
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Adaptive Point-Based Value Iteration for

Continuous States POMDP in Goal-Directed

Imitation Learning

Author(s)
Pratama, Ferdian Adi; Lee, Hosun; Lee, Geunho;

Chong, Nak Young

Citation
2012 9th International Conference on Ubiquitous

Robots and Ambient Intelligence (URAI): 249-254

Issue Date 2012-11

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/11412

Rights

This is the author's version of the work.

Copyright (C) 2012 IEEE. 2012 9th International

Conference on Ubiquitous Robots and Ambient

Intelligence (URAI), 2012, 249-254. Personal use

of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any

current or future media, including

reprinting/republishing this material for

advertising or promotional purposes, creating new

collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted

component of this work in other works.

Description

The 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2012)
Nov. 26-28, 2012 in Daejeon Convention Center, Daejeon, Korea

Adaptive Point-Based Value Iteration for Continuous States POMDP in
Goal-Directed Imitation Learning

Ferdian Adi Pratama, Hosun Lee, Geunho Lee, and Nakyoung Chong
School of Information Science, Japan Advance Institute of Science and Technology, Ishikawa, Japan

(Tel : +81-761-51-1248; E-mail: {pura-f, hosun LEE, geun-lee, nakyoung}@jaist.ac.jp)

Abstract - In motion planning and robot navigation, con-
tinuous domain would be the natural way of representa-
tion of state space. However, discretization is needed in
order to deal with continuous state space. Results pre-
cision depends on the discretization, which leads to a
problem of ”curse of dimensionality”. We present a new
approximation approach of goal-directed imitation learn-
ing algorithm using point-based value iteration algorithm
deals with continuous domain in motion planning Par-
tially Observable Markov Decision Process with desir-
able precision. We demonstrate our algorithm in the V-
REP robot simulator, to validate the experimental result.

Keywords - Goal-Directed Imitation, Sequential Deci-
sion Making, Motion Planning, POMDP.

1. Introduction
In general context of learning, trying to copy a move-

ment or a certain task demonstrated physically by oth-
ers is a common way for humans to accomplish similar
task. In learning how to dance by imitation, human tries
to match their limbs configurations to others to get the
same posture. On the other hand, in case of learning how
to pour a water properly from a glass to another by im-
itation, similar limbs configuration sometimes not a big
issue, as long as the water is properly poured.

Two different kinds of imitation learning are well-
known in robotics, namely behavioral-based and goal-
directed based imitation learning. Behavioral-based Im-
itation Learning is similar with learning how to dance,
which means the imitator’s main objective is to get the
same posture and behavior as the demonstrator. Goal-
directed imitation learning only concerns about how to
get the same outcome of a certain task demonstrated. Due
to the fact that it concerns about the physical link configu-
ration in an articulated robot, it has a very high complex-
ity especially in a redundant manipulator. Goal-directed
imitation learning is useful in a case where we need a
manipulator to accomplish a task imitated by human or
other robot. It focuses on getting things done instead of
the manipulator posture. Using a goal-directed imitation
learning algorithm, we don’t need to program the robot
explicitly to do a certain task performed by others.

To achieve a solid-structured and organized machine
learning, we need a mathematical framework of learn-
ing environment for the agent (decision maker). Markov
models are popular mathematical tools used widely in
machine learning research. Comprises four different

types, Markov Chain (MC), Hidden Markov Model
(HMM), Markov Decision Process (MDP), and Partially
Observable Markov Decision Process (POMDP), each of
them provides different properties under particular con-
ditions to represent the learning environment in machine
learning algorithm. Since action transitions are not con-
trollable in both markov chain and HMM, MDP and
POMDP provides a controllable action transition prop-
erty for learning environment representation. MDP de-
scribes a deterministic relation between an agent and the
environment. Analogous to markov chain in terms of
the agent’s current state certainty, the agent in MDP rep-
resentation knows exactly its current state. Meanwhile,
POMDP is a stochastic representation of learning envi-
ronment with addition of controllable action transitions,
and also deals with uncertainty elements of the agent’s
current state.

Since a more realistic environment representation
deals with uncertainty, a stochastic representation is
preferable, which makes POMDP a better representation
as a learning environment. Despite of the natural rep-
resentation, it is intractable to get an exact POMDP so-
lution [1]. There has been vast development of practical
POMDPs algorithm [2]-[4] in the recent years. Value iter-
ation based on the discretization of each continuous state
space is the common way to solve POMDP. It is practi-
cal if the number of states and horizon is relatively small.
When it comes to a large amount of states and horizon,
”Curse of Dimensionality” occurs, when the computa-
tional complexity increases drastically with the dimen-
sion of belief space, and it becomes intractable to solve.
This is a dilemma where a fine discretization would lead
to a ”Curse of Dimensionality”, and poor discretization
would lead to poor representation of the state space.

In this paper, we present a new approach of goal-
directed imitation learning algorithm, Adaptive Point-
Based Value Iteration (APBIt), based on asynchronous
value iteration for sampling the state space appropriately
rather than complete discretization, hence desired preci-
sion can be achieved without significant increase of the
computation time. We performed numerical simulations
and demonstrated our algorithm for motion planning en-
vironment using a 3D robot simulator; V-Rep [5].

2. Background
2.1 Preliminary
A Partially Observable Markov Decision Process

(POMDP) setM , is a tuple 〈S,A, T,R, Z,O〉, comprises
a finite set of state S, a finite set of action A, a finite

set of observation O, a transition function T , a reward
function R and an observation function Z. A transition
function T : S × A → Π(S) represents a mapping of
state and action. A reward function R : S × A → <
is equivalent to R[s, a], a finite set of observation O :
S × A → Π(O) is equivalent to Pr(o|s′, a), and ob-
servation function Z : S × A can be interpreted as
Z(s′, a, o′) = Pr(Ot+1 = o′|St+1 = s′, At = a).

A POMDP is a realistic version of MDP in a sequential
decision making. The agent takes an action a ∈ A from a
certain state s ∈ S to another state s′ ∈ S. Real life situ-
ation deals with probabilistic owing to uncertainty. Dur-
ing the decision making from a certain state to another,
uncertainty can be represented by a transition probabil-
ity T (s, a, s′). Due to the incomplete information of its
current state, the agent must make an observation o ∈ O.
The observation itself also deals with uncertainty, and it
can be represented by Z(s, a, o) = Pr(o|s, a)

A POMDP can be converted into a continuous-state
MDP by introducing a notion of the belief state [6]. To
identify its current state in a stochastic environment, the
agent compute a probability distribution over states. A
belief state b is a representation of agent’s current state
given the history of action and observation. The notation
b(s) represents the probability that the current state of the
agents is s ∈ S.

A policy π is defined as mapping related to current
state s and which action a to take. Due to uncertainty
elements in POMDP, a policy π can be defined as π :
S × T 7→ A. Reward function R : S × A 7→ R maps a
numeric reward for each state and action. An immediate
reward notation given the current state and action to take
would be R(s, a). The output of POMDP is an optimal
policy tree π∗ and the agent must choose actions to max-
imize the expected total reward. To do that, based on the
current state and taken action of the agent, it receives a
rewardR(s, a). For optimal policy, the agent takes an ac-
tion that has maximum value considering the belief state
in a certain state. The agent also have to consider the
future reward as well as immediate reward. What we
need is the sequence of actions that have the maximum
expected reward instead of individual actions. An agent
can measure the reward value being in a certain state by
means of value function. We can represent the optimal
value function in a t-step policy tree V (b, a) as:

V (b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗t−1(bao)

where bao is the belief state from b after taking action a
and receiving observation o. Parameter γ is specified to
be geometric discounting factor, where γ < 1.

2.2 Related Work
In the real world POMDP problems, it is unnecessary

to compute the optimal policy for the full belief space
and considered more practical and easier to compute a
good approximation of the optimal value function [8].
Recently quite a lot of algorithms for solving POMDP

approximately are available. Thrun [9] addressed an ap-
proximate approach deals with continuous-state and ac-
tion POMDPs using MonteCarlo Method to sample belief
representation and propagation. Brooks [10] presented a
theoretical and practical results focuses on a mobile robot
navigation problem in a continuous domain POMDP. He
used MonteCarlo methods to estimate distributions over
future parametrised beliefs, improving planning accuracy
without a loss of efficiency.

Kurniawati et al. [4] emphasized on the exploitations
of computational efficiency improvements from the no-
tion of optimally reachable belief spaces. Their idea is to
sample a subset of belief points reachable from initial be-
lief point b0 ∈ B, which expected to reduce the number
of samples. Zhou et al. [11] developed a continuous-state
POMDP solver method by reducing the dimensionality of
the belief space via density projection and implemented it
in an inventory control problem. Particle filtering, which
is one of a MonteCarlo Method, which needs a large num-
ber of samples, is not a good solution to obtain a reason-
able approximation of belief state. Hence, they incorpo-
rate the notion density projection into the particle filter,
by approximating the projected belief space by a certain
density.

Roy et al. [8] proposed a method to solve large-scale
POMDPs by reducing the dimensionality of belief space
using Exponential family Principal Components Analysis
[12] to represent sparse, high dimensional belief spaces
using small sets of learned features. Their idea is to plan
in this low-dimensional space, so they can determine the
POMDP model policy which have higher order of magni-
ture that the model which can be handled by conventional
techniques. They also demonstrated their algorithm on a
synthetic problem and on a mobile robot navigation task.

For some of the paper described, MonteCarlo method
is used to optimize and improve the performance. Mo-
tivated by the presently available approximate POMDP
algorithm and due to the scarcity of imitation learning
algorithm, we would like to give a contribution by devel-
oping a relatively easy-to-implement imitation learning
algorithm and relating imitation learning using POMDP
as the environment representation under several limita-
tions.

3. Problem Statement

We categorized a goal-directed imitation learning fur-
ther into two: learning to imitate something and learn-
ing to do something properly. The former lies in more
general context, which means even if the task performed
by the demonstrator is not the correct way to do some-
thing, the learning agent will try to imitate it to get similar
results compared with the results during it was demon-
strated. The latter, however, must conform a crucial con-
dition: the task performed has to be the proper or cor-
rect way of doing something. The latter, which lies in a
more specific context, will come in very handy in a sit-
uation where we need to accomplish the same task per-
formed in a different environment. The changed envi-

ronment makes it difficult to accomplish if the imitation
is performed using the former category. Meanwhile, the
latter category has a capability to adapt the decision mak-
ing process with the current environment, while trying to
maintain a proper performance of the demonstrated task.

This research deals with the former category, since it
is a more general context and can be extended later into
the latter one. The task demonstrated is to be assumed
as pouring a water from a glass to another, and it will
involve only a motion planning.

3.1 Problem Definition
We formally address the goal-directed imitation learn-

ing using POMDP as the learning environment represen-
tation as follows:
Assumed a glass of water was poured by the demonstra-
tor to an empty glass, how to perform an imitation result-
ing a similar end-effector cartesian coordinate position
to the demonstrator?

The goal-directed imitation learning problem above
can be decomposed into two related subproblems:
• Sub-Problem 1, Imitation Learning How to achieve a
sufficiently-good goal-directed imitation learning in mo-
tion planning?
• Sub-Problem 2, Decision Making How to perform se-
quential decision making resulting similar outcome with
inputs acquired by sensors surrounding the learning envi-
ronment?

The two sub-problems relates to each other. If we
solve the question in sub-problem 2, consequently we
will solve the sub-problem 1.

4. Algorithm Description
4.1 Imitation Learning Representation using POMDP
To recognize what is going on in the surrounding, a

perception system is needed, while action is related to ac-
tuators or a mechanism which generates force or physical
movement. Treating both elements as an individual sys-
tem will not be very useful, compared if both elements
treated as a one bigger system. We need an intelligent
system, bridges the perception and action. Three basic
elements shown in Figure 1: perception, action, and the
one that connects both elements, an intelligent system.

Intelligent
SystemPerception Action

Fig. 1 The relation of intelligent system with percep-
tion and action

In this research, we are trying to connect the percep-
tion and action with imitation learning representing the
intelligent system, by choosing POMDP as the mathe-
matical framework. Vision system will represent the per-
ceptionand motion generation will represent the action-
shown in Figure 2.

POMDP acts as a sequential decision making tool
through a stochastic environment representation, process-
ing the data acquired by the vision system, and its output

Vision
System

Motion
Generation

Imitation
Learning
POMDP

Fig. 2 POMDP as the environment representation in
imitation learning

will be delivered to the actuatorto accomplish the task
demonstrated.

4.2 Reformulation of Learning Algorithm
Learning agent is formally defined as the decision

maker, and demonstrator is the one which performed a
certain task to be imitated by the agent. A set of hori-
zon available for decision making Hn as the n-number
of horizons available is denoted as {h0, h1, ..., hn−1}.
Dealing with continuous states POMDP, we specify the
{smin, smax} range of states denoted by Si as the ith
horizon. The {smin, smax} range for each horizon are
possible to have different value. We need to have a
boundary to perform uniformly distributed sampling.

Definition 1. (SAMPLING BOUNDARY) A boundary
for uniformly distributed random sampling denoted as
{0, hmin}, and hmin which represents the maximum
boundary is defined as

hmin := min
h∈H

[smax − smin]

Definition 2. (UNIFORMLY DISTRIBUTED RANDOM
NUMBER SAMPLING) Given the sampling boundary
{0, hmin}, a set of uniformly distributed samples can be
obtained by performing a uniformly distributed random
number sampling, defined as a set of predefined n-number
of samples {u0, u1, u2, ..., un−1} denoted by

Un := {u0, u1, u2, ..., un−1},

where Un represents the set of n-number of samples.

The set of samples Un will act as the substitute of con-
tinuous states, which makes it straightforward for us to
perform a point-based value iteration based on the ob-
tained samples. The notation of states and action onwards
will refer to the samples obtained.

The imitation learning algorithm inputs are specified
to be the position captured by the vision systems after the
system gets a trigger that a certain movement is ready to
be imitated. The inputs needed by the imitation learning
algorithm are categorized into two: main input Im and
observer inputs Ino .

Definition 3. (INPUT DESCRIPTION) Given the main
and observer vision systems, main input Im is defined as
a set of two-valued input contains the position range ap-
proximated by each vision systems. Observer input Ino
holds the same definition with main input, and can be
interpreted as nth observer vision system. Both input for-
mulations are generalized as I , denoted as

I := {Pmin, Pmax}

where P as the approximated position.

A single main vision system is described as the vi-
sion system that monitors the demonstrator directly. Ob-
server vision systems are described as systems that moni-
tors the whole learning environment, including the range
{smin, smax}. Gaussian function is employed as the re-
ward, belief and observation function. As the reward
function, it is assumed that the uncertain peak value with
respect to a certain sample Vp has the same percentage of
getting errors within a certain range, due to the symmet-
rical characteristics of the function. Each of the learning
algorithm inputs are described as a set consists of two el-
ements describing the approximate position predicted by
the vision system. Therefore, a position approximator al-
gorithm, which supposed to be integrated in the vision
system, is needed to produce the specified vision system
outputs. Due to out of the scope of this paper, the inputs
are simply assumed. The two-valued input set determines
the peak of the gaussian function which will determine
the whole function configuration.

Definition 4. (BELIEF FUNCTION) Consider observer
sensors covering all the continuous space, belief function,
affected by observation as parameter, values of samples,
and horizon, is defined as gaussian probability density
function which standard deviation and mean depends on
the two-valued inputs, and denoted as

b(ui) =
1

σ
√

2π
e

−(ui − µ)2

2σ2

where µ as the mean, σ2 as variance, σ as the standard
deviation, and ui as the samples value.

Belief function affects value function V (b, ui). Re-
ward function, which also defined as gaussian probability
density function, affects current and next horizon value.
Having the same formulation with belief function, obser-
vation function, also defined as gaussian probability den-
sity function, affects the only the next horizon value. Ob-
servation function lies within next horizon value alpha′,
determining the iteration sum of each next horizon sam-
pled value.

Definition 5. (BACKUP FUNCTION) Consider taking all
the possible values in the next horizon into the current
horizon, the backup function αh′ describes the sum of all
next horizon sample values available from agent’s cur-
rent state, affected by observation function and reward
functions, and is defined as

α′h′ =
∑
u∈U

α′h′ +R(h, ui) · T (u′i|ui, u′i) ·O(h, ui)

with h′ as the next horizon, and ui as the value of ith
sample.

Transition function T (s′|s, a) is defined as the prob-
ability to reach next state s′, given the current state s
and action taken a. In our case of motion planning, each

of the horizon continuous state is a learning parameter,
which are subjects of decision making. Therefore, be-
cause each learning parameter have to be chosen, the tran-
sition function T (u′i|ui, u′i) is redefined as the transition
probability from current sample to the sample in the next
horizon, taken the action which is sample in the next hori-
zon itself, is always equal to 1.

Definition 6. (VALUE FUNCTION) Given the belief func-
tion b(h, ui, o), reward function R(h, ui) and backup
function αh′ , value function is defined as

V (b, ui) =
∑
o∈O

∑
u∈U

b(h, ui, o) ·R(h, ui) + γ · α′h′

with h′ as the next horizon, and ui as the value of ith
sample.

4.3 Adaptive Point-Based Value Iteration
In this section, imitation learning algorithm Adaptive

Point-Based Value Iteration (APBIt) will be explained.
Basically, the idea is to treat a continuous state as dis-
crete states without permanent discretization, yet decides
which actions to take by performing point-based value it-
eration. With n as the number of samples, Algorithm 1
shows the main routine of the algorithm.

Algorithm 1 Main Routine of APBIt
1: function MAIN(h, Un, On)
Require: hmin, Im, I

n
o , Si, γ

2: U ← uniformSampling(hmin)
3: for all o ∈ On do
4: while h 6= 0 do
5: PBV iteration(h, Un, o)
6: h← h− 1
7: end while
8: end for
9: end function

APBIt performs asynchronous value function compu-
tation for each horizon based on sampling resolution. In
our current progress, uniform sampling was employed,
which will be improved in future works. Vhor which rep-
resents the value of each horizon, is initially set to be −1
so that any value compared with Vhor will be set as max-
imum value Vmax. Variable h assigned as the number of
total horizon, which will be as prerequisite for making a
loop for every available horizon from t, for a t-step policy
tree. Computation of each value function for each sample
is performed by subroutine PBViteration in Algorithm 2.

Based on available samples, which in our current case
performs uniform sampling, PBViteration simply calcu-
lates α, for all samples, continued with value function Vt
computation. In our case of motion planning, we specify
that the # of actions are equals to the # of states based
on the sampling resolution. The sampling resolution can
be adjusted according to needs.

A subroutine calcVal in Algorithm 3 performs α com-
putation, where α is the expected reward value. back
function in Algorithm 4 describes the iteration of ordi-
nary α-vector backup for all samples.

Algorithm 2 Point-Based Value Iteration
1: function PBVITERATION(h, Un, o)
2: for all u ∈ U do
3: α[u]← calcV al(h, u, U)
4: V [u]← b(h, u, o)× α(u)
5: end for
6: Vmax ← maxu∈U [V [u]]
7: s′ ← arg maxa∈A [V [u]]
8: if Vmax > Vhor[h] then
9: statehor[h]← s′

10: Vhor[h]← Vmax

11: end if
12: return statehor[h]
13: end function

Algorithm 3 Value Calculation
1: function CALCVAL(h, u, U)
2: α′ ← back(h, U)
3: α[u]← Rhor(h, u) + γ × α′
4: return α[u]
5: end function

5. Simulation Results and Discussion
5.1 Simulation Setup and Procedure
We simulate our algorithm in a static environment us-

ing V-Rep, a robot simulator, where the environment is
assumed stay still during learning process. A 7-DOF
manipulator with BarrettHandTMModel was used as the
agent. Two identical glass, one filled with water, are set
on a table with the manipulator in initial position.It is
assumed that we already get the input from the vision
sensor which will determine the imitation result. Learn-
ing parameters involved comprises the X, Y, and Z-axis,
which are the manipulator 3D coordinates workspace.
The manipulator is assumed to be capable of performing
a proper grasping of the glass and knows both position
of glass. What we want to achieve is a proper pouring
position after the glass filled in with water is grasped.

During the initial cycle, glass position will be a refer-
ence for pour position of the manipulator. Based on the
glass position, our imitation learning algorithm tries to
determine the pouring position as demonstrated by hu-
mans, which rewards functions are determined by the
informations captured by the vision systems. A three-
step policy tree was specified for the learning parame-
ters, which each horizon comprises the X, Y and Z-axis,

Algorithm 4 Backup Operation
1: function BACK(h, u, U)
2: α′ ← 0
3: for all u ∈ U do
4: α′ ← α′ +

(Rhor(h− 1, u)× T ()× Z(h− 1, u))
5: end for
6: return α′
7: end function

Table 1 Learning Input Parameters

Input (mm)
Sensor x y z
Main min 35 40 36

max 44 44 42
Observer 1 min 33 41 33

max 40 44 40
Observer 2 min 31 37 38

max 47 41 45
Observer 3 min 32 40 39

max 42 47 46
Range min 0 0 0

max 150 300 150

shown in Figure 3. New learning parameter can be added
in the decision making process below the range of Z-axis.
In our algorithm, we need only to specify the range of
the learning parameters. By performing a uniformly dis-
tributed random sampling according to predefined num-
ber of samples, our algorithm perform point-based value
iterations, according to the samples obtained.

x0

y0

z0 · · · zn−1

· · · · · · · · · yn−1

z0 · · · zn−1

Fig. 3 Three-step policy tree of n-samples of learning
parameters

5.2 Simulation Result
The input range from both main and observer sensors

is to be assumed, shown in Table 1. We performed sev-
eral separate simulations using a pseudorandom number
generator (PRNG) with different amount of samples.
Our algorithm was verified using 3D simulation, which
result depicted in Figure 4 shows the performance using
the converged output value, considering that the output of
POMDP is the optimal policy tree π∗.

From Table 2, during 20 random samples, we can
compare the output which shows the cartesian coordinate
(x, y, z) = (32, 32, 32) with the input from main and ob-
server sensor. Overall, the output coordinate (32, 32, 32)
is not the optimal policy considering that the prediction of
each sensors that the optimal policy lies somewhere be-
tween the (min,max) range (not necessarily in the mid-
dle). We notice that during 54 samples above, the output
policy starts to converged. If we need to check the op-
timal policy for a certain input sets, all we have to do
is just perform a fine discretization, which analogous to
sample every single unit Since the smallest unit is 1mm,

(a)Goes to intermediate position (b)Lift the glass and go to the posi-
tion based on POMDP results

(c)Delay to make sure every water
particles have been poured

(d)Release the glass and goes to in-
termediate position

Fig. 4 Pouring simulation result

Table 2 Simulation Result

Output (mm)
of Samples x y z
20 32 32 32
40 39 39 39
50 39 40 40
54 39 41 40
60 39 41 40
80 39 41 40
100 39 41 40
150 37 43 40
300 37 43 40

Seed = 1.98

we put 1 sample every 1mm. When we tested with 150
samples or even 300 samples (which means for the range
(0, 150), every unit has 1 additional useless sample), the
optimal policy for the assumed input sets are (37, 43, 40).
To analyze them, we defined the output of 300 samples
as the optimal policy for the particular input sets. If we
compare the output coordinates of 54 samples with the
optimal policy, the x and y position only differs 2mm,
but the efficient samples needed to reach convergece is
54 samples. Therefore, we can say that the suboptimal
policy is when the random samples is 54 for the particu-
lar input sets.

6. Conclusion

This paper presents new approach of imitation learn-
ing algorithm based on point-based value iteration which
deals directly with continuous states POMDP using uni-
form sampling. Since our main objective is to perform
a sequential decision making to achieve a sufficiently-
good goal directed imitation learning, the simulation re-
sult shows that according to the sensor input (which is
assumed in this case), even with uncertainty and a suf-
ficient number of samples, we can perform sufficiently-
good goal directed imitation learning. Various interesting
things can be improved or added in this research, such
as different grasping position even with the same target
pouring position, adding more learning parameter such
as pouring speed and angle, sampling optimization using

MonteCarlo Method, or other numerical methods, con-
sidering feedbacks from human to improve the imitation
performance.

References
[1] Cassandra, A.R. and Kaelbling, L P and Littman,

M L, “Acting optimally in partially observable
stochastic domains”, Proceedings of the National
Conference on Artificial Intelligence, pp. 1023–
1023, 1995.

[2] Williams, J.D., “A case study of applying decision
theory in the real world: POMDPs and spoken dia-
log systems”, 2010.

[3] Hsu, D. and Lee, WS, “A point-based POMDP plan-
ner for target tracking”, International Conference
on Robotics and Automation, 2008.

[4] Kurniawati, H. and Hsu, D. and Lee, W.S., “SAR-
SOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces”,
Proc. Robotics: Science and Systems, 2008.

[5] V-REP, 3D Robot Simulator,
http://www.coppeliarobotics.com, may 2012.

[6] Bertsekas, Dimitri P, “Dynamic programming and
optimal control”, 1995.

[7] Littman, M L, “The witness algorithm: Solving par-
tially observable Markov decision processes”, PhD
Thesis, Brown University, Providence, RI, 1994

[8] Roy, N and Gordon, G and Thrun, S, “Find-
ing Approximate POMDP solutions Through Belief
Compression”, Journal of Artificial Intelligence Re-
search, Vol. 23, 2005

[9] Thrun, S, “Monte Carlo POMDP”, Advances in
Neural Information Processing Systems Vol. 12, pp.
1064-1070, 2000

[10] Brooks, Alex M, “POMDPs for Planning in Contin-
uous State Spaces”, PhD Thesis, 2006

[11] Zhou, E. and Fu, M.C. and Marcus, S.I., “Solving
continuous-state POMDPs via density projection”,
IEEE Transaction on Automatic Control, Vol. 55,
NO. 5, MAY 2010

[12] Collins, M. and Dasgupta, S. and Schapire, R.E., “A
generalization of principal component analysis to
the exponential family”, Advances in Neural Infor-
mation Processing Systems, Vol. 14, pp. 617-624,
2001

