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Abstract

We extend Bishop’s concept of function spaces to the concept of
pre-function spaces. We show that there is an adjunction between the
category of neighbourhood spaces and the category of ®-closed pre-
function spaces. We also show that there is an adjunction between the
category of uniform spaces and the category of W-closed pre-function
spaces.
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1 Introduction

In 1967, Bishop [3] proposed two approaches to topology in his constructive
mathematics: one approach is based on the idea of a neighbourhood space,
and the other is based on the idea of a function space. However, in his book,
he did not investigate them in detail.

It turns out that neighbourhood spaces are both formal topologies, as
introduced by Sambin [19, 20, 21|, and constructive topological spaces (see
Aczel [1]). In addition, connections between neighbourhood spaces and other
constructive topological notions — in particular the Bridges-Vita one of an
apartness space [7, 9] — have been explored [14, 13]. On the other hand, the
approach to constructive topology based on the idea of a function space has
lain relatively dormant for over forty years.



Recently, Bridges [5] has dealt with various aspects of function spaces
which revive Bishop’s approach to topology based on function spaces. Fol-
lowing Bishop [3, Definition 8, Chapter 3], we define a function space X to be
a pair (X, Fx) of a set X and a set Fx of functions from X to R satisfying
the following conditions.

F1. Fx contains the constant functions.
F2. Sums and products of elements of Fx are in Fy.

F'3. The composition g o f of an element f of Fx and a continuous function
¢ : R —= Risin Fx, where ¢ : R — R is continuous if it is uniformly
continuous on every compact interval.

F4. Uniform limits of elements of Fx are in Fy; that is, if for each € > 0
there exists g in Fy, with |g(z) — f(z)] < efor all x in X, then f € Fx.

Bishop called Fx the topology on X.

In this paper, we first introduce the notion of a pre-function space just as
a pair of a set S and a set of real-valued functions on S, and the notion of a
function space morphism according to [5]. Then we focus on the condition F3
above, and introduce the notion of a C-complete pre-function space for a set
C of functions from R to R; in the definition of a function space, C is taken
to be the set of continuous functions in the above sense. We show that the
category of C-complete pre-function spaces with function space morphisms
is complete and cocomplete.

We propose a closure condition ®g on a set of real-valued functions on a
set S, and introduce the notion of a ®-closed pre-function space. It emerges
that each ®-closed pre-function space is a function space in Bishop’s sense.
Then we construct an adjunction between the category of neighbourhood
spaces with continuous functions in usual sense and the category of ®-closed
pre-function spaces with function space morphisms, which relates Bishop’s
two approaches to topology, and show that the category of ®-closed pre-
function spaces is complete and cocomplete. We also construct an adjoint
equivalence between the category of neighbourhood spaces with a compatible
family of pseudometrics and the category of ®-closed pre-function spaces.

Finally, we introduce another closure condition Wg on a set of real-
valued functions on a set S and the corresponding notion of a W-closed
pre-function space, and construct an adjunction between the category of



uniform spaces with uniformly continuous functions and the category of W-
closed pre-function spaces with function space morphisms.

Although the results are presented in informal Bishop-style constructive
mathematics [3, 4, 6, 22, 8], it is possible to formalize them in Aczel’s con-
structive Zermelo-Fraenkel set theory (CZF) [2] together with Relativized
Dependent Choice (RDC).

There are other constructive treatments of topology: see, for example,
Grayson [11, 12].

2 Complete pre-function spaces

A pre-function space X is a pair (X, Fy) consisting of a set X and a set Fx
of functions from X to R, called a function space structure on X. According
to [5], a function space morphism from a pre-function space X into a pre-
function space Y is a mapping f : X — Y such that

Vg € Fy(go f € Fyx).

We write f: X — Y to denote that f is a function space morphism from X
into Y, and Hom(X,Y") for the set of function space morphisms from X into
Y.

For any set S, there are the pre-function spaces (S,R?), where R® is
the set of functions from S into R, and (S, 0), called the discrete function
space of S and the trivial pre-function space of S, respectively. For each
pre-function space Y, any mapping f : S — Y is a function space morphism
from the discrete function space of S into Y, and any mapping f : Y — S is
a function space morphism from Y into the trivial pre-function space of S.

Let C be a set of functions from R to R containing the identity map idg
and closed under composition. A pre-function space X is C'-complete if

VfeFxVpeCpo f € Fx).

The discrete function spaces and the trivial pre-function spaces are C-complete
for any C, and any pre-function space is {idg }-complete. If a pre-function
space X is C-complete, then X is C'-complete for any C' C C'. Since C' is
closed under composition, the pre-function space R¢ = (R, C) is C-complete.

Lemma 2.1. Let X be a pre-function space. Then



1. Hom(X,R¢) C Fy,
2. X is C-complete if and only if Fx C Hom(X,R¢),
3. X is C'-complete if and only if Fx = Hom(X,R¢).
Proof. Straightforward. For (1), note that idg € C. O
Especially, C' = Hom(R¢, R¢).

Proposition 2.2. Let X be a pre-function space. Then the pre-function
space X = (X, Hom(X,R¢)), called the C-completion of X, is C-complete.
Furthermore, idx : X — X, and if Y is a C-complete pre-function space and
f:X—>Y, then f: X =Y.

Proof. Let ¢ € C and f € Hom(X,R¢). Then for each ¢ € C, since
po(pof)=(Yoyp)ofandpop € C, we have o (po f) € Fx, and
therefore p o f € Hom(X,R¢). Hence X is C-complete.

Since Hom(X,R¢) C Fx, by Lemma 2.1 (1), we have idy : X — X. Let
Y be a C-complete pre-function space, and let f : X — Y. Then for each
g € Fy and ¢ € C, since po g € Fy, we have po(go f) = (pog)o f € Fy,
and therefore g o f € Hom(X,R¢). Hence f : X Y. O

Let Funes denote the category of function spaces whose objects are C-
complete pre-function spaces and whose morphisms are function space mor-
phisms. For basic notions and results in category theory, we refer the reader
to [10, 16, 17, 18].

Note that, in Fung, the initial object is the discrete function space of (),
the terminal objects are the trivial pre-function spaces of singletons.

Let I and C be categories. A cone of a functor H : I — C is an object
L in C, together with a family of morphisms ¢; : L — H(I) for each object
I'in I, such that H(i) o ¢r = ¢ for each morphism ¢ : I — J in I. A cone
(L, ¢r) of a functor H : I — C is a limit of H if for each cone (X, ;) of H
there exists a unique morphism u : X — L such that ¢; o u = 1y for each
object I in I. We say that C is complete if every functor H : I — C from a
small category I has a limit. A cocone of a functor H : I — C is an object
L in C, together with a family of morphisms ¢; : H(I) — L for each object
I in I, such that ¢; o H(i) = ¢ for each morphism i : I — J in I. A cocone
(L, ¢r) of a functor H : I — C is a colimit of H if for each cocone (X, 1) of
H there exists a unique morphism u : . — X such that v o ¢; = 1y for each



object I in I. We say that C is cocomplete if every functor H : I — C from
a small category I has a colimit.
We will show that the category Fung is complete and cocomplete.

Proposition 2.3. Let S be a set, let {X;}icr be a family of C-complete pre-
function spaces, and for each i € I let f; + S — X;. Then there exists a
function space structure F on S such that the pre-function space (S,F) is
C-complete, and if h is a mapping from the underlying setY of a pre-function
space Y into S, then h:Y — (S, F) if and only if fioh:Y — X; for each
1el.

Proof. Let
F={fofiliel, fe Fx}

Then for each ¢ € C, i € I and f € Fy,, since po (fo f;) = (po f)of;
and po f € Fx,, we have po (f o f;) € F, and hence the pre-function space
(S, F) is C-complete.

It is straightforward to see that f; : (S,F) — X; for each i € I, and
hence if h : Y — (S, F), then fioh :Y — X, for each i € I. Let Y be a
pre-function space and let h : Y — S be such that f;oh:Y — X, for each
i € I. Then for each i € I and f € Fy,, we have (fof;)oh = fo(fioh) € Fy,
and hence h: Y — (S, F). O

Proposition 2.4. Let S be a set, let {X;}ier be a family of C-complete pre-
function spaces, and for each i € I let f; : X; — S. Then there exists a
function space structure F on S such that the pre-function space (S,F) is
C-complete, and if h is a mapping from S into the underlying set Y of a
pre-function space Y, then h: (S, F) =Y if and only if ho f;: X; = Y for
each v € I.

Proof. Let
F={feR®|Viel(fof € Fyx)}

Then for each f € F and ¢ € C, since (po f)o fi =po(fo f;) € Fx,, we
have p o f € F, and hence the pre-function space (S, F) is C-complete.

It is straightforward to see that f; : X; — (S,F) for each i € I, and
hence if h : (S, F) = Y, then ho f; : X; = Y for each i € I. Let Y be a
pre-function space and let h : S — Y be such that ho f; : X; — Y for each
i € I. Then for each g € Fy, since (goh)o fi =go (ho f;) € Fx, for each
i €I, wehave goh € F, and hence h: (S,F) — Y. O



Theorem 2.5. The category Fung is complete and cocomplete.

Proof. Let H : T — Fung be a functor from a small category I. Then, since
the category Set of sets and mappings is complete, the functor KH : I —
Set has a limit (S, ¢;) in Set, where K is the forgetful functor from Func
into Set, taking each C-complete pre-function space X to its underlying set
X and each function space morphism to itself. By Proposition 2.3, since
¢r: S — H(I) for each object I in I, there exists a function space structure
F on S such that L = (S, F) is an object in Fune, and if h is a mapping
from the underlying set Y of an object Y in Fun¢ into S, then A : Y — L if
and only if ¢; o h : Y — H(I) for each object I in L.

Since idg : L — L, we have ¢; = ¢;oidg : L — H(I) for each object I in
I, and hence (L, ¢;) is a cone of H in Func. Let (Y,1);) be a cone of H in
Func. Then (Y ¢;) is a cone of KH in Set, and hence there exists a unique
mapping h : Y — S such that ¢y o h = 1; for each object I in I. Therefore,
since ¢y o h =y : Y — H(I) for each object I in I, we have h : Y — L.
Thus (L, ¢r) is a limit of H in Func.

Similarly, using Proposition 2.4 instead of Proposition 2.3, we see that
Fun. is cocomplete. 0

3 Neighbourhood and function spaces

A neighbourhood space A is a pair (A, 74) consisting of a set A and an inhab-
ited set 74 of subsets of A, called an open base on A, such that

NS1. Vz € AU € 14(x € U),
NS2. Ve € AVU,V € mplzx e UNV = IW € tp(z e W CUNV)];

see [3, Chapter 3]. A continuous mapping f from a neighbourhood space A
into a neighbourhood space B is a mapping f : A — B such that

Vo € AVV € mp[f(x) € V = 3U € ta(x € U C f~1(V))].

We write f : A — B to denote that f is a continuous mapping from A into
B, and C(A, B) for the set of continuous mappings from A into B.

For any set S, there are the neighbourhood spaces (S, 0s), where og is
the set of singletons of S, and (S, {S}), called the discrete neighbourhood
space of S and the trivial neighbourhood space of S, respectively. For each
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neighbourhood space Y, any mapping f : S — Y is a continuous mapping
from the discrete neighbourhood space of S into Y, and any mapping f :
Y — S'is a continuous mapping from Y into the trivial neighbourhood space
of S.

Let Nbh denote the category of neighbourhood spaces whose objects are
neighbourhood spaces and whose morphisms are continuous mappings. Note
that, in Nbh, the initial object is the discrete neighbourhood space of ), the
terminal objects are the trivial neighbourhood spaces of singletons.

As we will see in Theorem 3.3, the category Nbh is complete and cocom-
plete.

Proposition 3.1. Let S be a set, let {A;}icr be a family of neighbourhood
spaces, and for each 1 € I let f; : S — A;. Then there exists an open base T
on S such that if h is a mapping from the underlying set B of a neighbourhood
space B into S, then h : B — (S, 7) if and only if fioh: B — A; for each
1el.

Proof. Let
T={Mee1 fi, ' (Ux) | i € I, Uy € Ta,, 1 <k <n,0<n}

Then 7 is an open base on S. It is straightforward to see that f; : (S,7) — X;
for each i € I, and hence if h : Y — (S,7), then fioh : ¥ — X, for
each 1 € I. Let Y be a neighbourhood space and let h : Y — S be such
that foh : Y — X; for each i € I. If h(z) € (N, f;, (Ux), then, since
z € (Vi (fi, o h) H(Uy), there exists V' € 7y such that € V. C (,_,(fi, ©
h) " (Uk) = b=y fi, ' (Ur)). Hence b : B — (S, 7). O

Ishihara and Palmgren [15, Theorem 4.3] proved the following proposition
in CZF with the Relativized Dependent Choice (RDC).

Proposition 3.2. Let S be a set, let {A;}icr be a family of neighbourhood
spaces, and for each i € I let f; : A; — S. Then there exists an open base
T on S such that if h is a mapping from S into the underlying set B of a
neighbourhood space B, then h : (S,7) — B if and only if ho f; : A; — B for
each v € I.

Theorem 3.3. The category Nbh is complete and cocomplete.

Proof. Similar to the proof of Theorem 2.5, using Proposition 3.1 and Propo-
sition 3.2. ]



In the following, we shall write, simply, R for the neighbourhood space
R with the standard open base consisting of open intervals, and C(A) for
C(A,R).

Let S be a set, and define a relation ®g between a function space structure
F on S and g € R® as follows: ®5(F,g) if and only if for each z € S and
€ > 0 there exist fi,..., f, € F (n >0) and § > 0 such that

VyeS (ZU}(HJ) —fily)| <6 = |g(z) —g(y)| < 6) :

Then a pre-function space X is ®-closed if
Vg € RM(®x(Fx,9) = g€ Fx).

Note that if X is a ®-closed pre-function space, then Fx contains the
constant functions, and the pointwise sum of finitely many functions in Fx
belongs to Fx. Furthermore, it is straightforward to show that if X is a
®-closed pre-function space, then X is C(R)-complete, and uniform limits
of functions of Fx are in Fx. It was shown in [5, Lemma 1] that if X
is a C(R)-complete pre-function space such that Fx is closed under finite
pointwise sum, then Fy is closed under finite pointwise product. Therefore
®-closed pre-function spaces are function spaces in Bishop’s sense.

For each set S, the discrete function space on S is ®-closed, and the pre-
function space (S, Kg), called the constant function space on S, where Kg is
the set of constant functions on S, is ®-closed. For each ®-closed pre-function
space Y, any mapping f : Y — S is a function space morphism from Y into
the constant function space of S.

In the following, we shall call a ®-closed pre-function space just a function
space.

Let Fun denote the category of pre-function spaces with function spaces
as objects and function space morphisms as morphisms. Note that, in Fun,
the initial object is the discrete function space of (), the terminal objects are
the constant function spaces of singletons.

An adjunction (F,G,n, ) between categories C and D consists of functors
F:C — Dand G : D — C, and natural transformations n : 1¢ — GF
and £ : FG — 1p such that ep o F'p = 1p and Ge o ng = 1. The functor
F' is the left-adjoint, and the functor G is the right-adjoint. The natural
transformation 7 is the unit, and the natural transformation ¢ is the counit.



The adjunction (F, G, n,¢e) is called an adjoint equivalence if both the unit n
and the counit € are natural isomorphisms.

We now aim to prove the following result.

Theorem 3.4. There exists an adjunction between Nbh and Fun whose
counit is a natural isomorphism.

Corollary 3.5. The category Fun is complete and cocomplete.

Proof. Since the category Nbh is complete and cocomplete, by Theorem 3.3,
it follows from [16, Exercise 7, VL.3] or the dual of Theorem 4.2 in [14]. O

To prove Theorem 3.4, we need a series of lemmas.

Lemma 3.6. For each neighbourhood space A, the pre-function space (A,C(A))
18 ®-closed.

Proof. Let g € R4, and suppose that ®(C(A), g). Then for each x € A and
€ > 0 there exist fi,..., fn € C(A) and 6 > 0 such that for each y € A, if
Sor | fi(x) = fi(y)] <, then |g(z) — g(y)| < e. Hence there exists U € 74
such that x € U and if y € U, then Y ! |fi(z) — fi(y)] < 0, and hence
lg(z) — g(y)| < e. Thus g € C(A). 0O

Lemma 3.7. Let A and B be neighbourhood spaces. If f : A — B, then

Proof. Straightforward. O

For a function space structure F on a set S, let 7 be the set of subsets
of S of the form

Upyeata(@,6) ={y € S| D04y [fi(@) = fily)| <€},
where fi,...,f, € F (n>0),z € S and € > 0.

Lemma 3.8. For each pre-function space X, the pair (X, 7z, ) is a neigh-
bourhood space.

Proof. Straightforward. For (NS1), note that U(xz,e) = {y € X | 0 < ¢} =
X. O

Lemma 3.9. Let X and Y be pre-function space. If f : X — Y, then
f . (177—]‘—)() — (XJ T}—y)'



Proof. Suppose that f: X — Y, and let f(z) € U, 4.(y,€) € T£,. Then,
since g; o f € Fx for each i =1,...,n, we have x € Uy,of,.. gof(2,0) € T,

with
6_6_Z|gz — gi(f(2))l,

and if z € Uy, of,... gnof(2,9), then f( ) € Ug,. g.(y,€). Hence f: (X, 77,) =

.....

(Z Tfy) O
Lemma 3.10. If A is a neighbourhood space, then idy : A — (A, 7¢a))-

Proof. Let x € Uy, 1.(y,€) € Tca)- Then, since fi,..., f, € C(A), there
exists U € 74 such that x € U and if 2 € U, then

Z|fz(x) | <€_Z|fz z

and hence z € Uy, 1. (y,€). Thus idy : A = (A, 7ea))- O

Lemma 3.11. Let X be a pre-function space. Then Fx C C(X, Tx,). More-
over, if X is ®-closed, then C(X,75,) C Fx.

Proof. Note that g € C(X,7x,) if and only if ®x(Fx,g). Then, trivially,
Fx CC(X,7x,), and if X is ®-closed, then C(X, 7x,) C Fy. O

Proof of Theorem 3.4. Define a functor F' from Nbh to Fun by F(A) =
(A,C(A)) and F(f) = f, and define a functor G from Fun to Nbh by
G(X) = (X,7x,) and G(f) = f. Then F and G are faithful functors, by
Lemma 3.9 and Lemma 3.7.

Furthermore, we see that if we let n4 and ex denote the identity maps on
the sets A and X, respectively, then 74 : A = (A, 7¢(a)) in Nbh, by Lemma
3.10, and

x: (X, C(X,77)) = X and ) : X — (X,C(X, 7£,))

in Fun, by Lemma 3.11. Hence 7 : 1npn — GF is a natural transformation
and € : FG — lgyy, is a natural isomorphism satisfying e o Fn = 1p and
Geong = 1g. Therefore (F,G,n,¢) forms an adjunction between Nbh and
Fun. 0

Let S be a set. Then a family {d;};c; of pseudometrics on S is compatible
with an open base 7 on S if
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1. for each x € S and i € I, the mapping y — d;(x,y) is in C(S, 1),

2. for each # € S and U € 7 with x € U there exist iy,...,4, € [ (n > 0)
and § > 0 such that for each y € S, if >, d;, (v,y) <0, then y € U.

For a function space structure F on a set S, let {ds}ser be a family of
pseudometrics of S defined by df(x,y) = |f(xz) — f(y)|- Then the family
{ds} fer is compatible with 7.

A neighbourhood space A has a compatible family of pseudometrics if
there exists a family {d;};c; of pseudometrics on A compatible with 74.

Lemma 3.12. If A is a neighbourhood space having a compatible family of
pseudometrics, then idy : (A, 7ca)) — A.

Proof. Let {d;}ic; be a family of pseudometrics on A compatible with 74. Let
x € Aand let U € 74 with x € U. Then there exist i1,...,4, € I and § > 0
such that if y € A and ) ,_, d;, (z,y) < 4, then y € U. Since the mapping
y — d;, (z,y) is in C(A) for each k£ = 1,...,n, setting fr(y) = d;, (z,y), we
have fr € C(A) foreach k =1,...,n, and if y € A and

> di(w,y) =Y 1 fulw) = fely)] <6,

then y € U. Hence idy : (A, 7c(a)) — A. O

Let Nbhp,s denote the category of neighbourhood spaces whose objects
are neighbourhood spaces having a compatible family of pseudometrics, and
whose morphisms are continuous mappings.

Theorem 3.13. There exists an adjoint equivalence between Nbhyy, and
Fun.

Proof. Let F' be a functor restricting the functor F' constructed in the proof
of Theorem 3.4 to the category Nbh,s, and note that the functor G con-
structed in the proof is a functor from Fun into Nbh,,,. We see that if we
let ny =idy and ex = idy, then s : A — (A, 7¢(4)) and nat (4, Teay) — A
in Nbh,,,s, by Lemma 3.12, and

ex 1 (X,C(X,75,)) = X and €' : X = (X,C(X,7x))

in Fun. Hence n : Inph — GF' and € : F'G — 1gun are natural isomorphisms
satisfying ep o F'n = 1p and Ge o g = 1. Therefore (F', G, n,¢€) forms an
adjoint equivalence between Nbh,,s and Fun. O

Corollary 3.14. The category Nbh,,s is complete and cocomplete.
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4 Uniform and function spaces

In this paper, we define a notion of a uniform space using a base of uniformity
as in [13] which is different from the one in [9] and related papers. A uniform
space A is pair (A,U,) consisting of a set A and an inhabited set U, of
subsets of A x A, called a uniformity on A, such that

Ubl. VYU,V € UpTW e Us(W CUNV),
Ub2. WU € Uy(A C U),
Ub3. VU € U3V € Us(V C U,
Ubd, VU € Us3V € Ua(V oV C ).
Here A = {(z,2) |z € A}, and U = {(z,y) | (y,x) € U} and
UoV ={(z,2) | Iy((z,y) e VA(y,z) e U)}

for each U,V C A x A. A uniformly continuous mapping f from a uniform
spaces A into a uniform space B is a mapping f : A — B such that

VV € Ug3U € UpVx,y € Al(z,y) €e U = (f(2), f(y)) € V].

We write f : A — B to denote that f is a uniformly continuous mapping
from A into B, and C,(A, B) for the set of uniformly continuous mappings
from A into B.

For any set S, there are the uniform spaces (S,{A}) and (S, {S x S}),
called the discrete uniform space of S and the trivial uniform space of S,
respectively. For each uniform space Y, any mapping f : S — Y is a uni-
formly continuous mapping from the discrete uniform space of S into Y, and
any mapping f : Y — S is a uniformly continuous mapping from Y into the
trivial uniform space of S.

Let Uni denote the category of uniform spaces whose objects are uniform
spaces and whose morphisms are uniformly continuous mappings. Note that,
in Uni, the initial object is the discrete uniform space of (), and the terminal
objects are the trivial uniform spaces of singletons.

Proposition 4.1. Let S be a set, let {A;}icr be a family of uniform spaces,
and for each i € I let f; : S — A;. Then there exists a uniformity U on S
such that if h s a mapping from the underlying set B of a uniform space B
into S, then h: B — (S,U) if and only if fioh: B — A; for each i € I.
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Proof. Let
U= {nz+1(fzk X flk)il(Uk) | ik € I, Uk S Z/{AikJ 1< k < nao < TL},

where fix fi : SxS — A;x A; is amapping with (f;x f;)(z,y) = (fi(z), fi(y))-
Then U is a uniformity on S.

It is straightforward to see that f; : (S,U) — X, for each i € I, and hence
if h:Y — (S,U), then fioh:Y — X, for each i € I. Let Y be a uniform
space and let h : Y — S be such that fyoh :Y — X, for each ¢ € I. Then
for each i1,...,i, € I and Uy € Uy, ,..., U, € Uy, , there exists V' € Uy
such that if (z,y) € V, then (f;, (h(x)), fi, (h(y))) € Uy, for each k =1,... n,

and hence N

(h(z), h(y)) € [\ (fie % fi) " (Ug)-

k=1
Therefore h : B — (S,U). O

Theorem 4.2. The category Uni is complete.
Proof. Similar to the proof of Theorem 2.5, using Proposition 4.1. O

In the following, we shall write, simply, R for the uniform space R with
the standard uniformity, and C,(A) for C,(A, R).

Let S be a set, and define a relation W g between a function space structure
Fon S and g € RY as follows: Wg(F,g) if and only if for each € > 0 there
exist fi,..., fn € F (n >0) and § > 0 such that

Vi,y €S (Z fi(z) = fily)l <6 = |g(x) —g(y)| < 6) -

Then a pre-function space X is W-closed if
Vg € R*(Vx(Fx,9) = g € Fx).

Note that if a pre-function space is ®-closed, then it is U-closed. If X is
a W-closed pre-function space, then Fx contains the constant functions, and
the pointwise sum of finitely many functions in Fx belongs to Fx. Further-
more, it is straightforward to show that if X is a ®-closed pre-function space,
then X is C,(R)-complete, and uniform limits of functions of Fy are in Fy.
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For each set S, the discrete function space and the constant function
space are is W-closed. For each W-closed pre-function space Y, any mapping
f:Y — S is a function space morphism from Y into the constant function
space of S.

In the following, we shall call a W-closed pre-function space a uniform
function space.

Let Fun, denote the category of pre-function spaces with uniform func-
tion spaces as objects and function space morphisms as morphisms. Note
that, in Fun,, the initial object is the discrete function space of (), the ter-
minal objects are the constant function spaces of singletons.

We now aim to prove the following result.

Theorem 4.3. There exists an adjunction between Uni and Fun, whose
counit is a natural tsomorphism.

Corollary 4.4. The category Fun, is complete.
To prove Theorem 4.3, we need a series of lemmas.

Lemma 4.5. For each uniform space A, the pre-function space (A,C,(A))
1s W-closed.

Proof. Let ¢ € RA, and suppose that ¥(C,(A),g). Then for each ¢ > 0
there exist fi,...,fn € Cu(A) and 6 > 0 such that for each z,y € A, if
Yo | filz) = fi(y)] < 6, then |g(z) — g(y)| < e. Hence there exists U € Uy
such that if (z,y) € U, then >_"" | | fi(z)—fi(y)| < ¢, and hence |g(z)—g(y)| <
€. Thus g € C,(A). O

Lemma 4.6. Let A and B be uniform spaces. If f : A — B, then f :
(4,Cu(A)) = (B,Cu(B)).

Proof. Straightforward. O

For a function space structure F on a set S, let Uz be the set of subsets
of S x S of the form

Uyt (€) ={(,9) € Sx S| 300, Ifil@) = fiy)| < e},

where fi,..., f, € F (n > 0) and € > 0.
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Lemma 4.7. For each pre-function space X, the pair (X,Ur, ) is a uniform
space.

Proof. Straightforward. For (Ub4), note that Uy, 1. (e/2) o Uy, .. 1. (€/2) C
Ufl 7777 fn (6) l:‘

Lemma 4.8. Let X and Y be pre-function space. If f : X — Y, then
f : (Xaufx) - (XJ/[]:Y)‘

Proof. Suppose that f : X — Y and U, 4 (6) € Ur,. Then, since
giof € Fx for each i = 1,...,n, we have Uyof,. 4.0r(€) € Ur,, and if

(7, y) € Ugyof,...guor(€), then (f(2), f(y)) € Uy,,...q.(€). Hence f: (X, Ur,) —
(Za Z/{]‘—y) ]

Lemma 4.9. If A is a uniform space, then idg : A — (A, Uc,(a))-

Proof. Let Uy, . 5. (€) € Ue,(a)- Then, since fi,..., fn € Cyu(A), there exists
U € Uy such that if (z,y) € U, then >  |fi(xz) — fi(y)] < €, and hence
(x,y) - Uf1,~~~7fn(6)‘ Thus ldé A — (A, Z/{CH(A)). ]

Lemma 4.10. Let X be a pre-function space. Then Fx C Co(X, Uz, ).
Moreover, if X is W-closed, then Cy(X,Ur, ) C Fx.

Proof. Note that g € Cy(X,Ux, ) if and only if ¥x(Fx,g). Then, trivially,
Fx C Cu(X,Ur,), and if X is W-closed, then C,(X,Ur,) C Fx. O

We end with the

Proof of Theorem /.3. Define a functor F' from Uni to Fun, by F(A) =
(A,Cy(A)) and F(f) = f, and define a functor G from Fun to Uni by
G(X) = (X,Ur,) and G(f) = f. Then F and G are faithful functors, by
Lemma 4.8 and Lemma 4.6.

Furthermore, we see that if we let n4 and ex denote the indentity maps
on the sets A and X, respectively, then 74 : A — (A, 7¢,(a)) in Uni, by
Lemma 4.9, and

ex 1 (X, Cu(X,77)) = X and ' : X — (X, Cu(X, 75,))

in Fun,, by Lemma 4.10. Hence 7 : 1yn; — GF' is a natural transformation
and € : F'G' — lpyn, is a natural isomorphism satisfying ep o F'n = 1p and
Geong = 1g. Therefore (F,G,n,€) forms an adjunction between Uni and
Fun,. O
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