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Abstract. Pushdown systems (PDSs) nicely model single-thread re-
cursive programs, and well-structured transition systems (WSTS), such
as vector addition systems, are useful to represent non-recursive multi-
thread programs. Our goal is to investigate well-structured pushdown
systems (WSPDSs), pushdown systems with well-quasi-ordered control
states and stack alphabet, to combine these ideas.
This paper focuses on decidable classes of coverability and extends P-
automata techniques for configuration reachability of PDSs to those
for coverability of WSPDSs, in forward and backward ways. A Post∗-
automata (resp. Pre∗-automata) construction is combined with Karp-
Miller acceleration (resp. ideal representation) to characterize the set
of successors (resp. predecessors) of given configurations. We show de-
cidability results of coverability, which include recursive vector addition
system with states [1], multi-set pushdown systems [2, 3], and a WSPDS
with finite control states and well-quasi-ordered stack alphabet.

1 Introduction

There are two directions of infinite (discrete) state systems. A pushdown sys-
tem (PDS) consists of finite control states and finite stack alphabet, where a
stack stores the context. It nicely models single-thread recursive programs.Well-
structured transition systems (WSTS) [4, 5] consists of a well-quasi-ordered set of
states, in which Vector addition system (VAS, or Petri Net) is a typical example.
It often works for modeling dynamic thread creation of multi-thread program [6].
Our naive motivation comes from what happens when we combine them as a
general framework for modeling recursive multi-thread programs.

Ramalingam [7] showed that a 3-thread recursive program with synchroniza-
tion mechanism can solve Post-correspondence-problem. This is a natural result
since a 2-stack PDS is Turing complete. Roughly speaking, there are two sources
to be Turing complete in a 2-stack PDS. i) the depth of both stacks is unbounded.
ii) the interleaving between two stacks can be arbitrarily many. By restricting i),
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Qadeer an Rehof proposed context-bounded pushdown model [8], in which the
number of context switching is bounded. The idea is after a bounded number of
context switching, only one stack can work, so that it is simulated by a single
stack. Atig, et.al. further extended with dynamic thread creation [6].

By restricting ii), Sen et. al. [2] proposed Multi-set pushdown systems (Multi-
set PDSs) to model multi-thread asynchronous programs, and Bouajjani and
Emmi [1] proposed a Recursive Vector Addition System with States (RVASS)
to model multi-thread programs with fork/join synchronizations. They showed
decidability of the coverability and the state reachability, respectively. Note that
the coverability lies between the configuration reachability and the state reacha-
bility. They are single stack PDSs with infinite control states and stack alphabet,
which are beyond ordinary PDSs with finite control states and stack alphabet.

The configuration reachability, i.e., to determine whether a target configura-
tion is reachable from an initial configuration, is decidable for ordinary PDSs. In
implementation, P-automata construction is a popular technique, which can be
tracked back to Büchi’s seminal work [9], and has been clarified in [10–12]. There
are two kinds of P-automata constructions. A Post∗ automaton computes the set
of successor configurations from an initial configuration, and a Pre∗ automaton
computes the set of predecessor configurations from a target configuration.

Different from PDSs, a popular property of WSTSs is coverability, which is
reachability from an initial configuration to a certain configuration that covers
the target configuration. There are also forward and backward proof techniques.
For instance, in case of VASs, Karp-Miller acceleration [13] is a typical instance
of the former, which was generalized in [14, 15]. For the latter, an ideal (i.e.,
an upward closed set) representation is a typical technique [4, 5]. Note that the
reachability is hard for WSTSs. For instance, the reachability of VASs stays
decidable, but its proof requires deep insight on Presburger arithmetic [16, 17].

Our ultimate goal is to investigate well-structured pushdown systems (WSPDSs),
pushdown systems with well-quasi-ordered control states and stack alphabet, to
combine PDSs and WSTSs. This paper focuses on decidable classes of coverabil-
ity and extends P-automata techniques for configuration reachability of PDSs
to those for coverability of WSPDSs, in forward and backward ways. Post∗-
automata (resp. Pre∗-automata) construction is combined with Karp-Miller ac-
celeration (resp. ideal representation) to characterize the set of successors (resp.
predecessors) of given configurations. We show decidability results of coverabil-
ity, which include RVASSs [1], Multi-set PDSs [2, 3], and a WSPDS with finite
control states and WQO stack alphabet. The first one extends the decidability
of the state reachability of RVASSs [1] to that of the coverability.

Related Work

Combining PDSs and VASs is not new. Process rewrite system (PRS) [18] is a
pioneer work on such combination. A PRS is a(n AC) ground term rewriting
system, consisting of the sequential composition “.”, the parallel composition
“|| ”, and finitely many constants, which can be regarded as a PDS with finite
control states and vector stack alphabet. The decidability of the reachability
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between ground terms was shown based on the reachability of a VAS. However,
a PRS is rather weak to model multi-thread programs, since it cannot describe
vector additions between adjacent stack frames during push/pop operations.

An RVASS [1], in which we are inspired, allows vector additions during pop
rules. The state reachability was shown by reduction of an RVASS into a Branch-
ing VASS [19]. Our WSPDS framework extends the decidability result to the
coverability. A more general framework is a WQO automaton [20], which is a
WSTS with auxiliary storage (e.g., stacks and queues). Although in general un-
decidable, its coverability becomes decidable under the compatibility of rank
functions with a WQO. An Multi-set PDS [3, 2] is such a instance.

To sum up, our contribution is a simplified framework, which has more focus
on well-quasi-ordered stack alphabet, and a unified proof methodology based on
extensions of P-automata techniques.

2 Preliminaries

2.1 Well-structured transition system

A quasi-order (D,≤) is a reflexive transitive binary relation on D. An upward
closure of X ⊆ D, denoted by X↑, includes all elements in D larger than elements
in X, i.e., X↑ = {d ∈ D | ∃x ∈ X.x ≤ d}). A subset I is an ideal if I = I↑.
Similarly, a downward closure of X ⊆ D is denoted by X↓ = {d ∈ D | ∃x ∈
X.x ≥ d}. We denote the set of all ideals by I(D). A quasi-order (D,≤) is a
well-quasi-order (WQO) if, for each infinite sequence a1, a2, a3, · · · in D, there
exist i, j with i < j and ai ≤ aj .

Definition 1. A well-structured transition system (WSTS) is a triplet M =
〈(P,�), ∆〉 where (P,�) is a WQO, and ∆ ⊆ P × P is the set of transitions.
We write p→ q if (p, q) ∈ ∆.

M is monotonic if, for each p1, q1, p2 ∈ P , p1 → q1 ∧ p1 � p2 implies
∃q2 . p2 → q2 ∧ q1 � q2.

Given two states p, q ∈ P , the coverability problem is to determine whether
there exists some q′ � q and p→∗ q′.

Vector addition systems (VAS) (equivalently, Petri net) are WSTSs, with
vectors as states and additions as transition rules. The reachability problem
of VAS is decidable [16, 17]. It is elegant, but too difficult to implement. The
coverability also attracts attentions and is implemented, such as in Pep. Karp-
Miller acceleration is an efficient technique for the coverability. If there is a
descendant vector (wrt transitions) strictly larger than one of its ancestors on
some coordinates, values at these coordinates are accelerated to ω.

There is an alternative backward method to decide coverability for a WSTS,
beyond VASs. Starting from an ideal {q}↑, where q is the target state to be
covered, its predecessors are repeatedly computed. Note that, for a monotonic
WSTS and an ideal I(⊆ P ), the predecessor set pre(I) = {p ∈ P | ∃q ∈ I.p→ q}
is also an ideal. Its termination is obtained by the following lemma.
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Lemma 1. [5] (D,≤) is a WQO, if, and only if, any infinite sequence I0 ⊆
I1 ⊆ I2 ⊆ · · · in I(D) eventually stabilize.

From now on, we denote N (resp. Z) for the set of natural numbers (resp.
integers), and Nk (resp. Zk) is the set of k-dimensional vectors over N (resp. Z).
As notational convention, n,m are for vectors in Nk, z, z′ are for vectors in Zk,
ñ, m̃ are for sequences of vectors.

2.2 Pushdown system

We define a pushdown system (PDS) with extra rules, simple-push and nonstandard-
pop. These extra rules do not appear in the standard definition, but they can be
encoded into standard rules. For example, a non-standard pop rule (p, αβ → q, γ)
can be split into (p, α → pα, ε) and (pα, β → q, γ) by adding an intermediate
state pα. However, later we will consider a PDS with infinite stack alphabet,
and this encoding may change the context. For instance, when a PDS has finite
states and infinite stack alphabet, the encoding of nonstandard pop rules make
a PDS with both infinite states and stack alphabet.

Definition 2. A pushdown system (PDS) is a triplet 〈P, Γ,∆〉 where

– P is a finite set of states,
– Γ is finite stack alphabet, and
– ∆ ⊆ P × Γ≤2 × P × Γ≤2 is a finite set of transitions, where (p, v, q, w) ∈ ∆

is denoted by (p, v → q, w).

We use α, β, γ, · · · to range over Γ , and w, v, · · · over words in Γ ∗. A configu-
ration 〈p, w〉 is a pair of a state p and a stack content (word) w. As convention,
we denote configurations by c1, c2, · · ·. One step transition ↪→ between configu-
rations is defined as follows. ↪→∗ is the reflexive transitive closure of ↪→.

inter
(p, γ → p′, γ′) ∈ ∆
〈p, γw〉 ↪→ 〈p′, γ′w〉 push

(p, γ → p′, αβ) ∈ ∆
〈p, γw〉 ↪→ 〈p′, αβw〉 pop

(p, γ → p′, ε) ∈ ∆
〈p, γw〉 ↪→ 〈p′, w〉

simple-push
(p, ε→ p′, α) ∈ ∆
〈p, w〉 ↪→ 〈p′, αw〉 nonstandard-pop

(p, αβ → p′, γ) ∈ ∆
〈p, αβw〉 ↪→ 〈p′, γw〉

A PDS enjoys decidable reachability, i.e., given configurations 〈p, w〉, 〈q, v〉 with
p, q ∈ P and w, v ∈ Γ ∗, decide whether 〈p, w〉 ↪→∗ 〈q, v〉.

3 WSPDS and P-automata technique

3.1 P-automaton

P-automaton is an automaton which exactly accepts the reachable configurations
of some PDS. Distinguished by the forward and backward of transitions, P-
automata are classified into Post∗-automata and Pre∗-automata.
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Definition 3. Given a PDS M = 〈P, Γ,∆〉, a P-automaton A is a quadruplet
(S, Γ,∇, F ) where

– F is the set of final states, and P ⊆ S \ F , and
– ∇ ⊆ S × (Γ ∪ {ε})× S.

We write s
γ7→ s′ for (s, γ, s′) ∈ ∇ and Z⇒ for the reflexive transitive closure of

7→; It accepts 〈p, w〉 for p ∈ P and w ∈ Γ ∗ if p
wZ=⇒ f ∈ F . We use L(A) to

denote the set of configurations A accepts. In an initial P-automaton, we assume

there is no transitions s
γ7→ s′ such that s′ ∈ P .

Let C0 be a regular set of configurations of a PDS, and let A0 be an initial P-
automaton that accepts C0. The procedure for computing post∗(C0) starts from
A0, and repeatedly adds edges according to the rules of a PDS until conver-
gence. We call this procedure saturation. The Post∗-saturation rules are given
in Definition 4 and illustrated in followed diagram.

Definition 4. For a PDS 〈P, Γ,∆〉, let A0 be an initial P-automaton accept-
ing C0. Post∗(A0) is the result of repeated applications of the following Post∗-
saturation rules.

(S, Γ,∇, F ), (p
wZ=⇒ q) ∈ ∇

(S ∪ {p′}, Γ,∇∪ {p′ γ7→ q}, F )
(p, w → p′, γ) ∈ ∆, |w| ≤ 2

(S, Γ,∇, F ), (p
γ7→ q) ∈ ∇

(S ∪ {p′, qp′,α}, Γ,∇∪ {p′ α7→ qp′,α
β7→ q}, F )

(p, γ → p′, αβ) ∈ ∆

3 WSPDS and P-automata technique

We will show P-automata techniques are correct (but without convergence) even
for PDS with infinite states and stack symbols, such as WSPDS defined in Sec-
tion 3.2. So in the rest part of this section, we use PDS to denote a general PDS
which might be infinite.

3.1 P-automaton

P-automaton is an automaton which exactly accepts the reachable configu-
rations of some PDS. Distinguished by the forward and backward of transi-
tions, P-automata technique is usually classified into Post∗-automata and Pre∗-
automata. These two methods have the same transformation effects [22].

Definition 3. Given a PDS M = �P,Γ,∆�, a P-automaton A is a quadruplet
(S,Γ,∇, F ) where

– F is the set of final state, and P ⊆ S \ F ;
– ∇ ⊆ S × (Γ ∪ {�}) × S.

We write s
γ�→ s� for (s, γ, s�) ∈ ∇ and �⇒ for the transitive reflexive closure of

�→; It accepts �q, w� for q ∈ P and w ∈ Γ ∗ if p
w�=⇒ f ∈ F . We use L(A) to

denote the set of configurations A accepts.

The reachability problem from �p, w� to �q, v� can be reduced to whether �q, v�
is accepted by the Post∗-automaton constructed from A0 accepting {�p, w�}, or
whether �p, w� is accepted by the Pre∗-automaton constructed from A�

0 accept-
ing {�q, v�}.

Let C0 be a set of configurations for a PDS, the procedure for computing
post∗(C0) (pre∗(C0)) starts from an initial P-automaton A0 that accepts C0.
We repeatedly add edges according to the transitions rules of PDS until conver-
gence. We call this procedure saturation. The Post∗-saturation rules are given
in Definition 4 and illustrated in followed diagram.

Definition 4. For a PDS �P,Γ,∆�, let A0 be an initial P-automaton accept-
ing C0. Post∗(A0) is the result of repeated applications of the following Post∗-
saturation rules

(S,Γ,∇, F ), (p
w�=⇒ q) ∈ ∇

(S ∪ {p�},Γ,∇∪ {p�
γ�→ q}, F )

(p, w → p�, γ) ∈ ∆, |w| ≤ 2

(S,Γ,∇, F ), (p
γ�→ q) ∈ ∇

(S ∪ {p�, qp�,α},Γ,∇∪ {p�
α�→ qp�,α

β�→ q}, F )
(p, γ → p�,αβ) ∈ ∆

p, γ → p�,αβ p, �→ p�, γ p, γ → p�, γ� p, γ → p�, � p,αβ → p�, γ

p
⇓add

γ �� q

p�
α ��qp�,α

β

��

p� γ

⇓add �� p

p
⇓add

γ �� q

p�
γ�

�� p
⇓add

α �� q

p�
�

�� p
⇓add

α �� β �� q

p�
γ

��

For instance, consider a push rule (p, γ → p′, αβ). If p
γ7→ q is in ∇, then

p′
α7→ qp′,α

β7→ q is added to ∇. The intuition is if there exists v ∈ Γ ∗ such
that 〈p, γv〉 is in post∗(C0), then 〈p′, αβv〉 is also in post∗(C0) by applying rule
(p, γ → p′, αβ). The Pre∗-saturation rules to compute pre∗(C0) are similar, but
in a backward way.

Remark 1. Post∗ and Pre∗-saturations introduce ε-transitions when applying
standard pop rules and simple push rules, respectively. ε-transitions make argu-
ments complicated, and we preprocess the PDS for saturations.

1. The set Γ is extended with ⊥ to denote the bottom of the stack.
2. For Post∗-saturation, every standard pop rule p, α → q, ε is replaced with

(p, αγ → q, γ) for each γ ∈ Γ .
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3. For Pre∗-saturation, every simple push rule p, ε → q, α is replaced with
(p, γ → q, αγ) for each γ ∈ Γ .

Lemma 2. Let 〈P, Γ,∆〉 be a PDS, and let A0 be an initial P-automaton ac-

cepting C0. Assume that p
wZ=⇒ q in Post∗(A0) and p ∈ P .

1. If q ∈ P , 〈q, ε〉 ↪→∗ 〈p, w〉;
2. If q ∈ S(A0)\P , there exists q′

vZ=⇒ q in A0 with q′ ∈ P and 〈q′, v〉 ↪→∗ 〈p, w〉.
Lemma 2 shows the set of accepted configurations by the P-automata always

falls into post∗(C0) during the saturation process (completeness). We give an in-
ductive proof in Appendix A. On the other hand, the Post∗ saturation rules com-
pute one-step successor configurations, thus all the configurations in post∗(C0)
will finally be accepted by Post∗(A0) (soundness). Therefore, Lemma 2 leads
the correctness of P-automata construction.

Theorem 1. post∗(C0) = L(Post∗(A0)), and pre∗(C0) = L(Pre∗(A0)).

3.2 P-automata for Coverability

We combine PDSs with WSTSs as well-structured pushdown systems (WSPDS).
PFun(X,Y ) denotes the set of partial functions from X to Y .

Definition 5. A well-structured pushdown system (WSPDS) is a triplet M =
〈(P,�), (Γ,≤), ∆〉 where

– (P,�) and (Γ,≤) are WQOs, and
– ∆ ⊆ PFun(P, P ) × PFun(Γ≤2, Γ≤2) is the finite set of transitions rules.

We write (p, w → φ(p), ψ(w)) if (φ, ψ) ∈ ∆ and each has definition on p, w
respectively.

A PDS is a WSPDS with finite P and finite Γ , and WSTS is a WSPDS
without operations on stack, i.e., ∆ ⊆ PFun(P, P ). Let �, the quasi-order3

on Γ ∗, be the element-wise extension of ≤ on Γ , i.e., α1 · · ·αn � β1 · · ·βm if
and only if m = n and ∀i.αi ≤ βi. M is monotonic if, (φ, ψ) ∈ ∆ implies ψ
and φ are monotonic functions wrt � and �. In a monotonic WSPDS, instead
of reachability, we consider the coverability, i.e., the reachability to an ideal of
configurations.

– Coverability: Given configurations 〈p, w〉, 〈q, v〉 with p, q ∈ P and w, v ∈
Γ ∗, we say 〈p, w〉 covers 〈q, v〉 if there exist q′ � q and v′�v s.t. 〈p, w〉 ↪→∗
〈q′, v′〉. Coverability problem is to decide whether 〈p, w〉 covers 〈q, v〉.

There are two ways for the coverability, either forward or backward. The for-
ward method starts from an initial configuration 〈p, w〉, and computes coverable
configurations. The backward method starts from a target configuration 〈q, v〉,
and computes predecessor configurations that cover 〈q, v〉. For a set of configu-
rations C0, they construct a Post∗- and a Pre∗-automaton A, respectively.

3 Note � might not be a well-quasi-ordering.



7

– (Post) A accepts the downward-closed set of successors of C0, i.e., L(A) =⋃
i≥0(posti(C0)↓) = (

⋃
i≥0 post

i(C0))↓ = (post∗(C0))↓.

– (Pre) A accepts predecessors of the upward-closed set C↑0 of C0, i.e., L(A) =⋃
i≥0 pre

i(C↑0 ) = pre∗(C↑0 ).

Remark 2. As in Remark 1, we preprocess WSPDSs to eliminate standard pop
rules for Post∗-saturation and simple push rules for Pre∗-saturation. In later
decidability results on WSPDSs, the finiteness of the number of transition rules
is crucial. We replace partial functions in transition rules with the following ones,
which keeps the finiteness.
- In Post∗-saturation, a standard pop rule ψ(γ) = ε is replaced with ψ′(γγ′) = γ′.
- In Pre∗-saturation, a simple push rule ψ(ε) = γ is replaced with ψ′(γ′) = γγ′.

If a PDS is finite (i.e., with finite control states and stack alphabet) and
A0 is a finite automaton, Post∗(A0) and Pre∗(A0) have bounded numbers of
states. (Recall that each newly added state qp,γ other than that from P has
an index of a pair of a state and a stack symbol, which are finitely many.)
Thus, the saturation procedure finitely converges. For a WSPDS with infinite
control states and stack alphabet, although Post∗(A0) and Pre∗(A0) may not
finitely converge, they converge as a limit and satisfy Theorem 1. In later sections
(Section 4 and 5), we will discuss the finite convergence.

4 Post∗-automata for coverability

Coverability becomes decidable if either Post∗ or Pre∗-saturation finitely con-
verges. Karp-Miller acceleration for vectors is proposed for showing decidability
of the coverability of a VAS, and generalized in [14, 15] with certain assumptions
on a WSTS. In this section we only consider those strictly monotonic WSPDS
with vectors as stack symbols and without standard push rules (only simple push
rules). Such a PDS is called a Pushdown Vector Addition Systems (PDVAS). The
reason to exclude standard push rules is that Post∗-saturation rules for standard
push will generate new states, which violates finite convergence.

We write N+ for N ∪ {ω}. Let us fix the dimension k > 0 and let j(n) be
the j-th element of a vector n ∈ Nk+. 0 is the zero-vector with j(0) = 0 for each
j ≤ k. For J ⊆ [1..k], we define the following orderings on vectors:

– n <J n′ if j(n) < j(n′) for j ∈ J and j(n) = j(n′) for j 6∈ J .
– n ≤J n′ if j(n) ≤ j(n′) for j ∈ J and j(n) = j(n′) for j 6∈ J .
– n1 · · ·nl �J n′1 · · ·n′l′ if l = l′ and ∀i.ni ≤J n′i.
– n1 · · ·nl �J n′1 · · ·n′l′ if n1 · · ·nl �J n′1 · · ·n′l′ and ∃i.ni <J n′i.

For example, (1, 2) <{2} (1, 3), and (1, 2) ≤{1,2} (1, 3). (1, 2)(1, 1)�{1,2} (1, 3)(1, 1),

but (1, 2)(1, 1) 6�{1,2} (1, 3)(1, 1). We may notice that <J ,≤J ,�J ,�J are
<,≤,� and � on vectors if J = {1..k}, and are = if J = ∅.

When n <J n′ , an acceleration n � n′ = n↑J where j(n↑J) = ω if j ∈ J , and

j(n↑J) = j(n) otherwise. For example, (1, 2) � (2, 2) = (1, 2)↑{1} = (ω, 2).
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Definition 6. Fix k ∈ N. A Pushdown Vector Addition Systems (PDVAS) is a
monotonic WSPDS 〈P, (Nk,≤), ∆〉 where

– P is finite.
– ∆ ∈ P × P × PFun((Nk)≤2,Nk) is finite and without standard push rules.
– ψ is strictly monotonic wrt �J for each rule (p, q, ψ) ∈ ∆ and J ⊆ [1..k].

Strict monotonicity wrt�J is crucial for acceleration, which naturally holds
in VASs. A VAS transition n ↪→ n + z holds n′ ↪→ n′ + z >J n + z for any
n′ >J n. A WSPDS may have a non-standard pop rule (p,n1n2 → q,m), and
we require that the growth of either n1 or n2 leads the growth of m.

4.1 Dependency

The acceleration for VAS occurs when a descendant is strictly larger than some
of its ancestors. However, for a WSPDS, such descendant-ancestor relation is not
obvious in a P-automaton. We solve this by introducing a relation on P-automata
transitions called dependency V, which is generated during Post∗-saturation.

Definition 7. For a PDS 〈P, Γ,∆〉, a dependency V over transitions of a
Post∗-automaton is generated during the saturation procedure, starting from ∅.
1. If a transition p′

β7→ q is added from a rule (p, α → p′, β) and transition

p
α7→ q, then (p

α7→ q)V (p′
β7→ q).

2. If a transition p′
γ7→ q is added from a rule (p, αβ → p′, γ) and transitions

p
α7→ q′

β7→ q, then (p
α7→ q′)V (p′

γ7→ q) and (q′
β7→ q)V (p′

γ7→ q).
3. Otherwise, we do not update V.

We denote the reflexive transitive closure ofV byV∗. Strict monotonicity leads
to the following lemma which guarantees the soundness of accelerations.

Lemma 3. For a Post∗-automaton A of a PDVAS, if p
n7→ q V∗ p′ m7→ q′ and

p
n′7→ q ∈ ∇(A) where n′ >J n, then there exists some m′ >J m such that

p′
m′7→ q′ ∈ ∇(A) and p

n′7→ q V∗ p′ m
′
7→ q′.

If (p
n7→ q)V∗ (p

n17→ q) and n <J n1, then applying Lemma 3 we get

(p
n7→ q)V∗ (p

n17→ q)V∗ (p
n27→ q)V∗ · · ·V∗ (p

ni7→ q)V∗ · · ·
where ni <J ni+1 for each i. Thus, we can safely apply the acceleration on J .

4.2 Post∗F -saturation

As discussed in Section 4.1, accelerations will happen if p
n7→ q V∗ p n′7→ q

and n <J n′ for some p, q and J during the Post∗-saturation. We introduce
dependency relation and accelerations into the post saturation rules for PDVAS.
This new saturation procedure and constructed P-automaton are denoted by
Post∗F -saturation and Post∗F -automaton, respectively.

We conservatively extend ψ in a PDVAS, from (Nk)≤2 → Nk to (Nk+)≤2 →
Nk+. For any ñ ∈ (Nk+)≤2, ψ(ñ) = sup{ψ(ñ′) | ñ′ ∈ (Nk)≤2, ñ′ � ñ}.
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Definition 8. For a PDVAS 〈P, (Nk,≤), ∆〉, let A0 = (S0, (Nk+,≤), (∇0, ∅), F )
be an initial P-automaton accepting C0. Post∗F (A0) is the result of repeated ap-
plications of the following Post∗F saturation rules.

(S, Γ, (∇,V), F ), p
ñZ=⇒ q

(S ∪ {p′}, Γ, (∇,V)⊕ (p′
n7→ q,V′), F )

(p, p′, ψ) ∈ ∆, ψ(ñ) = n

where V′ is the dependency newly added by Definition 7.4 The operation ⊕ is
defined as (∇,V)⊕ (p′

n7→ q,V′) ={
(∇∪ {p′ n

′�n7−→ q},V ∪V′′) if ∃p′ n
′
7→ q V∗ ·V′ p′ n7→ q ∧ n′ <J n for some J

(∇∪ {p′ n7→ q},V ∪V′) otherwise

whereV′′ is obtained fromV′ by replacing the destination (p′
n7→ q) with (p′

n′�n7−→
q). AV∗ ·V′ B means there exists C s.t. AV∗ C V′ B.

Example 1. The following figure shows the infinite Post∗-automaton A′ and
converged Post∗F -automaton A of a PDVAS with transition rules ψ1,2,3,4. We

start from C0 = {〈p0,⊥〉}. In A′, p2 17→ p0 is generated from p1
07→ p0

17→ p0 by

transition rule ψ3, and p1
27→ p0 is generated from p2

17→ p0 by transition ψ4.

In A, we have (p1
07→ p0)V (p2

17→ p0)V (p1
27→ p0). Therefore we can apply

acceleration and (p1
ω7→ p0) is added instead of (p1

27→ p0). Then p2
ω7→ p0 and

p0
ω7→ p0 is added according to transition rule ψ3 and ψ2 respectively. This leads

to the finitely converged Post∗F automaton A, and (post∗(C0))↓ = L(A)↓∩(Nk)∗.

The Post∗F -saturation rules are similar to Post∗ but adding the dependency

relation � and accelerations. Acceleration happens if there exists p
n�
�→ q �∗

p
n�→ q ∧ n� < n. Instead of p

n�→ q, we consider to add the accelerated transition

p
n��n�→ q. The new dependency �� is the same as � but any relations with p

n�→ q

are changed to p
n��n�→ q We write (∇,��)⊕(p

n��n�→ q) to continue in case there are
more accelerations may happen after this acceleration. For example, transition

p
(1
2)�→ q is to be added, and we have p

(0
2)�→ q �∗ p

(1
2)�→ q and p

(2
1)�→ q �∗ p

(1
2)�→ q at

the very beginning. The second dependency pair does not lead to acceleration,

however, after the first acceleration, we get new transition p
(ω2)�→ q, and new

dependency pair p
(2
1)�→ q �∗ p

(ω2)�→ q is generated. Then one more acceleration is
fireable, i.e.,

∇⊕ (p
(1
2)�→ q) = ∇⊕ (p

(ω2)�→ q) = ∇⊕ (p
(ωω)�→ q) = ∇∪ {(p

(ωω)�→ q)}.

Example 2. The following figure shows the Post∗F construction of a PDVAS
whose transition rules given in below diagram. We start from C0 = {�p0, ��}.
The Post∗M automata is illustrated as A� which is not finitely converged. For

example, p2
1�→ p0 is generated from p1

0�→ p0
1�→ p0 by transition rule ψ3, and

p1
2�→ p0 is generated from p2

1�→ p0 by transition ψ4.

With acceleration and dependency, we have (p1
0�→ p0) � (p2

1�→ p0) �
(p1

2�→ p0). Therefore we can apply acceleration and (p1
ω�→ p0) is added instead

of (p1
2�→ p0) in A. Then p2

ω�→ p0 and p0
ω�→ p0 is added according to transition

rule ψ3 and ψ2 respectively. This leads to the finitely converged Post∗F automaton
A, and L(A�)↓ = L(A)↓ ∩ (Nk)∗.

ψ1 : p0, �→ p1, 0
ψ2 : p1, n → p0, n + 1
ψ3 : p1, n1n2 → p2, n1 + n2

ψ4 : p2, n → p1, n + 1

A0 : p0
⊥ �� f

A� :

p0
⊥ ��

1,3,···
ψ2 ��

f

p1

0

ψ1

��

2

ψ4

��

···,6,4

ψ4

��

p2

1

ψ3

��

3

ψ3

��
5,7,···

ψ3

��

A :

p0
⊥ ��

1,ω

ψ2 ��
f

p1

0

ψ1

��

ω

ψ4

��

p2

1

ψ3

��

ω

ψ3

��

�

An immediate observation is that Post∗F -saturation is sound, because con-
figurations accepted by Post∗-automata will be covered by Post∗F -automata
thanks to the monotonicity. However, the completeness of Post∗F -saturation,
i.e., whether all the configurations covered by Post∗F -automata can be coverable
starting from the initial configurations, is not so obvious. The dependency re-
lation makes accelerations safe, hence Lemma 5 and Lemma 4 guarantees the

An immediate observation is that Post∗F -saturation is sound, because con-
figurations accepted by Post∗(A0) are covered by Post∗F (A0) according to the
monotonicity. The completeness follows from Lemma 4, which says the down-
ward closure of any transition in Post∗F (A0) is included in the downward closure
of transitions in Post∗(A0). We leave the proof in Appendix B.

Lemma 4. Let A0 be an initial P-automaton of some PDVAS. If p
n7→ q in

Post∗F (A0), then for any n′ ≤ n and n′ ∈ Nk there exists p
n′′7→ q in Post∗(A0)

for some n′′ such that n′ ≤ n′′ ≤ n.

4 V′= ∅ if (p, p′, ψ) is a push rule; otherwise the destination of each pair in V′ is

p′
n7→ q with n = ψ(ñ).
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Since PDVASs do not have standard-push rules, the saturation procedure
does not add new states. So the states in Post∗F (A0) and Post∗(A0) are the
same. From Lemma 4, we can obtain L(Post∗F (A0))↓ ∩ (Nk)∗ = (post∗(C0))↓.

The finite convergence of Post∗F -saturation follows from the fact that {(p,n, q) |
p, q ∈ S,n ∈ Nk+} is well-quasi-ordered. Each path of the dependency V∗ con-
tains finitely many P-automata transitions, and V∗ is finitely branching, thus
by König’s lemma, the V-tree is finite. We obtain the following theorem.

Theorem 2. Starting from a finite P-automaton A0 accepting C0 for any PDVAS,

– the Post∗F -saturation procedure finitely converges to Post∗F (A0), and
– L(Post∗F (A0))↓ ∩ (Nk)∗ = (post∗(C0))↓.

4.3 Coverability of RVASS

In this section, we show that Recursive Vector Addition Systems with States
(RVASS) are special cases of PDVASs, and our results is directly applied to prove
decidability of its coverability. RVASS is proposed by Bouajjani and Emmi [1]
for modeling interleaving-insensitive multi-thread programs.

Definition 9. [1] Fix k ∈ N. A RVASS 〈Q, δ〉 is a finite set of state Q along
with a finite set of transitions δ. We denote

– q
z→ q′ if (q, q′, z) ∈ δ for z ∈ Zk, and

– q
q1q2→ q′ if (q, q1, q2, q

′) ∈ δ.

The configuration c ∈ (Q × Nk)∗ represents a stack of pairs 〈p,n〉 where p ∈ Q
and n ∈ Nk. The semantics is defined by following rules:

q
z−→ q′ n + z ∈ Nk

〈q,n〉c↪→〈q′,n + z〉c
q
q1q2−→ q′

〈q,n〉c↪→〈q1,0〉〈q,n〉c
q
q1q2−→ q′

〈q2,n′〉〈q,n〉c↪→〈q′,n + n′〉c

The state-reachability problem of an RVASS is to determine given two states,
q0, qf , whether there exist a vector n and a configuration c, such that 〈q0,0〉 ↪→∗
〈qf ,n〉c. This problem is shown to be decidable in Lemma 3 of [1] by a reduc-
tion to the state-reachability of a Branching VASS. Our Corollary 1 shows the
decidability of the coverability. Note that the state reachability is regarded as
the coverability from 〈q0,0〉 to {〈qf ,0+〉}.

The encoding from an RVASS to a PDVAS is straightforward by considering
the configuration of an RVASS as the stack contents in a PDVAS. Therefore, the
three semantic rules of RVASS are simulated by 1, 2(a) and 2(b) in Definition 10.

Definition 10. Given k ∈ N and a RVASS R = 〈Q, δ〉, we define a PDVAS
MR = (P, Γ,∆) for R where

– P = Q, and Γ = N|Q|+k where |Q| is the number of states in Q, we use
(p,n) to range over Γ ;

– The finite set of transition rules ∆ ⊆ P × P × PFun(Γ≤2, Γ ) consists of
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1. if (q, q′, z) ∈ δ, then q, (q,n)→ q′, (q′,n+ z) for all n with n+ z ∈ Nk;
2. if (q, q1, q2, q

′) ∈ δ, then
(a) q, ε→ q1, (q1,0)
(b) q2, (q2,n)(q,m)→ q′, (q′,n + m) for all n and m.

Lemma 5. Assume that R is an RVASS, and MR is the encoded PDVAS for
R. Given two configuration c0 = 〈p0,n0〉c′0 and cf = 〈pf ,nf 〉c′f of R. Then,
c0 ↪→∗ cf in R if and only if 〈p0, c0〉 ↪→∗ 〈pf , cf 〉 in MR.

Corollary 1. The coverability of an RVASS is decidable.

5 Pre∗-automata for coverability

When ∆ contains only standard pop rules, Pre∗ does not introduce new states
except from P , which leads to the finite convergence by ideal representations. In
this section, we assume that ∆ does not contain non-standard pop rules.

5.1 Ideal representation of Pre∗-automata

As we mentioned in Section 3.2, we need to construct Pre∗-automaton for an
ideal C↑0 of C0. A naive representation of an initial P-automaton accepting C↑0
may be infinite. Therefore, we use the ideal representation where transition labels
and states are ideals. Thanks to WQO, an ideal has a finite representation by
its minimal elements, and ideals are well founded wrt set inclusion.

Definition 11. For a monotonic WSPDS 〈(P,�), (Γ,≤), ∆〉, as in Definition 3
we define a Pre∗F -automaton A = (S, I(Γ ),∇, F ) by replacing Γ with I(Γ ) and
I(P ) ⊆ S.

As notational convention, let s, t to range over S, ideals K,K ′ to range over
I(P ), and I, I ′ over I(Γ ). We denote w ∈ Ĩ for Ĩ = I1I2 · · · In, if w = α1α2 · · ·αn
and αi ∈ Ii for each i. We say that A accepts a configuration 〈p, w〉, if there is

a path K
ĨZ=⇒ f ∈ F in A and p ∈ K, w ∈ Ĩ.

The ideal representation of an initial P-automaton accepting C↑0 is obtained
from a P-automaton accepting C0 by replacing each state p with {p}↑ and each
transition label α with {α}↑.
Definition 12. Let A0 be an initial Pre∗F -automaton accepting C↑0 . Pre∗F (A0)
is the result of repeated applications of the following Pre∗F -saturation rules

(S, I(Γ ),∇, F ), K
ĨZ=⇒ s

(S, I(Γ ),∇, F )⊕ {φ−1(K)
ψ−1(Ĩ)7−→ s}

if Ĩ ∈ I(Γ≤2) and (φ, ψ) ∈ ∆

where φ−1(K) 6= ∅ and ψ−1(Ĩ) 6= ∅ and (S,Σ,∇, F )⊕ {K I7→ s} is
(S,Σ,∇, F ) if (K ′

I′7→ s) ∈ ∇ with K ⊆ K ′ and I ⊆ I ′

(S,Σ, (∇ \ {K I′7→ s}) ∪ {K I′∪I7→ s}, F ) if (K
I′7→ s) ∈ ∇.

(S ∪ {K}, Σ,∇∪ {K I7→ s}, F ) otherwise
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The ⊕ operator merges ideals associated to transitions. Assume we generate a

new transition K
I7→ s. If there is transition K ′

I′7→ s for the same s with K ⊆ K ′
and I ⊆ I ′, the ideal of configurations starting from K

I7→ s is included in that

from K ′
I′7→ s. Thus, we do not add it. If there is transition K

I′7→ s between the
same pair K, s, then take the union I ∪ I ′. Otherwise, we add a new transition.

It is easy to see that if φ ∈ PFun(X,Y ) is monotonic, then, for any I ∈ I(Y ),

φ−1(I) is an ideal in I(X). Soundness pre∗(C↑0 ) ⊆ L(Pre∗F (A0)) follows immedi-

ately by induction on saturation steps. Completeness pre∗(C↑0 ) ⊇ L(pre∗(A0)) is
guaranteed by Lemma 6, which is an invariant during the saturation procedure.

Lemma 6. Assume K
ĨZ=⇒ s in Pre∗F (A0). For each p ∈ K, w ∈ Ĩ,

– if s = K ′ ∈ I(P ), then 〈p, w〉 ↪→∗ 〈q, ε〉 for some q ∈ K ′.
– if s 6∈ I(P ), there exists K ′

Ĩ′Z=⇒ s in A0 such that 〈p, w〉 ↪→∗ 〈p′, w′〉 for

some p′ ∈ K ′ and w′ ∈ Ĩ ′.

Theorem 3. For an initial P-automaton A0 accepting C↑0 , L(Pre∗F (A0)) =

pre∗(C↑0 ).

Note that Thereom 3 only shows the correctness of Pre∗F -saturation. We will
discuss its finite convergence in next two subsections.

5.2 Coverability of Multi-set PDS

As an example of the finite convergence, we show Multi-set pushdown system
(Multi-set PDS) proposed by [2, 3], which is an extension of PDS by attaching
a multi-set into the configuration. We directly give the definition of a Multi-set
PDS as a WSPDS. Note that, although a Multi-set PDS has infinitely many
control states, it finitely converges because of restrictions on decreasing rules.

Definition 13. A Multi-set pushdown system (Multi-set PDS) is a WSPDS
((Q× Nk,�), Γ, δ), where

– Q, Γ are finite and k = |Γ |,
– δ is a finite set of transition rules consisting of two kinds:

1. Increasing rules δ1 : (p, γ, q, w,n) for n ∈ Nk;
2. Decreasing rules δ2: (p,⊥, q,⊥,n) for n ∈ Nk.

Configuration transitions are defined by:

(p, γ, q, w,n) ∈ δ1
〈(p,m), γw′〉 ↪→ 〈(q,n + m), ww′〉

(p,⊥, q,⊥,n) ∈ δ2,m ≥ n

〈(p,m),⊥〉 ↪→ 〈(q,m− n),⊥〉

Note the decreasing rules are applied only when the stack is empty. A state in
Pre∗F -automata is in I(Q × Nk). Since Q is finite, we can always separate one
state into finitely many states, each of which is in the form of Q× I(Nk). From
Definition 12, we have two observations.
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1. If transition (p, I)
γ7→ s is added from (q, I ′)

wZ=⇒ s and some increasing rule
in δ1, then I ⊇ I ′.

2. If transition (p, I)
⊥7→ s is added from (q, I ′)

⊥7→ s and some decreasing rule
in δ2, then I ⊆ I ′ and s is a final state.

There are only finitely many final states in A0 and Q is finite. Thus, by the
definition of ⊕ operator and Lemma 1, there are finitely many states (p, I) adja-
cent to final states paired with ⊥ in a Pre∗F -automaton. Other states added by
decreasing rules are also finitely many by observation 1 and Lemma 1. Therefore,
we have i) the total states of the converged Pre∗F -automaton is finite and ii) the
labels between pairs of states are finite (Γ is finite). The decidable coverability
of Multi-set PDS is a corollary of Theorem 3 .

Corollary 2. The coverability problem for a Multi-set PDS is decidable.

Example 2. Let 〈({a, b, c} × N,�), {α}, δ〉 be an Multi-set PDS with transition
rules given in the following graph. The set of configurations covering 〈c0,⊥〉
is computed by Pre∗F -automaton A. We abbreviate ideal {pn}↑ by pn for p ∈
{a, b, c} and n ≥ 0.

Transition c1
⊥7→ f is generated from a1

α⊥Z=⇒ f by applying ψ3 It is omitted

because we already have c0
⊥7→ f and {c1}↑ ⊆ {c0}↑.
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– Given p, q ∈ Q and n, n� ∈ Nk, (p, n) � (q, n�) if and only if p = q and
n ≤ n�, so (Q × Nk,�) is a WQO;

– δ is a finite set of transition rules consisting of two kinds:
1. Increasing rules δ1 : (p, γ, q, w, n) for n ∈ Nk;
2. Decreasing rules δ2: (p,⊥, q,⊥, n) for n ∈ Nk.

Configuration transitions are defined by:

(p, γ, q, w, n) ∈ δ1

�(p, m), γw�� �→ �(q, n + m), ww��
(p,⊥, q,⊥, n) ∈ δ2, m ≥ n

�(p, m),⊥� �→ �(q, m − n),⊥�

Note the decreasing rules are applied only when the stack is empty. Our defini-
tion is slightly different from that in [21]. We allow vector additions with stack
operations, however, this can be equivalently split into two transitions of [21]:
one for stack operation and another for vector addition.

We know that the state in Pre∗F -automata will be in I(Q × Nk). Since Q
is finite, we always can separate one state into finite number of states, each of
which is in the form of Q×I(Nk). From Definition 12, we have two observations:

1. if transition (p, I)
γ�→ s is added from (q, I �)

w�=⇒ s and some increasing rule
in δ1, then I ⊇ I �.

2. if transition (p, I)
⊥�→ s is added from (q, I �)

⊥�→ s and some decreasing rule
in δ2, then I ⊆ I � and s is a final state.

There are only finite number of final states in A0 and Q is finite, so there will
be finite number of states (q, I) that connected to final states with ⊥ in Pre∗F -
automata by the definition of ⊕ operator and Lemma 1. Other states added by
decreasing rules will also be finite by observation 1 and Lemma 1. Therefore,
we have i) the total states of the converged Pre∗F -automata is finite and ii) the
labels between pairs of states are finite (Γ is finite). The decidable coverability
of Multi-set PDS is a corollary of Theorem 4 .

Corollary 2. The coverability problem for a Multi-set PDS is decidable.

Example 2. Let �({a, b, c} × N,�), {α}, δ� be an Multi-set PDS with transition
rules given in the following graph. The set of configurations covering �c0,⊥�
is computed by Pre∗F -automaton A. We abbreviate ideal {p0}↑ by p0 for p ∈
{a, b, c}. Transition c1 ⊥�→ f is generated from a1 α⊥�=⇒ f by applying ψ3 (see

Appendix A). It is omitted because we already have c0 ⊥�→ f .

δ1 = { ψ1 : (bn,α→ an+1,α),
ψ2 : (an,α→ bn, �),
ψ3 : (cn, �→ an,α)}

δ2 = { ψ0 : (bn,⊥ → cn−1,⊥)}

A0 : c0 ⊥ �� f

A : c0 ⊥ �� f c1⊥
ψ3

��

a1
α

ψ2 �� b1

⊥
ψ0

��

c0α

ψ3

��
α ψ3

��
a0

α

ψ2 �� b0

α

ψ1

��

α
ψ1

��

5.3 Finite control states

Assume that, for a monotonic WSPDS M = 〈P, (Γ,≤), ∆〉, P is finite and ∆
does not contain non-standard pop rules. Then, we observe that, in the Pre∗F -
saturation for M , i) the set of states is bounded by the state in A0 and P , and
ii) transitions between any pair of states are finitely many by Lemma 1. Hence,
Pre∗F saturation procedure finitely converges.

Theorem 4. Assume that M = 〈P, (Γ,≤), ∆〉 is a monotonic WSPDS, P is
finite, and ψ−1(I) is computable for any (p, p′, ψ) ∈ ∆. Then, the coverability of
M is decidable.

Example 3. Let M = 〈{pi},N2, ∆〉 be a monotonic WSPDS with ∆ consists
of four rules given in the figure. Automaton A illustrates the pre∗-saturation
starting from initial A0 that accepts C = 〈p2, (0, 0)↑〉.
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For instance, p1
(3,0)↑7−→ p1 in A is generated by ψ2, and p0

(3,2)↑7−→ p1 is added by

ψ3. Then repeatedly apply ψ1 twice to p0
(3,2)↑7−→ p1

(3,0)↑7−→ p1, we obtain p0
(3,0)↑7→ p1.

ψ1 : �p0, n� → �p0, (n + (1, 1))n�
ψ2 : �p1, n� → �p1, �� if n ≥ (3, 0)
ψ3 : �p0, n� → �p1, n − (0, 2)� if n ≥ (0, 2)
ψ4 : �p1, n� → �p2, �� if n ≥ (1, 0)

A0 : p2
(0,0)↑ �� f

A :

p1
(1,0)↑ψ4 ��

(3,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(2,0)↑ ∪ (1,2)↑

ψ1,3

��

(3,0)↑

ψ1,3

��

(1,0)↑ ∪ (0,1)↑ψ1

�� f

Case 2: Multi-set PDS As another example of finite convergence, we describe
Multi-set pushdown system (Multi-set PDS) proposed by [2, 3], which is an ex-
tension of PDS by attaching a multi-set into the configuration. We directly give
the definition of a Multi-set PDS as a WSPDS.

Definition 13. A Multi-set pushdown system (Multi-set PDS) is a WSPDS
((Q × Nk,�),Γ, δ), where

– Q, Γ are finite and k = |Γ |,
– Given p, q ∈ Q and n, n� ∈ Nk, (p, n) � (q, n�) if and only if p = q and

n ≤ n�, so (Q × Nk,�) is a WQO;
– δ is a finite set of transition rules consisting of two kinds:

1. Increasing rules δ1 : (p, γ, q, w, n) for n ∈ Nk;
2. Decreasing rules δ2: (p,⊥, q,⊥, n) for n ∈ Nk.

Configuration transitions are defined by:

(p, γ, q, w, n) ∈ δ1

�(p, m), γw�� �→ �(q, n + m), ww��
(p,⊥, q,⊥, n) ∈ δ2, m ≥ n

�(p, m),⊥� �→ �(q, m − n),⊥�
Note the decreasing rules are applied only when the stack is empty. Our defini-
tion is slightly different from that in [19]. We allow vector additions with stack
operations, however, this can be equivalently split into two transitions of [19]:
one for stack operation and another for vector addition.

We know that the state in Pre∗F -automata will be in I(Q × Nk). Since Q
is finite, we always can separate one state into finite number of states, each of
which is in the form of Q×I(Nk). From Definition 12, we have two observations:

1. if transition (p, I)
γ�→ s is added from (q, I �)

w�=⇒ s and some increasing rules
in δ1, then I ⊇ I �.

2. if transition (p, I)
⊥�→ s is added from (q, I �)

⊥�→ s and some decreasing rules
in δ2, then I ⊆ I � and s is a final state.

There are only finite number of final states in A0 and Q is finite, so there will
be finite number of states (q, I) that connected to final states with ⊥ in Pre∗F -
automata by the definition of ⊕ operator and Lemma 1. Other states added by
decreasing rules will also be finite by observation 1 and Lemma 1. Therefore,
we have i) the total states of the converged Pre∗F -automata is finite and ii) the
labels between pairs of states are finite (Γ is finite). The decidable coverability
of Multi-set PDS is a corollary of Theorem 4 .

Corollary 2. The coverability problem for a Multi-set PDS is decidable.

6 Conclusion

This paper investigated well-structured pushdown systems (WSPDSs), pushdown
systems with well-quasi-ordered control states and stack alphabet, and developed
two proof techniques to investigate the coverability based on extensions of P-
automata techniques. They are,

– when a WSPDS has no standard push rules, the forward P-automata con-
struction Post∗ with Karp-Miller acceleration, and

– when a WSPDS has no non-standard pop rules, the backward P-automata
construction Pre∗ with ideal representations.

We show decidability results of coverability, which include recursive vector ad-
dition system with states [1], multi-set pushdown systems [2, 3], and a WSPDS
with finite control states and WQO stack alphabet. The first one extends the
decidability of the state reachability in [1] to that of the coverability.

Our current results just opened the possibility of WSPDSs. Among lots of
things to do, we list two for future works. Our decidability proofs contain al-
gorithms to compute, however the estimation of their complexity is not easy,
since we rely their termination on WQO arguments. We hope that a general
theoretical observation [21] would give hints for complexity estimation. Our cur-
rent forward method is restricted to VASs. We also hope to apply Finkel and
Goubault-Larrecq’s work on ω2-WSTS [14, 15] to generalize.
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A Proof of Lemma 2

We prove Lemma 2’, which generalizes the statement in Lemma 2 from p ∈ P
to p ∈ P ∪ Q, where Q = {qp,α | p ∈ P, α ∈ Γ}. Let w ∈ Γ ∗. We define the
following function from P ∪Q to P × Γ ∗ for notational convenience.

conw(p) =

{
〈p, w〉 if p ∈ P
〈p′, αw〉 if p = qp′,α ∈ Q

Lemma 2’. Let 〈P, Γ,∆〉 be a PDS, and let A0 be an initial P-automaton

accepting C0. Assume that p
wZ=⇒ q in Post∗(A0).

1. If q ∈ P ∪Q, conε(q) ↪→∗ conw(p);

2. If q ∈ S(A0) \ P , there exists q′
vZ=⇒ q in A0 with q′ ∈ P and 〈q′, v〉 ↪→∗

conw(p).

Proof. By induction on steps of the saturation procedure A0,A1,A2, · · ·. For
A0, the statement holds immediately. Assume above statements hold for Ai, and
Ai+1 is constructed by adding new transitions (denoted by 7→i+1) by either of
the following rules. We also denote the transitions in A0 by 7→0 and (∪j≤i 7→j)

∗

by 7−→i, respectively.

(S, Γ,∇, F ), p′
vZ=⇒ q

(S ∪ {p}, Γ,∇∪ {p γ7→ q}, F )
(p′, v → p, γ) ∈ ∆, |v| ≤ 2

(1)

(S, Γ,∇, F ), p′
γ7→ q

(S ∪ {p, qp,α}, Γ,∇∪ {p α7→ qp,α
β7→ q}, F )

(p′, γ → p, αβ) ∈ ∆
(2)

Let p0
wZ=⇒ q0 be a path in Ai+1 with p0 ∈ P ∪Q. Assume that p0

wZ=⇒ q0 contains
7→i+1 k-times. We prove by (nested) induction on k. If k = 0, obvious. Let k > 0

and let the leftermost occurence of 7→i+1 in p0
wZ=⇒ q0 be p′′

δ7→i+1 q
′′. Thus,

p0
w1Z=⇒i p

′′ δ7→i+1 q
′′ w2Z=⇒i+1 q0

where q′′
w2Z=⇒i+1 q0 contains 7→i+1 at most k − 1 times.

We will prove only the statement 1. (q ∈ P ∪ Q) in Lemma 2‘, since the
statement 2. (q ∈ S(A0) \ P ) follows similarly. We have three cases.

1. The rule (1) is used, and p′′ ∈ P .
2. The rule (2) is used, p′′ ∈ P , and q′′ ∈ Q.
3. The rule (2) is used, p′′ ∈ Q.

Case 1. Following to the notation of the rule 1, let p′′ = p, q′′ = q, and δ =
γ. By induction hypothesis on p0

w1Z=⇒i p and p′
vZ=⇒i q

w2Z=⇒i+1 q0, we have
〈p, ε〉 ↪→∗ conw1

(p0) and conε(q0) ↪→∗ 〈p′, vw2〉, respectively. By the rule 1, we
have 〈p′, v〉 ↪→ 〈p, γ〉. Thus,

conε(q0) ↪→∗ 〈p′, vw2〉 ↪→ 〈p, γw2〉 ↪→∗ conw1γw2
(p0)
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Case 2. Following to the notation of the rule 2, let p′′ = p, q′′ = qp,α, and

δ = α. By induction hypothesis on p0
w1Z=⇒i p and qp,α

w2Z=⇒i+1 q0, we have
〈p, ε〉 ↪→∗ conw1(p0) and conε(q0) ↪→∗ 〈p, αw2〉, respectively. Thus,

conε(q0) ↪→∗ 〈p, αw2〉 ↪→∗ conw1αw2
(p0)

Case 3. Following to the notation of the rule 2, let p′′ = qp,α, q′′ = q, and

δ = β. By induction hypothesis on p0
w1Z=⇒i qp,α and p′

γ7→i q
w2Z=⇒i+1 q0, we have

〈p, α〉 ↪→∗ conw1
(p0) and conε(q0) ↪→∗ 〈p′, γw2〉, respectively. By the rule 2, we

have 〈p′, γ〉 ↪→ 〈p, αβ〉. Thus,

conε(q0) ↪→∗ 〈p′, γw2〉 ↪→ 〈p, αβw2〉 ↪→∗ conw1βw2(p0)

�

B Proof of Lemma 4

To prove Lemma 4, we first prove Lemma 7 which indicates the relationship
between dependency pairs in Post∗F -automaton and those in Post∗-automaton.
For denotational convenience, we will use u,v to denote vectors in Nk and n,m
generally for those in Nk+. We write ω(n) for {j | j(n) = ω}.

Lemma 7. Let A0 be an initial P-automaton of some PDVAS. Assume p′
n′7→

q′ V∗ p n7→ q in Post∗F (A0), then there exists some v′ <ω(n′) n′ such that

∀v1 <ω(n) n. ∃v2 ≥ω(n) v1, and p′
v′7→ q′ V∗ p v27→ q in Post∗(A0).

Proof. We proceed by induction on the Post∗F -saturation of A0,A1,A2, · · ·. We
will write Vi for dependency relation in Ai. Since V0= ∅, so the lemma holds
for A0. Assume that Ai+1 is constructed by adding a new transition p

n7→ q.
We only consider the acceleration case while applying nonstandard pop rule.
Cases without acceleration and with acceleration for internal rule are similar
and simpler.

Assume we have nonstandard pop rule 〈p′,m1m2 → p,n′〉, the transition

p
n7→ q is added from p′

m17→ q′
m27→ q and there exist some n′′ <J n′, such that

p
n′′7→ q V∗i p′

m17→ q1 or p
n′′7→ q V∗i q1

m27→ q, and n = n′′ � n′. By the definition of

⊕ in Definition 8, we add p
n7→ q instead of p

n′7→ q and

Vi+1=Vi ∪{(p′ m17→ q1, p
n7→ q), (q1

m27→ q, p
n7→ q)}.

For any p0
m7→ q0 V∗i+1 p

n7→ q, we have p0
m7→ q0 V∗i p′

m17→ q1 or p0
m7→ q0 V∗i

q1
m27→ q. W.l.o.g., assume

(1) p0
m7→ q0 V∗i p′

m17→ q1 Vi+1 p
n7→ q, and (2) p

n′′7→ q V∗i q1
m27→ q Vi+1 p

n7→ q
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Other cases are similar. By induction hypothesis on (2), there exists v′′ <ω(n) n
′′

such that for all u2 <ω(m2) m2, p
v′′7→ q V∗ q1

u′27→ q for some u′2 >ω(m2) u2 in
Post∗(A0).

Since 〈p′,m1m2 → p,n′〉 and n′ >J n′′, there must exist some u1 <ω(m1)

m1, u2 <ω(m2) m2 and v′ >J∪ω(n′) v′′ such that 〈p′,u1u2 → p,v′〉. Hence, we

have p
v′′7→ q V∗ q1

u′27→ q for some u′2 >ω(m2) u2 in Post∗(A0).

Transition p′
m17→ q1 in Ai is either i) in A0, ii) generated by some simple push

rule, or iii) connected with some transition in A0 by finite steps of V. In case

i) and ii), m1 ∈ N∗ and p′
m17→ q1 also in Post∗(A0). For case iii), by induction

hypothesis, there exists p′
u′17→ q1 in Post∗(A0) for some u′1 >ω(m1) u1. Note that

ω(n) = J ∪ ω(n′). So Post∗(A0) must have dependency pair:

p
v′′7→ q V∗ p v′•7→ q, where 〈p′,u′1u′2 → p,v′•〉 and v′′ <ω(n) v

′ <ω(n) v
′
• (3)

By induction hypothesis on (1), there exists u <ω(m) m and u′′1 >ω(m1) u1

such that p0
u7→ q0 V∗ p′

u′′17→ q1 in Post∗(A0). Similarly, there exists q1
u′′27→ q

for some u′′2 >ω(m2) u2 in Post∗(A0). Hence we have the following pair in
Post∗(A0):

p0
u7→ q0 V∗ p

v′07→ q, where 〈p′,u′′1u′′2 → p,v′0〉 and v′′ <ω(n) v
′ <ω(n) v

′
0

From Lemma 3 and (3), we get

p0
u7→ q0 V∗ p

v′07→ q V∗ p v′17→ q V∗ p v′27→ q V∗ · · ·V∗ p v′i7→ q V∗ · · ·

where v′i >ω(n) v′i−1 for any i. Hence, for all v <ω(n) n, there exists some

v′i >ω(n) n and p0
u7→ q0 V∗ p v′7→ q. �

Lemma 4. Let A0 be an initial P-automaton of some PDVAS. If p
n7→ q in

Post∗F (A0), then for all n′ ≤ n and n′ ∈ Nk there exists p
n′′7→ q in Post∗(A0)

for some n′′ such that n′ ≤ n′′ ≤ n.

Proof. For any transition p
n7→ q in Post∗F (A0), it is either i) in A0, ii) generated

by some simple push rule, or iii) connected with some transition in A0 by finite

steps of V. In case i) and ii) n ∈ N∗ and p
n7→ q also in Post∗(A0). For case

iii), directly by Lemma 7, we know for any n′ ≤ n and n′ ∈ Nk there exists

n′′ ≥ω(n) n
′ and p

n′′7→ q in Post∗(A0). Since n′′ ≥ω(n) n
′ we have n′′ ≤ n. �

C Proof of Lemma 6

Lemma 6. Assume K
ĨZ=⇒ s in Pre∗F (A0). For each p ∈ K, w ∈ Ĩ,

– if s = K ′ ∈ I(P ), then 〈p, w〉 ↪→∗ 〈q, ε〉 for some q ∈ K ′.
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– if s 6∈ I(P ), there exists K ′
Ĩ′Z=⇒ s in A0 such that 〈p, w〉 ↪→∗ 〈p′, w′〉 for

some p′ ∈ K ′ and w′ ∈ Ĩ ′.

Proof. By induction on steps of the Pre∗F saturation procedure A0,A1,A2, · · ·.
For A0, the statement holds immediately. Assume statements above hold for Ai,
and Ai+1 is contrcuted by adding new transition K0

I07→ s0 with K0 = φ−1(K ′0) 6=
∅ and I0 = ψ−1(Ĩ0) 6= ∅.

(S, I(Γ ),∇, F ), K ′0
Ĩ0Z=⇒ s0

(S, I(Γ ),∇, F )⊕ {φ−1(K ′0)
ψ−1(Ĩ0)7−→ s0}

if Ĩ0 ∈ I(Γ≤2) and (φ, ψ) ∈ ∆

The statement 2. in Lemma 6 is similarly proved as the statement 1., and
we give a proof only for the statement 1. According to the definition of ⊕ (in
Definition 12), there are three cases:

– There exists (K1
I17→ s0) ∈ ∇ with K0 ⊆ K1 ∧ I0 ⊆ I1. Then, no new edges

are added.
– There exists (K0

I17→ s0) ∈ ∇. Then, K0
I17→ s0 is updated with K0

I0∪I17−→ s0.

– Otherwise, K0
I07→ s0 is added.

The first case is immediate. The second case is the most complex, and the third
case follows similarly. Here we focus on the second case.

Assume that a path K
ĨZ=⇒ s contains K0

I0∪I17−→ s0 k-times. We apply (nested)
induction on k, and we focus on its leftermost occurence. We only need to con-
sider elements in I0 since those in I1 is by induction hypothesis.

Let Ĩ = ĨlI0Ĩr, and let K
ĨlZ=⇒ K0

I07→ s0
ĨrZ=⇒ s for wl ∈ Ĩl, γ ∈ I0, and

wr ∈ Ĩr. For each p ∈ K, by induction hypothesis on K
ĨlZ=⇒ K0, there exists

p0 ∈ K0 with 〈p, wl〉 ↪→∗ 〈p0, ε〉. By the definition of saturation rules, we have

〈p0, γ〉 ↪→ 〈φ(p0), ψ(γ)〉 for φ(p0) ∈ K ′0 and ψ(γ) ∈ Ĩ0. Again, by induction

hypothesis on K ′0
Ĩ0Z=⇒ s0

ĨrZ=⇒ s, there exists q ∈ s with 〈φ(p0), ψ(γ)wr〉 ↪→∗ 〈q, ε〉.
Thus, we have 〈p, wlγwr〉 ↪→∗ 〈p0, γwr〉 ↪→ 〈φ(p0), ψ(γ)wr〉 ↪→∗ 〈q, ε〉. �


