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Abstract 

We propose a method for modeling nonperiodic aggregates composed of arbitrary elements on a 2 -D plane. The 

method effectively generates a dense aggregate from the elements to be arranged. To date, nonperiodic 

aggregates were generated using a Poisson disk distribution; however, the approach results in large gaps among 

the elements. Dense aggregates can be generated using a dart-throwing method to arbitrary elements; however, 

this approach is time consuming. To reduce the calculation time, we propose a method that fills in elements in 

the gaps among the already placed elements. To effectively fill these gaps, our method quantifies t he gaps and 

finds additional positions for elements. In our experiment, we show that our method is more effective than the 

dart-throwing method. Also, to confirm that our method is generic, we show examples using two- and 

three-dimensional elements. 

 

1.  Introduction 
Nonperiodic aggregates composed of elements often appear in daily 

life or natural phenomena, e.g., objects on a table and the cristae on a 

leather-textured surface. Aggregates are often represented by computer 

graphics. However, it is tedious to create and manually control the 

arrangement of the aggregate elements. To reduce the time-consuming 

work, we propose a method to generate a layout of the aggregate 

elements.  

Aggregates in daily life or natural phenomena have periodic (lattice) 

or nonperiodic arrangements. In this study, we consider only 

nonperiodic arrangement because it is easy to create periodic 

arrangements by placing elements on a grid. Our goal is to effectively 

generate nonperiodic aggregates composed of arbitrary elements on a 

2-D plane.  

To achieve this goal, our method refers to the dart-throwing method 

[1]. The dart-throwing method is used for Poisson disk sampling that 

uniformly places points. Each point has a circular region with its center 

located at a point that avoids overlapping other circular regions. The 

dart-throwing method controls the layout of the distributed points by 

deforming the circular regions [2]. We apply the dart-throwing method 

to distribute elements randomly. To control the layout, our method uses 

arbitrary-shaped regions we call exclusive regions, instead of circular 

regions. In our method, the positions of the elements are not limited to 

blue noise properties, which uniformly and randomly distributed points 

have. This is because the exclusive region can be specified as 

something other than a circle.  

 

  

(a) Previous method (16 elements)  (b) Our method (224 elements) 

Figure 1 Comparison of results 

 

To date, several methods use Poisson disk distribution for placing 

elements [3, 4]. The previous methods can generate various aggregates 

composed of elements having isotropic shapes, such as a sphere or 

cylinder. However, the method cannot generate dense aggregates 

composed of elements that are concave or of different sizes because 

the large gaps among the elements are produced as shown in Fig. 1 (a). 

For generating a dense aggregate, we consider following two 

approaches. (1) One method places the elements while checking for 

overlaps of elements, similar to the naive dart-throwing method that 

uses arbitrary-shaped exclusive regions. This approach can generate a 

dense aggregate composed of many elements. However, the 

calculation cost of the naive dart-throwing method is too expensive 

because of its repetitive placement trials. (2) Another approach places 

elements using collision and reaction in a physical simulation. This 

approach also generates dense aggregates, however, it may also 

generate periodic arrangements by using isotropic shapes. To avoid the 

periodic arrangements, we employ the former approach, despite its 

time consuming nature. We assume that it is effective to iteratively fill 

the gaps among placed elements in order to reduce redundant 
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cancelations. In our experiment, we effectively generate an aggregate 

that includes only a few gaps, as shown in Fig. 1 (b). Our experiment 

demonstrates that the approach is more effective than the naive 

dart-throwing method that iteratively places elements while checking 

overlaps of exclusive regions. 

 

2. Related works 
To date, several methods are used for generating aggregates. Aggregate 

generation techniques fall roughly into three categories: physical 

simulation, procedural modeling, and example-based modeling.  

There are some methods for generating aggregates that consist of a 

large number of objects using physical simulation [5, 6, 7]. Also, for 

ease of control, methods are proposed for generating desired results 

such as desired piles [8]. However, these methods may also generate 

periodic arrangements by using elements of isotropic shapes. In 

addition, each element is unstable in the simulation. That is, it is 

difficult to determine the termination of simulation. Though the 

simulation is appropriate to represent dynamics, it is inappropriate to 

determine the layout of nonperiodic arrangements.  

Procedural modeling methods generate an aggregate or volume 

texture with some parameters. They involve noise-based texturing 

functions and generation methods for specific textures [9]. Noise-based 

texturing functions are widely used to represent natural aggregates that 

have various element shapes, such as clouds and rocks [10, 11, 12]. 

Specific elements are easily controlled by parameters [13, 14, 15]. 

However, by looking at the parameters it is difficult for a user to 

determine what kind of aggregate will be generated. Furthermore, it is 

difficult to design a new aggregate entirely by the procedural modeling 

methods.  

Example-based modeling uses exemplars that designers draw and 

edit, and it is effective for generating large-scale aggregates. Many 

methods are proposed for generating textures. Our methods employ 

the same approach as example-based modeling to generate an 

aggregate composed of elements.  

Example-based modeling methods include placement and synthesis 

approaches. Among the placement approaches, mosaic generation 

methods [16, 17, 18, 19], the element distribution method [3], and 

tiling methods [20, 21] generate an intended texture by controlling 

layouts of user-specified elements. We employed this approach 

because our method controls densities of arbitrary elements. The 

mosaic generation methods pack elements into containers. These 

methods cannot control the density of placed elements. Controlling the 

density of elements is important for changing appearance of an 

aggregate or texture. The element distribution method [3] is designed 

to control densities of aggregates on a 2-D plane by specifying 

parameters for the Poisson disk distribution. However, this method is 

not adequate for distributing arbitrary-shaped elements. Tiling methods 

determine the position and orientation of each element on the basis of 

the knowledge of patterns [22]. These methods pack elements into 

specified regions without controlling the position and orientation of the 

elements; the results are deterministically generated. However, the 

results have artifacts, such as periodic arrangements. Our method 

prevents the occurrence of periodic patterns by using random 

positioning. 

The synthesis methods that generate an aggregate or texture from an 

exemplar, which is a small patch or sample of an aggregate or texture, 

is called texture synthesis. The results significantly depend on the 

exemplar that is used. Two approaches have been proposed for texture 

synthesis: pixel-based and patch-based [23]. Pixel-based approaches 

do not consider discrete elements, whereas patch-based approaches do 

consider them. Pixel-based approaches synthesize a texture by finding 

and copying pixels that have the most similar local neighborhoods [24, 

25, 26, 27]. The methods do not maintain boundaries of elements in 

the exemplars while generating textures. A number of patch-based 

methods that use discrete elements have been proposed [28, 29, 30, 31, 

32, 33, 34, 35]. These patch-based methods synthesize a texture from 

exemplars that include discrete elements and their relative distances. 

Both the pixel-based and patch-based approaches effectively generate 

large textures; however, it is hard to edit the position and orientation of 

elements in the exemplars. In contrast, our method does not need to 

input the exemplar, and it generates aggregates from elements.  

To easily control densities and use arbitrary shaped elements, we 

adopt a placement approach for generating a layout of nonperiodic 

aggregates.  

 

3. Preliminary experimentation 
As a preliminary experiment, we tried to determine the layout of 

elements by the naive dart-throwing method using arbitrary-shaped 

exclusive regions. In the preliminary experiment, we confirmed the 

effects and drawbacks of the naive dart-throwing method.  

 

3.1 Exclusive region 

Our method considers placing exclusive regions only on a 2-D plane. 

The exclusive region is independent of the shapes of the elements, and 

it determines the distance between an element and each of its 

neighbors. The position, orientation, and size of the exclusive regions 

are specified by transformation matrices, and the elements are attached 

to the exclusive regions. 

The exclusive regions are defined by 2-D triangular meshes. By 

using meshes, calculation of the transformation and checking overlaps 

can be accelerated using a graphics processing unit (GPU). A user 

specifies the vertices of the triangular meshes and the inner regions of 

the shapes, as shown in Fig. 2(a). Through a Delaunay triangulation, a 

triangular mesh is used to construct a convex hull from the vertices, as 

shown in Fig. 2(b). To construct a concave mesh, the triangular mesh 

is extracted from the inner regions, as shown in Fig. 2(c). Aggregate 
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coordinates are specified simultaneously when constructing a mesh.  

The center of transformation is the center of the bounding box of an 

exclusive region. Transformation is determined by Eq. 1: 

 

x = (RS+T) x0    (1) 

 

where x is the transformed position of a vertex, R is the rotation 

matrix, S is the scaling matrix, T is the translation matrix, and x0 is the 

initial position of the vertex. The transformation matrix is applied to a 

placing element.  

 

3.2 Procedure of the naive dart-throwing method 

The steps in the naive dart-throwing method are as follows:  

 

(S1) Randomly rotate and place an exclusive region.  

(S2) Detect collisions of the region and the placed regions. 

(S3) Cancel placement in case of overlaps, and repeat step S1 until the 

termination conditions are satisfied.  

 

The naive dart-throwing method nonperiodically places an element. 

To ensure a consistent placement frequency, the exclusive region is 

selected cyclically from among the input exclusive regions when 

several exclusive regions are specified. The procedure is terminated 

when the number of consecutive cancelations exceeds a user-specified 

number.  

In the dart-throwing method for the Poisson disk distribution, we 

can roughly estimate the number of placed points from the sizes of 

placed circles [36]. Therefore, the termination condition is easily 

determined. In contrast, the number of placed exclusive regions is 

uncertain in the dart-throwing method using arbitrary shaped exclusive 

regions. The number of placed exclusive regions depends not only on 

the size but also on the shape of the exclusive regions. Therefore, we 

use the number of consecutive cancelations as the termination 

condition. 

 

3.3 Results of preliminary experimentation 

The naive dart-throwing method was implemented on a Windows PC 

with Intel Core i7, 3.07 GHz CPU, and 12.0 GB RAM. We use 

elements, E1, E2, and E3 as shown in Fig. 3 (a)–(c). The exclusive 

regions are created by the projection into the XZ-plane in 3-D as 

shown in Fig. 3 (d)–(e). Figure 4 shows the result of the naive 

dart-throwing method whose termination condition is specified as 

10000 consecutive cancelations. Here, we demonstrate the generation 

of the aggregate without scaling. Figure 4 (a) shows the placed 

exclusive regions, and their transformation matrixes are applied to the 

elements as shown in Fig. 4 (b). The dart-throwing method generates 

nonperiodic dense aggregates without overlapping of the elements on 

the XZ-plane.  

Figure 5 shows the number of placed elements and the calculation 

time of every termination condition for generating Fig. 3. The graphs 

are plotted for each 50 consecutive cancelations. Overall, a positive 

correlation appears in the graph. The number of elements (blue line) 

dramatically increases until approximately 2000 consecutive 

cancelations, and then it gently increases. However, it is unexpected 

when it stops increasing. For example, for approximately 7000 

  

(a) Placed exclusive regions        (b) Placed elements 

Figure 4 Result of the naive dart-throwing method (210 elements).  

 

Figure 5 Relation of Number of consecutive cancelations, 

Number of elements, and Calculation time of Fig. 3.  

 

             

(a) Input      (b) Triangulation   (c) Exclusive region 

Figure 2 Specification of an exclusive region.  

 

 

(a) E1          (b) E2          (c) E3 

               

(d) E1 (Region)    (e) E2 (Region)    (f) E3 (Region) 

Figure 3 Elements and exclusive regions. Image (a)–(c) are elements 

and (d) – (f) are their exclusive regions. A black region denotes an 

inner region, and a magenta pixel indicates a vertex in (d)–(f).  
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consecutive cancelations, the calculation time (red line) dramatically 

increases while only nine elements are added. The calculation time of 

the naive dart-throwing method depends on the position and 

orientation of the elements, which are randomly determined. The 

method is not robust and the calculation cost is high. As another 

example, Fig.6 shows the results of distributing elements E1, E2, and 

E3. Figure 7 confirms that the calculation costs are in the same range 

as in Fig. 5.  

To reduce calculation time, we refer to the dart-throwing method for 

producing uniform points. There are two approaches for placing 

points: parallelization [37, 38, 39] and specification of regions [40, 41]. 

Parallelization approaches are only used for points having blue-noise 

properties. We cannot use these methods because our nonperiodic 

arrangements do not have blue noise properties. However, the 

specification approaches reduce the number of placement cancelations.  

 

4. Fill-gap method 
We assume that having many placement cancelations increases the 

calculation cost. Thus, to reduce this cost, we prepared the set of 

candidate points P where the exclusive region could be placed. In the 

preliminary experiment (Section 3), we shortened the calculation time 

by setting the termination condition to less than 100 consecutive 

cancelations. From this result, our method specified the number of P to 

100, thereby limiting the number of consecutive cancelations to 100. 

To avoid overlaps of exclusive regions as much as possible, instances 

of P are preferentially distributed in the large gaps among the placed 

exclusive regions.  

All processes use exclusive regions to determine the position, 

orientation, and scaling of elements as describe in Section 3.1. Our 

method consists of two steps:  

 

(1) Placement of exclusive regions sparsely 

(2) Placement of additional regions in the gaps  

 

Figure 8 shows an illustration of the two steps. In Fig. 8, black 

regions indicate exclusive regions and orange points indicate instances 

of P.  

Step 1 is the initial placement resulting in gaps. The step ensures that 

there is no overlap of exclusive regions by Poisson disk distribution. 

Step 2 iteratively fills the gaps among the placed exclusive regions. 

This step specifies positions for P.  

In Step 2, the cancelations of placements occur frequently when P 

and the boundaries of placed exclusive regions are too close. In our 

experiment, we specify the termination condition to be 200 

consecutive placement cancelations.  

  

(a) E1                 (b) E2 

 

(c) E3 

Figure 6 Results of each kind of three kinds of elements. 

 

 

Figure 7 Relationship between the number of consecutive 

cancelations, number of elements, and the calculation time 

of Fig. 6. 

   

(a) Step 1       (b) Step 2 (1 iter)  (c) Step 2 (termination) 

Figure 8 Overview. 
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4.2. Sparse placement 

Step 1 sparsely places exclusive regions at the points distributed by the 

dart-throwing method for Poisson disk distribution. The Poisson disk 

distribution ensures that there is no overlap of circular regions. By 

specifying a circular region O involving an exclusive region, 

nonperiodic arrangements can be quickly calculated with no overlaps 

of exclusive regions. The value of T is determined by the position of a 

placed point. The values of R and S refer to a random angle and scale 

in specified range. The dart-throwing method uses an exclusive 

circular region O for point distribution. The center of O is located at the 

placed point. Here, the largest circle is specified for Poisson disk 

distribution, so the radius of O is determined by the distance between 

the center and the farthest point on the boundary as shown in Fig. 9.  

 

4.3. Placement in gaps 

The following two steps place instances of P; the first step places 

candidate points Q of P by means of GPU acceleration. The second 

step chooses 100 instances of P from Q to place exclusive regions. To 

avoid concentration of Q at few positions, Q points are scattered across 

wide areas. The abundance of Q is in proportion to the 

distance from the placed exclusive regions. Here, GPU 

acceleration is applied for quickly calculating distances by using an 

image plane as a distance field. The probability  of a pixel in the 

probability field is defined by dn, where d is the value of a pixel in a 

normalized distance field. By using a normalized distance field, the 

method can place exclusive regions of any size in the same manner. 

Also, by using dn, a higher probability is given to farther positions and 

a lower probability to nearer positions. Therefore, a larger or smaller 

number of points are placed at farther and nearer positions.  

We determine whether a point is placed by comparing the 

probability with a random number [0, 1]. When the random number is 

over the probability  for each pixel, a point q in Q is placed. Figure 10 

shows the comparisons of points of different multipliers n. The result 

shows that the 16th power yields acceptable results. The points Q 

placed between 16th and 32th powers are similarly distributed. We 

deduce that it is enough to use the 16th power of normalized distances 

for the probability.  

The next step is to choose 100 points P from the placed points Q. 

Figure 11 shows comparisons of points P taken from points Q for each 

probability. Points P chosen from =d16 and =d32 are similarly 

distributed in positions farther from the boundaries of placed exclusive 

regions. The results shows that it is sufficient to use the 16th power for 

probability.  

 

5. Results 
In this section, we discuss the results of our method. Sections 5.1 and 

5.2 show the calculation times of our method and examples of 

changing exclusive regions. Section 5.3 shows variations of the 

generated aggregates.  

 

5.1. Calculation time 

Our method implemented on a Windows PC with Intel Core i7, 3.07 

GHz CPU, and 12.0 GB RAM. Figure 1 (b) which is an aggregate 

having three kinds of elements is calculated in 18.3 s, and includes 224 

elements. Figure 12 shows placed exclusive regions. The naive 

 

Figure 9 Circular region O. The green circle indicates the circular 

region’s boundary for each element.  

 

   

(a) =d2            (b) =d4           (c) =d8 

  

(d) =d16       (e) =d32 

Figure 11 Comparisons of points P (orange) chosen from Fig. 10. 

 

   

(a) =d2            (b) =d4           (c) =d8 

  

(d) =d16       (e) =d32 

Figure 10 Comparisons of yielded points Q (orange). 
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dart-throwing method needs approximately 250 s for generating an 

aggregate composed of 210 elements as shown in Fig. 3. By way of 

comparison between the number of placed elements by our method 

and the naive dart-throwing method, our method placed more 14 

elements. That is, our method can place a sufficient number of 

elements.  

The other results have the same trend with the above as shown in 

Fig. 13. Table 1 shows the comparison of calculation times between 

our method and the naive dart-throwing method. Figure 13 (d) is 

composed of two types of trees with scaling range from 0.2 to 1.0.  

 

 

5.2. Changing exclusive regions 

Our method can control densities of generated aggregates by changing 

the size of the exclusive regions. Figure 14 shows controlled densities 

of aggregates accomplished by changing exclusive regions. Smaller 

and larger exclusive regions create denser or sparser aggregates, 

respectively. 

 

5.3. Examples 

Our method places arbitrary elements not only in 2-D, but also in 3-D. 

Figure 15 shows examples of placing 2-D and 3-D elements. The 

method can also be used to generate height maps. Figure 16 shows the 

height maps of a leather texture composed of cristae and sulci. The 

sulci are placed at the same positions as the cristae. This shows that our 

method is a generic method for generating aggregates.  

 

 

 

 
Exclusive regions  

(a) Dense 

 

 
Exclusive regions  

(b) Middle 

 

 
Exclusive regions  

(c) Sparse 

Figure 14 Variations of densities.  

 

  

Figure 12 Exclusive regions placed by our method. 

 

  

(a) E1                       (b) E2 

  

(c) E3                      (d) Trees 

Figure 13 Generated aggregates. 

 
Table 1 Comparison of calculation time between our method and the 

naive dart-throwing method 

 Our method Naive method 

Time [s] Num. of 

element 

Time [s] Num. of 

element 

Fig. 13 (a) 17.2  321 316.2 323 

Fig. 13 (b) 11.5 64 93.3 61 

Fig. 13 (c) 13.2 58 177.8 61 

Fig. 13 (d) 31.5 244 488.0 258 
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6. Conclusion 
We proposed a procedure for determining the layout of nonperiodic 

aggregates composed of arbitrary elements. Our method was 

implemented based on the dart-throwing method using exclusive 

regions that prohibit each element from overlapping one another. Our 

approach was to fill the gaps among placed exclusive regions. Our 

method is also dramatically faster than the naive dart-throwing method. 

We have illustrated few representative examples of nonperiodic 

textures in the figures. 
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