
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Tractabilities and Intractabilities on Geometric

Intersection Graphs

Author(s) Uehara, Ryuhei

Citation Algorithms, 6(1): 60-83

Issue Date 2013-01-25

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/11436

Rights

© 2013 by the authors; licensee MDPI, Basel,

Switzerland. This article is an open access

article distributed under the terms and

conditions of the Creative Commons Attribution

license

(http://creativecommons.org/licenses/by/3.0/).

Description

Algorithms 2013, 6, 60-83; doi:10.3390/a6010060
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Tractabilities and Intractabilities on Geometric
Intersection Graphs *
Ryuhei Uehara

School of Information Science, Japan Advanced Institute of Science and Technology,
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan; E-Mail: uehara@jaist.ac.jp

* Parts of Results were Presented at ISAAC 2008 and WALCOM 2008.

Received: 23 October 2012; in revised form: 10 January 2013 / Accepted: 14 January 2013 /
Published: 25 January 2013

Abstract: A graph is said to be an intersection graph if there is a set of objects such that each
vertex corresponds to an object and two vertices are adjacent if and only if the corresponding
objects have a nonempty intersection. There are several natural graph classes that have
geometric intersection representations. The geometric representations sometimes help to
prove tractability/intractability of problems on graph classes. In this paper, we show some
results proved by using geometric representations.

Keywords: bandwidth; chain graphs; graph isomorphism; Hamiltonian path problem;
interval graphs; threshold graphs; unit grid intersection graphs

1. Introduction

A graph G = (V,E) is said to be an intersection graph if and only if there is a set of objects such that
each vertex v in V corresponds to an object Ov and {u, v} ∈ E if and only if Ov and Ou have a nonempty
intersection. Interval graphs are a typical intersection graph class, and widely investigated. One reason is
that interval graphs have wide applications including scheduling and bioinformatics [1]. Another reason
is that an interval graph has a simple structure, and hence we can solve many problems efficiently,
whereas the problems are hard in general [1,2]. Some natural generalizations and/or restrictions on
interval graphs have been investigated (see, e.g., [2–4]). One of the reasons why these intersection
graphs are investigated is that their geometric representations sometimes give intuitive simple proof of
the tractable/intractable results. On the tractable results, we can solve a problem by using their geometric

Algorithms 2013, 6 61

representations. The geometric representation of a graph gives us an intuitive expression of how to solve
a problem using the representation. On the other hand, on the intractable representation, we can express
the difficulty of a problem using the geometric representation of a graph. This gives us an intuition of
why the problem is difficult to solve. That is, the property of the graph representation also represents the
intractableness of the problem. This extracts the essence of the difficulty of the problem and helps us to
understand not only the property of the class of graphs, but also the difficulty of the problem.

In this paper, the author reorganizes and shows some related results about graph classes with
geometric representations presented at two conferences [5,6] with recent progress. We will mainly
consider threshold graphs, chain graphs, and grid intersection graphs. A threshold graph is a graph such
that each vertex has a weight, and two vertices are adjacent if and only if their total weight is greater
than a given threshold value. The vertex set of a threshold graph is partitioned into two groups such that
“light” vertices induce an independent set while “heavy” vertices induce a clique. The threshold graphs
form a proper subclass of interval graphs, and can be represented in a compact representation of O(n)

space. A chain graph is a bipartite analogy of the notion of threshold graphs. From a threshold graph,
we can obtain a chain graph by removing edges between heavy vertices. In a sense, a chain graph can be
seen as a two dimensional extension of a threshold graph. From this viewpoint, a grid intersection graph
is a two dimensional extension of an interval graph. More precisely, a bipartite graph G = (X, Y, E) is
a grid intersection graph if and only if each vertex x ∈ X (and y ∈ Y) corresponds to a vertical line (a
horizontal line, resp.) such that two vertices are adjacent when they are crossing.

We first focus on a tractable problem on a graph that has a geometric representation. The bandwidth
problem is one of the classic problems defined below. A layout of a graph G = (V,E) is a
bijection π between the vertices in V and the set {1, 2, . . . , |V |}. The bandwidth of a layout π equals
max{|π(u) − π(v)| | {u, v} ∈ E}. The bandwidth of G is the minimum bandwidth of all layouts of
G. The bandwidth has been studied since the 1950s; it has applications in sparse matrix computations
(see [7,8] for survey). From the graph theoretical point of view, the bandwidth of G is strongly related
to the proper interval completion problem [9]. The proper interval completion problem is motivated by
research in molecular biology, and hence it attracts much attention (see, e.g., [10]). However, computing
the bandwidth of a graph G is one of the basic and classic NP-complete problems [11] (see also [12,
GT40]). Especially, it is NP-complete even if G is restricted to a caterpillar with hair length 3 [13]. The
bandwidth problem is NP-complete not only for trees, but also for split graphs [14] and convex bipartite
graphs [15]. From the viewpoint of exact algorithms, the problem seems to be a difficult one; Feige
developed an O(10n) time exact algorithm for the bandwidth problem of general graphs in 2000 [16], and
recently, Cygan and Pilipczuk improved it to O(4.383n) time (see [17–19] for further details). Therefore
approximation algorithms for several graph classes have been developed (see, e.g., [15,20–23]). Only
a few graph classes have been known for which the bandwidth problem can be solved in polynomial
time. These include chain graphs [24], cographs and related classes (see [25] for the details), interval
graphs [26–28], and bipartite permutation graphs [6,29] (see [25] for a comprehensive survey).

One of the interesting graph classes for which the bandwidth problem can be solved efficiently is
the class of interval graphs. In 1987, Kratsch proposed a polynomial time algorithm of the bandwidth
problem for interval graphs [30]. Unfortunately, the algorithm has a flaw, which has been fixed by
Mahesh et al. [27]. Kleitman and Vohra also show a polynomial time algorithm [26], and Sprague

Algorithms 2013, 6 62

improves the time complexity to O(n log n) by sophisticated implementation of the algorithm [28]. All
the algorithms above solve the decision problem that asks if an interval graph G has bandwidth at most
k for given G and k. Thus, using binary search for k, we can compute the bandwidth bw(G) of an
interval graph G in O(M(n) · log bw(G)) time, where M(n) = O(n log n) is the time complexity to
solve the decision problem [28]. In the literature, it is mentioned that there are two unsolved problems
for interval graphs. The first one is direct computation of the bandwidth of an interval graph. All the
known algorithms are strongly dependent on the given upper bound k to construct a desired layout.
To find a best layout directly, we need deeper insight into the problem and/or the graph class. The
second one is to improve the time complexity to linear time. Since interval graphs have a relatively
simple representation, many NP-hard problems can be solved in linear time including early results of
recognition [31] and graph isomorphism [32].

Another interesting class consists of chain graphs. Chain graphs form a compact subclass of bipartite
permutation graphs that plays an important role in developing efficient algorithms for the class of
bipartite permutation graphs [33,34]. The algorithm by Kloks, Kratsch, and Müller computes the
bandwidth of a chain graph in O(n2 log n) time [24]. Their algorithm uses the algorithm for an interval
graph as a subroutine, and the factor O(n log n) comes from the time complexity to solve the bandwidth
problem for the interval graph in [28].

In this paper, we propose simple algorithms for the bandwidth problem for the classes of threshold
graphs and chain graphs.

The first algorithm computes the bandwidth of a threshold graph G in O(n) time and space. We note
that threshold graphs form a proper subclass of interval graphs, and can be represented in a compact
representation of O(n) space. The algorithm directly constructs an optimal layout, that is, we give a
partial answer to the open problem for interval graphs, and improve the previously known upper bound
O(n log n log bw(G)) to optimal.

Extending the first algorithm for threshold graphs, we next show an algorithm that computes the
bandwidth of a chain graph in O(n) time and space. This algorithm also directly constructs an optimal
layout, and improves the previously known bound O(n2 log n) in [24] to optimal.

More precisely, we first give a simple interval representation for a given threshold graph, and simplify
the previously known algorithm for interval graphs. (We also show a new property of a previously
known algorithm to show correctness.) Next, the simplified interval representation of a threshold graph
is extended to the one of a chain graph in a nontrivial way.

Next we turn to the intractable problems on a graph that has a geometric representation. We focus
on the class of grid intersection graphs that is a natural bipartite analogy and 2D generalization of the
class of interval graphs; a bipartite graph G = (X, Y, E) is a grid intersection graph if and only if G

is an intersection graph of X and Y , where X corresponds to a set of horizontal line segments, and Y

corresponds to a set of vertical line segments. It is easy to see that the class of chain graphs is a proper
subset of the class. Otachi, Okamoto, and Yamazaki investigate relationships between the class of grid
intersection graphs and other bipartite graph classes [35]. In this paper, we show that grid intersection
graphs have a rich structure. More precisely, we show two hardness results. First, the Hamiltonian cycle
problem is still NP-complete even if graphs are restricted to unit length grid intersection graphs. The
Hamiltonian cycle problem is one of the classic and basic NP-complete problems [12]. Second, the

Algorithms 2013, 6 63

graph isomorphism problem is still GI-complete even if graphs are restricted to grid intersection graphs.
(We say the graph isomorphism problem is GI-complete if the problem is as hard as to solve the problem
on general graphs.) The results imply that (unit length) grid intersection graphs have so rich structure
that many other hard problems may still be hard even on (unit length) grid intersection graphs.

We note that they are solvable in linear time on an interval graph [32,36]. Hence we can observe that
the generalized interval graphs have so rich structure that some problems become hard on the graphs.
Intuitively speaking, the linear (or one dimensional) structure of an interval graph makes these problems
tractable, and this two dimensional extension makes them intractable. Such results for intractability
also can be found in the literature; the Hamiltonian cycle problem is NP-complete on chordal bipartite
graphs [37], and the graph isomorphism problem is GI-complete on chordal bipartite graphs and strongly
chordal graphs [38].

It is worth mentioning that, recently, the computational complexity of the graph isomorphism problem
for circular arc graphs became open again. (A circular arc graph is the intersection graph of circular arcs,
which is another natural generalization of an interval graph.) The first “polynomial” time algorithm was
given by Wu [39], but Eschen pointed out a flaw [40]. Hsu claimed an O(nm) time algorithm for the
graph isomorphism problem on circular-arc graphs [41]. However, recently, a counterexample to the
correctness of the algorithm was found [42].

2. Preliminaries

The neighborhood of a vertex v in a graph G = (V, E) is the set NG(v) = {u ∈ V | {u, v} ∈ E}, and
the degree of a vertex v is |NG(v)| denoted by dG(v). If no confusion can arise we will omit the index G.
For a subset U of V , the subgraph of G induced by U is denoted by G[U]. Given a graph G = (V, E),
its complement Ḡ = (V, Ē) is defined by Ē = {{u, v} | {u, v} ̸∈ E}. A vertex set I is an independent
set if and only if G[I] contains no edges, and then the graph Ḡ[I] is said to be a clique. Two vertices u

and v are called twins if and only if N(u) ∪ {u} = N(v) ∪ {v}.
For a graph G = (V,E), a sequence of distinct vertices v0, v1, . . . , vl is a path, denoted by

(v0, v1, . . . , vl), if {vj, vj+1} ∈ E for each 0 ≤ j < l. The length of a path is the number of edges
on the path. For two vertices u and v, the distance of the vertices, denoted by dist(u, v), is the minimum
length of the paths joining u and v. A cycle consists of a path (v0, v1, . . . , vl) of length at least 2 with an
edge {v0, vl}, and is denoted by (v0, v1, . . . , vl, v0). The length of a cycle is the number of edges on the
cycle (equal to the number of vertices). A path P in G is said to be Hamiltonian if P visits every vertex
in G exactly once. The Hamiltonian path problem is to determine if a given graph has a Hamiltonian
path. The Hamiltonian cycle problem is defined similarly for a cycle. The problems are well known
NP-complete problem (see, e.g., [12]).

An edge that joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that
cycle. A graph is chordal if every cycle of length at least 4 has a chord. In this paper, we will discuss
about intersection graphs of geometrical objects. Interval graphs are characterized by intersection graphs
of intervals, and it is well known that chordal graphs are intersection graphs of subtrees of a tree (see,
e.g., [2]). A graph G = (V, E) is bipartite if and only if V can be partitioned into two sets X and Y such
that every edge joins a vertex in X and the other vertex in Y . We sometimes denote a bipartite graph by

Algorithms 2013, 6 64

G = (X, Y, E) to specify the two vertex sets. A bipartite graph is chordal bipartite if every cycle of
length at least 6 has a chord.

A graph (V, E) with V = {v1, v2, . . . , vn} is an interval graph if there is a finite set of intervals
I = {Iv1 , Iv2 , . . . , Ivn} on the real line such that {vi, vj} ∈ E if and only if Ivi

∩ Ivj
̸= ∅ for each i and

j with 0 < i, j ≤ n. We call the set I of intervals an interval representation of the graph. For each
interval I , we denote by R(I) and L(I) the right and left endpoints of the interval, respectively (therefore
we have L(I) ≤ R(I) and I = [L(I), R(I)]). An interval representation is called proper if and only if
L(I) ≤ L(J) and R(I) ≤ R(J) for every pair of intervals I and J or vice versa. An interval graph is
proper if and only if it has a proper interval representation. It is known that the class of proper interval
graphs coincides with the class of unit interval graphs [43]. That is, any proper interval graph has a
proper interval representation that consists of intervals of unit length (explicit and simple construction is
given in [44]). Moreover, each connected proper interval graph has essentially unique proper (or unit)
interval representation up to reversal in the following sense (see, e.g., [45, Corollary 2.5]):

Proposition 1 For any connected proper interval graph G = (V,E) without twins, there is a unique
ordering (up to reversal) v1, v2, . . . , vn of n vertices such that G has a unique proper interval
representation I(G) such that L(Iv1) < L(Iv2) < · · · < L(Ivn) (and hence R(Iv1) < R(Iv2) <

· · · < R(Ivn)). In other words, for a connected proper interval graph G = (V, E) without twins,
there exists a vertex ordering v1, v2, . . . , vn such that every interval representation of G satisfies either
L(Iv1) < L(Iv2) < · · · < L(Ivn) or L(Ivn) < · · · < L(Iv2) < L(Iv1).

We note that when G contains twins u and v, they correspond to the congruent intervals with
L(Iv) = L(Iu) and R(Iv) = R(Iu). In a sense, the ordering is still unique even if G contains twins
up to isomorphism if the graph is unlabeled.

For any interval representation I and a point p, N [p] denotes the set of intervals that contain the
point p.

A graph G = (V, E) is called a threshold graph when there exist nonnegative weights w(v) for all
v ∈ V and a threshold value t such that {u, v} ∈ E if and only if w(u) + w(v) ≥ t.

Let G = (X,Y,E) be a bipartite graph with X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′}. The
ordering of X has the adjacency property if and only if, for each vertex y ∈ Y , N(y) consists of vertices
that are consecutive in the ordering of X . A bipartite graph G = (X,Y,E) is said to be a chain graph
if and only if there are orderings of X and Y that fulfill the adjacency property, and the ordering of X

satisfies that N(xn) ⊆ N(xn−1) ⊆ · · · ⊆ N(x1). (The last property implies that the ordering of Y also
satisfy N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yn′); see, e.g., [46].)

A graph G = (V, E) with V = {v1, v2, . . . , vn} is said to be a permutation graph if and only if
there is a permutation σ over V such that {vi, vj} ∈ E if and only if (i − j)(σ(vi) − σ(vj)) < 0.
Intuitively, each vertex v in a permutation graph corresponds to a line segment ℓv joining two points
on two parallel line segments L1 and L2. Then two vertices v and u are adjacent if and only if the
corresponding line segments ℓv and ℓu intersect. The ordering of vertices gives the ordering of the
points on L1, and the permutation of the ordering gives the ordering of the points on L2. We call
the intersection model a line representation of the permutation graph. When a permutation graph is
bipartite, it is said to be a bipartite permutation graph. Although a permutation graph has (exponentially)

Algorithms 2013, 6 65

many line representations, a connected bipartite graph essentially has a unique line representation up to
isomorphism (see [47, Lemma 3] for further details):

Lemma 2 Let G = (V, E) be a connected bipartite permutation graph without twins. Then the line
representation of G is unique up to isomorphism.

The following proper inclusions are known (see, e.g., [46,48]):

Lemma 3 (1) Threshold graphs ⊂ interval graphs; (2) chain graphs ⊂ bipartite permutation graphs.

A natural bipartite analogy of interval graphs are called interval bigraphs which are intersection
graphs of two-colored intervals so that we do not join two vertices if they have the same color. Based
on the definition, Müller showed that the recognition problem for interval bigraphs can be solved in
polynomial time [49]. Later, Hell and Huang show an interesting characterization of interval bigraphs,
which is based on the idea to characterize the complements of the graphs [50]. Recently, efficient
recognition algorithm based on forbidden graph patterns is developed by Rafiey [51].

A bipartite graph G = (X, Y, E) is a grid intersection graph if every vertex x ∈ X and y ∈ Y can
be assigned line segments Ix and Jy in the plane, parallel to the horizontal and vertical axis so that for
all x ∈ X and y ∈ Y , {x, y} ∈ E if and only if Ix and Jy cross each other. We call (I,J) a grid
representation of G, where I = {Ix | x ∈ X} and J = {Jy | y ∈ Y }. A grid representation is unit
if all line segments in the representation have the same (unit) length. A bipartite graph is a unit grid
intersection graph if it has a unit grid representation.

Otachi, Okamoto, and Yamazaki show some relationship between (unit) grid intersection graphs
and other graph classes [35]; for example, interval bigraph is included in the intersection of unit grid
intersection graphs and chordal bipartite graphs. It is worth mentioning that it is open whether chordal
bipartite graphs are included in grid intersection graphs or not.

Two graphs G = (V, E) and G′ = (V ′, E ′) are isomorphic if and only if there is a one-to-one
mapping ϕ : V → V ′ such that {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E ′ for every pair of
vertices u, v ∈ V . We denote by G ∼ G′ if G and G′ are isomorphic. The graph isomorphism
(GI) problem is to determine if G ∼ G′ for given graphs G and G′. A graph class C is said to be
GI-complete if there is a polynomial time reduction from the graph isomorphism problem for general
graphs to the graph isomorphism problem for C. Intuitively, the graph isomorphism problem for the class
C is as hard as the problem for general graphs if C is GI-complete. The graph isomorphism problem
is GI-complete for several graph classes; for example, chordal bipartite graphs, and strongly chordal
graphs [38]. On the other hand, the graph isomorphism problem can be solved efficiently for many
graph classes; for example, interval graphs [32], probe interval graphs [52], permutation graphs [53],
directed path graphs [54], and distance hereditary graphs [55].

3. Polynomial Time Algorithms for the Bandwidth Problem

A layout of a graph G = (V,E) on n vertices is a bijection π between the vertices in V and the set
{1, 2, . . . , n}. The bandwidth of a layout π equals max{|π(u) − π(v)| | {u, v} ∈ E}. The bandwidth
of G, denoted by bw(G), is the minimum bandwidth of all layouts of G. A layout achieving bw(G) is

Algorithms 2013, 6 66

called an optimal layout. On a layout π, we denote by S < S ′ for two vertex sets S, S ′ if and only if
π(u) < π(v) holds for every pair of u ∈ S and v ∈ S ′.

For given graph G = (V, E), a proper interval completion of G is a superset E ′ of E such that
G′ = (V,E ′) is a proper interval graph. Hereafter, we will omit the “proper interval” since we always
consider proper interval completions. We say a completion E ′ is minimum if and only if |C ′| ≤ |C ′′| for
maximum cliques C ′ in G′ = (V,E ′) and C ′′ in G′′ = (V,E ′′) for any other completion E ′′.

For a minimum completion E ′, it is known that bw(G) = |C ′| − 1, where C ′ is a maximum
clique in G′ = (V, E ′) [9]. Let G = (V,E) be an interval graph with an interval representation
I = {Iv1 , Iv2 , . . . , Ivn}. For each maximal clique C, there is a point p such that N [p] induces the
clique C by Helly property. Thus, for any given graph G, we can compute bw(G) by Algorithm 1.

Algorithm 1: Bandwidth of a general graph
Input : Graph G = (V, E)

Output: bw(G)

generate a proper interval graph G′ = (V,E ′) that gives a minimum completion of G;
make the unique proper interval representation I(G′) of G′;
find a point p such that |N [p]| ≥ |N [p′]| for any other point p′ on I(G′);
return (|N [p]| − 1).

In Algorithm 1, the key point is how to find the minimum completion of G in the first step. The
following observation may not be explicitly given in literature, but it can be obtained from the results
in [9] straightforwardly (for example, the proof of Theorem 3.2 in [9], this fact is implicitly used):

Observation 4 For a minimum completion G′ = (V,E ′) of G = (V, E), let I(G′) = (I ′
v1

, I ′
v2

, . . . , I ′
vn

)

be the unique proper interval representation of G′ stated in Proposition 1. Then the ordering
v1, v2, . . . , vn gives an optimal layout of G, and vice versa.

Here we show a technical lemma for the proper interval subgraph of an interval graph that will play
an important role of our results.

Lemma 5 Let G = (V,E) be an interval graph with V = {v1, v2, . . . , vn}, and I = {Iv1 , Iv2 , . . . , Ivn}
an interval representation of G. Let J = {Ju1 , Ju2 , . . . , Juk

} be a subset of I such that J forms a
proper interval representation. That is, we have U = {u1, . . . , uk} ⊆ V , and we can order J as
L(Jui

) ≤ L(Jui+1
) and R(Jui

) ≤ R(Jui+1
) for each 1 ≤ i < k. Let ρ be the injection from J to I with

Jui
= Ivρ(i)

for each 1 ≤ i ≤ k ≤ n. Then, G has an optimal layout π such that each interval Jui
appears

according to the ordering in J . More precisely, for each i with 1 ≤ i < k, we have π(vρ(i)) < π(vρ(i+1)).

Proof. The proof is strongly related to the algorithm, which we call Algorithm KV, developed by
Kleitman and Vohra in [26]. To be self-contained, we give a description of Algorithm KV in Appendix A.
We recall that for given an interval representation of an interval graph G = (V,E) and a positive integer
k, Algorithm KV constructs a layout π of V that achieves the bandwidth at most k if bw(G) ≤ k. The
main idea is as follows. We assume that we give the interval representation I and bw(G) as an input to
Algorithm KV. Through the construction of the optimal layout π, indeed, Algorithm KV does not change
the ordering in J . We note that Algorithm KV itself does not mind the set J . That is, for an interval

Algorithms 2013, 6 67

graph G = (V,E), Algorithm KV does not change the ordering of any subset J if J induces a proper
interval graph.

Basically, Algorithm KV greedily labels each interval from 1 to n, from left to right. Unlabeled
intervals are divided into two groups; the intervals incident to labeled intervals and others. The former
group is again divided into sets Sq

j . A set Sq
j contains unlabeled intervals that should have labels up to

(j + q), where q is the largest label so far. In the first saturated Sq
j with respect to (j + q), the interval

having the smallest left endpoint is chosen as the next interval (ties are broken by the right endpoints).
To prove the lemma, we have to show the leftmost unlabeled interval Jui

in J has to be chosen before
Jui+1

when Algorithm KV chooses an interval in J . When Algorithm KV picks up the first saturated
Sq

j in Step 7, we have Sq
1 ⊆ Sq

2 ⊆ · · · ⊆ Sq
j . Hence, by a simple property of proper intervals, Sq

j

contains all unlabeled Jui
with i′ < i ≤ i′′ such that Jui′ is the rightmost labeled interval in J and Jui′′

is the rightmost unlabeled interval in J that is adjacent to a labeled interval. Among them, Algorithm
KV picks up the interval that has the smallest left endpoint (in Step 2 or 8). Thus, with appropriate
tie-breaking, the next labeled interval can be Jui′+1

before Jui′+2
. Therefore, Algorithm KV labels all

intervals in J from left to right, and we have the lemma.

3.1. Linear Time Algorithm for a Threshold Graph

We first show a linear time algorithm for computing bw(G) of a connected threshold graph G. For a
threshold graph G = (V,E), there exist nonnegative weights w(v) for v ∈ V and t such that {u, v} ∈ E

if and only if w(u) + w(v) ≥ t. We assume that a threshold graph is given in the standard adjacency
list manner. That is, each vertex has its own neighbor list and it knows its degree and weight. We
assume that G is connected and V is already ordered as {v1, v2, . . . , vn} with w(vi) ≤ w(vi+1) for
1 ≤ i < n (this sort can be done in O(n) time by a standard bucket sort [56, Section 5.2.5] according
to the degrees of vertices; ties may occur by twins, and are broken in any way). We can find ℓ such
that w(vℓ−1) + w(vℓ) < t and w(vℓ) + w(vℓ+1) ≥ t in O(n) time. Then G has the following interval
representation I(G):

• For 1 ≤ i ≤ ℓ, vi corresponds to the point i, that is, Ivi
= [i, i].

• For ℓ < i ≤ n, vi corresponds to the interval [j, ℓ], where j is the minimum index with w(vi) +

w(vj) ≥ t.

For example, Figure 1(a) is a threshold graph; each number in a circle is its weight, and threshold
value is 5. We have ℓ = 5 and its interval representation is given in Figure 1(b).

Figure 1. (a) Threshold graph and (b) its interval representation.

(a)

v1 v2 v3 v4 v5

v6

v7 v8 v9

v10

3 3 3 4 4

1 1 2 2 2

v1 v2 v3 v4 v5

v6

v7

v8

v9

v10

(b)

Algorithms 2013, 6 68

Theorem 6 We assume that a connected threshold graph G = (V, E) is given in the interval
representation I(G) stated above. Then we can compute bw(G) in O(n) time and space.

Proof. We first observe that L(Ivi
) < L(Ivi+1

) and R(Ivi
) < R(Ivi+1

) for each vi with 1 ≤ i < ℓ, and
L(Ivi

) ≥ L(Ivi+1
) and R(Ivi

) = R(Ivi+1
) = ℓ for each i with ℓ < i < n. That is, G consists of two

proper interval graphs induced by {v1, v2, . . . , vℓ} and {vℓ, vℓ+1, . . . , vn} (note that vℓ is shared). Their
proper interval representations also appear in I(G). Hence, by Lemma 5, there exists an optimal layout
π of V = {v1, . . . , vn} such that π(v1) < π(v2) < · · · < π(vℓ) and π(vℓ) > π(vℓ+1) > π(vℓ+2) > · · · >

π(vn). Thus we can obtain an optimal layout by merging two sequences of vertices.
To obtain an optimal layout, by Observation 4, we construct a minimum completion of G from two

sequences. The longest interval is given by vn; since G is connected, [L(Ivn), R(Ivn)] = [1, ℓ]. Hence,
we extend all intervals (except Ivn) to length ℓ− 1 and construct a minimum completion. We denote the
extended interval Ivi

by I ′
vi

. That is, the length of I ′
vi

= ℓ − 1 for all i with 1 ≤ i ≤ n. The extension
is illustrated in Figure 2. The extension of intervals Ivi

for i > ℓ is straightforward; just extend them to
the right, which does not increase the size of a maximum clique. Thus we focus on the points Ivi

= [i, i]

with i ≤ ℓ, which are extended to I ′
vi

with length ℓ − 1.

Figure 2. Construction of a minimum completion.

v1 vlvl-1vmvm-1 vm+1v2

vn
vn-1

vl+1

vl+2

If I ′
vi

does not contain the point 1, I ′
vi

has to contain the point ℓ since it has to have length ℓ − 1. On
the other hand, once I ′

vi
contains the point ℓ, we can set I ′

vi
= [i..ℓ + i − 1] without loss of generality.

Otherwise, the size of a maximum clique at the left side of the point i may increase. Similarly, once I ′
vi

does not contain the point ℓ, we can set I ′
vi

= [−ℓ + i + 1..i] without loss of generality. That is, we can
assume that L(I ′

vi
) = i or R(I ′

vi
) = i for each 1 ≤ i ≤ ℓ. If two intervals I ′

vi
and I ′

vj
satisfy i < j ≤ ℓ,

L(I ′
vi
) = i, and R(I ′

vj
) = j, we can make R(I ′

vi
) = i, and L(I ′

vj
) = j without increasing the size of a

maximum clique. Specifically, we can take R(I ′
v1

) = 1 and L(I ′
vℓ

) = ℓ.
From the above observation, a minimum completion is given by the following proper interval

representation of n intervals of length ℓ − 1 for some m with 1 ≤ m < ℓ: (0) for each i > ℓ, L[Ivi
] = j,

where j is the minimum index with w(vi) + w(vj) ≥ t; (1) for each 1 ≤ i ≤ m, R[Ivi
] = i, and (2) for

each m < i ≤ ℓ, L[Ivi
] = i (Figure 2). Thus, to construct a minimum completion, we search the index

m that minimizes a maximum clique in the proper interval graph represented by above proper interval
representation determined by m.

In the minimum completion, there are ℓ distinct cliques Ci = N [i], one induced at each point i with
1 ≤ i ≤ ℓ. Now we consider a maximum clique of the corresponding proper interval graph for a fixed
m ∈ [1..ℓ].

Algorithms 2013, 6 69

At points in [m + 1..ℓ], it is easy to see that N [m + 1] ⊆ · · · ⊆ N [ℓ] and hence the point ℓ induces
maximum clique of size (n − (ℓ + 1) + 1) + (ℓ − (m + 1) + 1) = (n − m).

We next consider each point i in [1..m]. At the point i, N [i] induces a clique that consists of
{vi, vi+1, . . . , vm} and {vj, vj+1, . . . , vn}, where j is the minimum index with w(vi)+w(vj) ≥ t. Hence
we have a clique of size (m− i + 1) + (n− j + 1) at point i. Thus we have to find i in [1..m] that gives
a maximum one.

Therefore, for a fixed m, we compute these two candidates for a maximum clique from [1..m] and
[m + 1..ℓ], compare them, and obtain a maximum one. For every m, we have to find a minimum one
of the maximum cliques, whose size gives bw(G) + 1. Thus we can compute bw(G) by Algorithm 2.

Algorithm 2: Bandwidth of a threshold graph
Input : Threshold graph G = (V,E) with w(v1) ≤ w(v2) ≤ · · · ≤ w(vn) and t

Output: bw(G)

let ℓ be the minimum index with w(vℓ) + w(vℓ+1) ≥ t;
set bw := ∞;
for m = 1, 2, . . . , ℓ − 1 do

set lc := 0; // size of a maximum clique at points in [1..m]

for i = 1, 2, . . . , m do
let j be the minimum index with w(vi) + w(vj) ≥ t;
if lc < (m − i + 1) + (n − j + 1) then set lc := (m − i + 1) + (n − j + 1);

if max{lc, n − m} < bw then bw := max{lc, n − m};
return (bw − 1).

The correctness of Algorithm 2 follows from Observation 4, Lemma 5 and the above discussions.
Algorithm 2 runs in O(n2) time and O(n) space by a straightforward implementation. However,

careful implementation achieves O(n) time and space as follows. When the algorithm updates m in step
3, the proper interval representation does not change except for one vertex vm+1. We assume that the
value of the variable m is changed from m′ to m′′ = m′ + 1. Then, the interval I ′

vm′′ is “flipped” from
right to left centered at m′′. More precisely, changing from m′ to m′′ = m′ + 1 means changing I ′

vm′′

from [m′′..ℓ + m′′ − 1] to [−ℓ + m′′ + 1..m′′], or equivalently, from L(I ′
vm′′) = m′′ to R(I ′

vm′′) = m′′.
This flip has two influences: First, the variable lc, which was the size of a maximum clique in [1..m′],
will be updated by either (1) current lc + 1 (added by vm′′ since it is flipped from L(Ivm′′) = m′′ to
R(Ivm′′) = m′′) or (2) n − j + 2, which is the size of clique induced at the new point m′′, where j is
the minimum index with w(vm′′) + w(vj) ≥ t. Second, the maximum clique in the range [m′′ + 1..ℓ] is
updated from (n−m′) to (n−m′′). Thus, to find a maximum clique in the range [1..m′′], the algorithm
does not need to check all indices in [1..m′′] by the for-loop in steps 5 to 8. Precisely, we move step 4 to
between steps 2 and 3, and replace the for-loop in steps from 5 to 8 by the following steps;

let j be the minimum index with w(vm) + w(vj) ≥ t;
set lc := max{lc + 1, n − j + 2};

We can precompute a table that gives the minimum index j with w(vi) + w(vj) ≥ t for each i in O(n)

time. Using the table, the modified algorithm runs in O(n) time and space.

Algorithms 2013, 6 70

We assume that a connected threshold graph G = (V, E) is given in the interval representation I(G)

stated above. Let V0 and V1 be the sets of light and heavy vertices vi with i ≤ ℓ and i > ℓ, respectively.
Then, for a connected threshold graph G = (V, E), we have an optimal layout that satisfies V 0

0 < V1 <

V 1
0 , where V 0

0 and V 1
0 are a partition of V0 such that w(v) < w(u) for each v ∈ V 0

0 and u ∈ V 1
0 .

Moreover, the optimal layout gives a maximum clique G′[V1 ∪ V 1
0] of the graph G′ = (V, E ′) where E ′

is the completion. We can also partition V1 into V 0
1 = {vn, vn−1, . . . , vm′} and V 1

1 = {vm′−1, . . . , vℓ+1}
such that N(vm) = {vn, . . . , vm′} on G = (V,E). Then we can observe that any arrangement of vertices
in V 1

0 ∪ V 1
1 gives us an optimal layout. The following corollary will give us an important property in a

chain graph.

Corollary 7 For a connected threshold graph G = (V,E), we have an optimal layout with indices m

and m′ such that V 0
0 < V 0

1 < (V 1
0 ∪ V 1

1) and any arrangement of vertices in V 1
0 ∪ V 1

1 gives an optimal
layout. Moreover, there is no edge between u ∈ V 0

0 and v ∈ V 1
0 ∪ V 1

1 on the completion.

3.2. Linear Time Algorithm for a Chain Graph

We next show a linear time algorithm for computing bw(G) of a connected chain graph
G = (X,Y,E). We assume that X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′} are already ordered by
inclusion of neighbors; N(xn) ⊆ N(xn−1) ⊆ · · · ⊆ N(x1) and N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yn′). Since
G is connected, we have N(x1) = Y and N(yn′) = X . We assume that a chain graph G = (X, Y, E)

with |X| = n and |Y | = n′ is given in O(n + n′) space; each vertex y ∈ Y stores one endpoint d(y)

such that N(y) = {x1, x2, . . . , xd(y)}, and each vertex x ∈ X stores one endpoint n′−d(x)+1 such that
N(x) = {yn′ , yn′−1, . . . , yn′−d(x)+1}. (We abuse the degree d(·) as a maximum index of the neighbors.) A
chain graph has an intersection model of horizontal and vertical line segments (an example in Figure 3(a)
has an intersection model in Figure 3(c)); X corresponds to a set of horizontal line segments such that
all left endpoints have the same x-coordinate, and Y corresponds to a set of vertical line segments such
that all top endpoints have the same y-coordinate. By the property of the inclusions of neighbors, on the
intersection model, vertices in X can be placed from top to bottom and vertices in Y can be placed from
right to left such that the lengths of their line segments are monotone. This also can be transformed to the
line representation of a bipartite permutation graph in a natural way (Figure 3(b)). Then the endpoints
on L1 are sorted as xn, . . . , x1, yn′ , . . . , y1 from left to right.

Figure 3. Chain graph (a) and its corresponding representations (b)–(e).

wiper (x2)

L1

L2
(b) (c) (d)

y1

y2

y3

y4

y5

y6x6

x5

x4

x3

x2

x1
x6 x5 x4 x3 x2 x1 y1y2y3y4y5y6 y1y2y3y4y5y6

x6

x5

x4

x3

x2

x1

y1y2

y3
y4
y5
y6

x3

x2

x1

x6 x5 x4

(e)

y1y2

y3y4

y5
y6

x3

x2

x1

x6
x5 x4

(a)

r=1

l=5

wiper (x2)

wiper (x2)

Algorithms 2013, 6 71

For a chain graph G = (X, Y, E), a graph Hi = (X∪Y, Ei) is defined as follows [24]: We first define
H0 = (X ∪ Y, E0) to be a graph obtained from G by making a clique of X; that is, E0 = E ∪ {{x, x′} |
x, x′ ∈ X and x ̸= x′}. For 1 ≤ i ≤ n − 1, let Ci be the set {x1, x2, . . . , xi} ∪ N(xi+1). Then the graph
Hi is obtained from G by making a clique of Ci. More precisely, Ei := E ∪ {{xi′ , xi′′} | 1 ≤ i′, i′′ ≤
i} ∪ {{yj′ , yj′′} | (n′ − d(xi+1) + 1) ≤ j′, j′′ ≤ n′}. Then, the following lemma plays an important role
in the algorithm in [24], which computes the bw(G) for a chain graph G by finding the minimum value
of bw(Hi) for each i.

Lemma 8 ([24]) (1) Hi is an interval graph for each i; (2) bw(G) = mini bw(Hi).

We first observe that H0 is a threshold graph that has an interval representation in the form shown in
Figure 3(c); that is, we project the representation in Figure 3(c) onto a horizontal line. The length of
each xi does not change, and each yj degenerates to a point on the line. Intuitively, we can regard each
y ∈ Y as a point and each x ∈ X as an interval. More precisely, we assign the weights of the vertices
as follows. For each yj ∈ Y , w(yj) = j. For each xi ∈ X , w(xi) = 2|X| + |Y | − j, where j is the
minimum index of N(x). Letting t = 2|X|+ |Y |, we can obtain the desired threshold graph with interval
representation obtained from the projection of one in Figure 3(c). Thus, by Theorem 6, bw(H0) can be
computed in O(n + n′) time and space. Hereafter, we construct all minimum completions of Hi directly
for 1 ≤ i ≤ n − 1.

We introduce a wiper(xi) which is a line segment joining two points p1 and p2 on L1 and L2,
respectively, on the line representation of a chain graph G = (X, Y, E) as follows (Figure 3(b)); p1

is a fixed point on L1 between x1 and yn′ , and p2 is a point on L2 between xi+1 and q, where q is the right
neighbor point of xi+1 on L2. More precisely, q is either (1) xi if N(xi) = N(xi+1), or (2) the maximum
vertex yj in N(xi) \ N(xi+1) if N(xi) \ N(xi+1) ̸= ∅. Using the wiper, Hi can be obtained from G by
making a clique Ci which consists of the vertices corresponding to line segments intersecting wiper(xi)

on the line representation.
Intuitively, the interval representation of Hi can be obtained as follows; first, we construct a line

representation of G and put the wiper(xi) (Figure 3(b)), second, we modify it to the intersection model
of horizontal and vertical line segments with wiper(xi) placed between xi and xi+1 or yj , where yj

is the minimum vertex in N(xi+1) (Figure 3(c)), and finally, we stretch the wiper(xi) to vertical line
segment, or just a point 0 on an interval representation, and arrange the line segments corresponding to
the vertices in X and Y (Figure 3(d)). We note that the interval representation of Hi in Figure 3(d) is a
combination of two interval representations (Figure 1(b)) of two threshold graphs that are separated by
the wiper(xi). More precise and formal construction of the interval representation of Hi is as follows.
By Helly’s property, the intervals in the clique Ci share a common point, say 0 (which corresponds to
wiper(xi)). Then, centering the point 0, we can construct a symmetric interval representation as follows
(Figure 3(d)); (1) each xi′ ∈ X with i′ ≤ i corresponds to an interval [0, (d(xi′) − d(xi))], (2) each
xi′ ∈ X with i′ > i corresponds to the point −(i′−i) = i−i′(< 0), (3) each yj ∈ Y with j > n′−d(xi+1)

corresponds to an interval [−(d(yj)− i), 0] = [(i−d(yj)), 0], and (4) each yj ∈ Y with j ≤ n′−d(xi+1)

corresponds to the point i − j + 1. We let XR
i := {xi′ ∈ X | i′ ≤ i}, XL

i := {xi′ ∈ X | i′ > i},
Y L

i := {yj ∈ Y | j > n′ − d(xi+1)}, and Y R
i := {yj ∈ Y | j ≤ n′ − d(xi+1)}. Then, two induced

subgraphs Hi[X
R
i ∪ Y R

i] and Hi[X
L
i ∪ Y L

i] of Hi are threshold graphs, which allows us to apply the

Algorithms 2013, 6 72

algorithm in Section 3.1. (In Figure 3(d), Hi[X
R
i ∪ Y R

i] is induced by {x1, x2, y1, y2} and Hi[X
L
i ∪ Y L

i]

is induced by {x3, x4, x5, x6, y3, y4, y5, y6}.) Now we are ready to prove the main theorem in this section.

Theorem 9 We assume that a chain graph G = (X,Y,E) is given in O(n + n′) space as stated above.
Then we can compute bw(G) in O(n + n′) time and space.

Proof. By Lemma 8, we can compute bw(G) by computing the minimum bw(Hi) for
i = 0, 1, 2, . . . , n − 1. By the fact that H0 is a threshold graph and Theorem 6, we can compute bw(H0)

in linear time and space. We only consider the case that 1 ≤ i ≤ n − 1. We separate the proof into
three phases.

Algorithm: Consider a fixed index i. The basic idea is similar to the algorithm for a threshold graph.
We directly construct a minimum completion of Hi. When G is a threshold graph, we put a midpoint m

such that each point [j, j] less than or equal to m is extended to an interval Iv with R[Iv] = j, and each
point [j, j] greater than m is extended to an interval Iv with L[Iv] = j, where v is the vertex corresponding
to the point [j, j]. Similarly, we put two midpoints ℓ in Hi[X

L
i ∪ Y L

i] and r in Hi[X
R
i ∪ Y R

i]. Now we
make a proper interval representation instead of a unit interval representation to simplify the proof. (We
note that any proper interval representation can be extended to a unit interval representation in a natural
way [44]. Hence we can use a proper interval representation instead of a unit interval representation.)
For two midpoints ℓ and r, we make a proper interval representation as follows; (1) for each xi′ ∈ XL

i

with i′ ≥ ℓ, I ′
xi′

= [i − n..i − i′], (2) for each xi′ ∈ XL
i with ℓ < i′, I ′

xi′
= [i − i′..0], (3) for each

yj ∈ Y R
i with r < j(≤ n′ − d(xi+1)), I ′

yj
= [0..i − j + 1], and (4) for each yj ∈ Y R

i with j ≤ r,
I ′
yj

= [i − j + 1..i]. In Figure 3(e), we give an example with ℓ = 5 and r = 1. For each possible pair
(ℓ, r) of ℓ and r with i + 2 ≤ ℓ ≤ n and 1 ≤ r ≤ n′ − d(xi+1) − 1, we compute the size of a maximum
clique in the proper interval representation. At this time, we have three candidates for a maximum clique
at the left, the center, and the right parts of the proper interval representation. More precisely, for each
fixed i, ℓ, and r, we define three maximum cliques RCi(ℓ, r), CCi(ℓ, r), and LCi(ℓ, r) in three proper
interval graphs induced by {xℓ, xℓ+1, . . . , xn} ∪ {yj, yj+1, . . . , yn′}, where yj is the minimum vertex in
N(xℓ), {x1, x2, . . . , xℓ−1}∪{yr+1, yr+2, . . . , yn′}, and {x1, x2, . . . , xi′}∪{y1, y2, . . . , yr}, where xi′ is the
maximum vertex in N(yr), respectively. For example, in Figure 3(e), three sets are {x5, x6, y4, y5, y6},
{x1, x2, x3, x4, y2, y3, y4, y5, y6}, and {x1, x2, y1}, and hence RCi(5, 1) = {x5, y4, y5, y6} at point -3
(or R(x5)), CCi(5, 1) = {x1, x2, x3, x4, y2, y3, y4, y5, y6} at point 0, and LCi(5, 1) = {x1, x2, y1} at
point 2. Thus for (ℓ, r) = (5, 1), we have a maximum clique CCi(5, 1) of size 9. For each pair
(ℓ, r), we compute max{|RCi(ℓ, r)|, |CCi(ℓ, r)|, |LCi(ℓ, r)|}, and then we take the minimum value of
max{|RCi(ℓ, r)|, |CCi(ℓ, r)|, |LCi(ℓ, r)|} for all pairs, which is equal to bw(Hi) + 1 for the fixed i. In the
case in Figure 3(d) (i = 2), (ℓ, r) = (3, 2) gives the minimum value 6(= RC2(3, 2) = CC2(3, 2)). We
next compute the minimum one for all i, which gives bw(G) + 1. Summarizing, we have Algorithm 3.

Correctness: By Lemma 8, each graph Hi is an interval graph and mini bw(Hi) = bw(G). For the
interval representation of Hi, we consider two proper interval subgraphs. The first induced subgraph
Hi[X

R
i ∪Y L

i], which consists of positive length intervals in Hi, is a proper interval graph, and the second
induced subgraph Hi[X

L
i ∪ Y R

i], which consists of intervals of length 0 (or points), is also a proper
interval graph. Hence, by Lemma 5, there is an optimal layout that keeps their natural orderings over

Algorithms 2013, 6 73

XR
i ∪ Y L

i and XL
i ∪ Y R

i . Therefore, by Observation 4, we can compute bw(Hi) by extending intervals
in them together to be proper. Using the same argument as in the proof of Theorem 6, we can use the
set XR

i ∪ Y L
i of intervals as a proper interval representation as is, and we must extend each interval in

XL
i ∪ Y R

i to be proper with respect to XR
i ∪ Y L

i . Using the same argument twice, we can see that using
the idea of two midpoints ℓ and r achieves an optimal layout.

Algorithm 3: Bandwidth of a chain graph
Input : Chain graph G = (X,Y,E) with N(xn) ⊆ · · · ⊆ N(x1) and N(y1) ⊆ · · · ⊆ N(yn′)

Output: bw(G)

bw := bw(H0) // by Algorithm 2

for i = 1, 2, . . . , n − 1 do
construct the interval representation I(Hi) of the graph Hi with wiper(xi);
for ℓ = n, n − 1, . . . , i + 1 do

for r = 1, 2, . . . , n′ − d(xi+1) do
if max{|RCi(ℓ, r)|, |CCi(ℓ, r)|, |LCi(ℓ, r)|} < bw then
bw = max{|RCi(ℓ, r)|, |CCi(ℓ, r)|, |LCi(ℓ, r)|};

return (bw − 1).

Linear time implementation: A straightforward implementation gives O((n + n′)3) time and O(n +

n′) space algorithm. We here show how to improve the time complexity to linear time. Intuitively, we
maintain the differences of three maximum cliques LCi, CCi, and RCi efficiently, and we use the same
idea as in the proof of Theorem 6 twice.

We first fix i = 1. In this case, we can compute LC1, CC1, and RC1 in O(n + n′) time;
the algorithm first starts RC1

′ := {x1, y1, . . . , yn′−d(x2)}, CC1
′ := {x1, yn′−d(x2)+1, . . . , yn′}, and

LC1
′ := {x2, . . . , xn, yn′−d(x2)+1, . . . , yn′}. That is, all points in XR

2 (= {x2, . . . , xn}) are extended to
the left, and all points in Y L

2 (= Y \ N(x2)) are extended to the right. If max{|LC1
′|, |RC1

′|} > |CC1
′|,

the algorithm flips the interval (or updates ℓ or r) into CC1
′, decreases |LC1

′| or |RC1
′|, and increases

|CC1
′|. Repeating this process, in O(n+n′) time, when the algorithm meets max{|LC1|, |RC1|} = |CC1|

or max{|LC1|, |RC1|} = |CC1| − 1, the value gives the minimum size of the maximum cliques in three
parts, or equivalently, gives a minimum completion of H1. When we have a minimum completion of H1,
we say this pair (ℓ, r) is the best pair for H1.

Now, we compute LC2, CC2, and RC2 from LC1, CC1, and RC1 with the best pair for
H1 in O(d(x1) − d(x3)) time. Intuitively, H2 is obtained from H1 by the following steps; (1) remove
Ix2 = [1, 1] from the point 1, and put it as an interval [0, d(x1)]; (2) shift all positive points
Iyj

at d(x1) − j + 1 with yj ∈ N(x1) \ N(x2) to d(x2) − j + 1; and (3) remove all intervals
Iyj

= [−1, 0] with yj ∈ N(x2) \ N(x3) and put them at d(x2) − j + 1 as points. The movements
have influences on LC1, CC1, and RC1, and from them, we construct LC2, CC2, and RC2, and obtain
the best pair for H2 in a similar way to that used in the proof of Theorem 6. Then, since N(x3) ⊆
N(x2) ⊆ N(x1), the total difference (or the total number of flipped intervals) can be bounded above
by |{x2} ∪ (N(x1) \ N(x2)) ∪ (N(x2) \ N(x3))| = |{x2} ∪ (N(x1) \ N(x3))| = d(x1) − d(x3) + 1.
Hence the computation of LC2, CC2, and RC2 from LC1, CC1, and RC1 requires O(d(x1) − d(x3)) time.

Algorithms 2013, 6 74

Repeating this process, the computation of LCi, CCi, RCi, and the best pair of Hi from LCi−1, CCi−1,
and RCi−1 with the best pair for Hi−1 requires O(d(xi−1)−d(xi+1)) time for each 1 < i ≤ n. Hence, by
maintaining the differences, the total computation time of Algorithm 3 is the sum of the computations
of (1) bw(H0), (2) LC1, CC1, RC1, and the best pair of H1, and (3) LCi, CCi, and RCi with the best pair
of Hi from LCi−1, CCi−1, RCi−1, and the best pair of Hi−1 for i = 2, 3, . . . , n − 1, which is equal to
O(n + n′) +

∑n−1
i=2 O(d(xi−1) − d(xi+1)) = O(n + n′).

Here we extend Corollary 7 to a chain graph.

Corollary 10 For a connected chain graph G = (X, Y, E), we assume that X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn′} are already ordered by inclusion of neighbors. Then we have an optimal layout
that satisfies X0 < Y0 < X1 ∪ Y1 < X2 < Y2 such that (1) X0 = {x1, . . . , xi}, X1 = {xi+1, . . . , xj},
and X2 = {xj+1, . . . , xn} for some 1 ≤ i ≤ j ≤ n, and (2) Y2 = {y1, . . . , yk}, Y1 = {yk+1, . . . , yℓ},
and Y0 = {yℓ+1, . . . , yn′} for some 1 ≤ k ≤ ℓ ≤ n. Any arrangement of vertices in X1 ∪ Y1 gives us an
optimal layout. Moreover, the bandwidth is determined by an edge between (1) X0 and Y0, (2) (X1∪X2)

and (Y0 ∪ Y1), or (3) X2 and Y2.

Proof. For an optimal layout, we have a corresponding wiper. Then the set X0 is determined by xi ∈ X

which is the maximum vertex in X not crossing the wiper. Then Y0 is determined by the maximum
vertex yk in N(xi). Similarly, the set Y2 is determined by the minimum vertex yℓ not crossing the wiper,
and X2 is determined by the minimum vertex in N(yℓ). Considering the maximum cliques which can
give the bandwidth, the corollary follows.

4. Intractable Problems on a (Unit) Grid Intersection Graph

In this section, we turn to the grid intersection graphs and intractable problems for the class.

4.1. The Hamiltonian Cycle Problem

We give two hardness results for grid intersection graphs in this section.

Theorem 11 The Hamiltonian cycle problem is NP-complete for unit grid intersection graphs.

Proof. It is clear that the problem is in NP . Hence we show NP-hardness. We show a similar reduction
in [57]. We start from the Hamiltonian cycle problem in planar directed graph with degree bound two,
which is still NP-hard [58]. Let G0 = (V0, A) be a planar directed graph with degree bound two. (We
deal with directed graphs only in this proof; we will use (u, v) as a directed edge, called arc, which
is distinguished from {u, v}.) As shown in [57,58], we can assume that G0 consists of two types of
vertices: (type △) with indegree two and outdegree one, and (type ▽) with indegree one and outdegree
two. Hence, the set V0 of vertices can be partitioned into two sets V△ and V▽ that consist of the vertices
in type △ and ▽, respectively.

Moreover, we have two more claims; (1) the unique arc from a type △ vertex has to be the unique arc
to a type ▽ vertex; and (2) each of two arcs from a type ▽ vertex has to be one of two arcs to a type
△ vertex. If the unique arc from a type △ vertex v is into one of a type △ vertex u, the vertex u has
to be visited from v to make a Hamiltonian cycle. Hence the vertex u can be replaced by an arc from

Algorithms 2013, 6 75

v to the vertex w which is pointed from u. On the other hand, if one of two arcs from a type ▽ vertex
v reaches another type ▽ vertex u, the vertex u should be visited from v. Hence the other arc a from v

can be removed from G0. Then the vertex w incident to a has degree 2. Hence we have two cases; w

can be replaced by an arc, or we can conclude G0 does not have a Hamiltonian cycle. Repeating these
processes, we have the claims (1) and (2), which imply that we have |V△| = |V▽|, the underlying graph
of G0 is bipartite (with two sets V△ and V▽), and any cycle contains two types of vertices alternately.

By the claims, we can partition arcs into two groups; (1) arcs from a type △ vertex to a type ▽
vertex called thick arcs, and (2) arcs from a type ▽ vertex to a type △ vertex called thin arcs. By
above discussion, we can observe that any Hamiltonian cycle has to contain all thick arcs (Moreover,
contracting thick arcs, we can show NP-completeness of the Hamiltonian cycle problem even if we
restrict ourselves to the directed planar graphs that only consist of vertices of two outdegrees and
two indegrees.)

Now, we construct a unit grid intersection graph G1 = (V1, E1) from G0 = (V0, A) which satisfies
the above conditions. One type ▽ vertex is represented by five vertical lines and two horizontal lines,
and one type △ vertex is represented by three vertical lines and one horizontal line in Figure 4 (each
corresponding line segments are in gray area). Each thick arc is represented by alternations of one
parallel vertical line and one parallel horizontal line in Figure 4, and each thin arc is represented by
alternations of two parallel vertical lines and two parallel horizontal lines in Figure 5. The vertices are
joined by the arcs in a natural way. An example is illustrated in Figure 6.

Figure 4. Reduction of thick arcs.

a ab

c d

b

dc

Figure 5. Reduction of thin arcs.

ed

a

b c

ed

a

b c

Algorithms 2013, 6 76

Figure 6. Reduction of a graph G0.

a

b

c

d

e

f

a

b

c

d

e

f

G0

G1

For the resultant graph G1, it is obvious that the reduction can be done in a polynomial time, and
G1 is a unit grid intersection graph. Hence we show G0 has a Hamiltonian cycle if and only if G1 has
a Hamiltonian cycle. First, we assume that G0 has a Hamiltonian cycle C0, and show that G1 also has
a Hamiltonian cycle C1. C1 visits the vertices (or line segments) in G1 along C0 as follows. For each
thick arc in G0, the corresponding segments in G1 are visited straightforwardly. We show how to visit
the segments corresponding to thin arcs (Figure 7). For each thin arc not on C0, they are visited by C1

as shown in the left side of Figure 7 (between u and v); a pair of parallel lines are used to sweep the arc
twice, and the endpoints are joined by one line segment in the gadget of a type △ vertex (v). On the
other hand, for each thin arc on C0, they are visited by C1 as shown in the right side of Figure 7 (between
w and v); a pair of parallel lines are used to sweep the arc once, and the path goes from e to a. Hence
from a given Hamiltonian cycle C0 on G0, we can construct a Hamiltonian cycle C1 on G1.

Figure 7. How to sweep thin arcs.

ed

a

b c

ed

a

b c

u

v

w

u

v

w

Now we assume that G1 has a Hamiltonian cycle C1, and show that G0 also has a Hamiltonian cycle
C0. By observing that there are no ways for C1 to visit lines corresponding to thick arcs described above,
and the unique center horizontal line of a type △ vertex can be used exactly once, we can see that C1

forms a Hamiltonian cycle of G1 as in the same manner represented above. Hence C0 can be constructed
from C1 in the same way.

Algorithms 2013, 6 77

Corollary 12 The Hamiltonian path problem is NP-complete for unit grid intersection graphs.

Proof. We reduce the graph G1 in the proof of Theorem 11 to G′
1 as follows; pick up any line segment

in a thick arc, and add one more line segment as in Figure 8. Then, it is easy to see that G1 has a
Hamiltonian cycle if and only if G′

1 has a Hamiltonian path (with an endpoint corresponding to the
additional line segment). Hence we have the corollary.

Figure 8. Hamiltonian path problem.

4.2. The Graph Isomorphism Problem

Theorem 13 The graph isomorphism problem is GI-complete for grid intersection graphs.

Proof. We show a similar reduction in [38,54]. We start by considering the graph isomorphism problem
for general graphs. Let G0 = (V0, E0) and G′

0 = (V ′
0 , E

′
0) with |V0| = |V ′

0 | = n and |E0| = |E ′
0| = m

be an instance of the graph isomorphism problem. (We will refer the graph G0 in Figure 9(1) as an
example). Without loss of generality, we assume that G0 is connected. From G0, we define a bipartite
graph G1 = (V0, E0, E1) with two vertex sets V0 and E0 by E1 := {{v, e} | v is one endpoint of e}.
(Intuitively, each edge is divided into two edges joined by a new vertex; see Figure 9(2)). Then, e ∈ E0

have degree 2 by its two endpoints in V0. It is easy to see that G0 ∼ G′
0 if and only if G1 ∼ G′

1 for any
graphs G0 and G′

0 with resultant graphs G1 and G′
1.

Figure 9. Reduction for GI-completeness.

1 2 3

4 5 6

a

b

c

d e g

f

1 2 3

4 5 6

a

b

c

d e g

f

1 2 3

4 5 6

a

b

c

d g

f
V0:

E0:

Pv:

Qe:

Ca,Cc:

Cb,Cd:

(1) G0

n

m

n

2m

2m

2m

e

(2) G1 (3) G2

Algorithms 2013, 6 78

Now, we construct a grid intersection graph G2 = (V2, E2) from the bipartite graph G1 = (V0, E0, E1)

such that G1 ∼ G′
1 if and only if G2 ∼ G′

2 in the same manner. The vertex set V2 consists of the following
sets (see Figure 9(3)):

V0, E0; we let V0 = {v1, v2, . . . , vn}, E0 = {e1, e2, . . . , em}, where ei = {vi, vj} for some 1 ≤ i, j ≤ n.

Pv, Qe; each vertex in Pv ∪ Qe is called pendant and Pv := {p1, p2, . . . , pn}, Qe :=

{q1, q2, . . . , qm, q′1, q
′
2, . . . , q

′
m}. That is, we have |Pv| = n and |Qe| = 2m.

Ca, Cb, Cc, Cd; each vertex in Ca ∪ Cb ∪ Cc ∪ Cd is called connector, and Ca := {a1, a2, . . . , am},
Cb := {b1, b2, . . . , bm}, Cc := {c1, c2, . . . , cm}, and Cd := {d1, d2, . . . , dm}.

The edge set E2 contains the following edges (Figure 9(3)):

1. For each i with 1 ≤ i ≤ n, each pendant pi is joined to vi. That is, {pi, vi} ∈ E2 for each i with
1 ≤ i ≤ n.

2. For each j with 1 ≤ j ≤ m, two pendants qj and q′j are joined to ej . That is, {qj, ej}, {q′j, ej} ∈ E2

for each j with 1 ≤ j ≤ m.
3. For each ej with 1 ≤ j ≤ m, we have two vertices vi and vi′ with {vi, ej}, {vi′ , ej} ∈ E1. For

the three vertices ej , vi, vi′ , we add {ej, aj}, {vi, bj}, {aj, bj}, {ej, cj}, {vi′ , dj}, {cj, dj} into E2.
Intuitively, each edge in G1 is replaced by a path of length 3 that consists of one vertex in Ca ∪Cc

and the other one in Cb ∪ Cd.

The edge set E2 also contains the edges {vi, ej} for each i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ m. In
other words, every vertex in V0 is connected to all vertices in E0 (the edges are omitted in Figure 9(3)
to simplify).

Let G0 and G′
0 be any two graphs. Then, it is easy to see that G0 ∼ G′

0 implies G2 ∼ G′
2. Hence, we

have to show that G2 is a grid intersection graph, and G0 can be reconstructed from G2 uniquely up to
isomorphism.

We can represent the vertices in V0 ∪ Qe ∪ Ca ∪ Cc (white vertices in Figure 9(3)) as horizontal
segments and the vertices in E0 ∪ Pv ∪ Cb ∪ Cd (black vertices in Figure 9(3)) as vertical segments as
follows (Figure 10): First, all vertices in V0 correspond to unit length horizontal segments that are placed
in parallel. All vertices in E0 correspond to unit length vertical segments placed in parallel, and the
segments corresponding to vertices in V0 and E0 make a mesh structure (as in Figure 10). Each pendant
vertex in Pv and Qe corresponds to a short segment, and is attached to its neighbor in an arbitrary way,
for example, as in Figure 10. Each pair of connectors in Ca and Cb (or Cc and Cd) joins corresponding
vertices in V0 and E0 as in Figure 10. Then it is easy to see that the resultant grid representation gives G2.

Next, we show that G0 can be reconstructed from G2 uniquely up to isomorphism. First, any vertex
of degree 1 is a pendant in G2. Hence we can distinguish Pv ∪Qe from the other vertices. Then, for each
vertex v ∈ V2 \ (Pv ∪ Qe), |N(v) ∩ (Pv ∪ Qe)| = 1 if and only if v ∈ V0, and |N(v) ∩ (Pv ∪ Qe)| = 2

if and only if v ∈ E0. Hence two sets V0 and E0 are distinguished, and then Pv ∪ Qe can be divided into
Pv and Qe. Moreover, we have Ca ∪ Cb ∪ Cc ∪ Cd = V2 \ (Pv ∪ Qe ∪ V0 ∪ E0). Thus, tracing the paths
induced by Ca ∪Cb ∪Cc ∪Cd, we can reconstruct each edge ej = (vi, vi′) with ej ∈ E0 and vi, vi′ ∈ V0.
Therefore, we can reconstruct G0 from G2 uniquely up to isomorphism.

Algorithms 2013, 6 79

Hence the graph isomorphism problem for grid intersection graphs is as hard as the graph
isomorphism problem for general graphs. Thus the graph isomorphism problem is GI-complete for
grid intersection graphs.

Figure 10. Grid representation of G2.

1

2

3

4

5

6

a b c d e f g
Pendants

Connectors

5. Conclusions

In this paper, we focus on geometrical intersection graphs. From the viewpoint of the parameterized
complexity (see Downey and Fellow [59]), it is interesting to investigate efficient algorithms for these
graph classes with some constraints. What if the number of vertical lines (or the possible positions on the
coordinate of vertical lines) is bounded by a constant? In this case, we can use the dynamic programming
technique for the graphs. Do the restrictions make some intractable problems solvable in polynomial
time? From the graph theoretical point of view, a geometric model for chordal bipartite graphs is open.
It is pointed out by Spinrad in [60], but it is not solved yet. The graph isomorphism problem for unit grid
intersection graphs is also interesting. By Theorem 13, the graph isomorphism problem is GI-complete
for grid intersection graphs. In the proof, we only need two kinds of lengths—long line segments and
short line segments, but the difference of these two lengths is essential in the proof, and we cannot make
all line segments unit length in the reduction.

Algorithms 2013, 6 80

Appendix

A. Algorithm by Kleitman and Vohra

In [26], Kleitman and Vohra developed an algorithm for determining whether an interval graph
G = (V,E) has a bandwidth less than or equal to a given integer k. Their algorithm plays an important
role in the proof of Lemma 5. To be self-contained, we give the details of their algorithm below:

Algorithm 4: Algorithm KV
Input : An interval graph G = (V,E) and a positive integer k.
Output: A layout realizing bw(G) ≤ k if it exists.
Set Label(i) = 0 and Mark(i) = n for all i ∈ V where n = |V |. Set U = {i ∈ V | Label(i) = 0}
and q = 0;
Select i ∈ U with smallest L(i) (break ties by selecting the interval with smallest R(i)) and set
q = q + 1;
Set Label(i) = q and U = U \ {i}. If U = ∅, stop, all vertices have been labeled;
If r ∈ U overlaps i and Mark(r) = n set Mark(r) = min{Label(i) + k, n};
Let Sq

j = {r ∈ U | Mark(r) ≤ q + j}. If
∣∣Sq

j

∣∣ ≤ j for all j ≥ k − q + 1, go to step 7;
There is a j such that

∣∣Sq
j

∣∣ > j. Stop, for the bandwidth of the graph is > k;
Find the smallest value j0, such that

∣∣Sq
j0

∣∣ = j0;
Select i ∈ Sq

j0
with smallest L(i) (break ties as in Step 2). Set q = q + 1 and go to Step 3.

References

1. Golumbic, M. Algorithmic Graph Theory and Perfect Graphs, 2nd ed.; Elsevier: Amsterdam, The
Netherlands, 2004.

2. Spinrad, J. Efficient Graph Representations; American Mathematical Society: Providence, RI,
USA, 2003.

3. Fishburn, P.C. Interval Orders and Interval Graphs; Wiley & Sons, Inc.: Hoboken, NJ, USA, 1985.
4. McKee, T.; McMorris, F. Topics in Intersection Graph Theory; SIAM: Philadelphia, PA, USA,

1999.
5. Uehara, R. Simple Geometrical Intersection Graphs. In Proceedings of the Workshop on Algorithms

and Computation (WALCOM 2008); Springer-Verlag: Berlin/Heidelberg, Germany, 2008; pp. 25–
33.

6. Uehara, R. Bandwidth of Bipartite Permutation Graphs. In Proceedings of the Annual International
Symposium on Algorithms and Computation (ISAAC 2008); Springer-Verlag: Berlin/Heidelberg,
Germany, 2008; pp. 824–835.

7. Lai, Y.L.; Williams, K. A survey of solved problems and applications on bandwidth, edgesum, and
profile of graphs. J. Graph Theory 1999, 31, 75–94.

8. Chinn, P.Z.; Chvátalová, J.; Dewdney, A.K.; Gibbs, N.E. The bandwidth problem for graphs and
matrices—A survey. J. Graph Theory 1982, 6, 223–254.

Algorithms 2013, 6 81

9. Kaplan, H.; Shamir, R. Pathwidth, bandwidth, and completion problems to proper interval graphs
with small cliques. SIAM J. Comput. 1996, 25, 540–561.

10. Kaplan, H.; Shamir, R.; Tarjan, R. Tractability of parameterized completion problems on chordal,
strongly chordal, and proper interval graphs. SIAM J. Comput. 1999, 28, 1906–1922.

11. Papadimitriou, C.H. The NP-completeness of the bandwidth minimization problem. Computing
1976, 16, 263–270.

12. Garey, M.; Johnson, D. Computers and Intractability—A Guide to the Theory of NP-Completeness;
Freeman: Gordonsville, VA, USA, 1979.

13. Monien, B. The bandwidth minimization problem for caterpillars with hair length 3 is
NP-complete. SIAM J. Alg. Disc. Meth. 1986, 7, 505–512.

14. Kloks, T.; Kratsch, D.; Borgne, Y.L.; Müller, H. Bandwidth of Split and Circular Permutation
Graphs. In Proceedings of the WG 2000; Springer-Verlag: Berlin/Heidelberg, Germany, 2000; pp.
243–254.

15. Shrestha, A.M.S.; Tayu, S.; Ueno, S. Bandwidth of Convex Bipartite Graphs and Related Graphs.
In Proceedings of the COCOON 2011; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp.
307–318.

16. Feige, U. Coping with the NP-Hardness of the Graph Bandwidth Problem. In Proceed-
ings of the 7th Scandinavian Workshop on Algorithm Theory (SWAT 2000); Springer-Verlag:
Berlin/Heidelberg, Germany, 2000; pp. 10–19.

17. Cygan, M.; Pilipczuk, M. Exact and approximate bandwidth. Theor. Comput. Sci. 2010,
411, 3701–3713.

18. Cygan, M.; Pilipczuk, M. Even faster exact bandwidth. ACM Trans. Algorithm 2012, 8, 1–14.
19. Cygan, M.; Pilipczuk, M. Bandwidth and distortion revisited. Discrete Appl. Math. 2012,

160, 494–504.
20. Haralambides, J.; Makedon, F.; Monien, B. Bandwidth minimization: An approximation algorithm

for caterpillars. Theory Comput. Syst. 1991, 24, 169–177.
21. Kloks, T.; Kratsch, D.; Müller, H. Approximating the bandwidth for asteroidal triple-free graphs.

J. Algorithm 1999, 32, 41–57.
22. Karpinski, M.; Wirtgen, J.; Zelikovsky, A. An Approximation Algorithm for the Bandwidth Problem

on Dense Graphs; TR-97-017, Electronic Colloquium on Computational Complexity (ECCC),
1997. Available online: http://eccc.hpi-web.de/report/1997/017/ (accessed on 24 January 2013).

23. Gupta, A. Improved bandwidth approximation for trees and chordal graphs. J. Algorithm 2001,
40, 24–36.

24. Kloks, T.; Kratsch, D.; Müller, H. Bandwidth of chain graphs. Inf. Process. Lett. 1998,
68, 313–315.

25. Kloks, T.; Tan, R.B. Bandwidth and topological bandwidth of graphs with few P4’s. Discrete Appl.
Math. 2001, 115, 117–133.

26. Kleitman, D.; Vohra, R. Computing the Bandwidth of Interval Graphs. SIAM J. Disc. Math. 1990,
3, 373–375.

27. Mahesh, R.; Rangan, C.P.; Srinivasan, A. On finding the minimum bandwidth of interval graphs.
Inf. Comput. 1991, 95, 218–224.

Algorithms 2013, 6 82

28. Sprague, A. An O(n log n) algorithm for bandwidth of interval graphs. SIAM J. Discrete Math.
1994, 7, 213–220.

29. Heggernes, P.; Kratsch, D.; Meister, D. Bandwidth of bipartite permutation graphs in polynomial
time. J. Discret. Algorithm 2009, 7, 533–544.

30. Kratsch, D. Finding the minimum bandwidth of an interval graph. Inf. Comput. 1987, 74, 140–158.
31. Booth, K.; Lueker, G. Testing for the consecutive ones property, interval graphs, and graph planarity

using PQ-tree algorithms. J. Comput. Syst. Sci. 1976, 13, 335–379.
32. Lueker, G.; Booth, K. A linear time algorithm for deciding interval graph isomorphism. J. ACM

1979, 26, 183–195.
33. Brandstädt, A.; Lozin, V. On the linear structure and clique-width of bipartite permutation graphs.

Ars Comb. 2003, 67, 273–281.
34. Uehara, R.; Valiente, G. Linear structure of bipartite permutation graphs with an application. Inf.

Process. Lett. 2007, 103, 71–77.
35. Otachi, Y.; Okamoto, Y.; Yamazaki, K. Relationships between the class of unit grid intersection

graphs and other classes of bipartite graphs. Discrete Appl. Math. 2007, 155, 2383–2390.
36. Keil, J. Finding hamiltonian circuits in interval graphs. Inf. Process. Lett. 1985, 20, 201–206.
37. Müller, H. Hamiltonian circuit in chordal bipartite graphs. Discret. Math. 1996, 156, 291–298.
38. Uehara, R.; Toda, S.; Nagoya, T. Graph isomorphism completeness for chordal bipartite graphs

and strongly chordal graphs. Discret. Appl. Math. 2004, 145, 479–482.
39. Wu, T.H. An O(n3) isomorphism test for circular-arc graphs. Ph.D. Thesis, Applied Mathematics

and Statistics, SUNY-Stonybrook, New York, NY, USA, 1983.
40. Eschen, E.M. Circular-arc graph recognition and related problems. Ph.D. Thesis, Department of

Computer Science, Vanderbilt University, Nashville, TE, USA, 1997.
41. Hsu, W.L. O(M · N) Algorithms for the recognition and isomorphism problem on circular-arc

graphs. SIAM J. Comput. 1995, 24, 411–439.
42. Curtis, A.R.; Lin, M.C.; McConnell, R.M.; Nussbaum, Y.; Soulignac, F.J.; Spinrad, J.P.;

Szwarcfiter, J.L. Isomorphism of graph classes related to the circular-ones property.
arXiv:1203.4822v1.

43. Roberts, F.S. Indifference Graphs. In Proof Techniques in Graph Theory; Harary, F., Ed.; Academic
Press: Waltham, MA, USA, 1969; pp. 139–146.

44. Bogart, K.P.; West, D.B. A short proof that “proper=unit”. Discret. Math. 1999, 201, 21–23.
45. Deng, X.; Hell, P.; Huang, J. Linear-time representation algorithms for proper circular-arc graphs

and proper interval graphs. SIAM J. Comput. 1996, 25, 390–403.
46. Uehara, R.; Uno, Y. On computing longest paths in small graph classes. Int. J. Found. Comput.

Sci. 2007, 18, 911–930.
47. Saitoh, T.; Otachi, Y.; Yamanaka, K.; Uehara, R. Random Generation and Enumeration of Bipartite

Permutation Graphs. In Proceedings of the 20th International Symposium on Algorithms and
Computation (ISAAC 2009); Springer-Verlag: Berlin/Heidelberg, Germany, 2009; pp. 1104–1113.

48. Brandstädt, A.; Le, V.; Spinrad, J. Graph Classes: A Survey; SIAM: Philadelphia, PA, USA, 1999.

Algorithms 2013, 6 83

49. Müller, H. Recognizing interval digraphs and interval bigraphs in polynomial time. Disc.
Appl. Math. 1997, 78, 189–205. Available online: http://www.comp.leeds.ac.uk/hm/
pub/node1.html (accessed on 22 January 2013).

50. Hell, P.; Huang, J. Interval bigraphs and circular Arc graphs. J. Graph Theory 2004, 46, 313–327.
51. Rafiey, A. Recognizing interval bigraphs using forbidden patterns. Unpublished work, 2012.
52. Uehara, R. Canonical Data Structure for Interval Probe Graphs. In Proceedings of the

15th Annual International Symposium on Algorithms and Computation (ISAAC 2004); Lecture
Notes in Computer Science Volume 3341, Springer-Verlag: Berlin/Heidelberg, Germany, 2004;
pp. 859–870.

53. Colbourn, C. On testing isomorphism of permutation graphs. Networks 1981, 11, 13–21.
54. Babel, L.; Ponomarenko, I.; Tinhofer, G. The isomorphism problem for directed path graphs and

for rooted directed path graphs. J. Algorithm 1996, 21, 542–564.
55. Nakano, S.-I.; Uehara, R.; Uno, T. A New Approach to Graph Recognition and Applications

to Distance Hereditary Graphs. In Proceedings of the 4th Annual Conference on Theory and
Applications of Models of Computation (TAMC 07); Springer-Verlag: Berlin/Heidelberg, Germany,
2007; pp. 115–127.

56. Knuth, D. Sorting and Searching. In The Art of Computer Programming; 2nd ed.; Addison-Wesley
Publishing Company: Boston, MA, USA, 1998.

57. Uehara, R.; Iwata, S. Generalized Hi-Q is NP-Complete. Trans. IEICE 1990, E73, 270–273.
Available online: http://www.jaist.ac.jp/˜uehara/pdf/phd7.ps.gz (accessed on 22 January 2013).

58. Plesnı́k, J. The NP-completeness of the hamiltonian cycle problem in planar digraphs with degree
bound two. Inf. Process. Lett. 1979, 8, 199–201.

59. Downey, R.; Fellows, M. Parameterized Complexity; Springer: Berlin/Heidelberg, Germany, 1999.
60. Spinrad, J. Open Problem List, 1995. Available online: http://www.vuse.vanderbilt.edu/

˜spin/open.html (accessed on 22 January 2013).

c⃝ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

