
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Novel Strategies for Searching RC4 Key Collisions

Author(s) Chen, Jiageng; Miyaji, Atsuko

Citation
Computers & Mathematics with Applications, 66(1):

81-90

Issue Date 2013

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/11416

Rights

NOTICE: This is the author's version of a work

accepted for publication by Elsevier. Jiageng

Chen, Atsuko Miyaji, Computers & Mathematics with

Applications, 66(1), 2013, 81-90,

http://dx.doi.org/10.1016/j.camwa.2012.09.013

Description

Novel Strategies for Searching RC4 Key CollisionsI

Jiageng Chen1

School of Information Science, Japan Advanced Institute of Science and Technology, 1-1,

Asahidai, Nomi, Ishikawa, 923-1292, Japan

Atsuko Miyaji2

School of Information Science, Japan Advanced Institute of Science and Technology, 1-1,
Asahidai, Nomi, Ishikawa, 923-1292, Japan

Abstract

The property that the stream cipher RC4 can generate the same keystream
outputs under two different secret keys has been discovered recently. The
principle that how the two different keys can achieve a collision has been
studied in the previous researches by investigating the key scheduling algo-
rithm of RC4. However, how to find those colliding key pairs is a different
story, which has been largely remained unexploited. Previous researches have
demonstrated that finding colliding key pairs becomes more difficult as the
key size decreases, and also finding key collisions can be related to key re-
covery attacks and hash collisions. In this paper, we propose novel searching
techniques which can be used to find short colliding key pairs that belong
to two different kind of colliding key patterns efficiently. The colliding key
pairs we find in both patterns are by far the shortest ones ever found.

Keywords: RC4, Key Collision, Searching Algorithm, Transitional Pattern,
Self-Absorbing Pattern.

1. Introduction

The stream cipher RC4 is one of the oldest and most wildly used stream
ciphers in the world. It has been deployed to innumerable real world appli-

IThe preliminary version will be presented at ISC2011 [3].
1The author is supported by GRP program, JAIST.
2This study is partly supported by Grant-in-Aid for Scientific Research (B), 20300032.

Preprint submitted to Computers & Mathematics with Applications March 27, 2012

cations including Microsoft Office, Secure Socket Layer (SSL), Wired Equiv-
alent Privacy (WEP), etc. Since its debut in 1994 [1], many cryptanalysis
works have been done on it, and many weaknesses have been exploited, such
as [8] [9] and [10]. However, if RC4 is used in a proper way, it is still considered
to be secure. Thus it is still considered to be a high valuable cryptanalysis
target both in the industrial and academic world.

In this paper, we focus on exploiting the weakness that RC4 can gen-
erate colliding key pairs, namely, two different keys will result in the same
keystream output. This weakness was first discovered by [2] and later gen-
eralized by [5]. The key collisions itself can cause trouble if the adversary
is well aware of the pattern and he can target the secret key generation al-
gorithm so that although different keys are generated, they have the same
encryption and decryption effects. The existence of the colliding key pairs has
been known but how to find those special keys are to some degree remained
unexploited. To efficiently find colliding key pairs is of both theoretical and
practical interests. It has been demonstrated that for short key length 16
to 32 bytes which is also the length used in most of the real world applica-
tions, the number of the colliding key pairs is so small compared with the
key space so that it is impossible to find them by just brute force search-
ing given the current computing resources. Also if we can find key collision
efficiently, in other words, we can identify which key has a related one to
form a collision, then when perform brute force searching, we do not need to
check that related one. This can help speeding up the brute force searching
for the correct secret key. Another motivation comes from the key recovery
attack described in [7], whose complexity depends heavily on how fast we
can find those colliding key pairs. In [12], a hash function based on RC4 was
proposed. The general idea is that the key scheduling part (KSA algorithm)
of RC4 has a similar structure to a hash function (secret key is replaced by
message) and by extending with some necessary parts, hash function can be
achieved. Finding key collisions efficiently in other words demonstrates a
general attack on hash functions based on the RC4 structure, which is dif-
ferent from the specific attack proposed in [13]. All the above points explain
our motivation to investigate how to efficiently search the RC4 colliding key
pairs.

Our main contribution is proposing a searching algorithm that can find
short colliding key pairs efficiently for both of the known RC4 colliding key
patterns, namely, Transitional pattern and Self-Absorbing pattern [4]. Al-
though it has been demonstrated that colliding keys of Transitional pattern

2

is relatively easier to find than the ones of Self-Absorbing pattern, to find
short colliding key pairs (under 64-bytes) by brute force searching is almost
impossible. In [2], 24-byte colliding key pair of Transitional pattern were
found in about ten days time by using multi-cores. In this paper with our
new proposed methods, even shorter 22-byte colliding key pair of Transitional
pattern can be found within only 5 hours on a normal desktop PC, and also
39-byte colliding key pairs of Self-Absorbing pattern are found within only 5
seconds time.

We organize the paper as follows. In Section 2, we give a short introduc-
tion on RC4 algorithm and the details on the key collisions in both patterns.
In Section 3, new proposed algorithm for searching key collisions in Tran-
sitional pattern is covered, along with the previous results from [2]. We
also show the complexity evaluations of the two algorithms to compare the
efficiency. Section 4 then covers the searching techniques for finding key col-
lisions in Self-Absorbing pattern. Finally the Conclusion is given in Section
5.

2. RC4 algorithm and Key Collisions

First we shortly describe the RC4 algorithm. The internal state of RC4
consists of a permutation S of the numbers 0, ..., N − 1 and two indices
i, j ∈ {0, ..., N − 1}. The index i is determined and known to the public,
while j and permutation S remain secret. RC4 consists of two algorithms:
The Key Scheduling Algorithm (KSA) and the Pseudo Random Generator
Algorithm (PRGA). The KSA generates an initial state from a random key K
of k bytes as described in Algorithm 1. It starts with an array {0, 1, ..., N−1}
where N = 256 by default. At the end, we obtain the initial state SN−1.
Once the initial state is created, it is used by PRGA. The purpose of PRGA
is to generate a keystream of bytes which will be XORed with the plaintext
to generate the ciphertext. PRGA is described in Algorithm 2. Since key
collision is only related to KSA algorithm, we will ignore PRGA in the rest
of the paper.

3

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] + K[i mod l]
7: swap(S[i], S[j])
8: end for

Algorithm 2. PRGA
1: i← 0
2: j ← 0
3: loop
4: i← i + 1
5: j ← j + S[i]
6: swap(S[i], S[j])
7: Output zi = S[S[i] + S[j]]
8: end loop

The weakness of key collision was first discovered by [2], and then different
patterns have been discovered by the following researches such as [5], [7]
and [4]. Especially [4] generalized the key collision and concluded into two
patterns, namely, Transitional Pattern and Self-Absorbing Pattern, and the
key collisions discovered so far can be covered by either of the patterns. One
of the most important theorem from [4] states that the colliding key pairs
become more difficult to find as the key length becomes shorter, and the
hamming distance (the number of locations that two keys differ from each
other) becomes larger in both patterns. Thus we only focus on finding the
colliding key pairs with the smallest hamming distances, and as short as
possible to cover the real world applications.

Brute force search is always the most trivial way in cryptanalysis. Here
we give the brute force attack only to give an intuition on how difficult to
find key collisions. The attacker simply generates a random secret key K
with length k, and runs the KSA to test its random variable j’s behavior. If
the trial fails, then repeat the procedure until one colliding key pair is found.
For Transitional Pattern in [2], it has been demonstrated that for each trial,
the successful probability is around (1

256
)n+2. Thus the complexity for the

brute force searching is as high as 2104 for 22-byte keys. For Self-Absorbing
Pattern, it has been shown that it is even harder to find, thus the complexity
would be even higher.

A searching algorithm was proposed by Matsui, and 24-byte is the short-
est colliding key pair found. However, no complexity evaluation was given
by the author, and it is not trivial to see. In section 3.6, we give the com-
plexity evaluation on both our algorithm and Matsui’s algorithm to compare
the efficiency. Here we make a short introduction on his searching tech-
nique which is described in Table 1. It defines a search function with two
related keys as input, and output a colliding key pair or fail. When some

4

trial fails to find the colliding key pair, the algorithm does not restart by
trying another random related key pair, instead, it modifies the keys as
K1[x] = K1[x] + y,K1[x + 1] = K1[x + 1] − y for every x and y. Since
jx = jx + y and jx+1 = jx + Sx[x + 1] + K1[x], thus jx+1 after the modifi-
cation will not be changed. This means that by modifying in this way, the
next trial will have a relatively close relation with the previous trial, in other
words, if the previous trial before the modification tends to achieve a colli-
sion, then the next trial after the modification will also have the tendency.
The algorithm recursively calls the function Search(K1, K2) until it return
a colliding key or fail. We will take advantage of this idea to combine with
our proposed method to achieve the best searching efficiency, which will be
covered in detail in section 3.5.

3. How to find key collisions in Transitional Pattern

3.1. Transitional Pattern

In [2], it clearly described how two keys K1 and K2 with the only one
difference K2[d] = K1[d] + 1 can achieve a collision. It traced two KSA
procedure and two S-Box states generated by the two keys, and pointed out
how two S-Box states become equal to each other at the end of the KSA.
Actually, the essence of the key collisions is only related to some j values
at some specific locations. If these conditions once satisfied, a collision is
expected. Thus we prefer to use another way to explain the collision by listing
all the j conditions. In this way, we only need to exam the behavior of one
key, since once the j values generated by this key satisfy all the conditions,
then deterministically, there exists another key that they form a colliding
key pair. To simplify, we check whether a given key K1 has a related key K2

such that K2[d] = K1[d] + 1 and K1 and K2 can achieve a collision. Then
all we need is to confirm whether K1’s j behaviors satisfy the conditions in
Table 1.

The Round column presents the round number in the KSA steps in the
Round Interval column. There are n = b256+k−1−d

k
c rounds, which is also the

times that the key difference repeats during KSA. We separate the conditions
into two categories, Classes 1 and 2. From Table 1, you see that the conditions
in Class 1 column are computational dominant compared with Class 2. This
is because for j at some time to be some exact value, probability will only
be 2−8 assuming random distribution, while not equal to some exact value
in Class 2 has a relatively much higher probability. Also the main point for

5

Table 1: Matsui’s Algorithm [2]

Input: Key length k, d = k − 1

Output: colliding key pair K1 and K2 such that K2[d] = K1[d] + 1,

K1[i] = K2[i] if i 6= d, KSA(K1) = KSA(K2).

1: Generate a random key pair K1 and K2 which differs at position d by one.

Set K1[d + 1] = K2[d + 1] = k − d− 1.

2: Call function Search(K1,K2), if Search(K1,K2)=1, collision is found, else goto 1.

Search(K1,K2) :

s = MaxColStep(K1,K2)

If s == 255, then return 1.

MaxS = maxx,yMaxColStep(K1〈x, y〉,K2〈x, y〉)
If Maxs ≤ s, then return 0.

C=0

For all x and y, do:

If MaxColStep(K1〈x, y〉,K2〈x, y〉) = MaxS, call Search(K1,K2)

C = C + 1

If C == MaxC, then return 0.

Notations:

MaxColStep(K1,K2): The maximal steps at which the number of S-Box that S1 differs

from S2 is at most two.

K〈x, y〉 : K[x] = K[x] + y,K[x + 1] = K[x + 1]− y, K[i] = K[i] if i 6= x, x + 1.

finding a colliding key pair is how to meet those low probability conditions in
Class 1 column. In the rest of the paper, we focus on the Class 1 conditions.
When we say a KSA procedure (a trial) under some key K passes round i
and fails at round i + 1, we indicate that all the Class 1 j conditions are
satisfied in the previous i rounds and fails at the i + 1-th round.

3.2. Bypassing the first round deterministically

Our first observation is that we can pass the first round. Recall that in
the first round, there are two j conditions in Class 1 that we need to satisfy,

6

Table 2: j conditions for Transitional Pattern

Round Round Interval Class 1 Class 2
1 [0, d + 1] jd = d, jd+1 = d + k j0∼d−1 6= d, d + 1
2 [d + 2, d + k] jd+k = d + 2k jd+2∼d+k−1 6= d + k
...
t [d + (t− 2)k + 1, jd+(t−1)k = d + tk jd+(t−2)k+1∼d+(t−1)k−1 6=

d + (t− 1)k] d + (t− 1)k
...
n− 1 [d + (n− 3)k + 1, jd+(n−2)k = (d− 1) + (n− 1)k jd+(n−3)k+1∼d+(n−2)k−1 6=

d + (n− 2)k] d + (n− 2)k
n [d + (n− 2)k + 1, jd+(n−1)k−2 = S−1

d+(n−1)k−3[d], jd+(n−2)k+1∼d+(n−1)k−3 6=
d + (n− 1)k − 1] jd+(n−1)k−1 = d + (n− 1)k − 1 d + (n− 1)k − 1

namely
jd = d and jd+1 = k + d

As in [2], the setting of K[d + 1] = k − d− 1 always meets the condition
jd+1 = k + d since we have jd+1 = jd + d + 1 + K[d + 1]. But still we have
another condition jd = d left in the first round. Thus we add the following
key modification:

K[d] = 256− jd−1

at the time when KSA is proceeded at index d−1 after the swap. As a result,
since jd = jd−1 +d+K[d] = d, and by modifying K[d] dynamically when the
previous value jd−1 is known, jd = d will always be satisfied. Then we can
bypass the first round and reduce the necessary number of rounds to n− 1.

3.3. Bypassing the second round with high probability

If we choose the differential key index carefully, we find that the second
round can also be skipped with very high probability compared with the
uniform distribution. Generally speaking, we would like to choose d = k − 1
so that in the KSA procedure, the key differential index will be repeated as a
few times as possible. Actually choosing the d at the indices close to k−1 will
have the same affect as the last index k−1. For example, for key with length
20-24 bytes, setting the key differential at indices k − 1, k − 2, k − 3, k − 4

7

will cause the key differential index to be repeated the same times during the
KSA. Thus instead of setting d = k − 1, let’s set

d = k − 3

so that after d, we have another two key bytes. For the first and second
round, the following two j conditions are necessary to meet:

jd+1 = jk−2 = 2k − 3

jd+k = j2k−3 = 3k − 3

and we have

j2k−3 = jk−2 + K[k − 1] +
k−3∑
i=0

K[i] +
2k−3∑
i=k−1

Si−1[i] (1)

P2nd= jk−2 + K[k − 1] +
k−3∑
i=0

K[i] +
2k−3∑
i=k−1

Sk−2[i] (2)

Thus by modifying

K[d + 2] = K[k − 1] = j2k−3 − jk−2 −
k−3∑
i=0

K[i]−
2k−3∑
i=k−1

Sk−2[i]

at the time i = k − 2 after the swap, with probability

P2nd =
256− (k − 2)

256
× 256− (k − 3)

256
× · · · × 256− 1

256
=

k−2∏
i=1

256− i

256

we can pass the second round.
This can be explained as follows. For two fixed j values jk−2 in the first

round, and j2k−3 in the second round, we have equation (1). At the time i =
k− 2 after the swap, we don’t know

∑2k−3
i=k−1 Si−1[i], but we can approximate

it by using
∑2k−3

i=k−1 Sk−2[i]. The conditions on this approximation is that for
i ∈ [k− 1, 2k− 4], j does not touch any indices [i+ 1, 2k− 3], which gives us
the probability P2nd. Then if we set the K[d+ 2] as before, with P2nd we can
pass the second round. Notice that the reason why we can modify K[d + 2]
is related to the choice of d. When modifying K[d + 2], we don’t wish the

8

modification will affect the previous execution, which has been successfully
passed. When modifying K[d+2] trying to meet the second round condition,
this key byte is used for the first time during KSA, thus we won’t have the
previous concern. For short keys such as k = 24, P2nd = 0.36, and for k = 22,
P2nd = 0.43. The successful probability is thus much bigger compared with
the uniform probability 2−8 = 0.0039.

3.4. Reducing the complexity in the last round

In the last round, there are two j conditions need to be satisfied, namely,

j(n−1)k+d−2 = r such that S(n−1)k+d−3[r] = d

j(n−1)k+d−1 = d + (n− 1)k − 1

And from j(n−1)k+d−1 = j(n−1)k+d−2 +S(n−1)k+d−2[(n−1)k+d−1] +K[d−1],
K[d−1] can be decided if j(n−1)k+d−2 is fixed to some value. During the KSA
procedure, j(n−1)k+d−2 could be touching any indices, but with overwhelming
probability, it will touch index d. This is because after step i = d, one of the
two S-Box differentials will be staying at index d till step i = (n−1)k+d−2
unless it is touched by any j during the steps [d + 1, (n− 1)k + d− 3]. Thus
we can assume that

j(n−1)k+d−2 = d

and we can thus modify K[d−1] at step i = d−1 before the swap as follows:

K[d− 1] = j(n−1)k+d−1 − j(n−1)k+d−2 − S(n−1)k+d−2[(n− 1)k + d− 1] =
(n− 1)k + d− 1− d− (d + 1) = (n− 1)k − d− 2

This modification indicates that if some trial meets the j(n−1)k+d−2 = d
condition in the last round, then with probability 1, the other condition in
this round on j(n−1)k+d−1 will be satisfied. Simply speaking, 216 computation
cost is required to pass the final round, while we reduce it to

Plast = 28 × (
255

256
)−((n−1)k−3)

For a 24-byte key, the computation cost can be reduced to around 29.2, which
is a significant improvement. The overall cost will be covered in the next
section, here we just demonstrate to give a intuition.

9

3.5. Multi-key modification

In the area of finding hash collisions, multi-message modification is a
widely used technique that first proposed by [11]. MD5 and some other hash
functions are broken by using this technique. The idea is that when modifying
the message block at some later round i to satisfy the i-th round conditions,
leaving the previous rounds conditions satisfied (in hash functions, a message
block is usually processed for many rounds in different orders). Compared
with finding hash collisions, the essence of the Algorithm is actually very
similar to the multi-message modification, thus we call it multi-key modifi-
cation. This is because for the round i > 1, if we want to modify the key to
satisfy the i-th round conditions, almost for sure we will violate the previ-
ous round conditions. In Matsui’s algorithm, by adding to the values of the
consecutive two indexes with +y and −y difference, the previous satisfied
conditions with still hold with high probability. Since this technique does
not conflict with our previous mentioned ones, we can take advantage of this
multi-key modification to enhance our searching efficiency. One thing to take
care is that we restrict x to the range [0, d− 3] so that the key modification
will not violate our previous modifications. Then we derive our algorithm for
searching colliding key pairs in the Transitional Pattern, which is described
in Table 3.

3.6. Complexity evaluation

We will see from a theoretical point of view, how efficiently our proposed
algorithm can perform. Since we combine Matsui’s algorithm, the analysis
we give here can also be adapted to [2], in which no complexity was given.
We start by giving the following theorem which is important to compute the
complexity, and show the proof.

Theorem 1. Define Prt,(x,y) be the probability for a trial that passes round
t (t ≥ 2) by modifying the secret key as K[x] = K[x] + y,K[x + 1] = K[x +
1] − y according to the multi-key modification given the previous trial fails
to pass the t-th round. And assuming the probability to satisfy the Class 1 j
conditions in the t-th round is Rt, then

10

Table 3: Our Key Collision Searching Algorithm for Transitional Pattern

Input: Key length k, different index d = k − 3, n = b 256+k−1−d
k c

Output: K1 and K2 such that K2[d] = K1[d] + 1, K1[i] = K2[i] if i 6= d,

KSA(K1) = KSA(K2)

1: Store the following j∗ values in the table, which are the conditions needed to be

satisfied. j∗d = d, j∗d+1 = k + d, j∗i = i + k for i ∈ {d + k, ..., d + k(n− 2)},
j∗d−2+k(n−1) = d, j∗d−1+k(n−1) = d− 1 + k(n− 1). (Class 1 j conditions)

2: Randomly generate a key K1 with key length k. Modify

K1[d− 1] = (n− 1)k − d− 2, K1[d + 1] = k − d− 1.

Set K2 = K1 and K2[d] = K1[d] + 1.

3: Run the KSA until i = d− 1 after the swap. Modify K1[d] = 256− jd−1, and

K2[d] = K1[d] + 1.

4: Keep running the KSA until i = d + 1 after the swap. Modify

K1[d + 2] = j∗2k−3 − j∗k−2 −
∑k−3

i=0 K1[i]−
∑2k−3

i=k−1 S1,k−2[i]

K2[d + 2] = j∗2k−3 − j∗k−2 −
∑k−3

i=0 K2[i]−
∑2k−3

i=k−1 S2,k−2[i]

5: Set the recursive depth variable R = 0.

6: If TranSearch(K1, K2)==n

Colliding key pair found. Output K1 and K2.

Else goto 2.

TranSearch(K1,K2):

If (MaxR = Round(K1,K2)) == n, then return n.

For x from 0 to d− 3 do

For y from 0 to 255 do

K1[x] = K1[x] + y,K1[x + 1] = K1[x + 1]− y

K2[x] = K2[x] + y,K2[x + 1] = K2[x + 1]− y

If Round(K1,K2) ≤MaxR or R = n

Return Round(K1,K2)

Else R = R + 1, TranSearch(K1,K2)

Notation

Round(K1,K2) : The number of rounds that a key pair K1,K2 can pass. In other

words, key pair K1 and K2 satisfy all the j conditions in the first

Round(K1,K2) rounds.

11

Prt,(x,y) ≈

(
(
256− (n− 2)k − d + x

256
)4 −

t−1∑
i=2

(
(1− (

256− (t− i− 1)k − d + x

256
)4) ·

i−1∏
j=1

(
256− (t− j − 1)k − d + x

256
)4

))
·Rt

Proof 1. Now let’s consider some trial that passes all the first t− 1 rounds
and fails to pass the t-th round. Then we modify the secret key at indices
x and x + 1 with value difference y so that K[x] = K[x] + y,K[x + 1] =
K[x + 1] − y. Let’s denote j

′
s,x, j

′
s,x+1 and js,x, js,x+1 be the j values for the

current trial and the trial after the key modification at the modified key indices
at round s. It is easy to see that for each such key modification, the change
of the 4 j values at each round will cause 4 S-Box values to be changed.

For the trial before the key modification, the successful pass of the first t−1
rounds indicates the correct S-Box sum for some fixed key sum

∑k−1
i=0 K[i].

Since our modification doesn’t change the key sum, thus, after the key mod-
ification, the previous correct S-Box sum should still be satisfied in order to
have a chance to pass the t-th round. Otherwise, the key modification will
only cause a failure at an rather early round. For example if the previous trial
passes the first t− 1 rounds, for the key modification in round 1 ≤ s ≤ t− 1
(assuming this key modification passes all the previous s-1 rounds), the S-

Box sum
∑(t−1)k−1

i=x+(s−1)k Si−1[i] should not be violated by the 4 changed j values

j
′
s,x, j

′
s,x+1 and js,x, js,x+1.

First let’s consider the probability that due to the key modification that
the previous correct S-Box sum is violated. The modification is processed in
the same order as the KSA procedure. And notice that in each round, due
to the key modification, we have 4 changed j values, and they are checked in
the sequence j

′
s,x, js,x, j

′
s,x+1, js,x+1 whether the failure conditions are satisfied.

Notice that due to the use of the multi-key modification technique, the S-Box
sum in the t-th round can not be touched since we have already precomputed
the sum and are expecting the corresponding swap. The following events
define the S-Box intervals that once touched, the previous correct S-Box sums
will be violated due to the modification in round s.

• As : j
′
s,x ∈ [x+(s−1)k, (t−2)k+d] (the original j

′
s,x violates the S-Box

sum
∑(t−2)k+d

i=x+(s−1)k Si−1[i])

12

• Bs : js,x ∈ [x + (s − 1)k, (t − 2)k + d] (the newly modified js,x violates

the S-Box sum
∑(t−2)k+d

i=x+(s−1)k Si−1[i]))

• Cs : j
′
s,x+1 ∈ [x + (s− 1)k + 1, (t− 2)k + d] (the original j

′
s,x+1 violates

the S-Box sum
∑(t−2)k+d

i=x+(s−1)k+1 Si−1[i])

• Ds : js,x+1 ∈ [x + (s− 1)k + 1, (t− 2)k + d] (the newly modified js,x+1

violates the S-Box sum
∑(t−2)k+d

i=x+(s−1)k+1 Si−1[i])

Denote Pr(Ss) to be the probability that the modification in round s will
not break the Class 1 j conditions that have been satisfied in the previous
trial.

Pr(Ss) = (1− Pr(As)) · (1− Pr(Bs)) · (1− Pr(Cs)) · (1− Pr(Ds))

= Pr(Ās) · Pr(B̄s) · Pr(C̄s) · Pr(D̄s)

Denote Pr(Fs) to be the probability that the modification in round s will
break the Class 1 j conditions that have been satisfied in the previous trial so
that the current trial fails to pass round t.

Pr(Fs) = 1− Pr(Ss)

The exact values for the four events can be computed as follows for s ≥ 1:

Pr(As) = Pr(Bs) =
(t− s− 1)× k + d− x + 1

256

Pr(Cs) = Pr(Ds) =
(t− s− 1)× k + d− x

256

Then the total probability that after the key modification the trial fails to
pass the t− 1-th round can be computed as follows:

Pr(F) = Pr(F1) + Pr(S1) · Pr(F2) + · · ·+
t−2∏
i=1

Pr(Si) · Pr(Ft−1)

Thus the probability that for some key modification succeeds to pass the
t−1-th round while these t−1 rounds are also cleared before the modification
is

Prt−1,(x,y) = 1− Pr(F)

13

Given the probability Rt to satisfy the Class 1 j conditions in the t-th
round, the probability to pass the first t rounds is thus

Prt,(x,y) = Prt−1,(x,y) ×Rt

After replacing with detailed parameters we complete our proof.

Based on Theorem 1, we can compute the complexity of finding key col-
lisions in the Transitional Pattern by using our algorithm and the Matsui’s
algorithm. The main difference between ours and Matsui’s algorithm is that
we are able to bypass the first and second round almost deterministically
and reducing the last round complexity. In other words, the total number
of rounds can be approximately reduced to n− 2 in our case (namely, n− 2
is the last round). And Rn−2 ≈ 2−9.2 for our algorithm while Rn ≈ 2−16 for
Matsui’s algorithm due to the reducing of the last round complexity (only
one j condition is required instead of two in [2]’s case). Thus we are ready
to have the following two theorems.

Theorem 2. The complexity to find a colliding key pair with key length k
using our algorithm is

CTranNew ≈ (Prn−2,(x̄,ȳ))
−1

where Prn−2,(x̄,ȳ) is the average case on all possible x and y, and Rn−2 ≈ 2−9.2,
n = b256+k−1−d

k
c, d = k − 3.

Theorem 3. The complexity to find a colliding key pair with key length k
using Matsui’s Algorithm is

CTranMatsui ≈ (Prn,(x̄,ȳ))
−1

where Prn,(x̄,ȳ) is the average case on all possible x and y, and Rn ≈ 2−16

n = b256+k−1−d
k

c, d = k − 1.

We run the experiment under our proposed algorithm and successfully
find by far the shortest 22-byte colliding key pair in only 5 hours compu-
tational time by using normal desktop PC (Intel i7 2.80 GHz). In case of
Matsui’s Algorithm, around 10 days computational time and multiple cores
were used (the detailed information was not published) to find a 24-byte col-
liding key pair. Also, our proposed algorithm has a better efficiency searching

14

for other short colliding keys which seems difficult to find by using the Mat-
sui’s algorithm. Here is the concrete 22-byte colliding key pair found by us
in hexadecimal form:

K1(K2) : A2 27 43 A7 03 94 2F 17 75 BB A7 27 8F DD 3E 7B C6 A1 C7
81(82) 02 5A

We also summarize the complexity cost given by the previous theorems in
the following figure to show the trend of the complexity to find the colliding
key pairs and the key length of both algorithms. Note that the complexity
for finding 22-byte colliding key pairs by using our algorithm is around 230.3

which gives a nice explanation of the 5 hours execution time. Also the com-
plexity for finding 24-byte colliding key pairs by using Matsui’s Algorithm is
around 248.6, which is also a reasonable evaluation given it’s running time.

Figure 1: Complexity for finding colliding key pairs for Transitional Pattern

4. How to find colliding key pairs in Self-Absorbing Pattern

In this section, we will demonstrate how to find colliding key pairs in
Self-Absorbing pattern. This pattern has a greater hamming distance (the
number of key byte that differ from each other) than Transitional pattern,
and it has been shown that it is more difficult to find those colliding key pairs
than in this pattern (due to the increasing of the j conditions). However, we
find out that the increasing of the hamming distance on the other hand will
have a positive effect on searching those colliding key pairs. In general, we
discover that the j conditions will actually form some relations that affect

15

Table 4: j&S-Box conditions for Self-Absorbing Pattern

Round Round Interval j conditions S-Box conditions
1 [0, d + t] jd = d, jd+t = d + t Sd−1[d] = Sd−1[d + t]− t
2 [d + t + 1, d + t + k] jd+k = d + k, Sd+k−1[d + k] =

jd+k+t = d + k + t Sd+k−1[d + k + t]− t
...
n [d + (n− 1)k + t + 1, jd+(n−1)k = d + (n− 1)k, Sd+(n−1)k−1[d + (n− 1)k] =

d + (n− 1)k + t + k] jd+(n−1)k+t = d + (n− 1)k + t Sd+(n−1)k−1[d + (n− 1)k + t]− t

each other, and by satisfying those relations, the number of j conditions can
be reduced. Although the shortest one we find is still in the Transitional
pattern, this novel technique gives us a potential option which should be
taken into consideration during the collision search, and it also shows that the
increasing of the hamming distance will not always grantee a hard searching
time.

4.1. Self-Absorbing Pattern

The existence of colliding key pairs in Self-Absorbing pattern was first
theoretically and experimentally demonstrated in [6], and later generalized
by [4]. Different from Transitional patterns, the internal state differences
are generated and absorbed within one key appearance, which will not be
propagated to the later phase. Again, we still consider the simplest case
where the two keys differ from each other at three locations (this is also
the smallest hamming distances required by this pattern). Two keys K1

and K2 are related in the following way: K2[d] = K1[d] + t,K2[d + 1] =
K1[d + 1] − t,K2[d + t + 1] = K1[d + t + 1] + t, where d is the first index
that differs from each other, and t is the value difference. To characterize
the collision in this pattern, both j and S-Box conditions are required. We
summarize them as follows:

The j conditions are much more difficult to satisfy than the S-Box condi-
tions. This is because as long as the two corresponding S-Box elements are
not touched before i touches them, then the S-Box conditions will hold, and
this will occur with very high probability than j conditions.

4.2. Some special properties behind the Self-Absorbing Pattern

Besides the parameter d, we have the freedom to choose another parame-
ter t in the Self-Absorbing Pattern. In the previous section, we have already

16

seen how the selecting of d will affect the searching efficiency. Similarly, we
find that the selection of t will also affect the searching process. Let’s first
demonstrate the first two rounds of KSA. In the first round, we have following
conditions to satisfy:

jd = d, jd+t = d + t and Sd−1[d] = Sd−1[d + t]− t

Since in the first round, with very high probability that Sd−1[d] = d and
Sd−1[d + t] = d + t, then from jd+t = jd +

∑d+t
i=d+1 K[i] +

∑d+t
i=d+1 Si−1[i] we

can derive

d+t∑
i=d+1

K[i] = t−
d+t∑

i=d+1

Si−1[i] (3)

Then let’s look at the situation in the second round. In the second round,
the condition we need to satisfy is as follows:

jd+k = d + k, jd+k+t = d + k + t and Sd+k−1[d + k] = Sd+k−1[d + k + t]− t

Then from jd+k+t = jd+k +
∑d+t

i=d+1 K[i] +
∑d+k+t

i=d+k+1 Si−1[i] and equation (6),
we can derive the following relation:

d+t∑
i=d+1

Si−1[i] =
d+k+t∑

i=d+k+1

Si−1[i] (4)

And this can be easily generalized to get the following relations by analyzing
in the same way:

d+t∑
i=d+1

Si−1[i] =
d+k+t∑

i=d+k+1

Si−1[i] = · · · =
d+(n−1)k+t∑

i=d+(n−1)k+1

Si−1[i] (5)

This means that in each round, the sum of some S-Box values should equal
to each other. The most important aspect is that we have transformed one
of the j conditions in each round to the S-Box conditions in (8). Namely,
if we can satisfy one of the j conditions and the S-Box conditions, then the
dominant round conditions can be cleared. Now it is the time to come back
to the t parameter. If t is big, then it seems that we can do very little to
the S-Box sum conditions. However, when t becomes small, the number of
S-Box elements involved in the sum is thus limited, and we can to some
degree predict the exact values of those S-Box elements.

17

4.3. Novel searching techniques

Now let’s see how to take advantage of the previous properties. The Self-
Absorbing pattern tells us that t can be as small as 2, so let’s first fix t = 2.
Then after the first round, the following conditions must be satisfied:

Sd−1[d] = d, Sd−1[d + 1] = d + 1, Sd−1[d + 2] = d + 2 (6)

K[d + 1] + K[d + 2] = 256− 2d− 1 (7)

For (9), it is not 100% the case, but since it is in the first round, the prob-
ability that j does not touch the three elements until i touches them is very
high, thus we make the above assumption. The first round actually fixes
some parameters such as the S-Box values and key values. Then in the later
rounds, according to the previous analysis, we have:

d+2∑
i=d+1

Si−1[i] =
d+k+2∑

i=d+k+1

Si−1[i] = · · · =
d+(n−1)k+2∑

i=d+(n−1)k+1

Si−1[i] = 3d + 3 (8)

Sd+ik−1[d + ik + 2] = Sd+ik−1[d + ik] + 2, i ∈ [0, n− 1] (9)

(11) and (12) tells us that in each round, the sum of the three elements
are fixed to 3d+3, and the value difference between two elements is 2. Now
before running the KSA, we can compute the sum of ∆ =

∑d+2
i=d+1 Si−1[i] =

d+ 1+d+ 2 = 2d+ 3. Then we partition ∆ into two different number within
the range [0, k − 1], namely Si−1[i] and Si−1[i + 1] where i = d + jk + 1 for
j ∈ [0, n−1]. Then compute Si−2[i−1] = ∆− (Si−1[i] +Si−1[i+ 1]). Now we
have computed three S-Box candidates, and all these three candidates are
within the range of the first key appearance. Next is to modify the key in
the first round to swap the candidates to the corresponding locations in the
later rounds. For each of the later rounds, we need three S-Box candidates.

Fig.2 illustrates how to satisfy the S-Box conditions in the first 4 rounds
so that the j conditions in each of the rounds can be reduced to one. We
do the first round key modification by first choosing the d, d + 1, d + 2 to
be in the middle locations within the range [0, k − 1]. This is because we
need both the values before and after the location d to be swapped to the
corresponding locations in the later rounds. For the second round, we swap
d+3, d−2, d+5 to the corresponding indexes S[d+k], S[d+k+1], S[d+k+2].
For the third round, we swap d+ 4, d− 3, d+ 6 to the corresponding indexes
S[d + 2k], S[d + 2k + 1], S[d + 2k + 2], and d + 7, d− 6, d + 9 to the indexes

18

Figure 2: Modifying the secret key in the first round

S[d + 3k], S[d + 3k + 1], S[d + 4k + 2] for the fourth round. Thus after the
key modification in the first round, the S-Box conditions are satisfied. This
can be seen from Fig.2 that the difference between the first column and third
column in the same line is equal to 2, and the sum of the second column and
third column in the same line are equal to 2d+ 3. After we adjust the S-Box
values in the first round, we only hope that these conditions are not violated
(touched by j) before i touches them.

Also, we can make use some of the techniques previous introduced to
search key collisions in the Transitional Pattern. First round can also be
passed deterministically since we have the total control of the key at this
time. Also second round can be passed easily. This is because we have
already reduced the number of second round j conditions from 2 to 1, the
remaining one j condition can be satisfied by using the similar technique
described in 3.3. In order to satisfy j condition jd+k = d+k, we first proceed
the KSA until i = k − 1 before the swap. The S-Box sum

∑d+k
i=d+3 Si−1[i]

is determined by the two j values jd+2 and jd+k. Since we proceed until
i = k − 1, we obtain the correct S-Box sum

∑k−1
i=d+3 Si−1[i]. Then, at step

19

i = k − 1, we assume that
∑d+k

i=k Si−1[i] =
∑d+k

i=k Sk−1[i], thus we can modify
K[k − 1] at step i = k − 1 to satisfy the condition jd+k = d + k.

However, we have to point out that multi-key modification is not suitable
for Self-Absorbing pattern. This is because we will modify almost all the
key indices in the first round especially when key is short, thus any key
modifications in the later rounds will violate the modifications made during
the first round, and thus will not help increasing the success probability.

39-byte colliding key pair can be found within only 5 seconds time on a
normal desktop PC, here is one concrete example. Obviously, this result has
a large space to be further improved.

K1(K2) : C2 30 B3 54 07 D8 A5 D4 DF 25 C7 5B 1B 59 27 2F C9 75 77 B8
C5 5E 4F(51) C2(C0) 11 0C(0E) 0D C0 0B 08 09 BC 07 04 D2
EB E1 C8 D1

5. Conclusion

In this paper, we investigate how to find RC4 colliding key pairs effi-
ciently in both Transitional and Self-Absorbing patterns. The techniques we
proposed to bypass the first and second round can be used by both patterns.
For the Transitional pattern, we propose how to reduce the last round com-
plexity and by combining the multi-key modification techniques, we are able
to reduce the searching complexity dramatically compared with [2]. For Self-
Absorbing pattern, novel techniques are proposed which can help reducing
the j conditions in certain rounds from two to one, and thus the complexity
can also be reduced significantly. 22-byte colliding key pair is the shortest
one found so far, and the experimental results confirm that our algorithm
does work efficiently as expected.

References

[1] Anonymous: RC4 Source Code. CypherPunks mailing list (September 9,
1994), http://cypherpunks.venona.com/date/1994/09/msg00304.html,
http://groups.google.com/group/sci.crypt/msg/10a300c9d21afca0

[2] Matsui, M.: Key Collisions of the RC4 Stream Cipher. In: Dunkelman,
O., Preneel, B. (eds.) FSE 2009. LNCS, vol. 5665, pp. 1.24. Springer,
Heidelberg (2009)

20

[3] J. Chen and A. Miyaji. How to Find Short RC4 Colliding Key Pairs,
The 14th Information Security Conference, ISC 2011, Lecture Notes in
Computer Science, 7001 (2011), Springer-Verlag, 32-46.

[4] J. Chen and A. Miyaji. Generalized Analysis on Key Collisions of Stream
Cipher RC4, IEICE Trans., Fundamentals. Vol.E94-A,No.11,pp.-,Nov.
2011. To appear.

[5] Chen, J., Miyaji, A.: Generalized RC4 Key Collisions and Hash Colli-
sions. In: J.A.Garay., R.De Prisco (eds.): SCN 2010. LNCS, vol. 6280,
pp.73-87, Springer, Heidelberg (2010)

[6] Chen, J., Miyaji, A.: A New Class of RC4 Colliding Key Pairs With
Greater Hamming Distance. In: et al. (eds.): ISPEC 2010, LNCS, vol.
6047, pp.30-44, Springer, Heidelberg (2010).

[7] Chen, J., Miyaji, A.: A New Practical Key Recovery Attack on the
Stream Cipher RC4 Under Related-Key Model. In: et al. (eds.): Inscrypt
2010, LNCS, vol. 6584, pp.62-76, Springer, Heidelberg (2011).

[8] Sepehrdad, P., Vaudenay, S., Vuagnoux, M: Statistical Attack on RC4.
In: Paterson, K. (eds.): Eurocrypt 2011. LNCS, vol. 6632, pp.343-363,
Springer, Heidelberg (2011)

[9] Sepehrdad, P., Vaudenay, S., Vuagnoux, M: Discovery and Exploitation
of New Biases in RC4. In: Biryukov, A., Gong, G., Stinson, D.(eds.):
SAC2010. LNCS, vol. 6544, pp.74-91, Springer, Heidelberg (2011)

[10] Subhamoy , M., Goutam , P., Sourav , S: Attack on Broadcast RC4
Revisited . In: .(eds.): FSE2011. LNCS, vol. 6733, pp. 199-217, Springer,
Heidelberg (2011).

[11] Wang, X., and Yu, H. How to break MD5 and other hash functions.
In: Advances in Cryptology - EUROCRYPT 2005, LNCS, vol.3494, pp.
19-35, Springer, Heidelberg (2005)

[12] Chang, D., Gupta, K.C., Nandi, M.: RC4-Hash: A New Hash Function
Based on RC4. In: Progress in Cryptology - INDOCRYPT 2006, LNCS,
vol.4329, pp. 80-94, Springer, Heidelberg (2006)

21

[13] Indesteege, S., Preneel, B.: Collision for RC4-Hash. In: 11th Interna-
tional Conference on Information Security. LNCS, vol. 5222, pp. 355-366.
Springer, Heidelberg (2008)

22

