JAIST Repository

https://dspace.jaist.ac.jp/

Title	Relating Bishop's function spaces to neighbourhood spaces
Author(s)	Ishihara, Hajime
Citation	Annals of Pure and Applied Logic, 164(4): 482–490
Issue Date	2012-11-06
Туре	Journal Article
Text version	author
URL	http://hdl.handle.net/10119/11406
Rights	NOTICE: This is the author's version of a work accepted for publication by Elsevier. Hajime Ishihara, Annals of Pure and Applied Logic, 164(4), 2012, 482–490, http://dx.doi.org/10.1016/j.apal.2012.10.009
Description	

Japan Advanced Institute of Science and Technology

Relating Bishop's function spaces to neighbourhood spaces

Hajime Ishihara

April 24, 2011

Abstract

We extend Bishop's concept of function spaces to the concept of pre-function spaces. We show that there is an adjunction between the category of neighbourhood spaces and the category of Φ -closed pre-function spaces. We also show that there is an adjunction between the category of uniform spaces and the category of Ψ -closed pre-function spaces.

Keywords: constructive mathematics, function space, neighbourhood space, uniform space, completeness, cocompleteness, adjunction. 2000 Mathematics Subject Classification: 03F65, 54E05.

1 Introduction

In 1967, Bishop [3] proposed two approaches to topology in his constructive mathematics: one approach is based on the idea of a neighbourhood space, and the other is based on the idea of a function space. However, in his book, he did not investigate them in detail.

It turns out that neighbourhood spaces are both formal topologies, as introduced by Sambin [19, 20, 21], and constructive topological spaces (see Aczel [1]). In addition, connections between neighbourhood spaces and other constructive topological notions – in particular the Bridges-Vîţă one of an apartness space [7, 9] – have been explored [14, 13]. On the other hand, the approach to constructive topology based on the idea of a function space has lain relatively dormant for over forty years. Recently, Bridges [5] has dealt with various aspects of function spaces which revive Bishop's approach to topology based on function spaces. Following Bishop [3, Definition 8, Chapter 3], we define a *function space* X to be a pair $(\underline{X}, \mathcal{F}_X)$ of a set \underline{X} and a set \mathcal{F}_X of functions from \underline{X} to \mathbf{R} satisfying the following conditions.

- F1. \mathcal{F}_X contains the constant functions.
- F2. Sums and products of elements of \mathcal{F}_X are in \mathcal{F}_X .
- F3. The composition $\varphi \circ f$ of an element f of \mathcal{F}_X and a continuous function $\varphi : \mathbf{R} \to \mathbf{R}$ is in \mathcal{F}_X , where $\varphi : \mathbf{R} \to \mathbf{R}$ is continuous if it is uniformly continuous on every compact interval.
- F4. Uniform limits of elements of \mathcal{F}_X are in \mathcal{F}_X ; that is, if for each $\epsilon > 0$ there exists g in \mathcal{F}_X , with $|g(x) - f(x)| \leq \epsilon$ for all x in \underline{X} , then $f \in \mathcal{F}_X$.

Bishop called \mathcal{F}_X the *topology* on <u>X</u>.

In this paper, we first introduce the notion of a pre-function space just as a pair of a set S and a set of real-valued functions on S, and the notion of a function space morphism according to [5]. Then we focus on the condition F3 above, and introduce the notion of a C-complete pre-function space for a set C of functions from \mathbf{R} to \mathbf{R} ; in the definition of a function space, C is taken to be the set of continuous functions in the above sense. We show that the category of C-complete pre-function spaces with function space morphisms is complete and cocomplete.

We propose a closure condition Φ_S on a set of real-valued functions on a set S, and introduce the notion of a Φ -closed pre-function space. It emerges that each Φ -closed pre-function space is a function space in Bishop's sense. Then we construct an adjunction between the category of neighbourhood spaces with continuous functions in usual sense and the category of Φ -closed pre-function spaces with function space morphisms, which relates Bishop's two approaches to topology, and show that the category of Φ -closed prefunction spaces is complete and cocomplete. We also construct an adjoint equivalence between the category of neighbourhood spaces with a compatible family of pseudometrics and the category of Φ -closed pre-function spaces.

Finally, we introduce another closure condition Ψ_S on a set of realvalued functions on a set S and the corresponding notion of a Ψ -closed pre-function space, and construct an adjunction between the category of uniform spaces with uniformly continuous functions and the category of Ψ closed pre-function spaces with function space morphisms.

Although the results are presented in informal Bishop-style constructive mathematics [3, 4, 6, 22, 8], it is possible to formalize them in Aczel's constructive Zermelo-Fraenkel set theory (**CZF**) [2] together with Relativized Dependent Choice (RDC).

There are other constructive treatments of topology: see, for example, Grayson [11, 12].

2 Complete pre-function spaces

A pre-function space X is a pair $(\underline{X}, \mathcal{F}_X)$ consisting of a set \underline{X} and a set \mathcal{F}_X of functions from \underline{X} to \mathbf{R} , called a *function space structure* on \underline{X} . According to [5], a *function space morphism* from a pre-function space X into a pre-function space Y is a mapping $f : \underline{X} \to \underline{Y}$ such that

$$\forall g \in \mathcal{F}_Y(g \circ f \in \mathcal{F}_X).$$

We write $f: X \to Y$ to denote that f is a function space morphism from X into Y, and Hom(X, Y) for the set of function space morphisms from X into Y.

For any set S, there are the pre-function spaces (S, \mathbb{R}^S) , where \mathbb{R}^S is the set of functions from S into \mathbb{R} , and (S, \emptyset) , called the *discrete* function space of S and the *trivial* pre-function space of S, respectively. For each pre-function space Y, any mapping $f: S \to \underline{Y}$ is a function space morphism from the discrete function space of S into Y, and any mapping $f: \underline{Y} \to S$ is a function space morphism from Y into the trivial pre-function space of S.

Let C be a set of functions from **R** to **R** containing the identity map $id_{\mathbf{R}}$ and closed under composition. A pre-function space X is C-complete if

$$\forall f \in \mathcal{F}_X \forall \varphi \in C(\varphi \circ f \in \mathcal{F}_X).$$

The discrete function spaces and the trivial pre-function spaces are C-complete for any C, and any pre-function space is $\{id_R\}$ -complete. If a pre-function space X is C-complete, then X is C'-complete for any $C' \subseteq C$. Since C is closed under composition, the pre-function space $\mathbf{R}_C = (\mathbf{R}, C)$ is C-complete.

Lemma 2.1. Let X be a pre-function space. Then

- 1. Hom $(X, \mathbf{R}_C) \subseteq \mathcal{F}_X$,
- 2. X is C-complete if and only if $\mathcal{F}_X \subseteq \operatorname{Hom}(X, \mathbf{R}_C)$,
- 3. X is C-complete if and only if $\mathcal{F}_X = \text{Hom}(X, \mathbf{R}_C)$.

Proof. Straightforward. For (1), note that $id_{\mathbf{R}} \in C$.

Especially, $C = \text{Hom}(\mathbf{R}_C, \mathbf{R}_C)$.

Proposition 2.2. Let X be a pre-function space. Then the pre-function space $\tilde{X} = (\underline{X}, \operatorname{Hom}(X, \mathbf{R}_C))$, called the C-completion of X, is C-complete. Furthermore, $\operatorname{id}_{\underline{X}} : X \to \tilde{X}$, and if Y is a C-complete pre-function space and $f : X \to Y$, then $f : \tilde{X} \to Y$.

Proof. Let $\varphi \in C$ and $f \in \text{Hom}(X, \mathbf{R}_C)$. Then for each $\psi \in C$, since $\psi \circ (\varphi \circ f) = (\psi \circ \varphi) \circ f$ and $\psi \circ \varphi \in C$, we have $\psi \circ (\varphi \circ f) \in \mathcal{F}_X$, and therefore $\varphi \circ f \in \text{Hom}(X, \mathbf{R}_C)$. Hence \tilde{X} is C-complete.

Since $\operatorname{Hom}(X, \mathbf{R}_C) \subseteq \mathcal{F}_X$, by Lemma 2.1 (1), we have $\operatorname{id}_{\underline{X}} : X \to \tilde{X}$. Let Y be a C-complete pre-function space, and let $f : X \to Y$. Then for each $g \in \mathcal{F}_Y$ and $\varphi \in C$, since $\varphi \circ g \in \mathcal{F}_Y$, we have $\varphi \circ (g \circ f) = (\varphi \circ g) \circ f \in \mathcal{F}_X$, and therefore $g \circ f \in \operatorname{Hom}(X, \mathbf{R}_C)$. Hence $f : \tilde{X} \to Y$.

Let \mathbf{Fun}_C denote the category of function spaces whose objects are *C*-complete pre-function spaces and whose morphisms are function space morphisms. For basic notions and results in category theory, we refer the reader to [10, 16, 17, 18].

Note that, in \mathbf{Fun}_C , the initial object is the discrete function space of \emptyset , the terminal objects are the trivial pre-function spaces of singletons.

Let **I** and **C** be categories. A *cone* of a functor $H : \mathbf{I} \to \mathbf{C}$ is an object L in **C**, together with a family of morphisms $\phi_I : L \to H(I)$ for each object I in **I**, such that $H(i) \circ \phi_I = \phi_J$ for each morphism $i : I \to J$ in **I**. A cone $\langle L, \phi_I \rangle$ of a functor $H : \mathbf{I} \to \mathbf{C}$ is a *limit* of H if for each cone $\langle X, \psi_I \rangle$ of H there exists a unique morphism $u : X \to L$ such that $\phi_I \circ u = \psi_I$ for each object I in **I**. We say that **C** is *complete* if every functor $H : \mathbf{I} \to \mathbf{C}$ from a small category **I** has a limit. A *cocone* of a functor $H : \mathbf{I} \to \mathbf{C}$ is an object I in **I**, such that $\phi_J \circ H(i) = \phi_I$ for each morphism $i : I \to J$ in **I**. A cocone $\langle L, \phi_I \rangle$ of a functor $H : \mathbf{I} \to \mathbf{C}$ is a nobject I in **I**, such that $\phi_J \circ H(i) = \phi_I$ for each morphism $i : I \to J$ in **I**. A cocone $\langle L, \phi_I \rangle$ of a functor $H : \mathbf{I} \to \mathbf{C}$ is a *colimit* of H if for each cocone $\langle X, \psi_I \rangle$ of H there exists a unique morphism $u : L \to X$ such that $u \circ \phi_I = \psi_I$ for each object I in **I**.

object I in I. We say that C is *cocomplete* if every functor $H : \mathbf{I} \to \mathbf{C}$ from a small category I has a colimit.

We will show that the category \mathbf{Fun}_C is complete and cocomplete.

Proposition 2.3. Let S be a set, let $\{X_i\}_{i\in I}$ be a family of C-complete prefunction spaces, and for each $i \in I$ let $f_i : S \to \underline{X}_i$. Then there exists a function space structure \mathcal{F} on S such that the pre-function space (S, \mathcal{F}) is C-complete, and if h is a mapping from the underlying set \underline{Y} of a pre-function space Y into S, then $h : Y \to (S, \mathcal{F})$ if and only if $f_i \circ h : Y \to X_i$ for each $i \in I$.

Proof. Let

$$\mathcal{F} = \{ f \circ f_i \mid i \in I, f \in \mathcal{F}_{X_i} \}.$$

Then for each $\varphi \in C$, $i \in I$ and $f \in \mathcal{F}_{X_i}$, since $\varphi \circ (f \circ f_i) = (\varphi \circ f) \circ f_i$ and $\varphi \circ f \in \mathcal{F}_{X_i}$, we have $\varphi \circ (f \circ f_i) \in \mathcal{F}$, and hence the pre-function space (S, \mathcal{F}) is *C*-complete.

It is straightforward to see that $f_i : (S, \mathcal{F}) \to X_i$ for each $i \in I$, and hence if $h : Y \to (S, \mathcal{F})$, then $f_i \circ h : Y \to X_i$ for each $i \in I$. Let Y be a pre-function space and let $h : \underline{Y} \to S$ be such that $f_i \circ h : Y \to X_i$ for each $i \in I$. Then for each $i \in I$ and $f \in \mathcal{F}_{X_i}$, we have $(f \circ f_i) \circ h = f \circ (f_i \circ h) \in \mathcal{F}_Y$, and hence $h : Y \to (S, \mathcal{F})$. \Box

Proposition 2.4. Let S be a set, let $\{X_i\}_{i\in I}$ be a family of C-complete prefunction spaces, and for each $i \in I$ let $f_i : \underline{X_i} \to S$. Then there exists a function space structure \mathcal{F} on S such that the pre-function space (S, \mathcal{F}) is C-complete, and if h is a mapping from S into the underlying set \underline{Y} of a pre-function space Y, then $h : (S, \mathcal{F}) \to Y$ if and only if $h \circ f_i : X_i \to Y$ for each $i \in I$.

Proof. Let

$$\mathcal{F} = \{ f \in \mathbf{R}^S \mid \forall i \in I(f \circ f_i \in \mathcal{F}_{X_i}) \}.$$

Then for each $f \in \mathcal{F}$ and $\varphi \in C$, since $(\varphi \circ f) \circ f_i = \varphi \circ (f \circ f_i) \in \mathcal{F}_{X_i}$, we have $\varphi \circ f \in \mathcal{F}$, and hence the pre-function space (S, \mathcal{F}) is C-complete.

It is straightforward to see that $f_i : X_i \to (S, \mathcal{F})$ for each $i \in I$, and hence if $h : (S, \mathcal{F}) \to Y$, then $h \circ f_i : X_i \to Y$ for each $i \in I$. Let Y be a pre-function space and let $h : S \to \underline{Y}$ be such that $h \circ f_i : X_i \to Y$ for each $i \in I$. Then for each $g \in \mathcal{F}_Y$, since $(g \circ h) \circ f_i = g \circ (h \circ f_i) \in \mathcal{F}_{X_i}$ for each $i \in I$, we have $g \circ h \in \mathcal{F}$, and hence $h : (S, \mathcal{F}) \to Y$. **Theorem 2.5.** The category Fun_C is complete and cocomplete.

Proof. Let $H : \mathbf{I} \to \mathbf{Fun}_C$ be a functor from a small category \mathbf{I} . Then, since the category **Set** of sets and mappings is complete, the functor $KH : \mathbf{I} \to$ **Set** has a limit $\langle S, \phi_I \rangle$ in **Set**, where K is the forgetful functor from \mathbf{Fun}_C into **Set**, taking each C-complete pre-function space X to its underlying set \underline{X} and each function space morphism to itself. By Proposition 2.3, since $\phi_I : S \to \underline{H(I)}$ for each object I in \mathbf{I} , there exists a function space structure \mathcal{F} on S such that $L = (S, \mathcal{F})$ is an object in \mathbf{Fun}_C , and if h is a mapping from the underlying set \underline{Y} of an object Y in \mathbf{Fun}_C into S, then $h: Y \to L$ if and only if $\phi_I \circ h: Y \to H(I)$ for each object I in \mathbf{I} .

Since $\mathrm{id}_S : L \to L$, we have $\phi_I = \phi_I \circ \mathrm{id}_S : L \to H(I)$ for each object I in **I**, and hence $\langle L, \phi_I \rangle$ is a cone of H in Fun_C . Let $\langle Y, \psi_I \rangle$ be a cone of H in Fun_C . Then $\langle \underline{Y}, \psi_I \rangle$ is a cone of KH in **Set**, and hence there exists a unique mapping $h : \underline{Y} \to S$ such that $\phi_I \circ h = \psi_I$ for each object I in **I**. Therefore, since $\phi_I \circ h = \psi_I : Y \to H(I)$ for each object I in **I**, we have $h : Y \to L$. Thus $\langle L, \phi_I \rangle$ is a limit of H in Fun_C .

Similarly, using Proposition 2.4 instead of Proposition 2.3, we see that \mathbf{Fun}_C is cocomplete.

3 Neighbourhood and function spaces

A neighbourhood space A is a pair (\underline{A}, τ_A) consisting of a set \underline{A} and an inhabited set τ_A of subsets of \underline{A} , called an open base on \underline{A} , such that

NS1. $\forall x \in \underline{A} \exists U \in \tau_A (x \in U),$

NS2.
$$\forall x \in \underline{A} \forall U, V \in \tau_A [x \in U \cap V \Longrightarrow \exists W \in \tau_A (x \in W \subseteq U \cap V)];$$

see [3, Chapter 3]. A continuous mapping f from a neighbourhood space A into a neighbourhood space B is a mapping $f : \underline{A} \to \underline{B}$ such that

$$\forall x \in \underline{A} \forall V \in \tau_B[f(x) \in V \Longrightarrow \exists U \in \tau_A(x \in U \subseteq f^{-1}(V))].$$

We write $f : A \to B$ to denote that f is a continuous mapping from A into B, and $\mathcal{C}(A, B)$ for the set of continuous mappings from A into B.

For any set S, there are the neighbourhood spaces (S, σ_S) , where σ_S is the set of singletons of S, and $(S, \{S\})$, called the *discrete* neighbourhood space of S and the *trivial* neighbourhood space of S, respectively. For each neighbourhood space Y, any mapping $f : S \to \underline{Y}$ is a continuous mapping from the discrete neighbourhood space of S into Y, and any mapping $f : \underline{Y} \to S$ is a continuous mapping from Y into the trivial neighbourhood space of S.

Let **Nbh** denote the category of neighbourhood spaces whose objects are neighbourhood spaces and whose morphisms are continuous mappings. Note that, in **Nbh**, the initial object is the discrete neighbourhood space of \emptyset , the terminal objects are the trivial neighbourhood spaces of singletons.

As we will see in Theorem 3.3, the category **Nbh** is complete and cocomplete.

Proposition 3.1. Let S be a set, let $\{A_i\}_{i \in I}$ be a family of neighbourhood spaces, and for each $i \in I$ let $f_i : S \to \underline{A_i}$. Then there exists an open base τ on S such that if h is a mapping from the underlying set \underline{B} of a neighbourhood space B into S, then $h : B \to (S, \tau)$ if and only if $f_i \circ h : B \to A_i$ for each $i \in I$.

Proof. Let

$$\tau = \{\bigcap_{k=1}^n f_{i_k}^{-1}(U_k) \mid i_k \in I, U_k \in \tau_{A_{i_k}}, 1 \le k \le n, 0 \le n\}.$$

Then τ is an open base on S. It is straightforward to see that $f_i: (S, \tau) \to X_i$ for each $i \in I$, and hence if $h: Y \to (S, \tau)$, then $f_i \circ h: Y \to X_i$ for each $i \in I$. Let Y be a neighbourhood space and let $h: \underline{Y} \to S$ be such that $f_i \circ h: Y \to X_i$ for each $i \in I$. If $h(x) \in \bigcap_{k=1}^n f_{i_k}^{-1}(U_k)$, then, since $x \in \bigcap_{k=1}^n (f_{i_k} \circ h)^{-1}(U_k)$, there exists $V \in \tau_Y$ such that $x \in V \subseteq \bigcap_{k=1}^n (f_{i_k} \circ$ $h)^{-1}(U_k) = h^{-1}(\bigcap_{k=1}^n f_{i_k}^{-1}(U_k))$. Hence $h: B \to (S, \tau)$. \Box

Ishihara and Palmgren [15, Theorem 4.3] proved the following proposition in **CZF** with the *Relativized Dependent Choice* (RDC).

Proposition 3.2. Let S be a set, let $\{A_i\}_{i \in I}$ be a family of neighbourhood spaces, and for each $i \in I$ let $f_i : \underline{A_i} \to S$. Then there exists an open base τ on S such that if h is a mapping from S into the underlying set \underline{B} of a neighbourhood space B, then $h : (S, \tau) \to B$ if and only if $h \circ f_i : A_i \to B$ for each $i \in I$.

Theorem 3.3. The category Nbh is complete and cocomplete.

Proof. Similar to the proof of Theorem 2.5, using Proposition 3.1 and Proposition 3.2.

In the following, we shall write, simply, **R** for the neighbourhood space **R** with the standard open base consisting of open intervals, and $\mathcal{C}(A)$ for $\mathcal{C}(A, \mathbf{R})$.

Let S be a set, and define a relation Φ_S between a function space structure \mathcal{F} on S and $g \in \mathbf{R}^S$ as follows: $\Phi_S(\mathcal{F}, g)$ if and only if for each $x \in S$ and $\epsilon > 0$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ $(n \ge 0)$ and $\delta > 0$ such that

$$\forall y \in S\left(\sum_{i=1}^{n} |f_i(x) - f_i(y)| < \delta \implies |g(x) - g(y)| < \epsilon\right).$$

Then a pre-function space X is Φ -closed if

$$\forall g \in \mathbf{R}^{\underline{X}}(\Phi_{\underline{X}}(\mathcal{F}_X, g) \implies g \in \mathcal{F}_X).$$

Note that if X is a Φ -closed pre-function space, then \mathcal{F}_X contains the constant functions, and the pointwise sum of finitely many functions in \mathcal{F}_X belongs to \mathcal{F}_X . Furthermore, it is straightforward to show that if X is a Φ -closed pre-function space, then X is $\mathcal{C}(\mathbf{R})$ -complete, and uniform limits of functions of \mathcal{F}_X are in \mathcal{F}_X . It was shown in [5, Lemma 1] that if X is a $\mathcal{C}(\mathbf{R})$ -complete pre-function space such that \mathcal{F}_X is closed under finite pointwise sum, then \mathcal{F}_X is closed under finite pointwise product. Therefore Φ -closed pre-function spaces are function spaces in Bishop's sense.

For each set S, the discrete function space on S is Φ -closed, and the prefunction space (S, \mathcal{K}_S) , called the *constant* function space on S, where \mathcal{K}_S is the set of constant functions on S, is Φ -closed. For each Φ -closed pre-function space Y, any mapping $f : \underline{Y} \to S$ is a function space morphism from Y into the constant function space of S.

In the following, we shall call a Φ -closed pre-function space just a *function* space.

Let **Fun** denote the category of pre-function spaces with function spaces as objects and function space morphisms as morphisms. Note that, in **Fun**, the initial object is the discrete function space of \emptyset , the terminal objects are the constant function spaces of singletons.

An *adjunction* $\langle F, G, \eta, \varepsilon \rangle$ between categories **C** and **D** consists of functors $F : \mathbf{C} \to \mathbf{D}$ and $G : \mathbf{D} \to \mathbf{C}$, and natural transformations $\eta : \mathbf{1}_{\mathbf{C}} \to GF$ and $\varepsilon : FG \to \mathbf{1}_{\mathbf{D}}$ such that $\varepsilon_F \circ F\eta = \mathbf{1}_F$ and $G\varepsilon \circ \eta_G = \mathbf{1}_G$. The functor F is the *left-adjoint*, and the functor G is the *right-adjoint*. The natural transformation η is the *unit*, and the natural transformation ε is the *counit*.

The adjunction $\langle F, G, \eta, \varepsilon \rangle$ is called an *adjoint equivalence* if both the unit η and the counit ϵ are natural isomorphisms.

We now aim to prove the following result.

Theorem 3.4. There exists an adjunction between Nbh and Fun whose counit is a natural isomorphism.

Corollary 3.5. The category **Fun** is complete and cocomplete.

Proof. Since the category Nbh is complete and cocomplete, by Theorem 3.3, it follows from [16, Exercise 7, VI.3] or the dual of Theorem 4.2 in [14]. \Box

To prove Theorem 3.4, we need a series of lemmas.

Lemma 3.6. For each neighbourhood space A, the pre-function space $(\underline{A}, \mathcal{C}(A))$ is Φ -closed.

Proof. Let $g \in \mathbf{R}^{\underline{A}}$, and suppose that $\Phi(\mathcal{C}(A), g)$. Then for each $x \in \underline{A}$ and $\epsilon > 0$ there exist $f_1, \ldots, f_n \in \mathcal{C}(A)$ and $\delta > 0$ such that for each $y \in \underline{A}$, if $\sum_{i=1}^n |f_i(x) - f_i(y)| < \delta$, then $|g(x) - g(y)| < \epsilon$. Hence there exists $U \in \tau_A$ such that $x \in U$ and if $y \in U$, then $\sum_{i=1}^n |f_i(x) - f_i(y)| < \delta$, and hence $|g(x) - g(y)| < \epsilon$. Thus $g \in \mathcal{C}(A)$.

Lemma 3.7. Let A and B be neighbourhood spaces. If $f : A \to B$, then $f : (\underline{A}, \mathcal{C}(A)) \to (\underline{B}, \mathcal{C}(B)).$

Proof. Straightforward.

For a function space structure \mathcal{F} on a set S, let $\tau_{\mathcal{F}}$ be the set of subsets of S of the form

$$U_{f_1,\dots,f_n}(x,\epsilon) = \{ y \in S \mid \sum_{k=1}^n |f_i(x) - f_i(y)| < \epsilon \},\$$

where $f_1, \ldots, f_n \in \mathcal{F}$ $(n \ge 0), x \in S$ and $\epsilon > 0$.

Lemma 3.8. For each pre-function space X, the pair $(\underline{X}, \tau_{\mathcal{F}_X})$ is a neighbourhood space.

Proof. Straightforward. For (NS1), note that $U(x, \epsilon) = \{y \in \underline{X} \mid 0 < \epsilon\} = \underline{X}$.

Lemma 3.9. Let X and Y be pre-function space. If $f : X \to Y$, then $f : (\underline{X}, \tau_{\mathcal{F}_X}) \to (\underline{Y}, \tau_{\mathcal{F}_Y}).$

Proof. Suppose that $f: X \to Y$, and let $f(x) \in U_{g_1,\ldots,g_n}(y,\epsilon) \in \tau_{\mathcal{F}_Y}$. Then, since $g_i \circ f \in \mathcal{F}_X$ for each $i = 1, \ldots, n$, we have $x \in U_{g_1 \circ f,\ldots,g_n \circ f}(x,\delta) \in \tau_{\mathcal{F}_X}$ with

$$\delta = \epsilon - \sum_{i=1}^{n} |g_i(y) - g_i(f(x))|,$$

and if $z \in U_{g_1 \circ f, ..., g_n \circ f}(x, \delta)$, then $f(z) \in U_{g_1, ..., g_n}(y, \epsilon)$. Hence $f: (\underline{X}, \tau_{\mathcal{F}_X}) \to (\underline{Y}, \tau_{\mathcal{F}_Y})$.

Lemma 3.10. If A is a neighbourhood space, then $id_{\underline{A}} : A \to (\underline{A}, \tau_{\mathcal{C}(A)})$.

Proof. Let $x \in U_{f_1,\ldots,f_n}(y,\epsilon) \in \tau_{\mathcal{C}(A)}$. Then, since $f_1,\ldots,f_n \in \mathcal{C}(A)$, there exists $U \in \tau_A$ such that $x \in U$ and if $z \in U$, then

$$\sum_{i=1}^{n} |f_i(x) - f_i(z)| < \epsilon - \sum_{i=1}^{n} |f_i(y) - f_i(x)|,$$

and hence $z \in U_{f_1,\ldots,f_n}(y,\epsilon)$. Thus $\operatorname{id}_{\underline{A}} : A \to (\underline{A}, \tau_{\mathcal{C}(A)})$.

Lemma 3.11. Let X be a pre-function space. Then $\mathcal{F}_X \subseteq \mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X})$. Moreover, if X is Φ -closed, then $\mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X}) \subseteq \mathcal{F}_X$.

Proof. Note that $g \in \mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X})$ if and only if $\Phi_{\underline{X}}(\mathcal{F}_X, g)$. Then, trivially, $\mathcal{F}_X \subseteq \mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X})$, and if X is Φ -closed, then $\mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X}) \subseteq \mathcal{F}_X$.

Proof of Theorem 3.4. Define a functor F from Nbh to Fun by $F(A) = (\underline{A}, \mathcal{C}(A))$ and F(f) = f, and define a functor G from Fun to Nbh by $G(X) = (\underline{X}, \tau_{\mathcal{F}_X})$ and G(f) = f. Then F and G are faithful functors, by Lemma 3.9 and Lemma 3.7.

Furthermore, we see that if we let η_A and ϵ_X denote the identity maps on the sets <u>A</u> and <u>X</u>, respectively, then $\eta_A : A \to (\underline{A}, \tau_{\mathcal{C}(A)})$ in **Nbh**, by Lemma 3.10, and

$$\epsilon_X : (\underline{X}, \mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X})) \to X \text{ and } \epsilon_X^{-1} : X \to (\underline{X}, \mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X}))$$

in **Fun**, by Lemma 3.11. Hence $\eta : 1_{\mathbf{Nbh}} \to GF$ is a natural transformation and $\epsilon : FG \to 1_{\mathbf{Fun}}$ is a natural isomorphism satisfying $\epsilon_F \circ F\eta = 1_F$ and $G\epsilon \circ \eta_G = 1_G$. Therefore $\langle F, G, \eta, \epsilon \rangle$ forms an adjunction between **Nbh** and **Fun**.

Let S be a set. Then a family $\{d_i\}_{i \in I}$ of pseudometrics on S is *compatible* with an open base τ on S if

- 1. for each $x \in S$ and $i \in I$, the mapping $y \mapsto d_i(x, y)$ is in $\mathcal{C}(S, \tau)$,
- 2. for each $x \in S$ and $U \in \tau$ with $x \in U$ there exist $i_1, \ldots, i_n \in I$ $(n \ge 0)$ and $\delta > 0$ such that for each $y \in S$, if $\sum_{k=1}^n d_{i_k}(x, y) < \delta$, then $y \in U$.

For a function space structure \mathcal{F} on a set S, let $\{d_f\}_{f\in\mathcal{F}}$ be a family of pseudometrics of S defined by $d_f(x, y) = |f(x) - f(y)|$. Then the family $\{d_f\}_{f\in\mathcal{F}}$ is compatible with $\tau_{\mathcal{F}}$.

A neighbourhood space A has a compatible family of pseudometrics if there exists a family $\{d_i\}_{i \in I}$ of pseudometrics on <u>A</u> compatible with τ_A .

Lemma 3.12. If A is a neighbourhood space having a compatible family of pseudometrics, then $id_{\underline{A}} : (\underline{A}, \tau_{\mathcal{C}(A)}) \to A$.

Proof. Let $\{d_i\}_{i\in I}$ be a family of pseudometrics on \underline{A} compatible with τ_A . Let $x \in \underline{A}$ and let $U \in \tau_A$ with $x \in U$. Then there exist $i_1, \ldots, i_n \in I$ and $\delta > 0$ such that if $y \in \underline{A}$ and $\sum_{k=1}^n d_{i_k}(x, y) < \delta$, then $y \in U$. Since the mapping $y \mapsto d_{i_k}(x, y)$ is in $\mathcal{C}(A)$ for each $k = 1, \ldots, n$, setting $f_k(y) = d_{i_k}(x, y)$, we have $f_k \in \mathcal{C}(A)$ for each $k = 1, \ldots, n$, and if $y \in \underline{A}$ and

$$\sum_{k=1}^{n} d_{i_k}(x, y) = \sum_{k=1}^{n} |f_k(x) - f_k(y)| < \delta,$$

then $y \in U$. Hence $\operatorname{id}_{\underline{A}} : (\underline{A}, \tau_{\mathcal{C}(A)}) \to A$.

Let Nbh_{pms} denote the category of neighbourhood spaces whose objects are neighbourhood spaces having a compatible family of pseudometrics, and whose morphisms are continuous mappings.

Theorem 3.13. There exists an adjoint equivalence between Nbh_{pms} and Fun.

Proof. Let F' be a functor restricting the functor F constructed in the proof of Theorem 3.4 to the category \mathbf{Nbh}_{pms} , and note that the functor G constructed in the proof is a functor from **Fun** into \mathbf{Nbh}_{pms} . We see that if we let $\eta_A = \mathrm{id}_{\underline{A}}$ and $\epsilon_X = \mathrm{id}_{\underline{X}}$, then $\eta_A : A \to (\underline{A}, \tau_{\mathcal{C}(A)})$ and $\eta_A^{-1} : (\underline{A}, \tau_{\mathcal{C}(A)}) \to A$ in \mathbf{Nbh}_{pms} , by Lemma 3.12, and

$$\epsilon_X : (\underline{X}, \mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X})) \to X \text{ and } \epsilon_X^{-1} : X \to (\underline{X}, \mathcal{C}(\underline{X}, \tau_{\mathcal{F}_X}))$$

in **Fun**. Hence $\eta : 1_{\mathbf{Nbh}} \to GF'$ and $\epsilon : F'G \to 1_{\mathbf{Fun}}$ are natural isomorphisms satisfying $\epsilon_{F'} \circ F'\eta = 1_{F'}$ and $G\epsilon \circ \eta_G = 1_G$. Therefore $\langle F', G, \eta, \epsilon \rangle$ forms an adjoint equivalence between \mathbf{Nbh}_{pms} and \mathbf{Fun} .

Corollary 3.14. The category Nbh_{pms} is complete and cocomplete.

4 Uniform and function spaces

In this paper, we define a notion of a uniform space using a base of uniformity as in [13] which is different from the one in [9] and related papers. A *uniform* space A is pair $(\underline{A}, \mathcal{U}_A)$ consisting of a set \underline{A} and an inhabited set \mathcal{U}_A of subsets of $\underline{A} \times \underline{A}$, called a *uniformity* on \underline{A} , such that

Ub1. $\forall U, V \in \mathcal{U}_A \exists W \in \mathcal{U}_A (W \subseteq U \cap V),$

Ub2.
$$\forall U \in \mathcal{U}_A(\Delta \subseteq U)$$

Ub3.
$$\forall U \in \mathcal{U}_A \exists V \in \mathcal{U}_A (V \subseteq U^{-1}),$$

Ub4. $\forall U \in \mathcal{U}_A \exists V \in \mathcal{U}_A (V \circ V \subseteq U).$

Here $\Delta = \{(x, x) \mid x \in \underline{A}\}$, and $U^{-1} = \{(x, y) \mid (y, x) \in U\}$ and

 $U \circ V = \{(x, z) \mid \exists y((x, y) \in V \land (y, z) \in U)\}$

for each $U, V \subseteq \underline{A} \times \underline{A}$. A uniformly continuous mapping f from a uniform spaces A into a uniform space B is a mapping $f : \underline{A} \to \underline{B}$ such that

$$\forall V \in \mathcal{U}_B \exists U \in \mathcal{U}_A \forall x, y \in \underline{A}[(x, y) \in U \Longrightarrow (f(x), f(y)) \in V].$$

We write $f : A \to B$ to denote that f is a uniformly continuous mapping from A into B, and $C_u(A, B)$ for the set of uniformly continuous mappings from A into B.

For any set S, there are the uniform spaces $(S, \{\Delta\})$ and $(S, \{S \times S\})$, called the *discrete* uniform space of S and the *trivial* uniform space of S, respectively. For each uniform space Y, any mapping $f : S \to \underline{Y}$ is a uniformly continuous mapping from the discrete uniform space of S into Y, and any mapping $f : \underline{Y} \to S$ is a uniformly continuous mapping from Y into the trivial uniform space of S.

Let **Uni** denote the category of uniform spaces whose objects are uniform spaces and whose morphisms are uniformly continuous mappings. Note that, in **Uni**, the initial object is the discrete uniform space of \emptyset , and the terminal objects are the trivial uniform spaces of singletons.

Proposition 4.1. Let S be a set, let $\{A_i\}_{i \in I}$ be a family of uniform spaces, and for each $i \in I$ let $f_i : S \to \underline{A_i}$. Then there exists a uniformity \mathcal{U} on S such that if h is a mapping from the underlying set \underline{B} of a uniform space B into S, then $h : B \to (S, \mathcal{U})$ if and only if $f_i \circ h : B \to A_i$ for each $i \in I$. *Proof.* Let

$$\mathcal{U} = \{\bigcap_{k=1}^{n} (f_{i_k} \times f_{i_k})^{-1} (U_k) \mid i_k \in I, U_k \in \mathcal{U}_{A_{i_k}}, 1 \le k \le n, 0 \le n\},\$$

where $f_i \times f_i : S \times S \to \underline{A_i} \times \underline{A_i}$ is a mapping with $(f_i \times f_i)(x, y) = (f_i(x), f_i(y))$. Then \mathcal{U} is a uniformity on \overline{S} .

It is straightforward to see that $f_i : (S, \mathcal{U}) \to X_i$ for each $i \in I$, and hence if $h : Y \to (S, \mathcal{U})$, then $f_i \circ h : Y \to X_i$ for each $i \in I$. Let Y be a uniform space and let $h : \underline{Y} \to S$ be such that $f_i \circ h : Y \to X_i$ for each $i \in I$. Then for each $i_1, \ldots, i_n \in I$ and $U_1 \in \mathcal{U}_{A_{i_1}}, \ldots, U_n \in \mathcal{U}_{A_{i_n}}$, there exists $V \in \mathcal{U}_Y$ such that if $(x, y) \in V$, then $(f_{i_k}(h(x)), f_{i_k}(h(y))) \in U_k$ for each $k = 1, \ldots, n$, and hence

$$(h(x), h(y)) \in \bigcap_{k=1}^{n} (f_{i_k} \times f_{i_k})^{-1} (U_k).$$

Therefore $h: B \to (S, \mathcal{U})$.

Theorem 4.2. The category Uni is complete.

Proof. Similar to the proof of Theorem 2.5, using Proposition 4.1. \Box

In the following, we shall write, simply, **R** for the uniform space **R** with the standard uniformity, and $C_u(A)$ for $C_u(A, \mathbf{R})$.

Let S be a set, and define a relation Ψ_S between a function space structure \mathcal{F} on S and $g \in \mathbf{R}^S$ as follows: $\Psi_S(\mathcal{F}, g)$ if and only if for each $\epsilon > 0$ there exist $f_1, \ldots, f_n \in \mathcal{F}$ $(n \ge 0)$ and $\delta > 0$ such that

$$\forall x, y \in S\left(\sum_{i=1}^{n} |f_i(x) - f_i(y)| < \delta \implies |g(x) - g(y)| < \epsilon\right).$$

Then a pre-function space X is Ψ -closed if

$$\forall g \in \mathbf{R}^{\underline{X}}(\Psi_{\underline{X}}(\mathcal{F}_X, g) \implies g \in \mathcal{F}_X).$$

Note that if a pre-function space is Φ -closed, then it is Ψ -closed. If X is a Ψ -closed pre-function space, then \mathcal{F}_X contains the constant functions, and the pointwise sum of finitely many functions in \mathcal{F}_X belongs to \mathcal{F}_X . Furthermore, it is straightforward to show that if X is a Φ -closed pre-function space, then X is $\mathcal{C}_u(\mathbf{R})$ -complete, and uniform limits of functions of \mathcal{F}_X are in \mathcal{F}_X .

For each set S, the discrete function space and the constant function space are is Ψ -closed. For each Ψ -closed pre-function space Y, any mapping $f: \underline{Y} \to S$ is a function space morphism from Y into the constant function space of S.

In the following, we shall call a Ψ -closed pre-function space a *uniform* function space.

Let \mathbf{Fun}_{u} denote the category of pre-function spaces with uniform function spaces as objects and function space morphisms as morphisms. Note that, in \mathbf{Fun}_{u} , the initial object is the discrete function space of \emptyset , the terminal objects are the constant function spaces of singletons.

We now aim to prove the following result.

Theorem 4.3. There exists an adjunction between Uni and Fun_u whose counit is a natural isomorphism.

Corollary 4.4. The category Fun_u is complete.

To prove Theorem 4.3, we need a series of lemmas.

Lemma 4.5. For each uniform space A, the pre-function space $(\underline{A}, C_u(A))$ is Ψ -closed.

Proof. Let $g \in \mathbf{R}^{\underline{A}}$, and suppose that $\Psi(\mathcal{C}_{u}(A), g)$. Then for each $\epsilon > 0$ there exist $f_{1}, \ldots, f_{n} \in \mathcal{C}_{u}(A)$ and $\delta > 0$ such that for each $x, y \in \underline{A}$, if $\sum_{i=1}^{n} |f_{i}(x) - f_{i}(y)| < \delta$, then $|g(x) - g(y)| < \epsilon$. Hence there exists $U \in \mathcal{U}_{A}$ such that if $(x, y) \in U$, then $\sum_{i=1}^{n} |f_{i}(x) - f_{i}(y)| < \delta$, and hence $|g(x) - g(y)| < \epsilon$. Thus $g \in \mathcal{C}_{u}(A)$.

Lemma 4.6. Let A and B be uniform spaces. If $f : A \to B$, then $f : (\underline{A}, \mathcal{C}_{u}(A)) \to (\underline{B}, \mathcal{C}_{u}(B))$.

Proof. Straightforward.

For a function space structure \mathcal{F} on a set S, let $\mathcal{U}_{\mathcal{F}}$ be the set of subsets of $S \times S$ of the form

$$U_{f_1,...,f_n}(\epsilon) = \{(x,y) \in S \times S \mid \sum_{k=1}^n |f_i(x) - f_i(y)| < \epsilon\},\$$

where $f_1, \ldots, f_n \in \mathcal{F}$ $(n \ge 0)$ and $\epsilon > 0$.

Lemma 4.7. For each pre-function space X, the pair $(\underline{X}, \mathcal{U}_{\mathcal{F}_X})$ is a uniform space.

Proof. Straightforward. For (Ub4), note that $U_{f_1,\ldots,f_n}(\epsilon/2) \circ U_{f_1,\ldots,f_n}(\epsilon/2) \subseteq U_{f_1,\ldots,f_n}(\epsilon)$.

Lemma 4.8. Let X and Y be pre-function space. If $f : X \to Y$, then $f : (\underline{X}, \mathcal{U}_{\mathcal{F}_X}) \to (\underline{Y}, \mathcal{U}_{\mathcal{F}_Y}).$

Proof. Suppose that $f : X \to Y$ and $U_{g_1,...,g_n}(\epsilon) \in \mathcal{U}_{\mathcal{F}_Y}$. Then, since $g_i \circ f \in \mathcal{F}_X$ for each i = 1,...,n, we have $U_{g_1 \circ f,...,g_n \circ f}(\epsilon) \in \mathcal{U}_{\mathcal{F}_X}$, and if $(x, y) \in U_{g_1 \circ f,...,g_n \circ f}(\epsilon)$, then $(f(x), f(y)) \in U_{g_1,...,g_n}(\epsilon)$. Hence $f : (\underline{X}, \mathcal{U}_{\mathcal{F}_X}) \to (\underline{Y}, \mathcal{U}_{\mathcal{F}_Y})$.

Lemma 4.9. If A is a uniform space, then $id_{\underline{A}} : A \to (\underline{A}, \mathcal{U}_{\mathcal{C}_{u}(A)}).$

Proof. Let $U_{f_1,\ldots,f_n}(\epsilon) \in \mathcal{U}_{\mathcal{C}_u(A)}$. Then, since $f_1,\ldots,f_n \in \mathcal{C}_u(A)$, there exists $U \in \mathcal{U}_A$ such that if $(x,y) \in U$, then $\sum_{i=1}^n |f_i(x) - f_i(y)| < \epsilon$, and hence $(x,y) \in U_{f_1,\ldots,f_n}(\epsilon)$. Thus $\operatorname{id}_{\underline{A}} : A \to (\underline{A}, \mathcal{U}_{\mathcal{C}_u(A)})$.

Lemma 4.10. Let X be a pre-function space. Then $\mathcal{F}_X \subseteq \mathcal{C}_u(\underline{X}, \mathcal{U}_{\mathcal{F}_X})$. Moreover, if X is Ψ -closed, then $\mathcal{C}_u(\underline{X}, \mathcal{U}_{\mathcal{F}_X}) \subseteq \mathcal{F}_X$.

Proof. Note that $g \in C_{u}(\underline{X}, \mathcal{U}_{\mathcal{F}_{X}})$ if and only if $\Psi_{\underline{X}}(\mathcal{F}_{X}, g)$. Then, trivially, $\mathcal{F}_{X} \subseteq C_{u}(\underline{X}, \mathcal{U}_{\mathcal{F}_{X}})$, and if X is Ψ -closed, then $C_{u}(\underline{X}, \mathcal{U}_{\mathcal{F}_{X}}) \subseteq \mathcal{F}_{X}$.

We end with the

Proof of Theorem 4.3. Define a functor F from **Uni** to \mathbf{Fun}_u by $F(A) = (\underline{A}, \mathcal{C}_u(A))$ and F(f) = f, and define a functor G from **Fun** to **Uni** by $G(X) = (\underline{X}, \mathcal{U}_{\mathcal{F}_X})$ and G(f) = f. Then F and G are faithful functors, by Lemma 4.8 and Lemma 4.6.

Furthermore, we see that if we let η_A and ϵ_X denote the indentity maps on the sets <u>A</u> and <u>X</u>, respectively, then $\eta_A : A \to (\underline{A}, \tau_{\mathcal{C}_u(A)})$ in **Uni**, by Lemma 4.9, and

$$\epsilon_X : (\underline{X}, \mathcal{C}_{\mathrm{u}}(\underline{X}, \tau_{\mathcal{F}_X})) \to X \text{ and } \epsilon_X^{-1} : X \to (\underline{X}, \mathcal{C}_{\mathrm{u}}(\underline{X}, \tau_{\mathcal{F}_X}))$$

in \mathbf{Fun}_{u} , by Lemma 4.10. Hence $\eta : 1_{\mathbf{Uni}} \to GF$ is a natural transformation and $\epsilon : FG \to 1_{\mathbf{Fun}_{u}}$ is a natural isomorphism satisfying $\epsilon_{F} \circ F\eta = 1_{F}$ and $G\epsilon \circ \eta_{G} = 1_{G}$. Therefore $\langle F, G, \eta, \epsilon \rangle$ forms an adjunction between **Uni** and \mathbf{Fun}_{u} . Acknowledgements. The author thanks the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (C) No.19500012) for partly supporting the research.

References

- [1] Peter Aczel, Aspects of general topology in constructive set theory, Ann. Pure Appl. Logic **137** (2006), 3–29.
- [2] Peter Aczel and Michael Rathjen, Notes on constructive set theory, Report No. 40, Institut Mittag-Leffler, The Royal Swedish Academy of Sciences, 2001.
- [3] Errett Bishop, Foundations of Constructive Mathematics, McGraw-Hill, New York, 1967.
- [4] Errett Bishop and Douglas Bridges, Constructive Analysis, Springer, Berlin, 1985.
- [5] Douglas Bridges, *Reflections on function spaces*, preprint, University of Canterbury, New Zealand, 2008.
- [6] Douglas Bridges and Fred Richman, Varieties of Constructive Mathematics, Cambridge University Press, Cambridge, 1987.
- [7] Douglas Bridges and Luminiţa Vîţă, Apartness spaces as a framework for constructive topology, Ann. Pure Appl. Logic 119 (2003), 61–8.
- [8] Douglas Bridges and Luminița Vîță, *Techniques of Constructive Analy*sis, Springer, New York, 2006.
- [9] Douglas Bridges and Luminiţa Vîţă, Apartness and Uniformity a Constructive Development, Theory and Applications of Computability, Springer Verlag, Heidelberg, 2011 (to appear).
- [10] Robert Goldblatt, Topoi, Second edition, Studies in Logic and the Foundations of Mathematics 98, North-Holland Publishing Co., Amsterdam, 1984.
- [11] Robin J. Grayson, Concepts of general topology in constructive mathematics and in sheaves I, Ann. Math. Logic 20 (1981), 1-41.

- [12] Robin J. Grayson, Concepts of general topology in constructive mathematics and in sheaves II, Ann. Math. Logic 23 (1982), 55-98.
- [13] Hajime Ishihara, *Two subcategories of apartness spaces*, to appear in Ann. Pure Appl. Logic.
- [14] Hajime Ishihara, Ray Mines, Peter Schuster and Luminiţa Vîţă, Quasiapartness and neighbourhood spaces, Ann. Pure Appl. Logic 141 (2006), 296–306.
- [15] Hajime Ishihara and Erik Palmgren, Quotient topologies in constructive set theory and type theory, Ann. Pure Appl. Logic 141 (2006), 257–265.
- [16] Saunders Mac Lane, Categories for the working mathematician, Second edition, Graduate Texts in Mathematics 5, Springer-Verlag, New York, 1998.
- [17] Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic, Universitext, Springer-Verlag, New York, 1994.
- [18] Colin McLarty, Elementary Categories, Elementary Toposes, Oxford University Press, 1996.
- [19] Giovanni Sambin, Intuitionistic formal spaces a first communication, In: D. Skordev ed., Mathematical logic and its applications, Plenum, New York, 1987, 187–204.
- [20] Giovanni Sambin, Some points in formal topology, Theoret. Comput. Sci. 305 (2003), 347-408.
- [21] Giovanni Sambin, *The Basic Picture*, Oxford Logic Guides, Oxford Univ. Press (to appear).
- [22] Anne S. Troelstra and Dirk van Dalen, Constructivism in Mathematics, Vol.I and II, North-Holland, Amsterdam, 1988.

Hajime Ishihara School of Information Science Japan Advanced Institute of Science and Technology Nomi, Ishikawa 923-1292, Japan Email: ishihara@jaist.ac.jp Tel: +81-761-51-1206 Fax: +81-761-51-1149