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PAPER Special Section on Information Theory and Its Applications

Cryptanalysis of Stream Ciphers from a New Aspect: How to Apply
Key Collisions to Key Recovery Attack∗∗

Jiageng CHEN†a), Nonmember and Atsuko MIYAJI†∗, Member

SUMMARY In this paper, we propose two new attacks against stream
cipher RC4 which can recover the secret key in different length with practi-
cal computational amount. However, we have to point out that the proposed
attacks are performed under relatively strong related key models. The same
as the usual related key models, the adversary can specify the key differen-
tials without knowing the target key information. However, in our attacks,
only the relation between two keystream outputs or the two final internal
states are required for the attacker. In addition, we discover a statistical
bias of RC4 which is the key point to one of the attacks. Besides the inap-
propriate usage during the WEP environment, RC4 is still considered to be
secure with the proper setting, and we believe the result of this paper will
add to the understanding of RC4 and how to use it correctly and safely.
key words: stream cipher, related key model, RC4

1. Introduction

Cryptanalysis is closely related to the cipher’s deployment
environment without which the analysis is just pure theoret-
ical work. Basically speaking, the symmetric key cryptogra-
phy serves as a primitive to the higher level protocols. Thus
due to the specific design of the protocol, the primitive can
be used in many different ways. In other words, from the
adversary’s point of view, from the protocols, some infor-
mation about the cipher may be obtained which is impossi-
ble from other protocols. In order to characterize the adver-
sary’s ability in those situations, researchers proposed differ-
ent models such as known plaintext attack, chosen plaintext
attack, chosen ciphertext attack, related-key attack, and so
on. Examining the ciphers against these well-known mod-
els has become a standard rule. However, especially in the
world of symmetric key cryptography, the security of the ci-
pher largely depends on the effort of the cryptanalysis, and
the design of the cipher can not be guaranteed much more
than we can expect. And what’s more, the usage of the ci-
pher after being wrapped into some protocol is sometimes
totally out of the designer’s concern, and even if not, the
knowledge gap between the protocol designer and the prim-
itive designer is somewhat huge. This motivates us to an-
alyze the ciphers in somewhat more stronger models that
were seldom studied before.
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In this paper we focus on analyzing stream cipher RC4,
which is one of the most famous ciphers widely deployed in
the real world applications such as Microsoft Office, Secure
Socket Layer (SSL), Wired Equivalent Privacy (WEP), and
so on. Due to its big influence and simple structure, it has
become a hot cryptanalysis target since its specification was
made public on the Internet in 1994 [8]. More than 20 years
study on RC4 has revealed a lot of weaknesses and a lot at-
tacks have been proposed since then. However, except the
inappropriate usage in the WEP environment, it has not been
broken yet. In the following section, we will briefly review
the attacks against RC4 under different models along with
the two models we proposed here. These models do not only
apply to RC4 but also to other stream ciphers as well. We
mainly demonstrate the attacks against RC4 to make these
models more clearly. In Sect. 5 we give the attack to re-
cover short and long secret keys of RC4 in Modified RKA
model. In Sect. 6, we show how to recover even short keys
in Related-Key KFISA model by using the statistical weak-
nesses described in Appendix. The comparison among the
different key recovery attacks are summarized in Sect. 7 and
finally conclusion is given in Sect. 8.

2. Notations

We describe the notations that will be used in this paper to
address the different attacking models as well as the crypt-
analysis of RC4.

Notations for Attacking models in Sect. 3

• zi: The i-th keystream output generated by PRBG.
• IV: Initialization vector.
• S F : The internal state at the end of KSA stage.
• KS A(K, IV): Key scheduling algorithm with secret key

and initial vector as input, and output the internal state
ready to be used for keystream output.

• PRBG(S F ,m): Pseudorandom number generator with
input S F ,m, and output keystream sequence zi, where
0 ≤ i ≤ m − 1.

• ΔK: The key differential which is chosen by the adver-
sary. It can be treated just as a normal secret key.

• ΔIV: The IV differential which is chosen by the adver-
sary. It can be treated just as a normal IV.

• f (zi, z
′
i): A function with two keystream outputs as in-

puts, outputs 1 if zi = z
′
i , and 0 otherwise.

• g(S F , S
′
F): A function with two internal states as in-

puts, outputs the number of elements in S F that differ

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers
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from the ones in S
′
F .

Notations for RC4 cryptanalysis

• K1,K2: a secret key pair with some differences between
them.

• S 1,i, S 2,i: S -Boxes corresponding to the secret key pair
at time i before the swap operation.

• i, j1,i, j2,i: internal states of RC4. When j1,i = j2,i, we
use ji to denote.

• k: the lengths (bytes) of the secret keys.
• h: Hamming distances between the two keys (number

of different positions where two keys differ from each
other).

• d: the first index of the key differences.
• Γ: the set of indices at which two keys differ from each

other, |Γ| = h, Γ = {γ0, ..., γh−1} and d = γ0.
• ni: the number of times the key difference γi appears

during the KSA. ni = � 256+k−1−γi

k � for i = 0, ..., h − 1.

3. Key Recovery Attacks against Stream Ciphers

From now on, we assume that stream cipher is deployed in
some environment and one master key K is used for the en-
cryption and decryption along with the publicly known IV
for a period of time before the K is updated. The adver-
sary’s target is to recover the master key (target key) K better
than brute force searching, and the faster the better. Given
the same target, the resources that the adversary can obtain
differ from each other in different attacks. In this section,
we summarize some of the previous known attacks against
stream cipher along with two newly proposed ones. For the
details of the different attacks, we mainly demonstrated by
using RC4.

Known Final Internal State Attack (KFISA) As we know
that almost all the stream ciphers are composed by two al-
gorithms, namely, KSA and PRGA. In the KSA stage, the
internal state is scrambled by using the IV and the K. After
that, the scrambled internal state will be used in PRGA to
generate the keystream. The final internal state here refers
to the internal state after the KSA algorithm. In other words,
the adversary has in possession of this information and try
to recover the key. This attack put more focus on the KSA
algorithm itself and it is a nice way to evaluate the strength
of the key scheduling part of the stream cipher. [19], [20]
and [21] are some theoretical representatives of such attack.
Figure 1 shows the procedure of the attack.

Fig. 1 Known final internal state attack.

This model first reflects the security of the key schedul-
ing algorithm, which has already been studied in the case of
RC4. One significant point is that if part of the initial state is
leaked due to some reasons for instance side channel attack,
then the key could be recovered if there is an efficient attack
in KFISA. This will cause big trouble in the IV based con-
struction since the master secret key will be used for many
sessions while only the IV is changed. Other than side chan-
nel attack, to recover the initial state given the keysteram
output is also address in [7] although it’s result is only of
theoretical interests.

Besides the passive attacks described above, the fol-
lowing three attacks can be seen as active attacks since the
adversary is allowed to query the application service (Ora-
cle) for the information he wants.

Related Key Attack In the related key attack, the adver-
sary can obtain many different keystream outputs, which are
generated by different IVs and secret keys. The adversary
has the ability to query the IV and key differentials but does
not know the secret key or internal state information. The
Oracle will return the corresponding keystream†. The at-
tack against WEP environment is one of the most successful
practical attack examples under this model such as [17] and
[18]. Figure 2 shows the attack.

Modified Related Key Attack (Modified-RKA) This is our
newly proposed modified related key attack. We call it mod-
ified version of RKA because the adversary can also query
the IV and key differentials, however, the Oracle will re-
turn the relation between the two keystreams instead of the
keystream itself. The relation can be treated as the simple
exclusive or or modular addition operations. One of the
translation of this model is to first find key collisions like
in [3], then by making use of this special property (identi-
cal keystream outputs) to launch the attack. This attack is
demonstrated in Fig. 3.

Notice that the function f is specified to output one
bit information to indicate whether the two input streams
are the same or not. As we will demonstrate later that even
without knowing the keystream itself, secret key can still be
recovered in this model, not even mention that we further
strenthen the power of the function f .

Fig. 2 Related Key Attack (RKA).

†The attack which involves only the IV such as Chosen IV at-
tack [2] can be seen as a special case of this model.
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Fig. 3 Modified related key attack.

Fig. 4 Related-key KFISA.

Related-Key Known Final Internal State Attack (Rel-
ated-Key KFISA) This attack can be seem as the related
key version of the KFISA. Instead of getting the randomized
S -Box by KSA directly, the Oracle will return the relation
between the two S -Boxes, which are generated according
to the key and IV differentials queried by the attacker. The
attack is demonstrated in Fig. 4.

The way to obtain the differentials could be as trivial as
checking if the key collision happens, namely, observing if
two keystreams are exactly the same or not. This can be fur-
ther extended to observe the near collision, namely, in case
of RC4, two similar initial state will tend to output the sim-
ilar keystream for the first few bytes. Also, as in the KFISA
model, side channel attack or due to some flawed protocol
design, the differentials of the initial state are available to the
adversary. For the future research, if we can find a relation
between the keystream differentials and the initial state dif-
ferentials from a more general point of view, then we may
unify this model with related key model. For now, we in-
vestigate them separately. The details will be addressed in
Sect. 6 and Appendix.

Except the models we discussed here, we have to men-
tion that there still exists other models which characterize
the different aspects of the stream cipher. When the adver-
sary is given only one keystream output, it can be seen as
a known plaintext attack. Different from block ciphers, the
adversary here can only obtain one keystream output since
the secret key is used only once. The adversary’s power is so
weak that all the practical stream ciphers should be secure
against this attack. In another example in [6], the model
focuses on the differences of the two related internal states
after the key scheduling algorithm, and tries to recover the
internal state or key itself. However, we won’t do further
discussion about them in the following parts.

In the following sections, we choose the stream ci-

pher RC4 as our target and evaluate how it behaves under
our proposed Modified Related Key Attack and Related-Key
KFISA.

4. Description of RC4 and Previous Key Recovery Re-
sults

The stream cipher RC4 is one of the most famous ciphers
widely used in real world applications such as Microsoft Of-
fice, Secure Socket Layer (SSL), Wired Equivalent Privacy
(WEP), etc. Due to its popularity and simplicity, RC4 has
become a hot cryptanalysis target since its specification was
made public on the Internet in 1994 [8].

The internal state of RC4 consists of a permutation S of
the numbers 0, ...,N − 1 and two indices i, j ∈ {0, ...,N − 1}.
The index i is determined and known to the public, while j
and permutation S remain secret. RC4 consists of two algo-
rithms: The Key Scheduling Algorithm (KSA) and the Pseu-
dorandom Generator Algorithm (PRGA). The KSA gener-
ates an initial state from a random key K of k bytes as de-
scribed in Algorithm 1. It starts with an array {0, 1, ...,N−1}
where N = 256 by default. At the end, we obtain the initial
state S N−1. Once the initial state is created, it is used by
PRGA. The purpose of PRGA is to generate a keystream of
bytes which will be XORed with the plaintext to generate
the ciphertext. PRGA is described in Algorithm 2.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S [i]← i
3: end for
4: j← 0
5: for i = 0 to N − 1 do
6: j← j + S [i] + K[i mod k]
7: swap(S [i], S [ j])
8: end for

Algorithm 2. PRGA (PRBG)
1: i← 0
2: j← 0
3: loop
4: i← i + 1
5: j← j + S [i]
6: swap(S [i], S [ j])
7: keystream byte zi = S [S [i] + S [ j]]
8: end loop

More than twenty-year study on RC4 has revealed a lot
of weaknesses of this cipher and a lot different attacks have
been proposed since then, and almost all the attacks can be
described by using the previous defined security model. The
most practical one is the distinguishing attack, which is un-
der the KPA model. The attacker tries to distinguish be-
tween an output stream generated by PRGA and a random
stream [10]–[12]. Other various general weaknesses of RC4
have been discovered in the previous works [9], [13], [14],
etc. However, the targets of those papers are not the key re-
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covery, or at least the weaknesses exploited are not sufficient
to recover the secret key. Thus RC4 can still be consider to
be secure under KPA model.

The attacks under RKA model have also been stud-
ied, among which the ones against WEP environment can
be seen as successful real world attack. In this environment,
RC4 is used with a session key which is derived from a
shared secret key and an Initial Value (IV). The secret key is
concatenated after the IV which is transmitted unencrypted.
First chosen IV attack was shown in [15]. By observing the
first many keystream outputs, they recovered the secret key
with high probability. Another statistical bias between the
keystream output and the value of S [ j] was discovered in
[16] and [17]. By using this bias, they can also recover the
entire key in practical time, which was then improved by re-
ducing the dependency when recovering the key bytes later
in [18]. However, one important thing to notice is that these
attacks depend heavily on the property of IV (Weakness of
IV, or at least the existence of IV settings), thus it can be
viewed as a stronger version of RKA since RKA does not
add any conditions on IV. In other words, if IV setting is not
available, these attacks will not be successful.

Attacks that only observing the final S -Box after KSA
algorithm [19]–[21] belong to the KFISA model. The basic
idea is that the first few bytes of the S -Box is obviously
biased, which indicates a connection to the secret key. By
creating equations which hold with certain probability, they
try to recover the whole keys. This kind of attack works
only when the key has a very small size (5 byte), and the
successful probability will drop dramatically to impractical
level when the key size is larger than 16 bytes.

5. Modified Related Key Attack (Modified RKA)

Our first proposed key recovery attack works under the
Modified RKA, and it is based on the fact that RC4 can
generate a large amount of colliding key pairs. The fact
that RC4 can generate colliding keys was first discovered
in [3], and later generalized by [4], [5]. We call a key pair
K1 and K2 a colliding key pair if the two corresponding S -
Boxes are equal to each after KSA algorithm, namely they
have the same effect on the encryption. Previous researches
have showed that collisions can be achieved under some spe-
cific key pattern with some probability. Since the pattern
to achieve long key collisions is different from the ones for
short keys, we need to use different techniques to recover
long keys and short keys. This is so because the attack heav-
ily depends on the key collision patterns themselves which
we separately introduce in Sects. 5.1 and 5.2. And also we
will see that the technique to recover the long keys can not
be adapted to recover the short ones and vice versa.

5.1 Random Full Length 256-Byte Key Recovery

[5] has showed that it is very easy for large keys to achieve
collisions under some specific patterns. Here we describe
one collision pattern to use for our attack.

Key Pattern: K2[d] = K1[d] + 1
K2[d + 1] = K1[d + 1] − 1
K2[d + 2] = K1[d + 2] + 1

In order for two keys in the above pattern to achieve
collisions, the following necessary conditions have to be sat-
isfied.

1. When i touches index d, we require S 1,d[d + 1] =
S 1,d[d] + 1 (S 2,d[d + 1] = S 2,d[d] + 1).

2. At step i = d after the swap, we require j1,d = d ( j2,d =
d + 1).

3. At step i = d+1 after the swap, we require j1,d+1 = d+1
( j2,d+1 = d).

One example is given in Table 1 where d = 0. Now we
are ready for the key recovery procedure.

The attacker’s goal is to recover a 256-byte secret key
K in turn, namely, from K[0] to K[255], two consecutive
key bytes can be recovered at one time as illustrated in
Fig. 5. The attacker first queries two differentials ΔK1

1 [0]
and ΔK1

1[1] to the Oracle, and ask it to run the KSA al-
gorithm under two keys K1 and K2 which satisfy K1[0] =
K[0] + ΔK1

1 [0],K1[1] = K[1] + ΔK1
1[1],K1[i] = K[i] for

Table 1 Collisions for 256-byte full length keys when d = 0.

Internal State Difference
i K1[i]/K2[i] j1,i/ j2,i 0 1 2
0 0 0 0 1 2 K2[0] = K1[0] + 1

1 1 1 0 2 j2,0 = j1,0 + 1, S 1 � S 2

1 0 1 0 1 2 K2[1] = K1[1] − 1
255 0 0 1 2 j2,1 = j1,1 − 1, S 1 = S 2

2 X X + 3 0 1 S [X + 3] K2[2] = K1[2] + 1
X + 1 X + 3 0 1 S [X + 3] j1,2 = j2,2, S 1 = S 2

Fig. 5 Querying differentials for recovering 256-byte keys.
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Table 2 Collisions for short keys when d = 0, k = 128.

Internal State Difference
i K1[i]/K2[i] j1,i/ j2,i 0 1 2 3 ... 126 127 128
0 K1[0] = 0 0 0 1 j, S -Box

K2[0] = K1[0] + 1 = 1 1 1 0
1 K1[1] = 127 128 0 1 S -Box

K2[1] = 127 128 1 0
126 K1[126] 0 0 1 S -Box

K2[126] = K1[126] 0 1 0
127 K1[127] 127 0 1 j, S -BoX

K2[127] = K1[127] 126 0 1
128 K1[0] = 0 S 1,127[128] + 127 0 1 Same

K2[0] = K1[0] + 1 = 1 S 2,127[128] + 127 0 1

i � 0, 1 and K2[0] = K1[0] + 1,K2[1] = K1[1] − 1,K2[2] =
K1[2] + 1,K2[i] = K1[i] for i � 0, 1, 2 respectively. If he
is lucky enough, he will observe a collision by observing
the two keystream output differentials. Recall the previ-
ous collision requirements which means that j1,0 = i = 0
( j2,0 = i + 1 = 1) and j1,1 = i = 1 ( j1,2 = i − 1 = 0).
This gives K1[0] = 0 − S 1,0[0] = 0 (K2[0] = 1) and
K1[1] = 1 − 0 − S 1,1[1] = 0 (K2[1] = 255). Then the
attacker can easily recover K[0] and K[1] by computing
K[0] = K1[0] − ΔK1

1 [0] and K[1] = K1,1[1] − ΔK1
1[1] with

the two known differentials. We call this two differentials
(ΔK1

1 [0], ΔK1
1[1]) a right differential pair, and (K1,1, K1,2)

a right related key pair at step one. The worst case to the
attacker is that he won’t be able to get the right differen-
tial pair until he queries all the 256 possible values for one
differential, namely, 2562 time queries in total.

Now the attacker has successfully recovered K[0] and
K[1]. To recover the next two bytes K[2] and K[3], the at-
tacker tries to query two differentials ΔK2

1 [2] and ΔK2
2[3],

hoping it to be a right differential pair, also along with the
previous right pair (ΔK1

1 [0],ΔK1
2[1]). The Oracle will run

the KSA algorithm under two keys K1 and K2 which satisfy
K1[0] = K[0] + ΔK1

1[0],K1[1] = K[1] + ΔK1
1[1],K1,2[2] =

K[2] + ΔK2
1[2],K1,2[3] = K[3] + ΔK2

1[3],K1,2[i] = K[i]
for i � 0, 1, 2, 3 and K2[2] = K1[2] + 1,K2[3] = K1[3] −
1,K2[4] = K1[4] + 1,K2[i] = K1[i] for i � 2, 3, 4 respec-
tively, and sends back the information whether a collision
happens or not. If he is unlucky, query differentials ΔK2

1 [2]
and ΔK2

2[3] again until it is a right pair (collision happens).
Notice that the differential pair (ΔK1

1 [0],ΔK1
1[1]) need not

be changed since it is the right pair results from the previ-
ous stage and we need it there to satisfy the first collision
condition for the second stage attack.

Each time when the attacker successfully recovers two
key bytes K[i] and K[i+1], he has the knowledge of the right
differential pair, and with all the previous known right differ-
ential pairs, he is able to recover the future key bytes. The
complexity of the attack can be computed from the worst
case in which the attacker has to try 2562 times before he
can find the right pair to recover two bytes key. Thus the
total complexity time in the worst case is 128 × 2562 = 223

with probability 1.

5.2 Random Short Key Recovery

The previous pattern used in recovering the full length key
can not be used to recover short keys. For short keys, we
need to find a pattern that first it can lead to collisions, and
second it has a relatively low complexity. We decide to
choose the following pattern which is first discovered in [3].
Key Pattern: K2[d] = K1[d] + 1.

The following extra conditions during KSA are nec-
essary for two keys with the above relations to achieve a
collision.

1. When i touches index d, we require S 1,d[d + 1] =
S 1,d[d] + 1 (S 2,d[d + 1] = S 2,d[d] + 1).

2. At step i = d after the swap, we require j1,d = d ( j2,d =
d + 1).

3. At step i = d + 1, we require j1,d+1 = j2,d+1 = d + k.
4. During steps i = d+2 to i = d+k, we require j1,i � d+k.
5. At step i = d + p × k, p = 1, ..., n − 2, we require

j1,i = j2,i = i + k.
6. During steps i = d + p× k + 1 to i = d + (p+ 1)× k, we

require j1,i � i + k.
7. At step i = d + (n − 1) × k − 2, we require the two S -

Box differences to be at indices d + (n − 1) × k − 2 and
d + (n − 1) × k − 1.

8. At step i = d+(n−1)×k−1, we require j1,i = i−1( j2,i =
i).

Table 2 illustrates how it works when d = 0, k = 128.
When recovering the full size 256-byte keys, the at-

tacker at each step only need to query key differentials at
the two target key indices. Because he knows that due to the
collision pattern, he will observe a collision no later than the
worst case. However, in case of short keys, only changing
the target key bytes will not guarantee a collision even in
the worst case. It is straightforward because the worst case
in querying key differentials at two target key bytes involves
2562 operations, since the probability for the collision may
be smaller than 1

2562 , in other words, we may need to query
also some other key bytes to ensure a (near) collision ob-
servation. We illustrate how many key bytes differentials
we need to query by computing the collision probability in
Fig. 6. It is an example of 64-byte key and difference is at
index 0.
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Fig. 6 Determine the number of differentials to query.

Recall that for a key pair to achieve a collision in short
key pattern, we need j1,0 = 0 and j touches 64, 128 and
192 when i touches 1, 64 and 128 respectively. And when i
is between [1, 63], [65, 127] or [129, 191], j is not allowed
to touch the later bound. Finally, when i touches 192, if j
is less or equal than 192, it will result in a near collision
with two different indices. We assume the internal variable
j behaves randomly, which is a reasonable assumption in
most of the cases, we get the probability for the collision of
a 64-byte key: ( 1

256 )4( 255
256 )62+63+63 193

256 ≈ 8.5× 10−11. In other

words, we’ll need to query log2(8.5×10−11)−1

8 ≈ 4 bytes each
time, two extra indices except the two target key bytes. By
generalizing this analysis, we can get the following theorem.

Theorem 1: To construct a related key K1 which has a col-
liding key pair under the short key collision pattern from
the target key K, the attacker has to query m key differential
bytes at two target key bytes indices and m−2 other indices.
m is given below:

m = log2

⎛⎜⎜⎜⎜⎜⎝
(

1
256

)n

×
(
255
256

)k−2+(k−1)(n−2)

× (n − 1)k + d
256

⎞⎟⎟⎟⎟⎟⎠
−1

/8

≈
∑k−1

d=0

(
log2

((
1

256

)n ×
(

255
256

)k−2+(k−1)(n−2)× (n−1)k+d
256

)−1
/8

)

k

Here, k is the key length, n = � 256+k−1−d
k � and d denotes

the first key difference index. Since d does not play the dom-
inant role in the equation, and what we care is the relation
between m and k, we can approximate m for d ∈ [0, k − 1],
which leaves us the relation between m and k.

Proof 1: Since we have computed the probability for 64-
byte key, we can derive the general case based on it very
easily. The near collision is composed by three parts. The
first one is the probability at the locations where key differ-
ence exists, which is denoted by ( 1

256 )n, where n is the time
key difference is repeated during KSA (n = 4 in case of 64-
byte key). Second part is the probability that i does not touch
any of the S -Box differences when it is between the two dif-
ference indices. Given a general parameter key length k and
n, it can be computed as ( 255

256 )k−2+(k−1)(n−2). Finally, in order
to achieve near collision, we would like S -Box difference to
be swap to the small indices when i touch the last key differ-
ence index, which is addressed by the probability (n−1)k+d

256 .
Thus taking the logarithm of the probability and divide by
8 will give the number bytes that are required to be queried
before observing a collision.

Fig. 7 Relations between m and k.

Fig. 8 Complexity for recovering two key bytes.

Fig. 9 Querying differentials for recovering short keys.

Figure 7 is the direct visualization of the Theorem 1.
From the figure, we know that for key size smaller than
16 bytes, the attacker has to query more than 16 bytes in or-
der to observe a collision, thus makes the attack impossible.
This also matches with the result in [3], which says that for
key length less than 17 bytes, collisions can not be achieved.
We give the theoretical bound of the complexity time for the
attack in Fig. 8.

After the attacker knows how many bytes he should
query, he is ready to launch the attack. The querying differ-
ential procedure for short keys is illustrated in Fig. 9.

Suppose the target key has length k and will repeat n
times during KSA. Again the attacker tries to recover the
key one by one starting from the beginning. His first two
target key bytes is K[0] and K[1]. According to Theorem
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Table 3 Experimental Results of recovering short keys under Modified RKA.

n Key Length Number of Query Bytes Time

m = 2 m = 3 m = 4 Exp Value Theo Value

1 256 128(100%) 0 0 2 2 0.038s

2 128 35(55%) 29(45%) 0 2.42 2.21 287s

3 86 0 16(37%) 27(63%) 3.63 3.19 76323s (21.2h)

1, he can compute m, thus besides indices 0 and 1, he can
randomly choose other m − 2 indices and submit the dif-
ferential queries ΔK1

1[0],ΔK1
1[1],ΔK1

1[i], ...,ΔK1
1[i+m− 2].

To ease the explanation, we assume the m − 2 indices to be
the consecutive ones. The Oracle will return the differen-
tial information of two keystream output Δzi under K1 and
K2 which differs from K1 at index 0 by value 1. By ob-
serving the Δz, he can confirm whether a collision (near
collision) has happened (Δzi = 0 for all i, or for a rela-
tively large i, which can be easily tested). According to
the short key collision pattern, j1,0 = 0 ( j2,0 = 1) and
j1,1 = j2,1 = k+1. Thus, K1[0] = 0−S 1,0[0] = 0(K2[0] = 1),
and K1[1] = K2[1] = k + 1 − 1 = k. Then the attacker can
recover K[0] and K[1] by computing K[0] = K1[0]−ΔK1

1[0]
and K[1] = K1[1] − ΔK1

1 [1]. Store the right differential pair
ΔK1

1[0] and ΔK1
1[1] to recover the next two target key bytes,

repeat the procedure until the whole key is recovered.
Table 3 shows the experiment results on recovering

256-byte, 128-byte and 86-byte keys, and results indicate
that they can all be recovered in practical time. However,
there is a very big limitation of this technique, namely, it’s
complexity depends on the key collisions, which in turn are
impractical when to recover short keys, let’s say the lengths
less than 32 bytes. Actually, it has been shown in [3] that
there exists no colliding key pairs for 16-byte key, which is
the practical size deployed in most of the real world environ-
ments. Thus we are simply not able to recover those keys.
The following sections will describe how to overcome those
difficulties.

6. Related-Key Known Final Internal State Attack

In this section, we show how to break RC4 (recovering the
secret key) in Related-Key Known Final Internal State At-
tack. This attack is heavily based on the new statistical
weaknesses that output differentials of the initial state is
far from uniform distribution which can leak some infor-
mation about the secret key. The statistical weaknesses are
described in Appendix and we focus on recovering the key
in this Section.
Adversary’s target: A random secret key K with length k.
Only the Oracle (Server) knows K.
The whole procedure can be divided into pre-attacking
phase and the real time attacking phase. In the pre-attacking
phase, the adversary will build a database without the inter-
action with the Oracle. And in the real time attacking phase,
the adversary tries to recover the K by the prebuilt database
and the interactive results with the Oracle. For the simplic-
ity, no IV setting is involved.

Off-line Attacking Phase
The adversary runs the RC4 simulation by himself and store
the most valuable ΔS which connects to the appearance of
the special j value. The smaller the ΔS is, the easier for the
special j value to appear, however, the adversary also has to
take the complexity of the interactive stage with Oracle into
consideration. As a result, the adversary will store a table
with the following parameters: the expected ΔS , the corre-
sponding complexity for obtain the expected ΔS , the differ-
ential index d, and the possible special jx indices. Table A· 3
in Appendix shows the precomputed table for k = 16, which
is the length for the real world application.
On-line Attacking Phase
1. The adversary randomly chooses ΔK = ΔK[0], ...,ΔK[k−
1] and ΔK

′
where ΔK

′
[d] = ΔK[d] + 1, and 0 ≤ d < k − 1.

Submit them to the Oracle.
2. Upon receiving the key differentials, the Oracle will first
calculate S F ← KS A(K + ΔK) and S

′
F ← KS A(K + ΔK

′
),

where K +ΔK = K[0]+ΔK[0], ...,K[k− 1]+ΔK[k− 1] and
K + ΔK

′
= K[0] + ΔK

′
[0], ...,K[k − 1] + ΔK

′
[k − 1]. Re-

turn the ΔS = g(S F , S
′
F), where ΔS is the number of S -Box

bytes that are differ from each other.
3. The adversary will check the ΔS in the precomputed ta-
ble to see if it is the expected one. If it is the expected one,
launch the Locating x and Locating jx experiments (refer
to Appendix) to recover one j value. Let’s denote the cor-
responding key differentials candidates ΔKE and ΔK

′
E and

store them somewhere.
3-1. For the Locating x experiment, modify the candidate
key differentials ΔKE and ΔK

′
E according to the step 2 of the

Locating x experiment, and submit to the Oracle. After the
experiment, the adversary should know the index x of the
special jx for the candidate key differentials.
3-2. For the Locating jx experiment, the adversary modifies
the candidate key differentials ΔKE and ΔK

′
E according to

the step 1 of the experiment, and submit to the Oracle. After
the experiment, the adversary recovers the special jx for the
secret key K + ΔKE (K + ΔK

′
E).

4. In this step, we have obtained some special jx values,
which are the j values corresponding to some secret keys
for example K + ΔKE . In order to obtain the jt values for
the target secret key, we need to map them back. For some
obtained special jx, we have

jx =
∑x

i=0(K[i] + ΔKE[i]) +
∑x

i=0 S i−1[i]

and for the target jt, we have

jtx =
∑x

i=0 K[i] +
∑x

i=0 S t
i−1[i]

Target key K can be canceled and we can obtain
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jtx = jx −∑x
i=0 ΔKE[i] +

∑x
i=0 S t

i−1[i] −∑x
i=0 S i−1[i]

If we recover jtx in order from jt0, then the adversary knows∑x
i=0 S t

i−1[i] for sure. The only remaining part is
∑x

i=0 S i−1[i]
which is not known to the adversary. However, we have

∑x
i=0 S i−1[i]

Ps(x)
=

∑x
i=0 i

where Ps(x) = 256−x
256 × 256−x+1

256 × · · · × 1 =
∏x

i=1
256−i
256

Ps indicates that before i touches some specific index,
j should not touch it anywhere before. By using the above
equation, given some jx, the adversary is able to recover the
jtx in the probabilistic way. Good news is that Ps is signifi-
cantly large even for large x, thus the adversary can try many
different jx to vote the target jtx. The correct jtx always gets
the most votes.
5. According to the precomputed table, select other d values
which can be used to efficiently recover other jt. Go to step
1 to repeat the procedure to recover the next j values until
all the jt0, ..., jtk−1 are recovered. The secret key K can be
recovered in the following straightforward manner:

K[i] = jti − jti−1 − S i−1[i]
Starting from i=0 until K[k-1] is recovered.

The complexity of the attack mainly comes from ob-
serving the expected ΔS and the procedure of voting on the
candidate jtx values. The complexity for the voting can be
obtained from the probability Ps. In case of the 16 bytes key,
the smallest Pj(x) is when x = 15, and Pj(15) = 0.6197.
Namely, given a j15, the resulting jt15 is correct with prob-
ability 0.6197, and equals to any other values with proba-
bility 1

256 . Thus voting 10 times should be enough to dis-
tinguish the correct one from the other wrong candidates.
Let’s do 10 times voting for each of the previous j which
will result the worst case complexity. And the complex-
ity for recovering each special jx value is the complexity to
successfully observe one, which could be obtained from the
precomputed table, as a result the total complexity for re-
covering the whole 16 bytes random key is

10×( 215.4

0.193+
215.4

0.166+
215.4

0.138+
215.4

0.115+
214.8

0.173+
214.8

0.158+
214.8

0.119+
214.8

0.107+
214.1

0.166 +
214.1

0.168 +
214.1

0.126 +
214.1

0.116 +
213.3

0.154 +
213.3

0.149 +
213.3

0.129 +
213.3

0.118 ) ≈ 224.75

7. Comparison and Other Applications

We summarize all the key recovery attacks against RC4 in
Table 4. As we can see, no practical attack is available under
the weakest KPA model. And RC4 is not secure under any
of the other models. The attacks under the special case of the
RKA can be viewed as a successful break of RC4, but it has
its limitations. First, it heavily depends on the IV settings,
without which the attack becomes impossible. Second, in
order to prevent from the attack, it is the usual case that the
implementation will discard the first hundreds output bytes
of the keystream, which make the attacks such as by taking
advantage of the weak IVs impossible, while our proposed
attack does not take advantage of the IV settings. And in
the model Modified RKA if collision is achieved, discard-
ing the first hundreds output keystream bytes will not affect

Table 4 Comparison of the key recovery attacks.

Paper Models Key Length Complexity Probability

(bytes)

[15]–[18] RKA k = 13(WEP) 220 1

k = 256 Not given Not Given

[19]–[20] KFISA k = 16 264 0.005

k = 256 > 280 -

[21] KFISA k = 16 235 0.075

k = 256 > 280 -

Modified k = 16 > 280 -

Ours RKA k = 256 223 1

Related-Key k = 16 225 1

KFISA k = 256 < 225 1

the observation of the output differences. Also, compared
with the attacks under model KFISA, our proposed attack
under Related-Key KFISA has a better effect of recovering
the practical 16-byte key deterministically with less compu-
tation complexity. Notice that in the Modified RKA, keys
with length less than 16 bytes cannot be recovered due to
the fact that no known key collision is available in this case.

Now we clarify that our proposed attack can be a real
world threat. Recall that the design of stream cipher can be
divided into two kinds, which are IV-dependent and IV-less.
Let’s consider the scenario where an IV-less stream cipher is
deployed such as RC4. Suppose the server setups up a mas-
ter secret key Kmaster and negotiate it with the client. In the
following communications, session keys are derived from
the master key and are used to encrypt the session conversa-
tions. Since no IV is involved, let’s assume that the server
and the client have agreed on a rule to update the key per ses-
sion. One of the reasonable way to implement is to assume
part of the master key Kmaster is not changed, while update
the other part of the secret key according to the rule for each
session. Our proposed Modified RKA model catches this
IV-less scenario, since the training game between the adver-
sary and the Oracle can be replaced by passively observing
the differentials.

Our specific attacks are based on the fact of the key col-
lision of RC4. There are many related key patterns of RC4
that have been discovered so far such as in [10], [11] and
[12]. Still there are even more unknown patterns out there
which could lead to the key collisions or near collisions, and
also we cannot rule out the existence of key collision for any
other stream ciphers. This indicates that with the develop-
ment of the key collision techniques in the future, the attacks
under the Modified RKA and Related-Key KFISA could be-
come more powerful, which deserves our attention.

8. Conclusion

In this paper, we summarize and propose some attacks
against stream ciphers including RKA, KFISA, Modified
RKA and Related-Key KFISA. For the KFISA and our
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newly proposed Related-Key version, although initial state
seems to be difficult to obtain in the real attacks, the models
investigate the security margin of the KSA algorithm, and
besides we should also consider the case that the initial state
is leaked due to the side channel attack. And as we have
mentioned previously, in the IV-based construction, master
key will be used for many sessions and if there is an efficient
algorithm to predict some part of the initial state, by com-
bining the attacks here in KFISA or Related-Key KFISA
models, master key can be recovered. Our contributions also
indicate that large key size does not always guarantee a bet-
ter security margin than the small key size. Thus we sug-
gest that all stream ciphers should be carefully examined
under relatively stronger models described in the paper to
gain confidence in the security margin itself as well as the
usage in any unpredictable environments.
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Appendix: New Statistical Weakness of RC4

Many statistical weaknesses of RC4 have been exploited
during the last 20 years research. Weaknesses such as [15]
and [16] played a very important role in recovering the key
in the WEP environment. Here we describe a new statistical
weaknesses of RC4 which is universal to all the secret keys
with different length, and then show how it can be used to
recover the key.

We know that when ΔS = 0, then collision happens.
However, usually the ΔS that the adversary gets has a large
value greater than 250 due to the j differences which are
introduced by the key differences. By the following obser-
vation, we point out that there is a relationship between the
j behaviour and the ΔS . Let’s denote +ΔS be the num-
ber of changed different S -Boxes between two consecu-
tive steps. For example, assume ΔS i and ΔS i+1 denote
the number of different S -Boxes at step i and i+1, then
+ΔS = |ΔS i − ΔS i+1|. Intuitively, if the related j values
are different, three S -Box elements will be affected which
could lead to +ΔS as large as 3. Also if the corresponding
three S -Box elements differ from each other, then by choos-
ing special S -Box values, the differentials will disappear and
+ΔS could be as small as −3. Since there are only limited
situations, it is easy to enumerate all the possible +ΔS and
the corresponding internal states. Let’s consider the internal
states at step i = α before the swap operation. The two cor-
responding j values are j1,α, j2,α. α, β and γ (α < β < γ)
denote the S -Box indices, and a, b, c, d, e, f denote the S -
Box values such that a � b � c � d � e � f . Then the
internal states before the swap operation for each of the pos-
sible +ΔS are list as follows.
+ΔS = 3 :⎧⎪⎪⎨⎪⎪⎩

j1,α = β

j2,α = γ

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = a

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = b

⎧⎪⎪⎨⎪⎪⎩
S 1,α[γ] = c

S 2,α[γ] = c
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+ΔS = 2 :⎧⎪⎪⎨⎪⎪⎩
j1,α = α

j2,α = β

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = a

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = b
or

⎧⎪⎪⎨⎪⎪⎩
j1,α = β

j2,α = γ

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = a

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = b

⎧⎪⎪⎨⎪⎪⎩
S 1,α[γ] = c

S 2,α[γ] = d
+ΔS = 1 :⎧⎪⎪⎨⎪⎪⎩

j1,α = β

j2,α = γ

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = a

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = d

⎧⎪⎪⎨⎪⎪⎩
S 1,α[γ] = c

S 2,α[γ] = e
+ΔS = 0 :⎧⎪⎪⎨⎪⎪⎩

j1,α = β

j2,α = β

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = c

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = d
or

⎧⎪⎪⎨⎪⎪⎩
j1,α = β

j2,α = β

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = a

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = c
or

⎧⎪⎪⎨⎪⎪⎩
j1,α = β

j2,α = γ

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = d

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = e

⎧⎪⎪⎨⎪⎪⎩
S 1,α[γ] = c

S 2,α[γ] = f
or

⎧⎪⎪⎨⎪⎪⎩
j1,α = β

j2,α = γ

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = a

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = c

⎧⎪⎪⎨⎪⎪⎩
S 1,α[γ] = c

S 2,α[γ] = b
+ΔS = −1 :⎧⎪⎪⎨⎪⎪⎩

j1,α = β

j2,α = γ

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = d

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = e

⎧⎪⎪⎨⎪⎪⎩
S 1,α[γ] = c

S 2,α[γ] = b
+ΔS = −2 :⎧⎪⎪⎨⎪⎪⎩

j1,α = α

j2,α = β

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = b

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = a
or

⎧⎪⎪⎨⎪⎪⎩
j1,α = β

j2,α = γ

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = d

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = a

⎧⎪⎪⎨⎪⎪⎩
S 1,α[γ] = c

S 2,α[γ] = b
+ΔS = −3 :⎧⎪⎪⎨⎪⎪⎩

j1,α = β

j2,α = γ

⎧⎪⎪⎨⎪⎪⎩
S 1,α[α] = a

S 2,α[α] = c

⎧⎪⎪⎨⎪⎪⎩
S 1,α[β] = b

S 2,α[β] = a

⎧⎪⎪⎨⎪⎪⎩
S 1,α[γ] = c

S 2,α[γ] = b

Figure A·1 summarizes all the cases we list previously
along with the two related S -Boxes before the swap opera-
tion and after the swap operation, so that we can see directly
from the figure that how the +ΔS is achieved.

Fig. A· 1 The number of changed different S -Boxes between two
consecutive steps during KSA (+ΔS ).

Let’s consider a key pair with only one index differs
from each other, namely, K2[d] = K1[d] + 1. For i < d,
ΔS = 0 since no differences are introduced yet. When i = d,
a difference is introduced by the key and causes +ΔS = 3.
If everything behaves randomly, we would expect the ΔS to
keep increasing, and at the end of KSA we would have a
very large ΔS close to 255. However, if we have a relatively
long period of steps with ΔS ≤ 0, then we would expect
to get a relatively small ΔS at the end. Here we focus on
the beginning of KSA where most of the S -boxes have the
property S [i] = i, namely, they haven’t been scrambled yet.
This means S 1 and S 2 are very likely equal to each other
at the beginning of KSA. Under this situation, we find that
the only way to maintain the +ΔS ≤ 0 for a relatively long
period is to let +ΔS = 0 with j1 = j2. Otherwise even
+ΔS < 0 happens, the j difference will soon make the ΔS
to increase. Then the only remaining question is whether it
is possible to achieve j1 = j2 and how hard it is.

In order to answer this question, let’s assume j1,d =
m and j2,d = m + 1 and m ∈ [d, d + k − 1]. Then when
i = m − 1 after the swap, with high probability (( 254

256 )m−d−1),
we have S 1,m−1[m] = d, S 2,m−1[m] = m, S 1,m−1[m + 1] =
m+1, S 2,m−1[m+1] = d. According to the j update equation
ji+1 = ji + K[i + 1] + S i[i + 1], Δ j = j2,i − j1,i = 1 for
i ∈ [d,m − 1] as long as S i[i + 1] = i + 1. Then

j1,m = j1,m−1 + S 1,m−1[m] + K1[m] = j1,m−1 + K1[m] + d
j2,m = j2,m−1 + S 2,m−1[m] + K2[m] = j2,m−1 + K2[m] + m

Thus
Δ jm = j2,m − j1,m = m − d + 1

When i = m + 1, we have

j1,m+1 = j1,m+S 1,m[m+1]+K1[m+1] = j1,m+K1[m+1]+m+1
j2,m+1 = j2,m+S 2,m[m+1]+K2[m+1] = j2,m+K2[m+1]+d

Then we have Δ jm+1 = j2,m+1 − j1,m+1 = 0
And it is very likely that +ΔS = 0 will last till index d + k
as long as S i[i + 1] = i + 1 for i ∈ [m + 1, d + k]. Generally
speaking, the smaller the value m−d is, the bigger the chance
is for ΔS to deviate from an average level.

In other words, the previous analysis indicates that for
a given relatively small ΔS , we expect that the j difference
after generated by the key difference at d, will be absorbed
quickly at some index not far from d. From now on, describ-
ing one key behavior is enough, thus if we don’t mention
specifically, ji refers to the first key value j1,i. More for-
mally, let’s define Au

i to be the event that jd+i ∈ [d+i, d+i+u],
and windows Lu

i denotes the interval [d+i, d+i+u]. If RC4 is
ideal which means everything is uniformly distributed, then
P(Au

i ) = P(Au
theo) = u

256 . However, the actual case is that
event A depends heavily on the ΔS and is severely biased
when ΔS is small. We run the following experiment to ver-
ify our analysis. For 16, 32, 64 and 128 bytes random key
pairs with K2[0] = K1[0] + 1, we run the KSA algorithm
under 5 window with j value window length to be u = 5.
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Table A· 1 Probabilities of Au
i and Au

theo given u=5, d=0.

Key ΔS P(A5
0) P(A5

1) P(A5
2) P(A5

3) P(A5
4) P(A5

theo)

16 240 8.3% 8.1% 6.5% 8.3% 7.6% 1.95%
16 245 4.9% 8.0% 6.8% 5.2% 5.7% 1.95%
32 230 17.0% 13.3% 9.7% 10.0% 7.9% 1.95%
32 240 12.1% 10.3% 9.6% 6.0% 5.5% 1.95%
64 210 32.1% 26.3% 15.9% 8.6% 6.6% 1.95%
64 220 24.2% 19.5% 16.2% 8.8% 7.1% 1.95%
128 195 47.1% 23.8% 13.3% 7.2% 3.1% 1.95%
128 210 42.6% 24.2% 12.8% 7.5% 3.6% 1.95%

Table A· 1 shows the frequency that the possible j values
from the j window locates at the corresponding S -Box win-
dow. For example, for a 16-byte key given ΔS = 240, the
probability P( j0 ∈ [0, 5]) = 8.3%, P( j1 ∈ [1, 6]) = 8.1%,
P( j2 ∈ [2, 7]) = 6.5%, P( j3 ∈ [3, 8]) = 8.3% and P( j4 ∈
[4, 9]) = 7.6%.

For each key length, we choose two different ΔS to
show that as ΔS decreases, the probability of Event Au

i in-
creases, which confirms our previous analysis. And also
for the theoretical evaluation, we have Prob(A5

theo) = 5
256 =

1.95% which differs greatly from the experimental data list
in the table. The greater the difference differs from the the-
oretical value, the more efficiently the attack works, which
will be covered shortly. Thus, from the table, we can see
that the probability of Event Au

i is more biased given larger
key size (128-byte) than the key with smaller size (16-byte).
This is reasonable because once the j difference is absorbed,
it is not likely to differ with each other until the next key
difference, which takes longer to meet for larger keys than
smaller keys. Another thing to notice is that in the real at-
tack, the adversary can choose much smaller ΔS than the
ones given in Table A· 1 to gain advantages. The only reason
that we choose the above ΔS is for data gathering, because
the smaller the ΔS is, the longer it will take for the Oracle
to generate it. The above ΔS is chosen to be relatively large
so that we can repeat the experiment for 10000 times to get
the average values in several minutes time.

In short, what we have discovered indicates that given
a relatively small ΔS , with very high probability, some spe-
cial jx will appear in rounds x which is bigger and close to d,
and the value jx is bigger and close to x. We have narrowed
down the range of the special jx and its index x. If we stop
here, we can only guess the values in the probabilistic man-
ner, which is of course much better than the exhaustively
search. However, we can do the following test to help locate
the exact values. Index x can be located in the following
way:
Locating x
1. Given a relatively small ΔS , let’s assume K1[d], ...,K1[l−
1] (K2[d], ...,K2[l − 1]) are the secret key bytes used during
S -Box window, namely, during rounds d to d + l − 1.
2. Modify K1[i](K2[i]) for i ∈ [d, d + l − 1] to some random
value while remaining all the other key bytes unchanged.
3. For each key byte modification, run the KSA un-
der the new key pair. This will generate a ΔS sequence,

Fig. A· 2 Locating jx.

ΔS d, ...,ΔS d+l−1. For the statistical accuracy, each ΔS can
be derived by modifying the corresponding key byte many
times and take the average value of all the ΔS .
4. Make a differential ΔS sequence DiffΔS d, ...,DiffΔS d+l−1

by computing DiffΔS i = ΔS i − ΔS i+1 for i ∈ [d, d + l − 2].
5. x = i where DiffΔS i is the biggest value among the dif-
ferential ΔS sequence, and also it is significantly larger than
any of the other values.

Table A· 2 should give you the idea. It demonstrates the
differential ΔS for some random keys with different length.
Again we demonstrate by assuming K2[0] = K1[0] + 1,
namely, d = 0 and with S -Box window size l = 13. In the
real attack, we could choose even larger l and smaller ΔS
to gain efficiency. The x always locates at the place where
DiffΔS x is the biggest one. This is because when modifying
the key bytes before x, the special jx will disappear and all
the ΔS will tend to be the same and large. However, when
the key bytes after index x are modified, the special jx will
still exist and the ΔS value will tend to be small. This phe-
nomenon can be observed by making the subtraction of the
consecutive ΔS and find the largest one in the sequence.

Once we have located x, locating jx is only one step
away. By using the following techniques, we can achieve
the goal.
Locating jx :
1. Assume that jx − x ≤ r. Fix the key values
K1[0], ...,K1[x − 1](K2[0], ...,K2[x − 1]) unchanged.
2. For each i ∈ [x, k − 1], reduce K1[x](K2[x]) as K1[x] =
K1[x] − i(K2[x] = K2[x] − i), and randomly modify other
key bytes K1[x + 1], ...,K1[k − 1](K2[x + 1], ...,K2[k − 1]) to
generate ΔS . Repeat the random modification part to get the
average value.
3. After step 2, we have a sequence of average ΔS values,
and jx equals to the index of the smallestΔS in the sequence.

If jx = x, sub figure (a) of Fig. A· 2 shows the case. Sub
figure (b) shows the case where x < jx < r. The explana-
tion is rather straightforward. By decreasing the key value
K1[x](K2[x]) one by one, the expected jx will get closer and
closer to the index x, and it will achieve the smallest ΔS only
when jx = x. And once jx < x, due to the previous statistical
weakness, ΔS will increase dramatically compared with the
previous ΔS because the special j disappears and the j value
difference will not be absorbed immediately, which will lead
to the jump of the ΔS value.
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Table A· 2 Locating x.

S win 0 1 2 3 4 5 6 7 8 9 10 11 12 x

k=16
j 131 33 46 6 197 163 140 241 215 130 53 175 36 3

DiffΔS 0.543 −0.279 −0.029 1.691 0.130 −0.142 −0.205 0.285 0.215 0.027 −0.156 −0.361 − −
ΔS = 225

j 145 34 77 137 125 7 159 43 215 57 228 162 115 7
DiffΔS 0.162 −0.398 0.205 −0.103 −0.092 1.265 0.545 −0.537 0.162 0.093 −0.494 0.252 − −

k=32
j 124 247 3 169 208 191 194 135 53 97 190 2 242 2

DiffΔS −0.194 0.458 2.465 0.054 1.437 −0.063 0.062 −0.331 0.659 −0.261 0.389 −0.312 − −
ΔS = 210

j 252 193 223 37 91 7 191 160 154 47 130 126 143 5
DiffΔS −0.442 −0.703 0.507 −0.292 0.109 4.460 −0.353 0.164 0.464 1.262 −0.479 −0.384 − −

k=64
j 203 1 244 217 251 183 38 14 221 133 123 116 114 1

DiffΔS −0.005 14.192 0.891 0.599 −0.244 0.602 1.250 −2.963 0.729 1.423 −0.461 −0.009 − −
ΔS = 190

j 0 175 27 216 67 226 179 154 185 169 150 217 167 0
DiffΔS 13.889 3.165 −2.788 −0.563 1.329 0.125 −0.295 −0.277 0.849 0.420 −0.503 0.120 − −

k=128
j 255 148 163 235 5 171 129 123 164 32 115 101 121 4

DiffΔS −0.023 −0.203 0.014 0.558 23.369 6.829 10.056 0.466 −0.370 −0.031 0.422 −0.352 − −
ΔS = 180

j 173 159 221 3 27 196 240 246 28 99 27 17 108 3
DiffΔS 0.220 −0.327 0.917 41.600 −36.895 −0.648 0.655 0.082 1.680 1.376 34.937 −0.017 − −

Table A· 3 Precomputed table for recovering 16-byte key.

ΔS Complexity d Probabilities of x to be in the following indexes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

235

215.4 0 0.193 0.166 0.138 0.115 0.084 0.077 0.047 0.049 0.039 0.018 0.023 0.009 0.007 0.010 0.004 0.001

214.8 4 - - - - 0.173 0.158 0.119 0.107 0.077 0.087 0.066 0.043 0.037 0.029 0.025 0.019

214.1 8 - - - - - - - - 0.166 0.168 0.126 0.116 0.083 0.072 0.052 0.069

213.3 12 - - - - - - - - - - - - 0.154 0.149 0.129 0.118
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