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Relating Bishop's funtion spaes toneighbourhood spaesHajime IshiharaApril 24, 2011AbstratWe extend Bishop's onept of funtion spaes to the onept ofpre-funtion spaes. We show that there is an adjuntion between theategory of neighbourhood spaes and the ategory of �-losed pre-funtion spaes. We also show that there is an adjuntion between theategory of uniform spaes and the ategory of 	-losed pre-funtionspaes.Keywords: onstrutive mathematis, funtion spae, neighbourhood spae,uniform spae, ompleteness, oompleteness, adjuntion.2000 Mathematis Subjet Classi�ation: 03F65, 54E05.1 IntrodutionIn 1967, Bishop [3℄ proposed two approahes to topology in his onstrutivemathematis: one approah is based on the idea of a neighbourhood spae,and the other is based on the idea of a funtion spae. However, in his book,he did not investigate them in detail.It turns out that neighbourhood spaes are both formal topologies, asintrodued by Sambin [19, 20, 21℄, and onstrutive topologial spaes (seeAzel [1℄). In addition, onnetions between neighbourhood spaes and otheronstrutive topologial notions { in partiular the Bridges-V̂�t��a one of anapartness spae [7, 9℄ { have been explored [14, 13℄. On the other hand, theapproah to onstrutive topology based on the idea of a funtion spae haslain relatively dormant for over forty years.1



Reently, Bridges [5℄ has dealt with various aspets of funtion spaeswhih revive Bishop's approah to topology based on funtion spaes. Fol-lowing Bishop [3, De�nition 8, Chapter 3℄, we de�ne a funtion spae X to bea pair (X;FX) of a set X and a set FX of funtions from X to R satisfyingthe following onditions.F1. FX ontains the onstant funtions.F2. Sums and produts of elements of FX are in FX .F3. The omposition 'Æf of an element f of FX and a ontinuous funtion' : R! R is in FX , where ' : R! R is ontinuous if it is uniformlyontinuous on every ompat interval.F4. Uniform limits of elements of FX are in FX ; that is, if for eah � > 0there exists g in FX , with jg(x)�f(x)j � � for all x in X, then f 2 FX .Bishop alled FX the topology on X.In this paper, we �rst introdue the notion of a pre-funtion spae just asa pair of a set S and a set of real-valued funtions on S, and the notion of afuntion spae morphism aording to [5℄. Then we fous on the ondition F3above, and introdue the notion of a C-omplete pre-funtion spae for a setC of funtions from R to R; in the de�nition of a funtion spae, C is takento be the set of ontinuous funtions in the above sense. We show that theategory of C-omplete pre-funtion spaes with funtion spae morphismsis omplete and oomplete.We propose a losure ondition �S on a set of real-valued funtions on aset S, and introdue the notion of a �-losed pre-funtion spae. It emergesthat eah �-losed pre-funtion spae is a funtion spae in Bishop's sense.Then we onstrut an adjuntion between the ategory of neighbourhoodspaes with ontinuous funtions in usual sense and the ategory of �-losedpre-funtion spaes with funtion spae morphisms, whih relates Bishop'stwo approahes to topology, and show that the ategory of �-losed pre-funtion spaes is omplete and oomplete. We also onstrut an adjointequivalene between the ategory of neighbourhood spaes with a ompatiblefamily of pseudometris and the ategory of �-losed pre-funtion spaes.Finally, we introdue another losure ondition 	S on a set of real-valued funtions on a set S and the orresponding notion of a 	-losedpre-funtion spae, and onstrut an adjuntion between the ategory of2



uniform spaes with uniformly ontinuous funtions and the ategory of 	-losed pre-funtion spaes with funtion spae morphisms.Although the results are presented in informal Bishop-style onstrutivemathematis [3, 4, 6, 22, 8℄, it is possible to formalize them in Azel's on-strutive Zermelo-Fraenkel set theory (CZF) [2℄ together with RelativizedDependent Choie (RDC).There are other onstrutive treatments of topology: see, for example,Grayson [11, 12℄.2 Complete pre-funtion spaesA pre-funtion spae X is a pair (X;FX) onsisting of a set X and a set FXof funtions from X to R, alled a funtion spae struture on X. Aordingto [5℄, a funtion spae morphism from a pre-funtion spae X into a pre-funtion spae Y is a mapping f : X ! Y suh that8g 2 FY (g Æ f 2 FX):We write f : X ! Y to denote that f is a funtion spae morphism from Xinto Y , and Hom(X; Y ) for the set of funtion spae morphisms from X intoY . For any set S, there are the pre-funtion spaes (S;RS), where RS isthe set of funtions from S into R, and (S; ;), alled the disrete funtionspae of S and the trivial pre-funtion spae of S, respetively. For eahpre-funtion spae Y , any mapping f : S ! Y is a funtion spae morphismfrom the disrete funtion spae of S into Y , and any mapping f : Y ! S isa funtion spae morphism from Y into the trivial pre-funtion spae of S.Let C be a set of funtions from R to R ontaining the identity map idRand losed under omposition. A pre-funtion spae X is C-omplete if8f 2 FX8' 2 C(' Æ f 2 FX):The disrete funtion spaes and the trivial pre-funtion spaes are C-ompletefor any C, and any pre-funtion spae is fidRg-omplete. If a pre-funtionspae X is C-omplete, then X is C 0-omplete for any C 0 � C. Sine C islosed under omposition, the pre-funtion spaeRC = (R; C) is C-omplete.Lemma 2.1. Let X be a pre-funtion spae. Then3



1. Hom(X;RC) � FX ,2. X is C-omplete if and only if FX � Hom(X;RC),3. X is C-omplete if and only if FX = Hom(X;RC).Proof. Straightforward. For (1), note that idR 2 C.Espeially, C = Hom(RC ;RC).Proposition 2.2. Let X be a pre-funtion spae. Then the pre-funtionspae ~X = (X;Hom(X;RC)), alled the C-ompletion of X, is C-omplete.Furthermore, idX : X ! ~X, and if Y is a C-omplete pre-funtion spae andf : X ! Y , then f : ~X ! Y .Proof. Let ' 2 C and f 2 Hom(X;RC). Then for eah  2 C, sine Æ (' Æ f) = ( Æ ') Æ f and  Æ ' 2 C, we have  Æ (' Æ f) 2 FX , andtherefore ' Æ f 2 Hom(X;RC). Hene ~X is C-omplete.Sine Hom(X;RC) � FX , by Lemma 2.1 (1), we have idX : X ! ~X. LetY be a C-omplete pre-funtion spae, and let f : X ! Y . Then for eahg 2 FY and ' 2 C, sine ' Æ g 2 FY , we have ' Æ (g Æ f) = (' Æ g) Æ f 2 FX ,and therefore g Æ f 2 Hom(X;RC). Hene f : ~X ! Y .Let FunC denote the ategory of funtion spaes whose objets are C-omplete pre-funtion spaes and whose morphisms are funtion spae mor-phisms. For basi notions and results in ategory theory, we refer the readerto [10, 16, 17, 18℄.Note that, in FunC , the initial objet is the disrete funtion spae of ;,the terminal objets are the trivial pre-funtion spaes of singletons.Let I and C be ategories. A one of a funtor H : I ! C is an objetL in C, together with a family of morphisms �I : L! H(I) for eah objetI in I, suh that H(i) Æ �I = �J for eah morphism i : I ! J in I. A onehL; �Ii of a funtor H : I ! C is a limit of H if for eah one hX; Ii of Hthere exists a unique morphism u : X ! L suh that �I Æ u =  I for eahobjet I in I. We say that C is omplete if every funtor H : I! C from asmall ategory I has a limit. A oone of a funtor H : I ! C is an objetL in C, together with a family of morphisms �I : H(I)! L for eah objetI in I, suh that �J ÆH(i) = �I for eah morphism i : I ! J in I. A oonehL; �Ii of a funtor H : I! C is a olimit of H if for eah oone hX; Ii ofH there exists a unique morphism u : L! X suh that u Æ �I =  I for eah4



objet I in I. We say that C is oomplete if every funtor H : I! C froma small ategory I has a olimit.We will show that the ategory FunC is omplete and oomplete.Proposition 2.3. Let S be a set, let fXigi2I be a family of C-omplete pre-funtion spaes, and for eah i 2 I let fi : S ! Xi. Then there exists afuntion spae struture F on S suh that the pre-funtion spae (S;F) isC-omplete, and if h is a mapping from the underlying set Y of a pre-funtionspae Y into S, then h : Y ! (S;F) if and only if fi Æ h : Y ! Xi for eahi 2 I.Proof. Let F = ff Æ fi j i 2 I; f 2 FXig:Then for eah ' 2 C, i 2 I and f 2 FXi, sine ' Æ (f Æ fi) = (' Æ f) Æ fiand ' Æ f 2 FXi, we have ' Æ (f Æ fi) 2 F , and hene the pre-funtion spae(S;F) is C-omplete.It is straightforward to see that fi : (S;F) ! Xi for eah i 2 I, andhene if h : Y ! (S;F), then fi Æ h : Y ! Xi for eah i 2 I. Let Y be apre-funtion spae and let h : Y ! S be suh that fi Æ h : Y ! Xi for eahi 2 I. Then for eah i 2 I and f 2 FXi , we have (f Æfi)Æh = f Æ(fiÆh) 2 FY ,and hene h : Y ! (S;F).Proposition 2.4. Let S be a set, let fXigi2I be a family of C-omplete pre-funtion spaes, and for eah i 2 I let fi : Xi ! S. Then there exists afuntion spae struture F on S suh that the pre-funtion spae (S;F) isC-omplete, and if h is a mapping from S into the underlying set Y of apre-funtion spae Y , then h : (S;F)! Y if and only if h Æ fi : Xi ! Y foreah i 2 I.Proof. Let F = ff 2 RS j 8i 2 I(f Æ fi 2 FXi)g:Then for eah f 2 F and ' 2 C, sine (' Æ f) Æ fi = ' Æ (f Æ fi) 2 FXi, wehave ' Æ f 2 F , and hene the pre-funtion spae (S;F) is C-omplete.It is straightforward to see that fi : Xi ! (S;F) for eah i 2 I, andhene if h : (S;F) ! Y , then h Æ fi : Xi ! Y for eah i 2 I. Let Y be apre-funtion spae and let h : S ! Y be suh that h Æ fi : Xi ! Y for eahi 2 I. Then for eah g 2 FY , sine (g Æ h) Æ fi = g Æ (h Æ fi) 2 FXi for eahi 2 I, we have g Æ h 2 F , and hene h : (S;F)! Y .5



Theorem 2.5. The ategory FunC is omplete and oomplete.Proof. Let H : I! FunC be a funtor from a small ategory I. Then, sinethe ategory Set of sets and mappings is omplete, the funtor KH : I !Set has a limit hS; �Ii in Set, where K is the forgetful funtor from FunCinto Set, taking eah C-omplete pre-funtion spae X to its underlying setX and eah funtion spae morphism to itself. By Proposition 2.3, sine�I : S ! H(I) for eah objet I in I, there exists a funtion spae strutureF on S suh that L = (S;F) is an objet in FunC , and if h is a mappingfrom the underlying set Y of an objet Y in FunC into S, then h : Y ! L ifand only if �I Æ h : Y ! H(I) for eah objet I in I.Sine idS : L! L, we have �I = �I Æ idS : L! H(I) for eah objet I inI, and hene hL; �Ii is a one of H in FunC . Let hY;  Ii be a one of H inFunC . Then hY ;  Ii is a one of KH in Set, and hene there exists a uniquemapping h : Y ! S suh that �I Æ h =  I for eah objet I in I. Therefore,sine �I Æ h =  I : Y ! H(I) for eah objet I in I, we have h : Y ! L.Thus hL; �Ii is a limit of H in FunC .Similarly, using Proposition 2.4 instead of Proposition 2.3, we see thatFunC is oomplete.3 Neighbourhood and funtion spaesA neighbourhood spae A is a pair (A; �A) onsisting of a set A and an inhab-ited set �A of subsets of A, alled an open base on A, suh thatNS1: 8x 2 A9U 2 �A(x 2 U),NS2: 8x 2 A8U; V 2 �A[x 2 U \ V =) 9W 2 �A(x 2 W � U \ V )℄;see [3, Chapter 3℄. A ontinuous mapping f from a neighbourhood spae Ainto a neighbourhood spae B is a mapping f : A! B suh that8x 2 A8V 2 �B[f(x) 2 V =) 9U 2 �A(x 2 U � f�1(V ))℄:We write f : A ! B to denote that f is a ontinuous mapping from A intoB, and C(A;B) for the set of ontinuous mappings from A into B.For any set S, there are the neighbourhood spaes (S; �S), where �S isthe set of singletons of S, and (S; fSg), alled the disrete neighbourhoodspae of S and the trivial neighbourhood spae of S, respetively. For eah6



neighbourhood spae Y , any mapping f : S ! Y is a ontinuous mappingfrom the disrete neighbourhood spae of S into Y , and any mapping f :Y ! S is a ontinuous mapping from Y into the trivial neighbourhood spaeof S.Let Nbh denote the ategory of neighbourhood spaes whose objets areneighbourhood spaes and whose morphisms are ontinuous mappings. Notethat, in Nbh, the initial objet is the disrete neighbourhood spae of ;, theterminal objets are the trivial neighbourhood spaes of singletons.As we will see in Theorem 3.3, the ategory Nbh is omplete and oom-plete.Proposition 3.1. Let S be a set, let fAigi2I be a family of neighbourhoodspaes, and for eah i 2 I let fi : S ! Ai. Then there exists an open base �on S suh that if h is a mapping from the underlying set B of a neighbourhoodspae B into S, then h : B ! (S; �) if and only if fi Æ h : B ! Ai for eahi 2 I.Proof. Let� = fTnk=1 f�1ik (Uk) j ik 2 I; Uk 2 �Aik ; 1 � k � n; 0 � ng:Then � is an open base on S. It is straightforward to see that fi : (S; �)! Xifor eah i 2 I, and hene if h : Y ! (S; �), then fi Æ h : Y ! Xi foreah i 2 I. Let Y be a neighbourhood spae and let h : Y ! S be suhthat fi Æ h : Y ! Xi for eah i 2 I. If h(x) 2 Tnk=1 f�1ik (Uk), then, sinex 2 Tnk=1(fik Æ h)�1(Uk), there exists V 2 �Y suh that x 2 V � Tnk=1(fik Æh)�1(Uk) = h�1(Tnk=1 f�1ik (Uk)). Hene h : B ! (S; �).Ishihara and Palmgren [15, Theorem 4.3℄ proved the following propositionin CZF with the Relativized Dependent Choie (RDC).Proposition 3.2. Let S be a set, let fAigi2I be a family of neighbourhoodspaes, and for eah i 2 I let fi : Ai ! S. Then there exists an open base� on S suh that if h is a mapping from S into the underlying set B of aneighbourhood spae B, then h : (S; �)! B if and only if h Æ fi : Ai ! B foreah i 2 I.Theorem 3.3. The ategory Nbh is omplete and oomplete.Proof. Similar to the proof of Theorem 2.5, using Proposition 3.1 and Propo-sition 3.2. 7



In the following, we shall write, simply, R for the neighbourhood spaeR with the standard open base onsisting of open intervals, and C(A) forC(A;R).Let S be a set, and de�ne a relation �S between a funtion spae strutureF on S and g 2 RS as follows: �S(F ; g) if and only if for eah x 2 S and� > 0 there exist f1; : : : ; fn 2 F (n � 0) and Æ > 0 suh that8y 2 S nXi=1 jfi(x)� fi(y)j < Æ =) jg(x)� g(y)j < �! :Then a pre-funtion spae X is �-losed if8g 2 RX(�X(FX; g) =) g 2 FX):Note that if X is a �-losed pre-funtion spae, then FX ontains theonstant funtions, and the pointwise sum of �nitely many funtions in FXbelongs to FX . Furthermore, it is straightforward to show that if X is a�-losed pre-funtion spae, then X is C(R)-omplete, and uniform limitsof funtions of FX are in FX . It was shown in [5, Lemma 1℄ that if Xis a C(R)-omplete pre-funtion spae suh that FX is losed under �nitepointwise sum, then FX is losed under �nite pointwise produt. Therefore�-losed pre-funtion spaes are funtion spaes in Bishop's sense.For eah set S, the disrete funtion spae on S is �-losed, and the pre-funtion spae (S;KS), alled the onstant funtion spae on S, where KS isthe set of onstant funtions on S, is �-losed. For eah �-losed pre-funtionspae Y , any mapping f : Y ! S is a funtion spae morphism from Y intothe onstant funtion spae of S.In the following, we shall all a �-losed pre-funtion spae just a funtionspae.Let Fun denote the ategory of pre-funtion spaes with funtion spaesas objets and funtion spae morphisms as morphisms. Note that, in Fun,the initial objet is the disrete funtion spae of ;, the terminal objets arethe onstant funtion spaes of singletons.An adjuntion hF;G; �; "i between ategoriesC andD onsists of funtorsF : C ! D and G : D ! C, and natural transformations � : 1C ! GFand " : FG ! 1D suh that "F Æ F� = 1F and G" Æ �G = 1G. The funtorF is the left-adjoint, and the funtor G is the right-adjoint. The naturaltransformation � is the unit, and the natural transformation " is the ounit.8



The adjuntion hF;G; �; "i is alled an adjoint equivalene if both the unit �and the ounit � are natural isomorphisms.We now aim to prove the following result.Theorem 3.4. There exists an adjuntion between Nbh and Fun whoseounit is a natural isomorphism.Corollary 3.5. The ategory Fun is omplete and oomplete.Proof. Sine the ategoryNbh is omplete and oomplete, by Theorem 3.3,it follows from [16, Exerise 7, VI.3℄ or the dual of Theorem 4.2 in [14℄.To prove Theorem 3.4, we need a series of lemmas.Lemma 3.6. For eah neighbourhood spae A, the pre-funtion spae (A; C(A))is �-losed.Proof. Let g 2 RA, and suppose that �(C(A); g). Then for eah x 2 A and� > 0 there exist f1; : : : ; fn 2 C(A) and Æ > 0 suh that for eah y 2 A, ifPni=1 jfi(x) � fi(y)j < Æ, then jg(x)� g(y)j < �. Hene there exists U 2 �Asuh that x 2 U and if y 2 U , then Pni=1 jfi(x) � fi(y)j < Æ, and henejg(x)� g(y)j < �. Thus g 2 C(A).Lemma 3.7. Let A and B be neighbourhood spaes. If f : A ! B, thenf : (A; C(A))! (B; C(B)).Proof. Straightforward.For a funtion spae struture F on a set S, let �F be the set of subsetsof S of the formUf1;:::;fn(x; �) = fy 2 S jPnk=1 jfi(x)� fi(y)j < �g;where f1; : : : ; fn 2 F (n � 0), x 2 S and � > 0.Lemma 3.8. For eah pre-funtion spae X, the pair (X; �FX ) is a neigh-bourhood spae.Proof. Straightforward. For (NS1), note that U(x; �) = fy 2 X j 0 < �g =X.Lemma 3.9. Let X and Y be pre-funtion spae. If f : X ! Y , thenf : (X; �FX )! (Y ; �FY ). 9



Proof. Suppose that f : X ! Y , and let f(x) 2 Ug1;:::;gn(y; �) 2 �FY . Then,sine gi Æ f 2 FX for eah i = 1; : : : ; n, we have x 2 Ug1Æf;:::;gnÆf (x; Æ) 2 �FXwith Æ = �� nXi=1 jgi(y)� gi(f(x))j;and if z 2 Ug1Æf;:::;gnÆf(x; Æ), then f(z) 2 Ug1;:::;gn(y; �). Hene f : (X; �FX )!(Y ; �FY ).Lemma 3.10. If A is a neighbourhood spae, then idA : A! (A; �C(A)).Proof. Let x 2 Uf1;:::;fn(y; �) 2 �C(A). Then, sine f1; : : : ; fn 2 C(A), thereexists U 2 �A suh that x 2 U and if z 2 U , thennXi=1 jfi(x)� fi(z)j < �� nXi=1 jfi(y)� fi(x)j;and hene z 2 Uf1;:::;fn(y; �). Thus idA : A! (A; �C(A)).Lemma 3.11. Let X be a pre-funtion spae. Then FX � C(X; �FX ). More-over, if X is �-losed, then C(X; �FX ) � FX.Proof. Note that g 2 C(X; �FX ) if and only if �X(FX ; g). Then, trivially,FX � C(X; �FX ), and if X is �-losed, then C(X; �FX ) � FX .Proof of Theorem 3.4. De�ne a funtor F from Nbh to Fun by F (A) =(A; C(A)) and F (f) = f , and de�ne a funtor G from Fun to Nbh byG(X) = (X; �FX ) and G(f) = f . Then F and G are faithful funtors, byLemma 3.9 and Lemma 3.7.Furthermore, we see that if we let �A and �X denote the identity maps onthe sets A and X, respetively, then �A : A! (A; �C(A)) in Nbh, by Lemma3.10, and �X : (X; C(X; �FX ))! X and ��1X : X ! (X; C(X; �FX ))in Fun, by Lemma 3.11. Hene � : 1Nbh ! GF is a natural transformationand � : FG ! 1Fun is a natural isomorphism satisfying �F Æ F� = 1F andG� Æ �G = 1G. Therefore hF;G; �; �i forms an adjuntion between Nbh andFun.Let S be a set. Then a family fdigi2I of pseudometris on S is ompatiblewith an open base � on S if 10



1. for eah x 2 S and i 2 I, the mapping y 7! di(x; y) is in C(S; �),2. for eah x 2 S and U 2 � with x 2 U there exist i1; : : : ; in 2 I (n � 0)and Æ > 0 suh that for eah y 2 S, ifPnk=1 dik(x; y) < Æ, then y 2 U .For a funtion spae struture F on a set S, let fdfgf2F be a family ofpseudometris of S de�ned by df(x; y) = jf(x) � f(y)j. Then the familyfdfgf2F is ompatible with �F .A neighbourhood spae A has a ompatible family of pseudometris ifthere exists a family fdigi2I of pseudometris on A ompatible with �A.Lemma 3.12. If A is a neighbourhood spae having a ompatible family ofpseudometris, then idA : (A; �C(A))! A.Proof. Let fdigi2I be a family of pseudometris on A ompatible with �A. Letx 2 A and let U 2 �A with x 2 U . Then there exist i1; : : : ; in 2 I and Æ > 0suh that if y 2 A and Pnk=1 dik(x; y) < Æ, then y 2 U . Sine the mappingy 7! dik(x; y) is in C(A) for eah k = 1; : : : ; n, setting fk(y) = dik(x; y), wehave fk 2 C(A) for eah k = 1; : : : ; n, and if y 2 A andnXk=1 dik(x; y) = nXk=1 jfk(x)� fk(y)j < Æ;then y 2 U . Hene idA : (A; �C(A))! A.Let Nbhpms denote the ategory of neighbourhood spaes whose objetsare neighbourhood spaes having a ompatible family of pseudometris, andwhose morphisms are ontinuous mappings.Theorem 3.13. There exists an adjoint equivalene between Nbhpms andFun.Proof. Let F 0 be a funtor restriting the funtor F onstruted in the proofof Theorem 3.4 to the ategory Nbhpms, and note that the funtor G on-struted in the proof is a funtor from Fun into Nbhpms. We see that if welet �A = idA and �X = idX , then �A : A! (A; �C(A)) and ��1A : (A; �C(A))! Ain Nbhpms, by Lemma 3.12, and�X : (X; C(X; �FX ))! X and ��1X : X ! (X; C(X; �FX ))in Fun. Hene � : 1Nbh ! GF 0 and � : F 0G! 1Fun are natural isomorphismssatisfying �F 0 Æ F 0� = 1F 0 and G� Æ �G = 1G. Therefore hF 0; G; �; �i forms anadjoint equivalene between Nbhpms and Fun.Corollary 3.14. The ategory Nbhpms is omplete and oomplete.11



4 Uniform and funtion spaesIn this paper, we de�ne a notion of a uniform spae using a base of uniformityas in [13℄ whih is di�erent from the one in [9℄ and related papers. A uniformspae A is pair (A;UA) onsisting of a set A and an inhabited set UA ofsubsets of A� A, alled a uniformity on A, suh thatUb1: 8U; V 2 UA9W 2 UA(W � U \ V ),Ub2: 8U 2 UA(� � U),Ub3: 8U 2 UA9V 2 UA(V � U�1),Ub4: 8U 2 UA9V 2 UA(V Æ V � U).Here � = f(x; x) j x 2 Ag, and U�1 = f(x; y) j (y; x) 2 Ug andU Æ V = f(x; z) j 9y((x; y) 2 V ^ (y; z) 2 U)gfor eah U; V � A � A. A uniformly ontinuous mapping f from a uniformspaes A into a uniform spae B is a mapping f : A! B suh that8V 2 UB9U 2 UA8x; y 2 A[(x; y) 2 U =) (f(x); f(y)) 2 V ℄:We write f : A ! B to denote that f is a uniformly ontinuous mappingfrom A into B, and Cu(A;B) for the set of uniformly ontinuous mappingsfrom A into B.For any set S, there are the uniform spaes (S; f�g) and (S; fS � Sg),alled the disrete uniform spae of S and the trivial uniform spae of S,respetively. For eah uniform spae Y , any mapping f : S ! Y is a uni-formly ontinuous mapping from the disrete uniform spae of S into Y , andany mapping f : Y ! S is a uniformly ontinuous mapping from Y into thetrivial uniform spae of S.Let Uni denote the ategory of uniform spaes whose objets are uniformspaes and whose morphisms are uniformly ontinuous mappings. Note that,in Uni, the initial objet is the disrete uniform spae of ;, and the terminalobjets are the trivial uniform spaes of singletons.Proposition 4.1. Let S be a set, let fAigi2I be a family of uniform spaes,and for eah i 2 I let fi : S ! Ai. Then there exists a uniformity U on Ssuh that if h is a mapping from the underlying set B of a uniform spae Binto S, then h : B ! (S;U) if and only if fi Æ h : B ! Ai for eah i 2 I.12



Proof. LetU = fTnk+1(fik � fik)�1(Uk) j ik 2 I; Uk 2 UAik ; 1 � k � n; 0 � ng;where fi�fi : S�S ! Ai�Ai is a mapping with (fi�fi)(x; y) = (fi(x); fi(y)).Then U is a uniformity on S.It is straightforward to see that fi : (S;U)! Xi for eah i 2 I, and heneif h : Y ! (S;U), then fi Æ h : Y ! Xi for eah i 2 I. Let Y be a uniformspae and let h : Y ! S be suh that fi Æ h : Y ! Xi for eah i 2 I. Thenfor eah i1; : : : ; in 2 I and U1 2 UAi1 ; : : : ; Un 2 UAin , there exists V 2 UYsuh that if (x; y) 2 V , then (fik(h(x)); fik(h(y))) 2 Uk for eah k = 1; : : : ; n,and hene (h(x); h(y)) 2 n\k=1(fik � fik)�1(Uk):Therefore h : B ! (S;U).Theorem 4.2. The ategory Uni is omplete.Proof. Similar to the proof of Theorem 2.5, using Proposition 4.1.In the following, we shall write, simply, R for the uniform spae R withthe standard uniformity, and Cu(A) for Cu(A;R).Let S be a set, and de�ne a relation 	S between a funtion spae strutureF on S and g 2 RS as follows: 	S(F ; g) if and only if for eah � > 0 thereexist f1; : : : ; fn 2 F (n � 0) and Æ > 0 suh that8x; y 2 S nXi=1 jfi(x)� fi(y)j < Æ =) jg(x)� g(y)j < �! :Then a pre-funtion spae X is 	-losed if8g 2 RX(	X(FX ; g) =) g 2 FX):Note that if a pre-funtion spae is �-losed, then it is 	-losed. If X isa 	-losed pre-funtion spae, then FX ontains the onstant funtions, andthe pointwise sum of �nitely many funtions in FX belongs to FX . Further-more, it is straightforward to show that if X is a �-losed pre-funtion spae,then X is Cu(R)-omplete, and uniform limits of funtions of FX are in FX .13



For eah set S, the disrete funtion spae and the onstant funtionspae are is 	-losed. For eah 	-losed pre-funtion spae Y , any mappingf : Y ! S is a funtion spae morphism from Y into the onstant funtionspae of S.In the following, we shall all a 	-losed pre-funtion spae a uniformfuntion spae.Let Funu denote the ategory of pre-funtion spaes with uniform fun-tion spaes as objets and funtion spae morphisms as morphisms. Notethat, in Funu, the initial objet is the disrete funtion spae of ;, the ter-minal objets are the onstant funtion spaes of singletons.We now aim to prove the following result.Theorem 4.3. There exists an adjuntion between Uni and Funu whoseounit is a natural isomorphism.Corollary 4.4. The ategory Funu is omplete.To prove Theorem 4.3, we need a series of lemmas.Lemma 4.5. For eah uniform spae A, the pre-funtion spae (A; Cu(A))is 	-losed.Proof. Let g 2 RA, and suppose that 	(Cu(A); g). Then for eah � > 0there exist f1; : : : ; fn 2 Cu(A) and Æ > 0 suh that for eah x; y 2 A, ifPni=1 jfi(x) � fi(y)j < Æ, then jg(x)� g(y)j < �. Hene there exists U 2 UAsuh that if (x; y) 2 U , thenPni=1 jfi(x)�fi(y)j < Æ, and hene jg(x)�g(y)j <�. Thus g 2 Cu(A).Lemma 4.6. Let A and B be uniform spaes. If f : A ! B, then f :(A; Cu(A))! (B; Cu(B)).Proof. Straightforward.For a funtion spae struture F on a set S, let UF be the set of subsetsof S � S of the formUf1;:::;fn(�) = f(x; y) 2 S � S jPnk=1 jfi(x)� fi(y)j < �g;where f1; : : : ; fn 2 F (n � 0) and � > 0.14



Lemma 4.7. For eah pre-funtion spae X, the pair (X;UFX ) is a uniformspae.Proof. Straightforward. For (Ub4), note that Uf1;:::;fn(�=2) Æ Uf1;:::;fn(�=2) �Uf1;:::;fn(�).Lemma 4.8. Let X and Y be pre-funtion spae. If f : X ! Y , thenf : (X;UFX )! (Y ;UFY ).Proof. Suppose that f : X ! Y and Ug1;:::;gn(�) 2 UFY . Then, sinegi Æ f 2 FX for eah i = 1; : : : ; n, we have Ug1Æf;:::;gnÆf (�) 2 UFX , and if(x; y) 2 Ug1Æf;:::;gnÆf(�), then (f(x); f(y)) 2 Ug1;:::;gn(�). Hene f : (X;UFX )!(Y ;UFY ).Lemma 4.9. If A is a uniform spae, then idA : A! (A;UCu(A)).Proof. Let Uf1;:::;fn(�) 2 UCu(A). Then, sine f1; : : : ; fn 2 Cu(A), there existsU 2 UA suh that if (x; y) 2 U , then Pni=1 jfi(x) � fi(y)j < �, and hene(x; y) 2 Uf1;:::;fn(�). Thus idA : A! (A;UCu(A)).Lemma 4.10. Let X be a pre-funtion spae. Then FX � Cu(X;UFX ).Moreover, if X is 	-losed, then Cu(X;UFX ) � FX.Proof. Note that g 2 Cu(X;UFX ) if and only if 	X(FX ; g). Then, trivially,FX � Cu(X;UFX ), and if X is 	-losed, then Cu(X;UFX ) � FX .We end with theProof of Theorem 4.3. De�ne a funtor F from Uni to Funu by F (A) =(A; Cu(A)) and F (f) = f , and de�ne a funtor G from Fun to Uni byG(X) = (X;UFX ) and G(f) = f . Then F and G are faithful funtors, byLemma 4.8 and Lemma 4.6.Furthermore, we see that if we let �A and �X denote the indentity mapson the sets A and X, respetively, then �A : A ! (A; �Cu(A)) in Uni, byLemma 4.9, and�X : (X; Cu(X; �FX ))! X and ��1X : X ! (X; Cu(X; �FX ))in Funu, by Lemma 4.10. Hene � : 1Uni ! GF is a natural transformationand � : FG ! 1Funu is a natural isomorphism satisfying �F Æ F� = 1F andG� Æ �G = 1G. Therefore hF;G; �; �i forms an adjuntion between Uni andFunu. 15
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