.3 − 0.5 dB loss in per-link SNR compared to the case of known P at the FC. Finally,

the FER performance of the proposed techniques, where the links between the sensors

and the FC are suffering from Rayleigh fading, has been evaluated.
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Chapter 4

Wireless Mesh Networks

WMNs are a form of cooperative communications system, in which multiple nodes are

organized in a mesh topology for relaying messages to the destinations. High data through-

put, power and spectral efficiencies, as well as better resource utilization are expected.

WMN systems usually consist of a group of fixed or mobile devices and hence can be

deployed smoothly and flexibly in complicated environments such as in devastated and

emergency situations, tunnels, oil rigs, and/or for battlefield surveillance.

In this chapter, we investigate a simple case of WMN, which is two forwarding nodes

assist the originator to transmit information to FD. The schematic diagram of this simple

WMN is depicted in Fig. 4.1. It should be noticed that the forwarding nodes is equivalent

to the sensors in Chapter 3, and the originator is equivalent to the sensing object.

However, since the originator can be a mobile device in a WMN, it is possible to add

another outer code to remove the errors occurring in the originator-forwarding node link,

referred to as intra-link.

4.1 System Model

Figure 4.2 shows a simple model of WMN, describing the viewpoint of the CEO problem,

with only two forwarding nodes, assumed in this thesis. This strategy can be further

extended to the case of involving more forwarding nodes, where the decoding algorithm

of a parallel WSN can be used.

At the originator node, the original information bit sequence x to be transmitted is first

encoded by C0. The encoded bit sequence is then interleaved by random interleaver Π0 and

doped-accumulated by ACC with doping ratio Pori. The output of ACC, u, is broadcasted

to the two forwarding nodes over independent BSC with crossover probabilities p1 and
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Figure 4.1: The schematic diagram of a very simple WMN, where two forwarding nodes
assist the originator to communicate with the final destination.

p2, respectively, which can be modeled by the bit-flipping model.

Aiming at perfect decoding at the forwarding nodes is out of the scope of this thesis,

because it needs very strong link-level codes. Instead, each forwarding node makes only

tentative decision on the received bit sequences, of which results u1 and u2 are first per-

mutated by the interleavers Π1 and Π2 and further encoded by C1 and C2, respectively.

The channel between the transmitted information sequence u and the one uk obtained as

the result of the tentative decoding can be seen as also BSCs with the crossover proba-

bilities p1 and p2, which can be modeled by the bit-flipping model, where k = 1, 2 is the

forwarding node index.

Since perfect recovery of information sequence transmitted from the originator node is

not aimed at in the forwarding nodes, the complexity of forwarding nodes is very light.

Then, the encoded sequences are again interleaved by Π3 and Π4, and doped-accumulated

by ACC with doping ratio Pfor. The doped-accumulated bit sequences are modulated by

BPSK, i.e., 0 → −1 and 1 → +1, and then forwarded to the FD at different time slots

over AWGN channels. We assume the SNRs are the same in the two channels between

forwarding nodes and the FD. The received signal sequence from forwarding node k can

be expressed as:

yk = sk + nk, (4.1)

where the modulated signal sequence is denoted by sk. nk represents noise that are zero

mean i.i.d complex value with variance σ2 per dimension.

After receiving the signal y, the channel log-likelihood ratios (LLRs) are first calculated
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Figure 4.2: Structure of the proposed system for a simplified WMN. Only two forwarding
nodes are considered.
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by:

Lch = ln
Pr(y|s = +1)

Pr(y|s = −1)
=

2

σ2
y. (4.2)

At the FD, joint decoding is performed by exchanging the extrinsic LLRs which is

detailed in the next section.

4.2 Joint Decoding Strategy

Joint decoding process is divided into two iteration processes as depicted in Fig. 4.2. We

refer these two processes to Horizontal Iteration (HI ) and Vertical Iteration (VI ). It is

necessary to mention that HI and VI is equivalent to LI and GI in a WSN, respectively.

To perform the channel decoding for convolutional codes C0, C1 and C2 as well as for

ACC, we still perform MAP decoding using the BCJR algorithm proposed by Bahl, Cocke,

Jelinek and Raviv [21] as in Chapter 3.

In the HI, the extrinsic LLRs are exchanged through the corresponding interleaver/de-

interleaver between the soft-in-soft-out (SISO) decoder ACC−1 and SISO decoder D1

or D2 used by the forwarding node 1 and 2, respectively. The extrinsic information

exchange is performed via HI until no more significant mutual information improvement

can be achieved. However, activation times on the two HI loops are design parameters

and hence optimization of the activation ordering is out of the scope of this paper. After

each HI step, we activate VI loop between D1 and D2 by exchanging the output extrinsic

LLRs of uncoded (systematic) bits output from the two decoders D1 and D2 via an LLR

updating function fc(L
e
uk
, q) as:

fc(L
e
uk
, q) = ln

(1− q) · exp(Le
uk
) + q

(1− q) + q · exp(Le
uk
)
, (4.3)

with q = p1+p2−2p1p2. The purpose of VI is to help two decoders D1 and D2 cooperate

each other to reconstruct information. This is because since the uncoded bit sequences,

are originated from the common originator node and forwarded by the two forwarding

nodes, they are correlated. Hence, the aim is to fully exploit the knowledge about the

correlation at the FD node.

After performing LLR exchange several times via the HI -VI loops, the a posteriori

LLRs output from D1 and D2 are combined. Before combing, however, the LLRs are
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further modified by (4.4) [22, 23].

Lcomb =
2∑

k=1

Lm
Dk

=
2∑

k=1

ln
1− pk
pk

sign(Lp
uk
). (4.4)

pk represents the error probabilities of the intra-link. Lp
uk

is the a posteriori LLR from

Dk, where k = 1, 2 in this simple case. The function sign(·) takes the sign (positive or

negative) of its argument.

The modified LLRs Lcomb are forwarded to another horizontal iteration loop to finally

obtain the originator’s source information bit sequence x̂. This process is the same as the

HI described above. Finally, hard decisions are made on the a posteriori LLRs obtained

by the decoder D0.

4.3 EXIT Chart Analysis

4.3.1 Basics

Extrinsic information transfer (EXIT) chart was introduced by Stephan ten Brink in [24]

as a novel tool to aid the construction, analysis and optimization of concatenated error-

correcting coding schemes with iterative decoding process. As a result, the convergence

behavior of iterative decoding schemes can be easily understand in the EXIT chart.

As mentioned in [25], the BER performance of iterative decoding schemes contains

three regions: 1) in the region of low SNR, BER is very high with negligible gain over

iterations; 2) the turbo cliff happens as the SNR increased, where the error rate reduces

very fast by performing enough iterations. This region is also called waterfall region; 3)

the error floor appears in the region of high SNR where a quite low BER can be achieved

by performing only several iterations. The error floor can be eliminated by designing the

iterative systems based on EXIT chart analysis. However, as described in Chapter 3,

the distortion caused in the CEO system results the error floor; the reason for the error

floor is the CEO problem is different from the floor of the turbo system; the distortion is

already included before encoding in the case of the CEO problem, and hence, it can not

be predicted by the EXIT chart analysis.

In order to analyze the convergence behavior of iterative decoding at the turbo cliff

region in the SNR range, a density evolution algorithm has been proposed to calculate

convergence threshold for low-density parity-check (LDPC) codes over the AWGN chan-

nel and to construct LDPC capacity-approaching codes [26, 27]. The main idea of density
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evolution is to track the pdfs of the exchanged information message in the iterative decod-

ing process. The pdfs of LLRs can be assumed as being Gaussian distributed to simplify

the analysis [28]. EXIT chart visualizes the density evolution of extrinsic LLR over the

iteration using the mutual information between the coded bits at the transmitter and the

corresponding LLRs at the receiver. Based on the EXIT chart analysis, the convergence

property of the iterative systems can be visualized, and with the aid of the visualization

technique, the code optimization falls into the problem of the EXIT curve matching. In

[29], the authors proposed an EXIT-constrained binary switching algorithm to optimize

the coding parameters of single parity check code and irregular repetition code and the

mapping rule of extend mapping to achieve a very close Shannon limit performance.

Entropy and Mutual Information

In the information theory, the entropy is originally defined by Claude E. Shannon in [30],

which is the measure of the uncertainty of information. It is a general concept to evaluate

the amount of information in a transmitted message. The definition of the entropy is

given, for a discrete random variable having probability mass function Pr(x), as:

H(X) = −
∑
x∈X

Pr(x) log(Pr(x)), (4.5)

where, H(X) represents the entropy of a discrete random variable X. H(x) does not take

negative values, with the definition 0 log 0 = 0.

The joint entropy H(X, Y ) of discrete random variables X and Y can be defined as:

H(X, Y ) = −
∑
x∈X

∑
y∈Y

Pr(x, y) log(Pr(x, y)), (4.6)

where x and y are particular values of X and Y , respectively. Pr(x, y) is the joint proba-

bility that the event X = x and Y = y happens. The conditional entropy of Y by given
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Figure 4.3: An example of a simple communication system for learning the concept of the
EXIT chart. Dec: channel decoder, Dem: demapper.

X can be further defined as:

H(Y |X) =
∑
x∈X

Pr(x)H(Y |X = x)

=
∑
x∈X

Pr(x)
∑
y∈Y

Pr(y|x) log
(

1

Pr(y|x)

)
= −

∑
x∈X

∑
y∈Y

Pr(x, y) log(Pr(y|x))

= −
∑

x∈X,y∈Y

Pr(x, y) log(Pr(y|x))

=
∑

x∈X,y∈Y

Pr(x, y) log

(
Pr(x)

Pr(x, y)

)
, (4.7)

where H(Y |X) = 0 if and only if the value of Y is completely determined by the value

of X. Conversely, H(Y |X) = H(Y ) if and only if Y and X are independent random

variables.

The mutual information between X and Y defined in (4.8) is the relative entropy

between the joint distribution and the product distribution Pr(x) Pr(y). The mutual

information indicates a quantity that measures the mutual dependence of the two random
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variables.

I(X;Y ) =
∑
x∈X

∑
y∈Y

Pr(x, y) log

(
Pr(x, y)

Pr(x) Pr(y)

)
, (4.8)

where Pr(x, y) is the joint distribution function of X and Y . Pr(x) and Pr(y) are

the marginal probability distribution functions of X and Y , respectively, i.e., Pr(x) =∑
y Pr(x, y) and Pr(y) =

∑
x Pr(x, y)

The mutual information I(X;Y ) is the reduction in the uncertainty of X by knowing

Y , which is expressed as follows:

I(X;Y ) = H(X)−H(X|Y ). (4.9)

EXIT Chart

We consider a simple communication system which shown in Fig. 4.3. The input of the

demapper is the received signal from the channel and the extrinsic information from of

the channel decoder. The output LLRs of the demapper can be calculated based on the

received signal and the a priori LLRs provided by the channel decoder (equivalent to the

extrinsic information output from the channel decoder), while the output LLRs of the

channel decoder is calculated using the extrinsic LLRs from the demapper as an input.

It should be emphasized, according to [25], that the random interleaver Π makes the

output LLRs of the demapper uncorrelated with the corresponding output LLRs of the

channel decoder. In addition, the pdf of the extrinsic LLRs approach the Gaussian-like

distribution as the number of iterations increased. Therefore, the LLRs L can be modeled

as output of the equivalent Gaussian channel, referred to as side-channel [25], where the

transmitted known information bit x is suffering from zero mean independent Gaussian

noise with variance σ2
N . The LLRs can be expressed as:

L = ηLx+ nL, (4.10)

with a mean of LLRs ηL = 2/σ2
N and nL ∼ N (0, σ2

L), where σ2
L = 4/σ2

N . Since L is an

LLR value based on Gaussian distribution, the mean value ηL is related to variance as:

ηL =
σ2
L

2
. (4.11)
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Base on (4.11), the conditional pdf of the LLRs L is:

Pr(l|B = b) =
exp(−((l − (σ2

L/2)b)
2)/2σ2

L)√
2πσL

. (4.12)

To measure the mutual information between transmitted coded bits B and the LLRs L, we

use the general definition of mutual information in (4.8). Hence the mutual information

I(B;L) is calculated as follows:

I(B;L) =
1

2

∑
b=−1,1

∫ ∞

−∞
Pr(l|B = b) · log2

2Pr(l|B = b)

Pr(l|B = −1) + Pr(l|B = 1)
dl, (4.13)

with the following quite general assumptions:

Pr(l, b) = Pr(l|B = b) Pr(b) (4.14)

Pr(l) =
1

2
(Pr(l|B = −1) + Pr(l|B = 1)) (4.15)

Pr(l|B = −1) = Pr(l|B = 1) =
1

2
, (4.16)

where b and l are the realizations of the random variables B of the transmitted coded bits

and its corresponding LLRs, respectively.

For the computational convenience, Monte Carlo simulations followed by histogram

measurement can be used to calculate the MI expressed in (4.13). We can further apply

the following additional assumptions on Pr(l|B = b) to avoid integration in (4.13); we

assume the symmetry and consistency properties of Pr(l|B = b), as follows:

Symmetry : Pr(l|B = −1) = Pr(−l|B = 1) (4.17)

Consistency : Pr(l|B = −1) = Pr(−l|B = 1) exp(l), (4.18)

and therefore,

Pr(l|B = −1) = Pr(l|B = 1) exp(l). (4.19)

By invoking the property that LLR is ergodic, the computation of the MI can be replaced

by time averaging[22]. In practice, the consistency assumption is not always satisfied.

Nevertheless, we can still assume the consistency to obtain the accurate and reliable MI
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[22]. Equation (4.13) hence be approximated as:

I(B;L) = 1−
∫ ∞

−∞
Pr(l|B = −1) · log2(1 + exp(−l))dl (4.20)

= 1− E[log2(1 + exp(−l))|B = −1] (4.21)

≈ 1− 1

N

N∑
i=1

log2(1 + exp(−bili)). (4.22)

From [22], the MI can be expressed by the so-called J-function using the Gaussian

approximation. The J-function provides the relationship between the MI and the variance

of LLRs σ, which is shown as:

J(σ) = I(σL = σ), (4.23)

with

lim
σ→0

J(σ) = 0, lim
σ→∞

J(σ) = 1, σ > 0. (4.24)

It is well known that the J-function can be accurately approximated by the following

convenient form:

J(σ) =
(
1− 2−H1σ2H2

)H3

(4.25)

and

σ = J−1(I) =

(
− 1

H1

log2(1− I
1

H3 )

) 1
2H2

. (4.26)

Fig. 4.4 shows an example of the EXIT chart of the system depicted in Fig. 4.3. The

demapper curve indicates the extrinsic MI output from the demapper, while the decoder

curve shows the extrinsic MI of decoder. The real MI exchange between the demapper

and the channel decoder is visualized as the decoding trajectory.

4.3.2 Convergence Property

The result of EXIT chart analysis indicating the convergency properties of the proposed

system is provided in this subsection. The EXIT chart analysis covers the iterations

ACC−1
Dk andACC−1
D0, where notation ”
” denotes LLR exchange. We use three-
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dimensional (3D) EXIT chart to visualize the extrinsic information exchange between

ACC−1 and D1 as well as D1 and D2. As shown in the Fig. 4.2, two a priori LLR

sequences are fed to D1. Therefore, we evaluate the transfer function for D1 in the form

of:

Iec1 = T1(L
a
c1
, fc(L

e
u2
, q)), (4.27)

where Iec1 represents the mutual information between the LLRs of the coded bits obtained

byD1, and their corresponding transmitted bits . La
c1

denotes the a priori LLRs provided

into D1, which is equivalent to the extrinsic LLRs of coded bits output from ACC−1. The

extrinsic LLRs of the uncoded bits output from D2, L
e
u2
, is updated by the fc function

and then fed to D1. The transfer function for D2 can be obtained in the same way as

(4.27) was derived. The q value can be estimated from the decoder output LLR, as:

q̂ =
1

N

N∑
g=1

exp(Lp
u1,g

) + exp(Lp
u2,g

)

[1 + exp(Lp
u1,g)] · [1 + exp(Lp

u2,g)]
, (4.28)

with Lp
uk,g

∈ Lp
uk
, N represents the number of the a posteriori LLR pairs from the two

decoders with their absolute values larger than a given threshold T .

The 3D EXIT chart illustrated in Fig. 4.5 is with parameters BSC crossover probabilities

p1 = 0.05, p2 = 0.06 and doping ratio Pfor = 2 at SNR = −3.6 dB for both the channels

between the forwarding nodes and the FD. Since the D1 and D2 are symmetric, we only

show the 3D EXIT chart of the HI loop for the transmission chain of the forwarding node 1

and trajectory which is obtained by evaluating the mutual information between extrinsic

LLRs and the corresponding information bit sequence, by independent (non chained)

simulation. Under large enough SNR and sufficient times of iterations, the trajectory can

finally reach a point very close to the (1.0,1.0,1.0) MI point, which indicates that the

original message, relayed by the forwarding nodes, can be reconstructed perfectly.

Figure 4.6 shows the EXIT curves and trajectory of the decoders ACC−1 and D0 where

p1 = 0.05, p2 = 0.06 and Pori = 2. After several iterations, the trajectory achieve (1.0,1.0)

point and the originator’s information be recovered completely. It should be emphasized

here that Fig. 4.6 indicates the case where two HI’s perform as many iterations as no more

gain in mutual information can be achieved. However, even without full iterations of two

HI loops, which results in even smaller value of mutual information after the a posteriori

LLRs combining, the EXIT curves of ACC−1 and D0 do not intersect until a point very

close to the (1.0, 1.0) MI point. According to our simulations, mutual information of 0.73
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after the a posteriori LLRs combining which is the case of non-full iterations over two

HI’s, can still keep the tunnel open.

4.4 Simulation Results

BER performances of the proposed system with three representative value pairs of p1 and

p2 are shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9, respectively. In our simulations, we set the

frame length at 100000 information bits. 30 HI’s and 5 VI’s are performed in the joint

decoding part at the FD. After LLRs combing base on (4.4), we performed 10 HI’s to get

the estimate of the original information.

The BER performance of the proposed system for two relatively small p1 and p2 value

pairs, which are described in the figure caption, are illustrated in Figs. 4.7 and 4.8,

respectively. It is found from the BER simulation results that, we can achieve clear turbo

cliff over the AWGN channel. Also, we can see that, a performance gain of about 2−3 dB

can be achieved by performing VI. The larger the gain, the smaller the p̂ value, in which

case the two forwarding nodes are highly correlated.1

Fig. 4.9 shows the BER performance for a relatively large p1 and p2 value pair (p1 = 0.1,

p2 = 0.2). Since with such high intra-link error probabilities, the area of the admissible

rate region supported by the Slepian-Wolf theorem is relatively small, compared with the

independent coding case. Hence, the benefit of the proposed structure decreases. As

shown in Fig. 4.9, turbo cliff can be achieved even without VI and performance gain of

about 0.7 dB can be achieved with VI over without VI. Fig. 4.9 also shows the BER curve

without the LLR modification before combining them, performed to take into account the

intra-link error probabilities by (4.4). It can be seen that without the LLR modification,

the error floor appears at very high BER range (≈ 10−1), compared with that with LLR

modification.

4.5 Rate Optimization

Since the gap between the EXIT curves of ACC−1 and D0 shown in Fig. 4.6 is very

large, we can increase the rate of C0 by, for example using punctured convolutional codes

to achieve better matching of the two EXIT curves. For this purpose, we propose an

algorithm to maximize the rate of C0 by using an irregular convolutional code [31].

1The CEO problem belongs to distributed lossy compression problem in Network Information Theory,
and the limits for this problem, are not yet known, except for some special cases.

44



−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
it 

E
rr

or
 R

at
e

 

 

With VI
Without VI

Figure 4.7: BER performance of the proposed system. The crossover probabilities for the
BSC channels are p1 = 0.05 and p2 = 0.06.
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Figure 4.8: BER performances of the proposed system. The crossover probabilities for
the BSC channels are p1 = 0.01 and p2 = 0.02.
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We suppose that the C0 is constructed from a group of subcodes to form an irregular

convolutional code. In this group of subcodes, each component has different rate Rm,

where Rm takes the values shown in the left column of Table 4.1. The EXIT curve of each

component is shown in Fig. 4.10. An irregular convolutional code encodes the sequence

of data, fractions-by-fractions, using different component in the group of subcodes, where

the length of each fraction is corresponding to the ratio αm. Fig. 4.11 provides an example

of an irregular convolutional code.

Since the EXIT curve of the inner code decoder ACC−1 is fixed, the target of this opti-

mization is to construct an irregular convolutional code of the outer code C0 to maximize

the rate of C0 while keeping the convergence tunnel open. For this purpose, we propose

an algorithm to minimize the horizontal gaps between the EXIT curves of ACC−1 and

D0. This is equivalent to maximize the rate of C0 since the area below the EXIT curve

of D0 is determined by the rate.

Hence, the problem can be formulated into the following form:

min
∑
m

−αm ·Rm

s.t.
∑
m

αm = 1

and
∑
m

−αm · Fe(IEacc) < −(IA+ ϵ), (4.29)

where, αm is, as mentioned before, the ratio of using the corresponding component in the

group of subcodes with rate Rm. The F
e-function which is an approximated function given

by (4.30) that calculates the extrinsic information for different rate Rm using different

parameters H1, H2, H3 which are given in Table 4.1 [32]. The values of H1, H2 and H3

were obtained by the least square curve matching technique. IEacc is the extrinsic MI

which is obtained from simulation. IA is the a priori MI which take value in [0∼1]. ϵ is

pre-defined horizontal gaps between the two EXIT curves:

Fe(IEacc) ≈ (1− 2−H1·IE
H2
acc)H3 . (4.30)

In this problem, αm is the optimization variable to be determined. Obviously, this

problem can be solved by linear programming (LP) technique. Fig. 4.12 shows the D0’s

EXIT curve obtained by using the result of the code optimization, where the EXIT curve

of ACC−1 is also presented. The ϵ setting for the obtained EXIT curve is shown in Table

4.2. The αm values obtained as the result of the optimization are shown in the box in
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Rate H1 H2 H3

1/8 195.400 2.9579 0.5670
1/7 118.0075 2.7906 0.6567
1/6 109.7092 3.1510 0.5521
1/5 63.5397 2.9603 0.6883
1/4 81.4071 4.3086 0.4041
1/3 31.4326 3.7342 0.6785
1/2 13.8206 3.2731 1.5506
2/3 9.6326 5.0674 1.1642
3/4 7.9191 7.6973 0.7759
4/5 6.9441 9.1556 0.7442
5/6 6.3174 12.0614 0.5828
6/7 5.9538 13.8573 0.5577
7/8 5.6122 17.1775 0.4657

Table 4.1: The coefficient of approximated function.

Fig. 4.12. It is found that the two curves are closely matched, while the convergence

tunnel is open until a point very close to the (1.0, 1.0) MI point.

In fact, we do not provide in-depth information theoretic considerations on the rela-

tionship between the code rates and Hamming distortion [33] in this thesis. However,

when we seek for the optimal rate allocations to the codes used by the originator and

forwarding nodes, we have to first identify the relationship in the information theoretic

framework of the CEO problem. Especially, the rate of C0 should be determined by the

rate-distortion function, which takes into account the Hamming distortion and allocated

rate to the nodes in the network, in general.

It is expected that the more forwarding nodes involved, still error-free communication is

possible with a high rate of C0; we may be able to eliminate C0 [20, 34] while keeping the

Hamming distortion lower than a specified low enough value. In Chapter 3, the BER

performance is improved when the number of forwarding nodes (sensors) is increased.

From the analysis of the error floor, it is possible to guarantee reliable communication2

by involving more forwarding nodes.

2”reliable communication” is defined from the lossy distributed coding viewpoint such that the Ham-
ming distortion left after decoding is lower than a specified value.
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MI point 1 2 3 4 5 · · · 20 21
ϵ 0 0.001 0.001 0.001 0.001 · · · 0.001 0

Table 4.2: The pre-defined horizontal gaps between two EXIT curves: ϵ setting.

4.6 Summary

In this chapter, we have examined coding and decoding strategies on the issue of WMNs

from the CEO problem viewpoint.

In WMNs, the energy and spectrum efficiencies should be optimized as the whole net-

work rather than an assembly of many point-to-point (P2P) connections. Each forwarding

node is small transceiver with low power consumption, where energy is very scarce. We

thereby proposed a very simple strategy at the forwarding nodes and a joint decoding

scheme by exploiting the correlation knowledge among intra-links at the FD. Even though

errors are detected in the signals received by the forwarding nodes, they are correlated

because of coming from the same originating node. Therefore, utilization of the Slepian-

Wolf theorem allowing distorted source recovery should be the theoretical basis of the

WMNs transmission chain design.

The simulation results show that we can achieve roughly 2 − 3 dB gain compared

with separately decoding scheme. By optimizing the code parameters, close-limit BER

performance can be expected, which belongs to the issue of the standard EXIT matching

problem. More fundamental question is that how the relationship between the code rates

and Hamming distortion can be formulated, and how it can be solved with the aim of

their applications to WMNs. This is left as future study.
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Figure 4.12: EXIT curves of ACC−1 with doping ratio Pori = 2 and D0 with different
coding rates. BSC crossover probabilities p1 = 0.1 and p2 = 0.2. CC: convolutional code
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have investigated the coding-decoding strategies for a parallel WSN and

a very simple WMN from the viewpoint of the CEO problem.

At the agents (sensors/forwarding nodes), heavy decoding process was not performed.

Instead, ErF strategy was used for reducing the complexity of the agents, and hence also

reducing the energy consumption. We then proposed the decoding technique which can

well exploiting the correlation knowledge among those agents by using the LLR updating

function at the CEO node (FD/FC). Excellent performances can be achieved with our

proposed technique.

In Chapter 2, we first introduce the Slepian-Wolf relaying system which our research

group has already solved with achieving excellent performances in BER/FER. Then, we

simply explain the reason why we shift from the lossless cases to the lossy cases.

In Chapter 3, the case where multiple sensors gathering data from the sensing object

aim to transmit the observed data to the FC via parallel links has been considered. We

modeled this parallel WSN from the viewpoint of the CEO problem. A simple coding-

decoding strategy was proposed to exploit the correlation among those sensors. Further,

we proposed an iterative estimation algorithm for estimating observation error probabil-

ities. From the simulation results, it can be found that the estimation algorithm can be

applied in many situations. Thereby, reality and scalability of our proposed system were

proven.

In Chapter 4, we further apply the coding-decoding strategy to a simple WMN where

none of the forwarding nodes has error-free information part from the originator. The

EXIT chart analysis and BER performance were evaluated for the proposed system model.
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In addition, we have shortly discussed the rate optimization for the channel encoders in

the network by using linear programming technique based on the EXIT chart analysis.

5.2 Future Work

In general, there are several tasks left for future work, which are list as follow:

1. Multiplexing transmission: Multiple access channel (MAC) and/or Orthogonal chan-

nel from sensors to FC;

2. Adaptive resource allocation: Rate optimization and power allocation optimization

for the whole system model;

3. Based on the Network information theory, the rate region for given distortion pair

and the bounds should be derived for more general cases;

4. Establish techniques that can evaluate convergence property of iterative techniques

used to achieve the rate-distortion region;

5. Optimize rate/distortion by using the techniques which can evaluate convergence

property based on the obtained rate region;

6. Apply the coding and decoding strategies to more complicated WMN/WSN with

multi-hop transmission [35];

Originator

Forwarding nodes

Final destination (FD)

Figure 5.1: An example of a complicated WMN for further study.

7. Establish outage calculation method for the system model we assumed in this thesis

from the viewpoint of the CEO problem;
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8. Calculate the theoretical bound for the very simple WMN with the intra-link prob-

abilities as the parameters.
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Appendix A: lsqnonneg Algorithm

The lsqnonneg algorithm is the modified version of the Standard algorithm for the

nonnegative least squares (NNLS) problem proposed by Lawson and Hanson, which is an

active set method [19].

The NNLS problem can be formulated in the following form, which is: given a matrix

A ∈ Rm×n and the set of observed values given by b ∈ Rm, find a nonnegative vector

x ∈ Rn to minimize the functional f(x) = 1
2
∥Ax− b∥2, as:

min f(x) =
1

2
∥Ax− b∥2

s.t. x ≥ 0 (5.1)

∇f(x) = AT (Ax− b) is defined to be the gradient of f(x). The Kraush-Kuhn-Tucker

(KKT) optimality conditions for the NNLS problem (5.1) are expressed as follows:

x ≥ 0

∇f(x) ≥ 0

∇f(x)Tx = 0 (5.2)

The NNLS problem quite often appears in linear algebra. Various methods have been

proposed to solve the NNLS problem. Among those methods, the algorithm proposed

by Lawson and Hanson is supposed to be the first method, which belongs to active set

method. Mathworks further modified the standard algorithm which is summarize in Al-

gorithm 3.1 Lawson and Hanson also prove that this algorithm requires finite iterations.

The algorithm can converge at a point where the KKT conditions are satisfied.

1The matrix AQ is a matrix associated with only the variables currently in the passive set Q.
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Algorithm 3: lsqnonneg

Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ ≥ 0 such that x∗=argmin ∥Ax− b∥2
Initialization: Q = ∅, S = 1, 2, · · · , n, x = 0, v = AT (b−Ax)
while S ̸= ∅ and {maxi∈S(vi) > tolerance} do

j = argmaxi∈S(vi);
Include the index j in Q and remove it from S;
zQ = [(AQ)TAQ]−1(AQ)Tb;
while min(zQ) ≤ 0 do

β = −mini∈Q[xi/(xi − zi)];
x = x+ β(z− x);
Update S and Q;
zQ = [(AQ)TAQ]−1(AQ)Tb;
zS = 0;

end
x = z;
v = AT (b−Ax);

end
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Abbreviations and Notations

ACC doped accumulator

A/D analog-to-digital

AWGN additive white Gaussian noise

BCJR MAP algorithm proposed by Bahl, Cocke, Jelinek, Raviv

BER bit error rate

BICM-ID bit-interleaved coded modulation with iterative detection

BPSK binary phase-shift keying

BSC binary symmetric channel

CEO chief executive officer

ErF Extract-and-Forward

EXIT extrinsic information transfer

FC fusion center

FD final destination

FER frame error rate

GI global iteration

HI horizontal iteration

KKT Kraush-Kuhn-Tucker

LDPC low-density parity-check

LI local iteration

LLR log-likelihood ratio

MAC multiple access channel

MAP maximum a posteriori probability

MI mutual information

MSE mean square error

NNLS nonnegative least squares

pdf probability density function

P2P point-to-point

QPSK quadrature phase-shift keying

SISO soft-in-soft-out

VI vertical iteration

WSN wireless sensor network

WMN wireless mesh network
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(̂·) estimation of the argument

(·)−1 inverse of the argument

(·)T transpose of a vector or matrix

| · | absolute value of the argument

∥ · ∥ norm of a vector or matrix

diag(·) diagonal matrix with vector elements on its diagonal components

exp(·) exponential calculation of the argument

E[·] expectation of a random variable

F e(·) the function to calculate extrinsic mutual information for convolutional code

J(·) J-function

ln(·) natural logarithm to base e

log2(·) natural logarithm to base 2

log(·) natural logarithm to any bases

max maximum value

min minimum value

sign(·) the sign of the argument

Tk(·, ·) transfer function for Dk

ACC−1 doped accumulator decoder

B coded bits

ck coded sequence after Ck at k-th sensor

C the set of all complex numbers

C,Ck channel encoder

D distortion

Dk decoder for encoder Ck

ek the error sequence used at k-th sensor

hk channel coefficient for the channel between the k-th sensor and the FC

I the identity matrix

I(·, ·) mutual information between argument 1 and 2

Ia a priori information

Ie extrinsic information

La a priori LLR sequence

Le extrinsic LLR sequence

Lp a posteriori LLR sequence
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J circular matrix used in the estimation algorithm

M the number of agents

N (·, ·) Gaussian distribution, argument 1: mean, and argument 2: variance

nk zero mean complex AWGN sequence

nL zero mean complex AWGN

P vector of the observation error probabilities

pk observation error probability or intra-link error probability

Pr(·) probability of the variable

Pd, Pori, Pfor doping ratio of the ACC

R the set of all real numbers

R,Rk coding rate

s, sk modulated symbol sequence

T threshold of LLR value

u the binary information sequence of the sensing object or originator

wk zero mean white Gaussian noise sequence

Γ average SNR

γ instantaneous SNR

ϖ error floor in BER

σ2, σ2
N Gaussian noise variance

σ2
L variance of LLR

ηL mean of LLR

60



Bibliography

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting

coding and decoding: Turbo-codes. 1,” in Proc. IEEE Int Communications ICC 93.

Geneva. Technical Program, Conf. Record Conf, vol. 2, pp. 1064–1070, 1993.

[2] K. Anwar and T. Matsumoto, “Accumulator-assisted distributed turbo codes for

relay system exploiting source-relay correlations,” IEEE Communications Letters,

vol. 16, no. 7, pp. 1114–1117, 2012.

[3] M. Cheng, X. Zhou, K. Anwar, and T. Matsumoto, “Simple relay systems with

BICM-ID allowing intra-link errors,” IEICE Trans. on Comm., Special Section on

Coding and Coding Theory-Based Signal Processing for Wireless Communications,

vol. E95-B, pp. 3671–3678, December 2012.

[4] D. Slepian and J. Wolf, “Noiseless coding of correlated information sources,” IEEE

Transactions on Information Theory, vol. 19, pp. 471– 480, July 1973.

[5] T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem,” IEEE Transactions

on Information Theory, vol. 42, pp. 887–902, May 1996.

[6] H. Viswanathan and T. Berger, “The quadratic Gaussian CEO problem,” IEEE

Transactions on Information Theory, vol. 43, pp. 1549 –1559, September 1997.

[7] Y. Oohama, “The rate-distortion function for the quadratic Gaussian CEO problem,”

IEEE Transactions on Information Theory, vol. 44, pp. 1057–1070, May 1998.

[8] V. Prabhakaran, D. Tse, and K. Ramachandran, “Rate region of the quadratic Gaus-

sian CEO problem,” in IEEE International Symposium on Information Theory 2004

(ISIT2004), p. 119, 27 June–2 July 2004.

[9] J. Chen, X. Zhang, T. Berger, and S. Wicker, “An upper bound on the sum-rate

distortion function and its corresponding rate allocation schemes for the CEO prob-

61



lem,” IEEE Journal on Selected Areas in Communications, vol. 22, pp. 977 – 987,

August 2004.

[10] X. He, X. Zhou, K. Anwar, and T. Matsumoto, “Wireless mesh networks allowing

intra-link errors: CEO problem viewpoint,” in 2012 International Symposium on

Information Theory and its Applications (ISITA), (Hawaii), pp. 61–65, October 2012.

[11] X. Zhou, X. He, K. Anwar, and T. Matsumoto, “GREAT-CEO: larGe scale dis-

tRibuted dEcision mAking Technique for wireless Chief Executive Officer problems,”

IEICE Trans. on Comm., Special Section on Coding and Coding Theory-Based Sig-

nal Processing for Wireless Communications, vol. E95-B, pp. 3654–3662, December

2012.

[12] R. Thobaben, “On distributed codes with noisy relays,” in 42nd Asilomar Conference

on Signals, Systems and Computers, (Pacific Grove, CA), October 2008.

[13] K. Anwar and T. Matsumoto, “Spatially concatenated codes with turbo equalization

for correlated sources,” IEEE Transactions on Signal Processing, vol. 60, pp. 5572–

5577, October 2012.

[14] M. Cheng, A. Irawan, K. Anwar, and T. Matsumoto, “BICM-ID for relay sys-

tem allowing intra-link errors and a similarity constellation to ARQ schemes,”

in Progress in Electromagnetics Research Symposium (PIERS), (Kuala Lumpur,

Malaysia), pp. 281–286, March 2012.

[15] J. Garcia-Frias and Y. Zhao, “Near-shannon/slepian-wolf performance for unknown

correlated sources over AWGN channels,” IEEE Transactions on Communications,

vol. 53, pp. 555–559, April 2005.

[16] M. Cheng, K. Anwar, and T. Matsumoto, “Outage-Analysis of Correlated Source

Transmission in Block Rayleigh Fading Channels,” in 2012 IEEE Vehicular Technol-

ogy Conference (VTC2012-Fall), (Quebec, Canada), September 2012.

[17] P.-S. Lu, V. Tervo, K. Anwar, and T. Matsumoto, “Low-complexity strategies for

multiple access relaying,” in IEEE 73rd Vehicular Technology Conference (VTC

Spring), (Budapest, Hungary), pp. 1–6, May 2011.

[18] Z. Xiong, A. Liveris, and S. Cheng, “Distributed source coding for sensor networks,”

IEEE Signal Processing Magazine, vol. 21, pp. 80–94, September 2004.

62



[19] D. Chen and R. J. Plemmons, “Nonnegativity constraints in numerical analysis,” in

Symposium on the Birth of Numerical Analysis, (Leuven Belgium), October 2007.

[20] A. Razi, K. Yasami, and A. Abedi, “On minimum number of wireless sensors required

for reliable binary source estimation,” in Proc. IEEE Wireless Communications and

Networking Conf. (WCNC), (Quintana-Roo, Mexico), pp. 1852–1857, Mar. 2011.

[21] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate (corresp.),” IEEE Transactions on Information Theory,

vol. 20, pp. 284 – 287, March 1974.

[22] J. Hagenauer, “The EXIT chart - introduction to extrinsic information transfer in

iterative processing,” in 12th Europ. Signal Proc. Conf (EUSIPCO), (Vienna, Aus-

tria), pp. 1541–1548, September 2004.

[23] S. J. Johnson, Iterative Error Correction: Turbo, Low-Density Parity-Check and

Repeat-Accumulate Codes. Cambridge University Press, 2009.

[24] S. ten Brink, “Convergence of iterative decoding,” Electronics Letters, vol. 35, pp. 806

–808, May 1999.

[25] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated

codes,” IEEE Transactions on Communications, vol. 49, pp. 1727–1737, October

2001.

[26] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes un-

der message-passing decoding,” IEEE Transactions on Information Theory, vol. 47,

pp. 599 –618, February 2001.

[27] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching

irregular low-density parity-check codes,” IEEE Transactions on Information Theory,

vol. 47, pp. 619 –637, February 2001.

[28] S.-Y. Chung, T. Richardson, and R. Urbanke, “Analysis of sum-product decoding of

low-density parity-check codes using a Gaussian approximation,” IEEE Transactions

on Information Theory, vol. 47, pp. 657–670, February 2001.

[29] K. Fukawa, S. Ormsub, A. Tlli, K. Anwar, and T. Matsumoto, “Exit-constrained

bicm-id design using extended mapping,” EURASIP Journal on Wireless Commu-

nications and Networking, vol. 2012, pp. 1–17, 2012.

63



[30] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical

Journal, vol. 27, pp. 379–423,623–656, 1948.

[31] M. Tuchler and J. Hagenauer, “EXIT charts of irregular codes,” in 2002 36th Confer-

ence on Information Sciences and Systems (CISS2002), (Princeton University, NJ,

USA), pp. 748–753, March 2002.

[32] S. Ibi, T. Matsumoto, S. Sampei, and N. Morinaga, “EXIT chart-aided adaptive

coding for MMSE turbo equalization with multilevel BICM,” IEEE Communications

Letters, vol. 10, pp. 486 –488, June 2006.

[33] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge University

Press, 2011.

[34] J. Haghighat, H. Behroozi, and D. V. Plant, “Joint decoding and data fusion in wire-

less sensor networks using turbo codes,” in IEEE 19th Int. Symp. Personal, Indoor

and Mobile Radio Communications PIMRC, (Cannes, France), pp. 1–5, September

2008.

[35] X. Zhou, A. O. Lim, K. Anwar, and T. Matsumoto, “Distributed Joint Source-

Channel-Network Coding Exploiting Source Correlation for Multiple Access Relay

Channel,” European Wireless Conference (EW 2013), 2013. Submitted for publica-

tion.

64


