
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 振舞仕様の検証方法に関する研究

Author(s) 松本, 充広

Citation

Issue Date 1998-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1144

Rights

Description Supervisor:二木 厚吉, 情報科学研究科, 修士

Veri�cation Methods for Behavioural Speci�cations

By MICHIHIRO MATSUMOTO

A thesis submitted to

School of Information Science,

Japan Advanced Institute of Science and Technology,

in partial ful�llment of the requirements

for the degree of

Master of Information Science

Graduate Program in Information Science

Written under the direction of

Professor KOKICHI FUTATSUGI

February 13, 1998

Copyright c 1998 by MICHIHIRO MATSUMOTO

Abstract

The purposes of our research are to clear problems of previous veri�cation methods for
behavioural speci�cations and to propose improved veri�cation methods. We selected
behavioural semantics (hidden algebras) as the foundations of our research. Behavioural
speci�cations are speci�cations whose semantics are behavioural semantics. As to veri�-
cation methods for behavioural speci�cations, there are coinduction and induction over
length of contexts. To use coinduction, users must �nd a hidden congruence. Until
now, this hidden congruence should be given by hand. Note that relations which can be
de�ned on veri�cation systems are relations de�ned by syntax | we call these relations
syntactically de�nable hidden congruences. Firstly, we show that the only useful syntacti-
cally de�nable hidden congruence for veri�cations is behavioural equivalence. Behavioural
equivalence is the conjunction over all visible contexts. Consequently, a selection of hid-
den congruences corresponds to a selection of the set of visible contexts which construct
behavioural equivalence. We provide the algorithm which generates a simple form by
eliminating redundant visible contexts. That is GSB-algorithm (test set coinduction). By
analysing the structure of the set of all visible contexts, we show the su�cient condition
that GSB-algorithm can eliminate all redundant visible contexts. Until now, coinduc-
tion was regarded more e�cient than induction over length of contexts. By analysing
the structure of the set of all visible contexts, we show the case that coinduction (test
set coinduction) coincides with induction over length of contexts. The main application
of these veri�cation methods is stepwise re�nement of behavioural speci�cations as re-
striction of possible implementations. As to the above research, there are researches by
Dr.Goguen and Dr.Malcolm. But, these are not satisfactory. Firstly, they give the origi-
nal speci�cation (for example, a stack). Then, they construct it from primitive modules
(for example, an array and a pointer) in the re�ned speci�cation. Finally, they prove that
the composed module (for example, a stack constructed from the array and the pointer)
satisfy the original speci�cation. In the last process, they treat the composed module
as data. But, in behavioural speci�cation, speci�cations of concurrent systems must be
treated as black boxes. Concretely, the problem is that there are states of the composed
module which do not correspond to states of primitive modules. We provide projection
operators which specify correspondences between states of composed module and states
of primitive modules. We provide the method which construct a composed module from
primitive modules using these projection operators. We call the speci�cations which are
written under the above method object-oriented speci�cations. Specifying concurrent sys-
tems by using object-oriented speci�cations, we solved the above problem. Moreover, we
provide the method to verify stepwise re�nement of object-oriented speci�cations.

0Copyright c1998 by MICHIHIRO MATSUMOTO

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Algebraic Speci�cation : 4

2.1.1 Signature, Algebra, and Term : 4
2.1.2 Homomorphism, Equation and Satisfaction : : : : : : : : : : : : : : 5
2.1.3 Speci�cation and Model : 7
2.1.4 Loose Semantics and Initial Semantics : : : : : : : : : : : : : : : : 9

2.2 Behavioural Semantics (Hidden Algebra) : : : : : : : : : : : : : : : : : : : 10
2.2.1 Visible Data Values : 10
2.2.2 Hidden Signature and Hidden Algebra : : : : : : : : : : : : : : : : 10
2.2.3 Context and Behavioural Satisfaction : : : : : : : : : : : : : : : : : 11
2.2.4 Behavioural Speci�cation and Hidden Model : : : : : : : : : : : : : 12
2.2.5 Behavioural Equivalence : 13
2.2.6 Finality : 13
2.2.7 Behavioural Semantics : 14

2.3 The Speci�cation Language CafeOBJ : 14
2.3.1 Loose Semantics : 15
2.3.2 Initial Semantics : 15
2.3.3 Behavioural Semantics : 15

2.4 Deduction : 17
2.4.1 Equational Deduction : 17
2.4.2 Induction : 18

2.5 Abstract Reduction System : 19
2.5.1 Abstract Reduction System : 19
2.5.2 Term Rewriting System : 20

2.6 The CafeOBJ veri�cation system : 20
2.6.1 Reduce Command : 20
2.6.2 Open and Close commands : 21
2.6.3 Induction : 23

2.7 Induction over Length of Contexts : 23
2.8 Coinduction : 25

3 Syntactically De�nable Hidden Congruence 27

i

4 Test Set Coinduction 29
4.1 Test Set Coinduction : 29

4.1.1 Cap Elimination : 29
4.1.2 Context Rewriting System : 30
4.1.3 Cover Set : 33
4.1.4 Test Set : 33
4.1.5 GSB-algorithm : 34

4.2 An Application of Test Set Coinduction : 40

5 Extension of Test Set Coinduction 42
5.1 Extended Context Rewriting System : 42
5.2 Elimination of condition (d) : 44
5.3 Conditional Extended Context Rewrite Rule : : : : : : : : : : : : : : : : : 45

6 Object Composition 50
6.1 Object Composition : 50
6.2 Composition of Objects and Data : 56
6.3 Projection Operator : 58

7 Stepwise Re�nement 61
7.1 Stepwise Re�nement : 61

8 Related Work 68
8.1 Context Induction : 68
8.2 Finding hidden congruences : 71
8.3 Re�nement : 72
8.4 Projection Operator : 73

9 Conclusion 75
9.1 Conclusion : 75
9.2 Acknowledgments : 75

ii

Chapter 1

Introduction

The purposes of our research are to clear problems of previous veri�cation methods for
behavioural speci�cations and to propose improved veri�cation methods. We want to
decrease costs of developments of concurrent systems. As a candidate of solutions, we
selected veri�cation methods for behavioural speci�cations.

Concurrent systems are constructed from many objects that communicate with other
objects. Because possible states and transitions are huge, numbers of the necessary tests
to ensure reliability are also huge. Therefore, costs of these tests is high. On the other
hand, logical veri�cations can �nd bugs of the logical level and costs of logical veri�cations
is lower than those of the tests. Consequently, we can expect the costs of developments
to decrease by exchanging the tests for a combination of tests and logical veri�cations.

From this expectation, logical veri�cation methods have been studied in process alge-
bras [Hoa85, Mil89, BW90]. We think abstract data types (abbreviate ADT) have key
roles when we verify data ows over concurrent systems. But, most of process algebras
can not deal with ADT. In behavioural semantics (hidden algebras) [GM97], concurrent
systems are treated as black boxes. So, behavioural semantics (hidden algebras) can be
seen as a generalization of process algebras which can deal with ADT. So, we can adapt the
techniques provided in process algebras for behavioural semantics (hidden algebras) and
we can deal with ADT in behavioural semantics (hidden algebras). Therefore, we selected
behavioural semantics (hidden algebras) as the foundations of our research. Behavioural
speci�cations are speci�cations whose semantics are behavioural semantics.

In behavioural speci�cation, we specify interactions between a concurrent system and a
user. Operations which observe the states (of the concurrent system) are called attributes
and operations which change the states are called methods. Attributes and methods
are called behavioural operators. We can only recognize the current state by observing
states changed by methods through attributes. So, we can regard method sequences
with an attribute as observation tools. these observation tools are called visible contexts.
Behavioural equivalence � between states s ; s 0 are de�ned as follows:
(s � s 0) = ^ct2VisCt(ct [s] == ct [s 0])

where VisCt is the set of all visible contexts. In behavioural speci�cations, we verify
behavioural properties that are behavioural equivalence relations between states of con-
current systems.

1

As to veri�cation methods for behavioural speci�cations, there are coinduction and
induction over length of contexts [GM97]. The main application of these veri�cation
methods is stepwise re�nement of behavioural speci�cations as restriction of possible
implementations [GM97, MG96].

Coinduction is a veri�cation method based on the following fact:
behavioural equivalence is the largest hidden congruence,

where a hidden congruence is a congruence such that: identity relation on data values.
Consider to verify a behavioural property s � s 0. The algorithm of coinduction is as
follows:

1. �nd a candidate R of hidden congruences,

2. check whether R is a hidden congruence, and

3. verify whether s � s 0 holds, by proving s R s 0.

So, to use coinduction, users must �nd a hidden congruence. Until now, this hidden
congruence should be given by hand [GM97, BH94, BH96].

Note that relations which can be de�ned on veri�cation systems are relations de�ned by
syntax | we call these relations syntactically de�nable hidden congruences. Firstly,
we show that the only useful syntactically de�nable hidden congruence for veri�cations
is behavioural equivalence. Therefore, R should be behavioural equivalence. Behavioural
equivalence is the conjunction over all visible contexts. Consequently, a selection of hid-
den congruences corresponds to a selection of the set of visible contexts which construct
behavioural equivalence. We let R denote the form of behavioural equivalence de�ned
by syntax | conjunction over visible contexts | and we let #(R) denote the numbers
of these visible contexts. We regard a veri�cation method which use R as an e�cient
method if #(R) is small. We regard R as a simple form if #(R) is small. So, to verify
behavioural properties e�ciently, we need a simple form of behavioural equivalence. By
eliminating redundant visible contexts, we get this simple form. We provide the algorithm
which generates this simple form. That is GSB-algorithm (test set coinduction).

Consider to verify a behavioural property s � s 0. The algorithm of test set coinduction
is as follows:

1. generate a simple form R of behavioural equivalence (by GSB-algorithm), and

2. verify whether s � s 0 holds, by proving s R s 0.

By analysing the structure of the set of all visible contexts, we show the su�cient
condition that GSB-algorithm can eliminate all redundant visible contexts.

Until now, coinduction was regarded more e�cient than induction over length of con-
texts [GM97, BH94, BH96]. By analysing the structure of the set of all visible contexts,
we show the case that coinduction (test set coinduction) coincides with induction over
length of contexts.

As to research of stepwise re�nements of behavioural speci�cations as restriction of
possible implementations, there are researches by Dr.Goguen and Dr.Malcolm [GM97,

2

MG96]. But, these are not satisfactory. Firstly, they give the original speci�cation (for
example, a stack). Then, they construct it from primitive modules (for example, an array
and a pointer) in the re�ned speci�cation. Finally, they prove that the composed module
(for example, a stack constructed from the array and the pointer) satisfy the original
speci�cation. In the last process, they treat the composed module as data. But, in
behavioural speci�cation, speci�cations of concurrent systems must be treated as black
boxes. Concretely, the problem is that there are states of the composed module which do
not correspond to states of primitive modules.

We provide projection operators which specify correspondences between states of
composed module and states of primitive modules. We provide the method which con-
struct a composed module from primitive modules using these projection operators. We
call the speci�cations which are written under the above method object-oriented spec-
i�cations. Specifying concurrent systems by using object-oriented speci�cations, we
solved the above problem. Moreover, we provide the method to verify stepwise re�ne-
ment of object-oriented speci�cations.

As to the previous version of projection operators | we call these operators pseudo-
projection operators in this paper |, there is a co-operative research with Mr.Iida,
Dr.Diaconescu, and Dr.Lucanu. We only wrote our contribution in this paper. In this
co-operative research, we specify dynamic systems using pseudo-projection operators. By
changing contents of ObjId dynamically, we can specify dynamic systems.

The di�erence between projection operators and pseudo-projection operators is that
projection operators are ordinary operators but pseudo-projection operators are behaviou-
ral operators. Consider to construct a stack from an array and a pointer. If we use pseudo-
projection operators, we get just an array with a pointer. We can observe all contents of
the array through visible contexts. On the other hand, if we use projection operator, we
get a stack. We can only observe contents under a pointer. By using projection operator,
we can restrict the set of visible contexts. To compose modules, this kind of restriction is
necessary.

This paper is structured as follows. Chapter 2 comprises some preliminary de�ni-
tions and results. Chapter 3 presents syntactically de�nable hidden congruence. Chapter
4 presents test set coinduction. Chapter 5 presents extensions of test set coinduction.
Chapter 6 presents object composition. Chapter 7 presents stepwise re�nement. Chapter
8 presents related works. Finally, Chapter 9 summarizes the results of this paper.

3

Chapter 2

Preliminaries

In this chapter, we introduce some preliminary de�nitions and results. Most of those are
originally from [Gog, GM97]. But, we slightly customized some of those. See remarks.

2.1 Algebraic Speci�cation

2.1.1 Signature, Algebra, and Term

Signature

De�nition 1 (from [Gog]) We let S � denote the set of all lists of elements from a set S ,
including the empty list which we denote []. 2

De�nition 2 (from [Gog]) Given a set S of sorts, an S -sorted (or S -indexed) set A
is a family fAs j s 2 Sg of sets, one for each s 2 S. We let jAj = [s2SAs and we let
a 2 A mean that a 2 jAj. 2

De�nition 3 (from [Gog]) Given a sort set S , then S -sorted signature � is an indexed
family f�w ;s j w 2 S �; s 2 Sg of sets, whose elements are called operators, operation
symbols, or function symbols. A symbol � 2 �w ;s is said to have arity w, sort s,
and rank hw ; si. In particular, any � 2 �[];s is called a constant symbol. We let
j�j = [w ;s�w ;s and we let �0 � � mean that �0

w ;s � �w ;s for each w 2 S � and s 2 S. 2

Algebra

De�nition 4 (from [Gog]) A �-algebra M consists of an S-sorted set also denoted M ,
i.e., a set Ms for each s 2 S, plus

1. an element �M 2 Ms for each � 2 �[];s , interpreting the constant symbol � as an
actual element, and

2. a function �M : Ms1 � � � � �Msl
! Ms for each � 2 �w ;s where w = s1 � � � sl for

l > 0, interpreting each operation symbol as an actual operation.

4

Together, these provide an interpretation of � in M . We may sometimes write M� instead
of �M , and also Mw instead of Ms1 � � � � �Msl

. The set Ms is called the carrier of M of
sort s. 2

Using the above notation we can write:
M� : Mw ! Ms .

Term

De�nition 5 (from [Gog]) Given an S-sorted signature �, then the S-sorted set T� of
all �-terms is the smallest set of lists over the set j�j [f(;)g (where (and) are special
symbols disjoint from �) such that

1. �[];s � (T�)s for all s 2 S, and

2. given � 2 �s1���sl ;s and ti 2 (T�)si for i = [1; . . . ; l] then �(t1 � � � tl) 2 T�;s. 2

De�nition 6 Given a �-term t, subterms of t are de�ned as follows:

1. t is a subterm of t, and

2. if t = �(t1 � � � tl) then subterms of ti are also subterms of t.

In particular, any subterm of t except t is called a proper subterm of t. 2

Term Algebra

De�nition 7 (from [Gog]) We can view T� as a �-algebra as follows:

1. interpret � 2 �[];s in T� as the singleton list �, and

2. interpret � 2 �s1���sl ;s in T� as the operation which sends t1; . . . ; tl to the list
�(t1 � � � tl), where ti 2 T�;si for i = [1; . . . ; l].

Thus, T� is called the term algebra (over �). 2

2.1.2 Homomorphism, Equation and Satisfaction

Homomorphism

De�nition 8 (from [Gog]) An S -sorted arrow f : A! A0 between S-sorted sets A and
B is an S-sorted family ffs j s 2 Sg of arrows fs : As ! A0

s. Given S-sorted arrows
f : A ! A0 and g : A0 ! A00, their composition g f is the S-sorted family fgs fs j s 2 Sg
of arrows. Each S-sorted set A has an identity arrow, 1A = f1As j s 2 Sg. 2

De�nition 9 (from [Gog]) Given an S-sorted signature � and �-algebras M and M 0, a
�-homomorphism hm : M ! M 0 is an S -sorted arrow hm : M ! M 0 such that:

1. hms(�M) = �M 0 for each constant symbol � 2 �[];s and

5

2. hms(�M (e1; . . . ; el)) = �M 0(hms1(e1); . . . ; hmsl
(el)) whenever l > 0, � 2 �s1���sl ;s

, and
ei 2 Msi

for i = [1; . . . ; l].

The composition hm2 hm1 : M ! M 00 of �-homomorphisms hm1 : M ! M 0 and
hm2 : M

0 ! M 00 is their composition as S-sorted arrows. 2

Equation

De�nition 10 (from [Gog]) � is a ground signature i� �[];s \ �[];s0 = ; whenever
s 6= s 0, and �w ;s = ; unless w = [], i.e., i� it consists only of distinct constant symbols.
2

De�nition 11 (from [Gog]) The union of two signatures is de�ned by:
(� [�0)w ;s = �w ;s [�0

w ;s.
A special case is union with a ground signature X . For this, we will use the notation:
�(X) = � [X ,

but only in the case j�j and jX j are disjoint. So, the above equation may be rewritten as:
�(X)[];s = �[];s [Xs and
�(X)w ;s = �w ;s when w 6= []. 2

De�nition 12 We call �(X)-terms �-terms with variables. We call �-terms ground
�-terms. 2

De�nition 13 (from [Gog]) A �-equation consists of a ground signature X of variable
symbols (disjoint from �) plus two �(X)-terms of the sort s 2 S; we write such an
equation in the form:
(8X)t = t 0. 2

De�nition 14 (from [Gog]) A conditional �-equation consists of a ground signature
X disjoint from �, a set C of pairs of �(X)-terms, and a pair t, t 0 of �(X)-terms; we
write such a conditional equation in the form:
(8X)t = t 0 if C . 2

Satisfaction

Fact 1 (from [Gog]) Given a signature �, a ground signature X disjoint from �, a �-
algebra M , and a map as : X ! M, there is a unique �-homomorphism as : T�(X)! M
which extends as, in the sense that ass(x) = ass(x) for each s 2 S and x 2 Xs . We call
as an assignment from X to M . 2

We generally write as instead of as when there is no confusion.

De�nition 15 (from [Gog]) A substitution of �-terms with variables in Y for variables
in X is an assignment sb : X ! T�(Y); we may use the notation sb : X ! Y . The
application of sb to t 2 T�(X) is sb(t). Given substituting sb1 : X ! T�(Y) and
sb2 : Y ! T�(Z), their composition sb2 sb1 (as substitutions) is the S-sorted arrow
sb2 sb1 : X ! T�(Z). 2

6

De�nition 16 (from [Gog]) A �-algebra M satis�es a �-equation (8X)t = t 0 i� for
any assignment as : X ! M we have as(t) = as(t 0) in M . In this case we write:
M j=� (8X)t = t 0. 2

De�nition 17 (from [Gog]) A �-algebra M satis�es a conditional �-equation (8X)t =
t 0 if C i� for any assignment as : X ! M, if as(ti) = as(t 0i) for each hti ; t

0
ii 2 C , then

as(t) = as(t 0) in M . In this case we write:
M j=� (8X)t = t 0 if C .

A �-algebra M satis�es a set E of conditional �-equations i� it satis�es each ceq 2 E,
and in this case we write:
M j=� E. 2

Fact 2 (from [Gog]) Given a �-equation eq = (8X)t = t 0, let ceq = (8X)t = t 0 if ;.
Then for each �-algebra M , M j=� eq i� M j=� ceq. 2

Consequently, we can regard any ordinary equation as a conditional equation with the
empty condition, and we will feel free to do so hereafter. We generally omit the subscript
� when there is no confusion.

2.1.3 Speci�cation and Model

Speci�cation

De�nition 18 (from [Gog]) A speci�cation is a pair (�;E), consisting of a signature
� and a set E of conditional �-equations. 2

Model

De�nition 19 Given a speci�cation (�;E), a (�;E)-model M is a �-algebra such that:
M j= E. 2

De�nition 20 (from [Gog]) Let E be a set of conditional �-equations, and let eq be a
�-equation. Then
E j= eq

i� for all (�;E)-models M , M j= eq. 2

Term Model

De�nition 21 (from [Gog]) Given a �-algebra M , a �-congruence relation on M is
an S-sorted equivalence relation �= f�s j s 2 Sg on M , where each �s is an equivalence
relation on Ms such that for each � 2 �s1���sl ;s :
ei �si

e 0i for i 2 [1; . . . ; l] implies �(e1; . . . ; el) �s �(e
0
1; . . . ; e

0
l)

for ei ; e
0
i 2 Msi

. 2

7

Fact 3 (from [Gog]) Given a �-algebra M and a �-congruence � on M , then the quo-
tient of M by �, denoted M = �, is also a �-algebra, in which � 2 �[];s is interpreted
as [�], and � 2 �s1���sl ;s with l > 0 is interpreted as the map sending [e1]; . . . ; [el] to
[�(e1; . . . ; el)], for ei 2 Msi

. 2

Corollary 1 Given a speci�cation (�;E), the equivalence classes of �-terms modulo E
form a (�;E)-model, hereafter denoted T�;E . We call this (�;E)-model the term model
(over (�;E)). 2

Speci�cation Equivalence

Before we can give the de�nition of speci�cation equivalence, we need some more nota-
tions. Each �-algebra has an interpretation of each operation symbol � 2 � as an actual
operation; we show how this extends to an interpretation for �-terms with variables.

De�nition 22 (from [Gog]) We let #(S) denote the cardinality of a set S . 2

De�nition 23 (from [Gog]) Given w = s1 � � � sl 2 S �, we let X hwi denote a S-sorted
ground signature disjoint from � such that #(X hwi

s) = #fi j si = sg 2

One way to construct such a signature is to let jX hwij = fx1; . . . ; xlg where l = #(w), and
then let X hwi

s = fxi j si = sg. For example, if S = fa; b; cg and w = abbac, then X hwi

has X hwi
a = fx1; x4g, X

hwi
b = fx2; x3g, and X hwi

c = fx5g.

De�nition 24 (from [Gog]) Given a signature �, the signature of all derived �-opera-
tions is the S-sorted signature Der(�) with:
Der (�)w ;s = T�(X

hwi)s for each w 2 S � and each s 2 S.
Any t 2 Der(�)w ;s de�nes an actual operation Mt : Mw ! Ms as follows:
given a 2 Mw , there is a naturally corresponding S-indexed map as : X hwi ! M, which
lets us view M as a �(X hwi)-algebra; hence there is a unique �(X hwi)-homomorphism
as : T�(X hwi) ! M which lets us de�ne Mt(a) to be as(t).

This is called the derived operation de�ned by t. In this way, we can view any �-algebra
M as a Der(�)-algebra, also denoted M . 2

De�nition 25 (from [Gog]) Given signatures � and �' with sort sets S and S 0 respec-
tively, then a signature morphism ' : � ! �0 consists of a map f : S ! S 0 and an
S-indexed map g with components gw ;s : �w ;s ! �0

f (w);f (s) where f is extended to lists by
f ([]) = [] and f (s1 � � � sl) = f (s1) � � � f (sl). Given s 2 S, we may write '(s) instead of
f (s), and given � 2 �w ;s, we may write '(�) instead of g(�). 2

De�nition 26 (from [Gog]) Given a signature morphism ' : � ! �0 and a �0-algebra
M , we get a �-algebra, called the reduct of M under ' and denoted 'M, as follows:

1. given s 2 S, let ('M)s = M'(s);

2. given � 2 �w ;s , let ('M)� = M'(�) : M'(w) ! M'(s).

8

In particular, given a signature morphism ' : � ! Der(�0) and a �0-algebra M , we can
view M as Der(�0)-algebra by De�nition 24, and then get a �-algebra denoted 'M from
the construction above. 2

De�nition 27 (from [Gog]) An interpretation of speci�cations ' : (�;E) ! (�0;E 0)
is a signature morphism ' : �! Der (�0) such that for each �0-algebra M 0:
M 0 j=�0 E 0 implies 'M 0 j=� E. 2

De�nition 28 (from [Gog]) Two speci�cations (�;E) and (�0;E 0) are speci�cation
equi-
valent i� there exists two interpretations ' : (�;E)! (�0;E 0) and : (�0;E 0)! (�;E)
such that:
'(M) = M, and
 ('M 0) = M 0

for each (�;E)-model M and each (�0;E 0)-model M 0. 2

2.1.4 Loose Semantics and Initial Semantics

Loose Semantics

De�nition 29 (from [Gog]) Given a speci�cation (�;E), we call semantics which is given
by all (�;E)-models loose semantics. 2

De�nition 30 Given a speci�cation (�;E). Let eq be an equation such that: E j= eq.
We call eq properties of (�;E). 2

Initial Semantics

Fact 4 (from [Gog]) Given a speci�cation (�;E), then the term model T�;E is an initial
(�;E)-model, in the sense that for each �-algebra M and each assignment as : X ! M,
there is a unique �-homomorphism as : T�;E (X) ! M such that as(x) = as(x) for each
x 2 X. 2

De�nition 31 (from [Gog]) Given a speci�cation (�;E), and a �-equation eq, we say
that (�;E) initially satis�es eq i� T�;E j=� eq; in this case we write E j�=� eq, and we
may omit the subscript � when there is no confusion. 2

De�nition 32 (from [Gog]) Given a speci�cation (�;E), we call semantics which is given
by the term model initial semantics. 2

De�nition 33 Given a speci�cation (�;E). Let eq be an equation such that: E j�= eq.
We call eq inductive properties of (�;E). 2

9

2.2 Behavioural Semantics (Hidden Algebra)

We regard systems as black boxes. Hidden algebra captures the fundamental distinction
between observational (visible) data values and internal states of a black box by modeling
the former with visible sorts and the latter with hidden sorts. These are treated in this
chapter.

2.2.1 Visible Data Values

De�nition 34 Given a speci�cation (;E) where 	 is a V -sorted signature and each
(T	;E)v is non-empty for each v 2 V , then a data algebra D is T	;E	. We call V
visible sorts, we call (;E) a data speci�cation, and we call (V ;	;D) the visible
data universe. 2

Remark 1 The above de�nition of data algebra is slightly di�erent from the original one
[GM97]. The original one is as follows:
let D be a �xed data algebra, with 	 its signature and V its sort set, such that each Dv

with v 2 V is non-empty and for each d 2 Dv there is some 2 	[];v such that is
interpreted as d in D.

To specify visible data values, we usually need functions of visible data values. Therefore,
we have customized the de�nition. 2

2.2.2 Hidden Signature and Hidden Algebra

Hidden Signature

De�nition 35 (from [GM97]) A hidden signature (over (V ;	;D)) is a pair (H ;�),
where H is a set of hidden sorts disjoint from V , � is an S = (H [V)-sorted signature
with 	 � � such that:

1. each � 2 �w ;s with w 2 V � and s 2 V lies in 	w ;s, and

2. for each � 2 �w ;s at most one hidden sort occurs in w.

We may abbreviate (H ;�) to just �. If w 2 S � contains a hidden sort, then � 2 �w ;s

is called a method if the sort of � is this hidden sort, and an attribute if s 2 V . If
w 2 V � and s 2 H, then � 2 �w ;s is called a hidden constant. We call methods and
attributes behavioural operators. 2

From now on, we may call ordinary constants visible constants.

Remark 2 The above de�nition of a method is slightly di�erent from the original one
[GM97]. The original one is as follows:
if w 2 S � contains a hidden sort, then � 2 �w ;s is called a method if s 2 H .

Firstly, we treat methods as operators which change states of a black box. Secondly, we
distinguish methods from (pseudo-)projection operators which are introduced in Chapter
6. Each of these new operators contains a hidden sort s in it's arity and it's sort is a
hidden sort s 0 where s 0 6= s. Therefore, we have customized the de�nition. 2

10

Hidden Algebra

De�nition 36 (from [GM97]) Given a hidden signature �, a hidden �-algebra A is a
�-algebra A such that A�	 = T	;E	. 2

2.2.3 Context and Behavioural Satisfaction

Context

De�nition 37 Given a hidden signature � and a hidden sort h, then a �-context of
sort h is a �-term having a single occurrence of a new variable symbol 2h of sort h. We
call 2h a hole of sort h. A �-context ct is called a visible �-context if the sort of ct
is a visible sort, and a hidden �-context if the sort of ct is a hidden sort. A �-context
is appropriate for a term t i� the sort of t matches that of 2h . Write ct [t] for the
result of substituting t for 2h in the context ct . (VisCt�)h ;v denotes the set of all visible
�-contexts whose sorts of the holes are h and whose sorts are v 2 V . 2

De�nition 38 (from [GM97]) A 	(X)-term is local i� it is a constant or a variable
(i.e., is in D or in X); a �(X)-term that is not a 	(X)-term is local i� all visible proper
subterms are local. 2

De�nition 39 We call local �-contexts observational �-contexts. 2

Remark 3 As we will discuss in Chapter 4, we regard observational �-contexts as obser-
vational tools of black boxes. So, we call these visible �-contexts observational �-contexts,
instead of local �-contexts. On the other hand, we regard visible �-contexts without ob-
servational �-contexts as manipulation tools of observational values. 2

Property 2 An observational �-context can be regarded as a sequence of behavioral op-
erators. 1

2

De�nition 40 Given an observational �-context oc, we regard oc as a sequence of be-
havioural operators. We call the length of this sequence the length of oc. 2

De�nition 41 We call hidden �-contexts which can be regarded as sequences of methods
method �-contexts. 2

We generally omit the subscript � when there is no confusion.

1For example, get(put(B ;2)) can be regarded as the sequence of pre�x behavioural operators
get put(B) where get and put are behavioural operators. As to pre�x operators, see Section 2.3.

11

Behavioural Satisfaction

De�nition 42 (from [GM97]) A hidden �-algebra M behaviourally satis�es a con-
ditional �-equation (8X)t = t 0 if C i� for any assignment as : X ! M, we have
as(ct [t]) = as(ct [t 0]) for each appropriate context ct whenever as(ctj [ti]) = as(ctj [t

0
i]) for

each hti ; t 0ii
2 C and each appropriate context ctj . In this case we write:
M j�� (8X)t = t 0 if C .

A �-algebra M behaviourally satis�es a set E of conditional �-equations i� it satis�es
each bceq 2 E, and in this case we write:
M j�� E. 2

We generally omit the subscript � when there is no confusion.

2.2.4 Behavioural Speci�cation and Hidden Model

Behavioural Speci�cation

De�nition 43 (from [GM97]) A behavioural speci�cation is a triple (H ;�;E), where
(H ;�) is a hidden signature and E is a set of conditional �-equations that does not include
any conditional 	-equations. 2

Hidden Model

De�nition 44 (from [GM97]) Given a speci�cation (H ;�;E), a hidden (�;E)-model
M is a hidden �-algebra such that:
M j� E. 2

Speci�cation Equivalence

De�nition 45 Given hidden signature (over (V ;	;D)) (H ;�) and (H 0;�0), a hidden
signature morphism ' : �! �0 is a signature morphism ' : �! �0 such that:

1. '(v) = v for each v 2 V and '(�) = � for each � 2 	,

2. '(H) � H 0. 2

De�nition 46 An interpretation of behavioural speci�cations (over (V ;	;D)) ' :
(H ;�;E) ! (H 0;�0;E 0) is a hidden signature morphism ' : � ! Der (�0) such that
for each �0-algebra M 0:
M 0 j��0 E 0 implies 'M 0 j�� E. 2

De�nition 47 Two behavioural speci�cations (H ;�;E) and (H 0;�0;E 0) are speci�ca-
tion equivalent i� there exists two interpretations ' : (H ;�;E) ! (H 0;�0;E 0) and
 : (H 0;�0;E 0)! (H ;�;E) such that:

12

1. '((h)) = h, and
 ('(h 0)) = h 0

for each h 2 H and each h 0 2 H 0, and

2. '(M) = M, and
 ('M 0) = M 0

for each hidden (�;E)-model M and each hidden (�0;E 0)-model M 0. 2

2.2.5 Behavioural Equivalence

De�nition 48 (from [GM97]) Given a hidden signature �, a hidden subsignature � � �,
and a hidden �-algebra M . Then behavioural �-equivalence on M, denoted �� is
de�ned as follows, for s; s 0 2 Mst

s(��)sts
0 i� s = s 0

when st 2 V , and
s(��)sts

0 i� Mct(s) = Mct(s
0) for each ct 2 (VisCt�)st ;v and each v 2 V

when st 2 H where Mct denotes the function interpreting the context ct as an operation
on M . When � = �, we may call �� just behavioural equivalence and denote it �.
2

2.2.6 Finality

De�nition 49 Given a hidden signature � without hidden constants and a behavioural
speci�cation (H ;�;E), then F�;E denotes the following hidden (�;E)-model:

1. the carrier are given by the following formula:

(F�;E)h = �v2V ((VisCt�)h;v ! Dv),

the product of the sets of functions taking contexts to data values (appropriate sort),

2. an attribute � 2 �hw ;v are interpreted as follows:

let s 2 (F�;E)h and let d 2 Dv ; then we de�ne (F�;E)� = sv (�(2h ; d)); i.e., sv is
a function taking contexts in (VisCt�)h ;v to data values in Dv , so applying it to
the context �(2h ; d) gives the data value resulting from that observation,

3. a behavioural operator without attributes � 2 �hw ;h 0 are interpreted as follows:

let s 2 (F�;E)h and let d 2 Dw ; For v 2 V and ct 2 (VisCt�)h 0;v , we de�ne

((F�;E)�(s ; d))v (ct) = sv(ct [�(2h ; d)]);

i.e.,with a slight abuse of notation, given an state s, the result we get from looking
at �(s; d) in a context ct it the same as the result that s gives in the context
c[�(2h ; d)]. 2

13

Remark 4 In [GM97], they de�ne F� for a hidden signature �, instead of F�;E . But,
we need F�;E for a behavioural speci�cation (H ;�;E). The only di�erence between F�;E

and F� is that there are relations between observational results through visible �-contexts
in F�;E . The e�ect of this is only the restriction of the sets of carriers. So, in F�;E , the
same discussion of F� holds. From now on, we use F�;E instead of F� in references from
[GM97]. 2

Fact 5 (from [GM97]) Given a hidden signature � without hidden constants and a be-
havioural speci�cation (H ;�;E). Then, F�;E is the �nal hidden (�;E)-model, in
the sense that for each hidden (�;E)-model M , there is a unique �-homomorphism
M ! F�;E . 2

De�nition 50 (from [GM97]) Given a hidden signature � and a behavioural speci�cation
(H ;�;E), let �� denote � with all hidden constants removed. Given a hidden (�;E)-
model M , let M � denote M viewed as a hidden (��;E)-model. 2

Fact 6 (from [GM97]) Two elements of a hidden (�;E)-model M are behaviourally equiv-
alent i� they map to the same element under the unique ��-homomorphism M � ! F��;E

to the �nal hidden (��;E)-model F��;E . 2

2.2.7 Behavioural Semantics

De�nition 51 Given a speci�cation (H ;�;E), we call semantics which is given by all
hidden (�;E)-models behavioural semantics. 2

De�nition 52 Given a behavioural speci�cation (H ;�;E). Let beq be a behavioural equa-
tion. Then
E j� beq

i� for all hidden (�;E)-models M , M j� beq. 2

De�nition 53 Given a behavioural speci�cation (H ;�;E). Let beq be a behavioural equa-
tion such that: E j� beq. We call beq behavioural properties of (H ;�;E). 2

2.3 The Speci�cation Language CafeOBJ

In this paper, we specify speci�cations by using speci�cation language CafeOBJ. Of course,
our theory can be applied to other speci�cations written by other speci�cation languages.

CafeOBJ [FS95, SF95, DF96, Fut97, DF98] is a multi-paradigm algebraic speci�cation
language which is a successor of OBJ[FGJM85, GWM+93]. CafeOBJ is based on the
combination of several logics consisting of many sorted algebra, order sorted algebra
[GD94, GM92], hidden algebra and rewriting logic[Mes92, Mes93]. This combination is
handled by institutions [GB92, BD92].

We use only many sorted algebra and hidden algebra. In this section, we describe the
syntax of CafeOBJ which we use later and examples written by CafeOBJ.

14

2.3.1 Loose Semantics

Example 1 GROUP
Let GRP be the following speci�cation:

mod* GRP {

[Grp]

op e : -> Grp

op inv_ : Grp -> Grp

op _*_ : Grp Grp -> Grp

vars X Y Z : Grp

eq X * e = X .

eq X * (inv X) = e .

eq (X * Y) * Z = X * (Y * Z) .

}

GRP is a speci�cation of all groups, for example, a module, a ring, and so on. It specify
the common property of all groups. In CafeOBJ , speci�cations are divided into modules
which are declared by mod* or mod* (see Example 2). mod* declares that the semantics of
GRP module is the semantics given by many models. For GRP module, this means that
the semantics of GRP module is loose semantics. As to another case, see Example 3. Grp
which is surrounded by [and] is a visible sort, which denote data types. op, eq, and
vars declare a operator, a equation, and variables, respectively. In CafeOBJ , we can use
pre�x operators (for example, inv) and mix�x operators (for example, *). 2

We usually use pre�x operators. We use pre�x operators in the body of this paper, too.
So, (f g)[s] is equal to f (g(s)).

2.3.2 Initial Semantics

Example 2 NAT
Let NAT be the following speci�cation:

mod! NAT {

[Nat]

op 0 : -> Nat

op s_ : Nat -> Nat

}

NAT is a speci�cation of the Peano notation of natural numbers. mod! declares that the
semantics of GRP module is initial semantics. 2

2.3.3 Behavioural Semantics

Example 3 SFLAG
Let DATA be the following speci�cation:

15

mod! DATA {

[Nat < Int]

op 0 : -> Nat

op s_ : Nat -> Nat

op s_ : Int -> Int

op p_ : Int -> Int

op _+_ : Int Int -> Int

[DBool]

op t : -> DBool

op f : -> DBool

op not_ : DBool -> DBool

vars I1 I2 : Int

eq s p I1 = I1 .

eq p s I1 = I1 .

eq I1 + 0 = I1 .

eq I1 + s I2 = s(I1 + I2) .

eq I1 + p I2 = p(I1 + I2) .

var B : DBool

eq not t = f .

eq not f = t .

eq not not B = B .

}

DATA is a speci�cation of natural numbers (Nat sort), integers (Int sort), and Bool values
(DBool sort). < in [Nat < Int] declares that Nat sort is a part of Int sort. In CafeOBJ

, we can use a partial ordering on a set of sorts. But, in this paper, we only use the
ordering in DATA module. So, we do not describe about the ordering in detail. As to the
ordering, see [GD94, GM92]. var declares a variable. Instead of vars, we can use var.

Let SFLAG be the following speci�cation:

mod* SFLAG {

pr(DATA)

[Flag]

bop up?_ : Flag -> DBool

bop up_ : Flag -> Flag

bop dn_ : Flag -> Flag

var B : DBool

var F : Flag

eq up? up F = t .

eq up? dn F = f .

16

}

SFLAG is a speci�cation of a ag which can be either up or down. States of this ag
can only be observed through the attribute up?. pr(DATA) declare that DATA module is
imported to SFLAGwithout destroying the semantics. This means thatM �DATA = TDATA

for each hidden model M of SFLAG module where TDATA denotes the term model of
DATA module. Note that the semantics of DATA module is initial semantics. mod* and
pr(DATA) declare that the semantics of SFLAG is behavioural semantics. bop declares a
behavioural operator.

There are many models of SFLAG module. One of these is Boolean cell model C , and
another is History model H . Here, CFlag = CDBool , up F = t , dn F = f , and up? F = F .
On the other hand, HFlag = fup; dng�. HFlag constructed from complete histories of
interactions, so that the action of a method is merely to concatenate its name to the front
of a list of method names. Here, up F = up_F , dn F = dn_F , up? up_F = t , and
up? dn_F = f where _ denotes the concatenation operation. Note that C and H are
not isomorphic. 2

Example 4 HSS
Let HSS be the following speci�cation:

mod* HSS {

pr(DATA)

[Hss]

bop get_ : Hss -> DBool

bop put : DBool Hss -> Hss

bop rest_ : Hss -> Hss

var B : DBool

var S : Hss

eq get put(B, S) = B .

beq rest put(B, S) = S .

}

HSS is a speci�cation of a black box version of a stack. get , put , and rest correspond to
top, push, and pop, respectively. beq declares a behavioural equation. 2

2.4 Deduction

2.4.1 Equational Deduction

To prove properties, we use equational deduction.

De�nition 54 (from [Gog]) Given a speci�cation (�;E), the following rules of deduc-
tion de�ne the �-equations eq that are deducible (from E):

17

1. Each equation of the form

(8X)t = t

is deducible,

2. If the equations

(8X)t = t 0, (8X)t 0 = t 00

are deducible, then so is

(8X)t = t 00

is also deducible,

3. Given t0 2 T�(fzg [Y) with exactly one occurrence of z and with z 62 Y ,

(8X)t1 = t2 if C

is in E, and given a substitution sb : X ! T�(Y) such that (8Y)sb(u) = sb(v) is
deducible for each pair hu; vi 2 C, then

(8Y)t0(z sb(t1)) = t0(z sb(t2))

is deducible,

4. Given t0 2 T�(fzg [Y) with exactly one occurrence of z and with z 62 Y ,

(8X)t2 = t1 if C

is in E, and given a substitution sb : X ! T�(Y) such that (8Y)sb(u) = sb(v) is
deducible for each pair hu; vi 2 C, then

(8Y)t0(z sb(t1)) = t0(z sb(t2))

is deducible,

We let E ` eq mean that eq is deducible from E. 2

Fact 7 (from [Gog]) Given a speci�cation (�;E) and another �-equation eq, then
E ` eq i� E j= eq. 2

2.4.2 Induction

To prove inductive properties, we use inductions. For example, structural induction, test
set induction [Bou97], and so on. In this paper, we only use structural induction.

Structural Induction

De�nition 55 Let t ; t 0 be �(fxg)-terms. We call (8fxg)t = t 0 a �(fxg)-sentence.

Fact 8 (Structural Induction) (from [Gog]) Given a speci�cation (�;E), let Q(x) be
a �(fxg)-sentence where x is a variable of sort s. Then E j�=� (8 x)Q(x) if

18

1. c 2 �[];s implies E j�=� Q(c), and

2. f 2 �s1���sl ;s for l > 0 and ti 2 (T�)si for i = [1; . . . ; l] and E j�=� Q(ti) when si = s
imply E j�=� Q(f (t1; . . . tl)). 2

De�nition 56 (from [Gog]) Given a speci�cation (�;E), let E j'� eq mean that eq can
be proved from E using the new rule given below plus the usual rules for `� in De�nition
54.
Given t ; t 0 2 T�(fxg) with x of sort s, if E j'� (8 ;)t(x c) = t 0(x c) for each
c 2 (T�)s , and if E j'� (8 ;)t(x ti) = t 0(x ti) for i = [1; . . . l] and f 2 �s1���sl ;s

imply E j'� (8 ;)t(x f (t1; . . . ; tl)) = t 0(x f (t1; . . . ; tl)), then E j'� (8 x)t = t 0. 2

Fact 9 (from [Gog]) Given a speci�cation (�;E) and another �-equation eq, then
E j' eq implies E j�= eq. 2

2.5 Abstract Reduction System

2.5.1 Abstract Reduction System

De�nition 57 (from [Klo92]) An abstract reduction system (ARS) is a structure
A = (A; (!�)�2I) consisting a set A and a sequence of binary relations !� on A, also
called reduction or rewrite relations. In the case of just one reduction relation, we
also use ! without more. If for a; b 2 A we have (a; b) 2!�, we write a !� b and call
b a one-step (�-) reduct of a. 2

De�nition 58 (from [Klo92]) The transitive reective closure of !� is written as !�
�.

So a !�
� b if there is a possible empty, �nite sequence of reduction steps a = a0 !�

a1 !� � � � !� an = b. The element b is called an (�-) reduct of a. The transitive closure
of !� is !+

� . The converse relation of !� is �. The union !� [!� is denoted by
!��. 2

De�nition 59 (from [Klo92]) Let A = (A; (!)) be an ARS,! is conuent if 8 a; b; c 2
A . 9 d 2 A . (c � a !� b) c !� d � b). 2

De�nition 60 (from [Klo92]) Let A = (A; (!)) be an ARS, ! is terminating if every
reduction sequence a0 ! a1 ! � � � eventually must terminate. 2

De�nition 61 (from [Klo92]) We say that a 2 A is a normal form if there is no b 2 A
such that a ! b. Further, b 2 A has a normal form if b !� a for some normal form
a 2 A. We call a a normal form of b. 2

19

2.5.2 Term Rewriting System

De�nition 62 (from [Gog]) Given t 2 T�(X), the set of variables in t, denoted var(t)
it the least ground signature Y � X such that t 2 T�(Y). 2

Notice that t is a ground term i� var(t) = 0. From now on, we will often just say
\�-term" for what we were previously careful to call a \�-term with variables".

De�nition 63 (from [Gog]) Given a signature �, a conditional �-rewrite rule is a
conditional �-equation (8X)t1 = t2 if C such that var(t2) � var(t1) = X , and var(u) �
var(t1) and var(v) � var(t1) for each pair hu; vi 2 C . It follows that we can use the
notation t1 ! t2 if C , which is unambiguous because X is determined by t1. A �-term
rewriting system (�-TRS) is a set of conditional �-rewrite rules; we may omit the
pre�x � when it is not needed, and we may denote such a system by (�;E). 2

De�nition 64 (from [Gog]) Given a �-term rewriting system (�;E), the one-step rewrit-
ing relation is de�ned for �-terms t ; t 0 as follows:
t) t 0 i� there exists: a rule (8X)t1 ! t2 if C in E; a �-term t0 2 T�(fzg [Y)
having exactly one occurrence of the variable z ; and a substitution sb : X ! T�(Y)
such that:
sb(u) = sb(v) for each pair hu; v i 2 C ,
t = t0(z sb(t1)) and t 0 = t0(z sb(t2)).

In the case, the pair ht0; sbi is called a match to t by the rule t1 ! t2 if C . The term
rewriting relation is the transitive reexive closure of one-step rewriting relation, for
which we write t)� t 0 and say that t rewrites to t 0 (under (�;E)). 2

2.6 The CafeOBJ veri�cation system

There is the CafeOBJ veri�cation system that executes speci�cations written by CafeOBJ

by regarding (behavioural) equations as rewrite rules. In this section, we describe its
function used later.

2.6.1 Reduce Command

In this paper, we assume that speci�cations are complete TRS. As to complete TRS, the
following fact holds.

De�nition 65 We let == denote syntactically identity. 2

Fact 10 (from [Gog]) Given a complete �-TRS (�;E), then
E j= (8X)t = t 0 i� norm(t) == norm(t 0)

where norm(t) is a normal form of t. 2

The CafeOBJ veri�cation system supports reduce command (abbreviate red command)
which calculates normal forms of inputs. By using red command, we prove properties.

20

Example 5 GRP (continued)
Consider to prove a property e � e = e in GRP module.

Firstly, hit \cafeobj" from the current command line. The CafeOBJ veri�cation system
starts up.

[mitihiro@is27e0s04] 1 % cafeobj

-- loading standard prelude

Loading /cafe/cafeobj-1.4/prelude/std.bin

Finished loading /cafe/cafeobj-1.4/prelude/std.bin

-- CafeOBJ system Version 1.4.0(Beta-5) --

built: 1997 Dec 3 Wed 11:34:27 GMT

prelude file: std.bin

1998 Feb 10 Tue 7:40:06 GMT

Type ? for help

uses GCL (GNU Common Lisp)

Licensed under GNU Public Library License

Contains Enhancements by W. Schelter

CafeOBJ>

We assume that GRP module is written in grp.mod. Then, hit \in grp.mod".

CafeOBJ> in grp

-- processing input : ./grp.mod

-- defining module* GRP....._...* done.

GRP>

Now, the CafeOBJ veri�cation systems become �GRP-TRS.
Finally, hit \red e � e == e .".

GRP> red e * e == e .

-- reduce in GRP : e * e == e

true : Bool

(0.017 sec for parse, 2 rewrites(0.000 sec), 3 match attempts)

red command returns true. This mean that norm(e � e) == norm(e). From Fact 10,
e � e = e is valid. 2

2.6.2 Open and Close commands

When we prove some properties, we may want to extend a given speci�cation. We can
extend the speci�cation by using open and close commands. We can add constants,

21

variables, (behavioural) operators, and (behavioural) equations to the speci�cation after
we execute open command. This e�ect continues until we execute close command.

One case we want to extend the speci�cation is rewriting of �-terms with variables. In
�-TRS, �-terms rewrites to �-terms (De�nition 64). To rewrite �-terms with variables,
we need the following fact.

Fact 11 (Theorem of Constants) (from [Gog]) Given a signature �, a ground signa-
ture X disjoint from �, a set E of �-equations, and t ; t 0 2 T�(X), then
A j=� (8X)t = t 0 i� A j=�[X (8 ;)t = t 0. 2

Example 6 NATP
NATP module is the following module:

mod! NATP {

[Nat]

op 0 : -> Nat

op s_ : Nat -> Nat

op _+_ : Nat Nat -> Nat

vars N1 N2 : Nat

eq N1 + 0 = N1 .

eq N1 + s N2 = s(N1 + N2) .

}

Consider to prove a property (?) (X + Y) + Z = X + (Y + Z) in NATP module. We
write proof commands in a �le as follows.

--> (X + Y) + Z = X + (Y + Z) is not a property!

open .

ops l m n : -> Nat .

red l + (m + n) == (l + m) + n .

close

Note that we use constants l ;m; n instead of variables and we extend the speci�cation by
adding the constants.

We assume that NATPmodule and the above proof commands are written in natp.mod.
The execution result is as follows:

CafeOBJ> in natp

-- processing input : ./natp.mod

-- defining module! NATP....._..* done.

--> (X + Y) + Z = X + (Y + Z) is not a property!

-- opening module NATP.. done._*

-- reduce in % : l + (m + n) == (l + m) + n

false : Bool

(0.000 sec for parse, 1 rewrites(0.017 sec), 17 match attempts)

red command returns false. So, (X + Y) + Z = X + (Y + Z) is not a property. 2

22

2.6.3 Induction

To prove inductive properties, we may use structural induction.

Example 7 NATP (continued)
Consider to prove an inductive property (X +Y) + Z = X + (Y + Z) in NATP module.
Proof commands for proving the inductive property are as follows:

--> Prove (X + Y) + Z = X + (Y + Z)

--> Base Case)

open .

ops l m n : -> Nat .

red l + (m + 0) == (l + m) + 0 .

close

--> Induction Step)

open .

ops l m n : -> Nat .

-- induction hypothesis

eq l + (m + n) = (l + m) + n .

red l + (m + s n) == (l + m) + s n .

close

The execution result is as follows:

--> Prove (X + Y) + Z = X + (Y + Z)

--> Base Case)

-- opening module NATP.. done._*

-- reduce in % : l + (m + 0) == (l + m) + 0

true : Bool

(0.000 sec for parse, 3 rewrites(0.017 sec), 11 match attempts)

--> Induction Step)

-- opening module NATP.. done._*

-- reduce in % : l + (m + s n) == (l + m) + s n

true : Bool

(0.017 sec for parse, 5 rewrites(0.000 sec), 27 match attempts)

Each red command returns true. So, (X +Y)+Z = X +(Y +Z) is an inductive property.
2

2.7 Induction over Length of Contexts

As we will discuss in Chapter 4, the following relation holds:
(s �h s

0) = ^ct2ObsCth (ct [s] == ct [s 0])

23

where h is a hidden sort, s , s 0 are states of a black box (sort h), and ObsCth is the set of
all observational contexts of sort h.
Therefore, by using induction over length of observational contexts, we can prove be-
havioural properties.

Example 8 HSS (continued)
Consider to prove (rest put(t ; S)) � (S) in HSS.
The process of induction over length of contexts is as follows:

--> Prove (rest put(t, S)) Reqv (S) .

--> Base Case)

open .

red get rest put(t, S) == get S .

close

--> Induction Step)

open .

bop c_ : Hss -> DBool .

eq c rest put(t, S) = c S .

red c rest rest put(t, S) == c rest S .

red c put(B, rest put(t, S)) == c put(B, S) .

close

The result is as follows:

--> Prove (rest put(t, S)) Reqv (S) .

--> Base Case)

-- opening module HSS.. done.

-- reduce in % : get (rest put(t,S)) == get S

true : Bool

(0.017 sec for parse, 2 rewrites(0.000 sec), 4 match attempts)

--> Induction Step)

-- opening module HSS.. done._*

-- reduce in % : c (rest (rest put(t,S))) == c (rest S)

true : Bool

(0.017 sec for parse, 2 rewrites(0.000 sec), 10 match attempts)

-- reduce in % : c put(B,rest put(t,S)) == c put(B,S)

true : Bool

(0.017 sec for parse, 2 rewrites(0.000 sec), 6 match attempts)

Because all executions of red commands return true, (rest put(t ; S)) � (S) is valid. 2

Because induction over length of contexts is usually ine�cient, coinduction in the next
chapter is usually used to prove behavioural properties.

24

2.8 Coinduction

Before we can give the algorithm of coinduction, we need the de�nition of hidden congru-
ence.

De�nition 66 (from [GM97]) Given a hidden signature �, a hidden subsignature � � �,
and a hidden �-algebra M , a hidden �-congruence ' on M is a �-congruence ' which
is the identity on visible sorts, i.e., such that e 'v e

0 i� e = e 0 for each v 2 V and each
e; e 0 2 Dv . We may call a hidden �-congruence just a hidden congruence. 2

Coinduction is a veri�cation method based on the following fact:

Fact 12 (from [GM97]) Let (H ;�;E) be a behavioural speci�cation and M is a hidden
�-algebra, then behavioural �-equivalence �� is the largest hidden �-congruence on M .
2

Algorithm 1 Consider a veri�cation of a behavioural property s � s 0. The algorithm
of coinduction is as follows:

1. �nd a candidate R of hidden congruences,

2. check whether R is a hidden congruence, and

3. verify whether s � s 0 holds, by proving s R s 0. 2

Example 9 Flag
Let FLAG be the following speci�cation:

mod* FLAG {

pr(DATA)

[Flag]

bop up?_ : Flag -> DBool

bop up_ : Flag -> Flag

bop dn_ : Flag -> Flag

bop rev_ : Flag -> Flag

var B : DBool

var F : Flag

eq up? up F = t .

eq up? dn F = f .

eq up? rev F = not up? F .

}

When the CafeOBJ veri�cation system read a speci�cation, it automatically generates a
candidate =*= (1) and checks whether =*= is a hidden congruence (2). =*= is a H -sorted
relation such that (s=*=hs

0) = ^at2Attrh (at [s] == at [s 0]) where Attrh is the set of all
attributes of sort h for each hidden sort h. The above process is as follows:

25

CafeOBJ> in flag

-- processing input : ./flag.mod

-- reading in file : data

-- processing input : data.mod

-- defining module! DATA..........._......_...* done.

-- done reading in file: data

-- defining module* FLAG........_...*

** system already proved =*= is a congruence of FLAG done.

The last line shows that =*= is a hidden congruence.
Consider to prove (rev up F) � (dn F) in FLAG.

The process of (3) of coinduction is as follows:

open .

red rev up F =*= dn F .

close

The result is as follows:

--> Prove (rev up F) Reqv (dn F) .

-- opening module FLAG.. done.

-- reduce in % : rev (up F) =*= dn F

true : Bool

(0.017 sec for parse, 6 rewrites(0.000 sec), 9 match attempts)

Because an execution of red command returns true, (rev up F) � (dn F) is valid. 2

Unfortunately, in HSS , =*= is not a hidden congruence. Therefore, users must �nd a
hidden congruence.

26

Chapter 3

Syntactically De�nable Hidden

Congruence

We check 2 and 3 in Algorithm 1 by using veri�cation systems. Note that relations which
can be de�ned on veri�cation systems are not only relations on hidden algebras but also
relations de�ned by syntax.

De�nition 67 Let (H ;�;E) be a behaivoural speci�cation over (V ;	;D). Syntacti-
cally de�nable hidden �-congruences are hidden �-congruences which can only be
de�ned by operators and behavioural operators in 	 and �. 2

Before we can prove the property of syntactically de�nable hidden �-congruences, we
need the following property of the �nal hidden (�;E)-model.

De�nition 68 Given a behavioural speci�cation (H ;�;E). Let M be a (�;E)-model.
Let SS be a (V [H)-sorted set such that:

1. SSvh = Mvh when vh 2 V and

2. SSvh = fs 2 Mvh j 8 h 2 H : (8 bop 2 Bopvh ;h : bop[s] 2 Mh)g when vh 2 H where
Bopvh;h is the set of all behavioural operators from vh to h (if we ignore visible sorted
arguments).

We let RSS = f(s ; s) j s 2 SSg. Then, we call RSS a partial identity relation.
Especially, we call RM the identity relation and we call R; the empty relation. 2

Property 3 Given a behavioural speci�cation (H ;�;E). Hidden �-congruences on the
�nal hidden (��;E)-model F��;E are partial identity relations.

Proof : Given states s ; s 0 2 h (h 2 H) such that: s � s 0. From Fact 6, there is the
unique ��-homomorphism ' : F��;E ! F��;E such that: '(s) = '(s 0). Because F��;E is
the �nal hidden (��;E)-model, ' is the identity map. So s = s 0. Therefore, behavioural
�-equivalence coincides with the identity relation. On the other hand, from De�nition
68, every partial identity relation is a hidden �-congruence. From Fact 12, hidden �-
congruences on F��;E are partial identity relations. 2
Then, as to syntactically de�nable hidden �-congruences, the following theorem holds.

27

Theorem 4 Given a behavioural speci�cation (H ;�;E). Syntactically de�nable hidden
�-congruences without case analyses are behavioural �-equivalence, the identity relation,
and the empty relation.

Proof : Syntactically de�nable hidden �-congruences are de�ned on all hidden (�;E)-
models. So, these are de�ned on the �nal hidden (��;E)-model. But, on the �nal hidden
(��;E)-model, hidden �-congruences are behavioural �-equivalence and partial iden-
tity relations. Partial identity relations de�ned by syntax without case analysis are the
identity relation and the empty relation. Consequently, syntactically de�nable hidden �-
congruences are behavioural �-equivalence, the identity relation, and the empty relation.
2

Corollary 5 Let RID be the identity relation and let R; be the empty relation. Syntacti-
cally de�nable hidden �-congruences R are categorized as follows:

1. R = ��,

2. R = RID ,

3. R = R;,

4. let cond1, cond2, and cond3 be conditions that: cond1 [cond2 [cond3 = true and
condi \ condj = ; (i 6= j), then

R = �� if cond1,
R = RID if cond2, and
R = R; if cond3. 2

From this fact, the only useful syntactically de�nable hidden congruence for veri�cations
is behavioural equivalence. Behavioural equivalence is the conjunction over all visible
contexts. Consequently, a selection of hidden congruences corresponds to a selection of
the set of visible contexts which construct behavioural equivalence. We let R denote the
form of behavioural equivalence de�ned by syntax | conjunction over visible contexts |
and we let #(R) denote the numbers of these visible contexts. We regard a veri�cation
method with R as an e�cient method if #(R) is small. We regard R as a simple
form if #(R) is small. So, to verify behavioural properties e�ciently, we need a simple
form of behavioural equivalence. By eliminating redundant visible contexts, we get this
simple form. The method which generates this simple form is GSB-algorithm of test
set coinduction in the next chapter. As we will discuss in the next chapter, for proving
(rest put(t ; S)) � (S) in HSS, test set coinduction is more e�cient than induction over
length of contexts.

28

Chapter 4

Test Set Coinduction

In this chapter, we only treat speci�cations which have exactly one hidden sort. For many
hidden sorted cases, we will discuss in Chapter 6.

4.1 Test Set Coinduction

Algorithm 2 Consider a veri�cation of a behavioural property s � s 0. The algorithm
of test set coinduction is as follows:

1. generate a simple form of behavioural equivalence (by GSB-algorithm), and

2. verify whether s � s 0 holds, by proving s R s 0. 2

4.1.1 Cap Elimination

De�nition 69 Let vc be a visible context and oc be an observational context which is a
subterm of vc. If vc = cp oc, then we call cp cap. We call the process which gets oc from
vc cap elimination. 2

Property 6 Let vc be a visible context, cp be a cap, oc be a observational context, and
vc = cp oc. Then given states s, s 0,
(vc[s] == vc[s 0]) ^ (oc[s] == oc[s 0]) = (oc[s] == oc[s 0]). 2

We can eliminate visible contexts which have caps. Therefore, the following property
holds.

Property 7 Given states s, s 0,
(s � s 0) =

V
ct2ObsCt(ct [s] == ct [s 0])

where ObsCt denotes the set of all observational contexts. 2

From now on, we consider elimination of redundant observational contexts from the set
of observational contexts.

29

4.1.2 Context Rewriting System

Observational contexts are one part of terms. So, context rewriting systems can be gen-
erated from speci�cations like term rewriting systems. But, restrictions and changes are
necessary to ensure rewrite rules between observational contexts. With these changes, we
apply following index elimination to both sides of (behavioural) equations in the speci�-
cations.

De�nition 70 Let behop be a behavioural operator and v1 � � � vl h be an arity of it, where
v1; � � � ; vl are visible sorts and h is a hidden sort. We call (v1; � � � ; vl) index. We call
values of index index values. Let idel(behop) be behop except an arity h. We call the
transformation from behop to idel(behop) index elimination. If there is no confusion,
we use behop instead of idel(behop). Next, let vc be a visible context, bop1; � � � ; bopl be be-
havioural operators, vc = bop1 � � � bopl , and i1; � � � ; il be their indexes. We call (i1; � � � ; il)
index of vc. We de�ne idel(vc) as idel(bop1) � � � idel(bopl). 2

As we will discuss in the latter part of this chapter, the form generated by GSB-algorithm
is the conjunction over behavioural operators for all index values. This comes from the
process of GSB-algorithm that every behavioural operator is decided whether it can elim-
inate. So, information about indexes is redundant. From this fact, we deal with be-
havioural operators to whose index elimination was applied.

De�nition 71 A context rewriting system (CRS) is generated from (H ;�;E) by
following processes:

1. select (behavioural) equations eq which satisfy following conditions from E:

(a) all visible sorted arguments in the left hand side of eq are variables, 1

(b) if eq is a equation, the left hand side of eq is an observational context, 2

(c) if eq is a behavioural equation, there exists exactly one hidden sorted variable
in the both sides of eq, and

(d) if eq is a equation, there exists exactly one hidden sorted variable in the right
hand side of eq, 3

2. apply index elimination to each eq,

3. apply cap elimination to the right hand side of each equation, and

4. regard each eq as a �-rewrite rule.

We call rewrite rules generated from equations visible context rewrite rules, and
rewrite rules generated from behavioural equations hidden context rewrite rules. We
call visible context rewrite rules and hidden context rewrite rules context rewrite rules.
If every eq in E satis�es the conditions (a) to (d), we say that this CRS is completely
generated. 2

1This condition is necessary to apply index elimination to eq.
2We regard a hidden sorted variable as a hole.
3This condition is necessary to uniquely determine the result of cap elimination.

30

In order to denote terms which are results of applying cap elimination to visible constants,
and variables which are right hand sides of behavioural equations, we introduce following
notations.

De�nition 72 Constant observational context ' is an observational context such
that:
8mt : method : (' mt = ').

Unit context is a context such that:
8 ab : attribute : (ab = ab) and 8mt : method : (mt = mt and mt = mt): 2

Note that we can regard each visible constant vc of sort v as a function of rank hh; vi
which returns vc for each state s of sort h. So, the next property holds.

Property 8 8 vc : visible constant : (vc ' = vc).
Therefore, the result of applying cap elimination to every visible constant is '. 2

Example 10 HSS (continued)
The CRS is generated from the speci�cation HSS by following processes:

1. all (behavioural) equations of E satisfy the conditions (a) to (d).

eq get put(B, S) = B . beq rest put(B, S) = S .

2. by applying index elimination to both sides of each (behavioural) equation, we got
following relations:

(get put(S); B) (rest put(S); S)

3. by applying cap elimination to the right hand side of the left relation, we got fol-
lowing relations:

(get put(S); '(S)) (rest put(S); S)

4. by recognizing both relations as context rewrite rules, we got following context
rewrite rules:

get put ! ' rest put ! :

Because context rewrite rules are rewrite rules between contexts, we use instead of S .
From the process 1, the CRS generated from HSS is completely generated. 2

Example 11 EXP
Let EXP be the following speci�cation:

mod* EXP {

pr(DATA)

[Exp]

bop a1_ : Exp -> DBool

bop a2_ : Exp -> DBool

31

bop a3_ : Exp -> DBool

bop m1_ : Exp -> Exp

bop m2_ : Exp -> Exp

bop m3_ : Exp -> Exp

var S : Exp

eq a1 m1 m1 S = t .

eq a1 m2 S = f .

eq a2 m1 S = t .

eq a2 m2 S = f .

eq a3 S = a1 S .

beq m2 m1 S = m2 S .

beq m3 S = m1 S .

}

The CRS is generated from the speci�cation EXP by following processes:

1. all (behavioural) equations of E satisfy the conditions (a) to (d).

eq a1 m1 m1 S = t . eq a1 m2 S = f .

eq a2 m1 S = t . eq a2 m2 S = f .

eq a3 S = a1 S .

beq m2 m1 S = m2 S . beq m3 S = m1 S .

2. by applying index elimination to both sides of each (behavioural) equation, we got
following relations:

(a1 m1 m1 S ; t) (a1 m2 S ; f)
(a2 m1 S ; t) (a2 m2 S ; f)
(a3 S ; a1 S)
(m2 m1 S ; m2 S) (m3 S ; m1 S)

3. by applying cap elimination to the right hand side of the left relation, we got fol-
lowing relations:

(a1 m1 m1 S ; ' S) (a1 m2 S ; ' S)
(a2 m1 S ; ' S) (a2 m2 S ; ' S)
(a3 S ; a1 S)
(m2 m1 S ; m2 S) (m3 S ; m1 S)

4. by recognizing both relations as context rewrite rules, we got following context
rewrite rules:

a1 m1 m1! ' a1 m2! '
a2 m1! ' a2 m2! '
a3! a1
m2 m1! m2 m3! m1

From the process 1, the CRS generated from EXP is completely generated. 2

32

Property 9 Let civ , c
0
iv 0 be observational contexts, id, id 0 be these index values (i , i 0 be

these indexes), and idel(civ)!� idel(c0iv 0) by a CRS. Then given states s, s 0,
(
V
i2PossId(ci [s] == ci [s

0])) ^(
V
i 02PossId'(c

0
i 0 [s] == c0i0 [s

0]))
=
V
i02PossId'(c

0
i 0 [s] == c 0i 0[s

0])
where PossId (PossId') denotes the set of all index values of i (i 0), respectively. 2

From this fact, if a CRS is complete, then the following theorem holds.

Theorem 10 let a CRS be complete. Then,
(s � s 0) =

V
ct2NormCt(ct [s] == ct [s 0])

where NormCt denotes the set of all normal forms of observational contexts without '. 2

Consequently, if a CRS is complete and completely generated, by �nding the set of all
normal forms of observational contexts without ', we can get the simplest form of be-
havioural equivalence. From the next subsection, we describe the method how to eliminate
redundant contexts | which are not normal forms | e�ciently and a su�cient condition
to get the set of all normal forms without ' by this method.

4.1.3 Cover Set

De�nition 73 Given a behavioural speci�cation, let vf1; � � � ; vfl be observational contexts,
hfi ;1; � � � ; hfi ;li be method contexts, and Cti be the set of all concatenation of a sequence of
fhfi ;1; � � � ; hfi ;lig

� 4 after vfi , like vfi hfi ;1 and vfi hfi ;3 hfi ;2. If (s � s 0) = ^i2[1;...;l](
V
ct2Cti

(ct [s] == ct [s 0])) holds, we call f(vfi ; fhfi ;1; � � � ; hfi ;lig)gi2[1;...;l] a cover set, vf1; � � � ; vfl
visible fragments, and hfi ;1; � � � ; hfi ;li hidden fragments assigned to vfi 2

Example 12 HSS (continued)
f(get ; fput ; restg)g is a cover set of the speci�cation HSS. 2

Example 13 EXP (continued)
f(a1; fm1;m2;m3g); (a2; fm1;m2;m3g); (a3; fm1;m2;m3g)g is a cover set of the speci-
�cation EXP. 2

4.1.4 Test Set

In GSB-algorithm, we reduce compositions of a visible fragment and a hidden fragment, or
two hidden fragments by context rewrite rules. If the maximal length of these compositions
coincides with the maximal length of left hand sides of context rewrite rules, all context
rewrite rules have possibilities that they may be matched to these compositions. 5 A test
set is a cover set which satis�es this condition.

4fhfi;1; � � � ; hfi ;li g
� shows the set of all sequences of elements of fhfi ;1; � � � ; hfi ;li g.

5As we will discuss in the next subsection, there exists context rewrite rules which are not used in
GSB-algorithm by the property of GSB-algorithm.

33

De�nition 74 Given a behavioural speci�cation, let mlv be the maximum of the length
of the left hand side of visible context rewrite rules, and let mlh be the maximum of the
length of the left hand side of hidden context rewrite rules. let lhf be the maximum of 1
and [mlh=2]. 6 let lvf be the maximum of 1, lhf , and (mlv � lhf). A test set is a cover
set such that:

1. visible fragments are all combinations of an attribute and methods whose lengths are
equal or less than lvf ,

2. if the length of a visible fragment vf is less than lvf , there is no hidden fragments
assigned to vf , and

3. if the length of a visible fragment vf is equal to lvf , hidden fragments assigned to vf
are all combinations of methods whose lengths are equal to lhf . 2

Example 14 HSS (continued)
In the speci�cation HSS, (mlv = 2), (mlh = 2), (lhf = 1), and (lvf = 1). Consequently,
the test set is f(get ; fput ; restg)g. 2

Example 15 EXP (continued)
In the speci�cation EXP, (mlv = 3), (mlh = 2), (lhf = 1), and (lvf = 2). Consequently,
the test set is f(a1; ;); (a2; ;); (a3; ;); (a1 m1; fm1;m2;m3g); (a1 m2; fm1;m2;m3g);
(a1 m3; fm1;m2;m3g); (a2 m1; fm1;m2;m3g); (a2 m2; fm1;m2;m3g);
(a2 m3; fm1;m2;m3g); (a3 m1; fm1;m2;m3g); (a3 m2; fm1;m2;m3g);
(a3 m3; fm1;m2;m3g)g. 2

4.1.5 GSB-algorithm

In this subsection, we describe how to generate a cover set by eliminating redundant visible
and hidden fragments from a test set, and how to generate a simple form of behavioural
equivalence from this cover set. vf and vf 0 denote visible fragments and hf , hf 0, and hf 00

denote hidden fragments. We assume that:

Assumption 1

1. a CRS is complete, and

2. for each context rewrite rule,
(the length of left hand side) � (the length of right hand side). 2

Moreover, we assume that index elimination was applied to each behavioural operators.
Firstly, we introduce ideas which are necessary to describe GSB-algorithm. 7

6[] is a function for raising to a unit. For example, [2:5] = 3.
7GSB is an abbreviation for \Generate a Simple form of Behavioural equivalence".

34

De�nition 75 If the set generated by eliminating a visible fragment and all hidden frag-
ments assigned to it from a test set is a cover set, we call this visible fragment an elim-
inable visible fragment. Also, if the set generated by eliminating a hidden fragment
assigned to vf is a cover set, we call this hidden fragment an eliminable hidden frag-
ment assigned to vf . Moreover, we call eliminable visible fragments and eliminable
hidden fragments eliminable fragments. 2

Property 11 If one of following context rewrite rules matches to a visible fragment vf
(or a hidden fragment hf), this fragment is an eliminable fragment.
vf ! ', vf ! vf 0 (vf 0 6= vf), hf ! , and hf ! hf 0 (hf 0 6= hf)
We call these context rewrite rules elimination rules.

Proof : From Property 9. 2

De�nition 76 We call eliminations of vf or hf in Property 11 visible fragment elim-
ination or hidden fragment elimination respectively. 2

De�nition 77 Let hf be a hidden fragment assigned to vf . We call the process which
calculates the normal form of vf hf visible fragment application to hf . 2

De�nition 78 Let wl and hf be hidden fragments assigned to vf . We call the process
which calculates the normal form of wl hf wall application to hf by wl. 2

De�nition 79 Let wl be a hidden fragment assigned to vf . A wall assigned to vf is
de�ned as follows:

1. if the result of visible fragment application to wl is not ', vf 0, or vf 0 hf 0(hf 0 6= wl),
then wl is a wall, and

2. if the result of wall application to wl by a wall wl 0 is not , hf 0, or hf 0 hf 00 (hf 00 6= wl),
then wl is a wall. 2

Input of GSB-algorithm is a test set. Firstly, we eliminate apparent redundant visible
and hidden fragments like visible fragments which change only names from other visible
fragments (visible and hidden fragment elimination). Then, we divide hidden fragments
between eliminable fragments and walls, for every visible fragments. The process of this
division is as follows:

Let vf hf1 � � � hfl be an observational context which starts from vf . We check whether
the i-th hidden fragment hf can be eliminated from all observational contexts whose i -th
hidden fragments are hf , inductively. This \eliminate" means that there exists a context
rewrite rule such that i -th hidden fragment of the rewrite result of vf hf1 � � � hfl(hfi = hf)
by it is not hf . If we can eliminate hf of the i -th hidden fragment for every i , then hf
is an eliminable fragment. If not, hf is a wall. The check of base case (i = 1) is visible
fragment application and it of inductive step is wall application. The reason of the latter
is as follows:

35

Let ct hf be an observational context whose i + 1-th hidden fragment is hf . From 1
of Assumption 1, there exists ct 0 which is generated by a visible fragment and walls, and
ct !� ct 0. From 2 of Assumption 1, the length of ct 0 is equal or less than the length of
ct . Consequently, we can assume that the i -th hidden fragment is a wall without loss of
generality.

If the result of visible fragment application to hf is ', vf 0, or vf 0 hf 0(hf 0 6= hf), then hf
is a candidate of eliminable fragment. If not, hf is a wall. If the result of wall application
to a candidate of eliminable fragment hf by every wall is , hf 0, or hf 0 hf 00(hf 00 6= hf),
then hf is an eliminable fragment. If not, hf is a wall.

From Property 9, the set generated by eliminating these eliminable fragments from a
test set is a cover set. Finally, we generate a simple form of behavioural equivalence from
this cover set. This simple form is output of GSB-algorithm.

The algorithm of GSB-algorithm is as follows:

Algorithm 3 (GSB-algorithm)

1. generate a cover set from a test set by applying visible and hidden fragment elimi-
nation,

2. apply visible fragment application to every hidden fragment assigned to vf for every
visible fragment vf , then, divide hidden fragments between walls and candidates of
eliminable fragments, for every visible fragment vf ,

3. apply wall application to every candidate by every (new) wall,

4. if new walls occur in 3, turn back to 3 and if not, remaining candidates are eliminable
fragments, and

5. generate a cover set by eliminating these eliminable fragments from a cover set of 1,
then, we generate a simple form of behavioural equivalence from this cover set. 2

By summarizing the above argument, we get the following theorem.

Theorem 12 If a CRS satisfy following conditions, then we can get a simple form of
behavioural equivalence by GSB-algorithm:

1. a CRS is complete, and

2. for each context rewrite rule,
(the length of left hand side) � (the length of right hand side). 2

Example 16 HSS (continued)
The CRS generated from the speci�cation HSS is
get put ! ' rest put ! .

The test set is f(get ; fput ; restg)g.
The process of GSB-algorithm is as follows:

36

1. There is no visible or hidden fragments which can be eliminated by visible or hidden
fragment elimination.

2. get put ! ' get rest 6!
Therefore, rest is a wall and put is a candidate of eliminable fragment.

3. rest put ! .

4. No new wall occurs in 3. Therefore, put is an eliminable fragment.

5. The generated cover set is f(get ; frestg)g. Therefore, a simple form of behavioural
equivalence is

V
i2Nat(get rest

(i)[s] == get rest(i)[s 0]).

2

Example 17 EXP (continued)
The CRS generated from the speci�cation EXP is
a1 m1 m1! ' a1 m2! '
a2 m1! ' a2 m2! '
a3! a1
m2 m1! m2 m3! m1

The test set is f(a1; ;); (a2; ;); (a3; ;); (a1 m1; fm1;m2;m3g); (a1 m2; fm1;m2;m3g);
(a1 m3; fm1;m2;m3g); (a2 m1; fm1;m2;m3g); (a2 m2; fm1;m2;m3g);
(a2 m3; fm1;m2;m3g); (a3 m1; fm1;m2;m3g); (a3 m2; fm1;m2;m3g);
(a3 m3; fm1;m2;m3g)g.

The process of GSB-algorithm is as follows:

1. a3! a1 a1 m2! ' a2 m1! ' a2 m2! ' m3! m1
Therefore, a3, a1 m2, a2 m1, a2 m2, m3 are eliminable fragments. Consequently,
the generated cover set is f(a1; ;); (a2; ;); (a1 m1; fm1;m2g)g.

2. a1 m1 m1! ' a1 m1 m2 6!
Therefore, m2 is a wall and m1 is a candidate of eliminable fragment.

3. m2 m1! m2.

4. No new wall occurs in 3. Therefore, m1 is an eliminable fragment.

5. The generated cover set is f(a1; ;); (a2; ;); (a1 m1; fm2g)g. Therefore, a sim-
ple form of behavioural equivalence is (a1[s] == a1[s 0]) ^ (a2[s] == a2[s 0]) ^
(
V
i2Nat(a1 m1 m2(i)[s] == a1 m1 m2(i)[s 0])).

2

GSB-algorithm only checks whether behavioural operators are walls or eliminable frag-
ments. Therefore, there may exist the simplest form which is di�erent from the form gen-
erated by GSB-algorithm. Then, the next problem is what is a su�cient condition that

37

the form generated by GSB-algorithm coincides with the simplest form of behavioural
equivalence.

In order to make this problem easier, we only deal with the case that lengths of left
hand sides of context rewrite rules are 1 or 2.

Theorem 13 Let a CRS be complete, completely generated, and for each context rewrite
rule, (the length of left hand side) � (the length of right hand side). If this CRS does
not include a context rewrite rule whose left hand side is only constructed by wall, then
the form generated by GSB-algorithm coincides with the simplest form of behavioural
equivalence.

Proof : Context rewrite rules which are not used in GSB-algorithm are only context
rewrite rules whose left hand sides are only constructed by walls, like wl wl ! where
wl is a wall. Consequently, if there are not these kind of context rewrite rules in a CRS, all
context rewrite rules are used in GSB-algorithm. From this fact, the form generated from
this CRS by GSB-algorithm coincides with the simplest form of behavioural equivalence.
2

Corollary 14 Let a CRS be complete and completely generated. If this CRS satisfy the
following condition and every visible fragment in a cover set generated by GSB-algorithm
has at most one wall for each visible fragment, then the form generated by GSB-algorithm
coincides with the simplest form of behavioural equivalence.
Let ab1, ab2 be attributes and mt1, mt2 (mt2 6= mt1), mt3, mt4 (mt4 6= mt2) be methods.
All context rewrite rules of CRS coincides with one of the following rules:
ab1 ! ', ab1 ! ab2, ab1 mt1 ! ', ab1 mt1 ! ab2, ab1 mt1 ! ab2 mt2,
mt1 ! , mt1 ! mt2, mt1 mt2 ! , mt1 mt2 ! mt3, mt1 mt2 ! mt3 mt4.

Proof : From the assumption, in the test set, visible fragments are attributes and hidden
fragments are methods. Therefore, this CRS does not have context rewrite rules whose
left hand sides are only constructed by walls. Consequently, the form generated by GSB-
algorithm coincides with the simplest form of behavioural equivalence. 2

Example 18 HSS (continued)
The CRS generated from the speci�cation HSS satisfy the condition of Corollary 14. So,
V
i2Nat(get rest

(i)[s] == get rest(i)[s 0]) is the simplest form of behavioural equivalence. 2

If there exists two walls for a visible fragment and there are not context rewrite rules
whose left hand sides are only constructed by walls, then, for proving s � s 0, observations
through in�nite number of observational contexts are necessary. Consequently, for proving
s � s 0, induction over length of contexts are necessary.

Example 19 WLL2
Let WLL2 be the following speci�cation:

38

mod* WLL2 {

pr(DATA)

[Wll2]

bop a_ : Wll2 -> DBool

bop m1_ : Wll2 -> Wll2

bop m2_ : Wll2 -> Wll2

bop m3_ : Wll2 -> Wll2

var S : Wll2

eq a m3 S = t .

beq m1 m3 S = m1 S .

beq m2 m3 S = m2 S .

}

The cover set generated by GSB-algorithm is f(a, fm1, m2g)g. So, the CRS generated
from the speci�cationWLL2 satisfy the condition of Theorem 13. Therefore, the form gen-
erated from this cover set is the simplest form of behavioural equivalence. Consequently,
for proving behavioural properties, induction over length of contexts are necessary. But,
m3 is an eliminable fragment. So, we should only deal with m1 and m2 in induction step.

Consider to prove (m3 m3 S) � (m3 S) in WLL2.
The process is as follows:

--> Prove (m3 m3 S) Reqv (m3 S) .

--> Base Case)

open .

red a m3 m3 S == a m3 S .

close

--> Induction Step)

open .

bop c_ : Wll2 -> DBool .

eq c m3 m3 S = c m3 S .

red c m1 m3 m3 S == c m1 m3 S .

red c m2 m3 m3 S == c m2 m3 S .

close

The result is as follows:

--> Prove (m3 m3 S) Reqv (m3 S) .

--> Base Case)

-- opening module WLL2.. done.

-- reduce in % : a (m3 (m3 S)) == a (m3 S)

true : Bool

(0.017 sec for parse, 3 rewrites(0.017 sec), 3 match attempts)

39

--> Induction Step)

-- opening module WLL2.. done._*

-- reduce in % : c (m1 (m3 (m3 S))) == c (m1 (m3 S))

true : Bool

(0.167 sec for parse, 4 rewrites(0.000 sec), 14 match attempts)

-- reduce in % : c (m2 (m3 (m3 S))) == c (m2 (m3 S))

true : Bool

(0.017 sec for parse, 4 rewrites(0.000 sec), 14 match attempts)

Because all executions of red commands return true, (m3 m3 S) � (m3 S) is valid. 2

4.2 An Application of Test Set Coinduction

Firstly, we introduce the technique which makes veri�cations easier.

De�nition 80 Consider a speci�cation (fStateg;�;E) whose cover set generated by
GSB-algorithm has at most one wall for every visible fragment. We call transformation
from walls wl to following behavioural operators wl� wall transformation.
op wl* : State Nat -> State

eq wl*(S, 0) = S .

eq wl*(S, s N) = wl*(wl S, N) . 2

Wall transformation has the following property:

Property 15 Consider a speci�cation (fStateg;�;E) whose cover set generated by GSB-
algorithm has at most one wall for every visible fragment. Let (fStateg;�0;E 0) be (fStateg;
�;E), plus every wl� and it's equations. Then, (fStateg;�;E) and (fStateg;�0;E 0) are
speci�cation equivalence.

Proof : wl� is exactly wl (i). Therefore, the set of all hidden �-algebra which satisfy E coin-
cides with the set of all hidden �0-algebra which satisfy E 0. Consequently, (fStateg;�;E)
and (fStateg;�0;E 0) are speci�cation equivalence. 2

Corollary 16 Consider a speci�cation (fStateg;�;E) whose cover set generated by GSB-
algorithm has at most one wall for every visible fragment. By wall transformation, the
cover set generated by GSB-algorithm is transformed into a cover set. 2

Then, a veri�cation by test set coinduction is as follows:

Example 20 HSS (continued)
Consider to verify rest put(t ; S) � S in a speci�cation HSS. As we described in Ex-
ample 16, the cover set generated by GSB-algorithm is f(get ; frestg)g. This satis�es the
assumption of Corollary 16. Therefore, f(get ; frest�g)g is a cover set, too. Consequently,
V
i2Nat(get rest�(s ; i) == get rest�(s 0; i)) is also behavioural equivalence. Then, on the

CafeOBJ veri�cation system, we should show that:
red get rest*(rest put(t, S), N) == get rest*(S, N) .

We show it using case analysis that: N = 0 or N = s n:

40

--> Prove (rest put(t, S)) Reqv (S) .

open .

op rest* : Hss Nat -> Hss .

var S : Hss .

var N : Nat .

eq rest*(S, 0) = S .

eq rest*(S, s N) = rest*(rest S, N) .

op n : -> Nat .

op h : -> Hss .

red get rest put(t, h) == get h .

red get rest*(rest put(t, h), s n) == get rest*(h, s n) .

close

The result is as follows:

--> Prove (rest put(t, S)) Reqv (S) .

-- opening module HSS.. done.__*

-- reduce in % : get (rest put(t,h)) == get h

true : Bool

(0.017 sec for parse, 2 rewrites(0.000 sec), 4 match attempts)

-- reduce in % : get rest*(rest put(t,h),s n) == get rest*(h,s n)

true : Bool

(0.017 sec for parse, 4 rewrites(0.000 sec), 18 match attempts)

Because each execution of red command returns true, rest put(t ; S) � S is valid. 2

41

Chapter 5

Extension of Test Set Coinduction

In this chapter, we discuss an extension of test set coinduction. From the conditions
of De�nition 71, we will eliminate (d). Also test set coinduction will be extended for
handling conditional (behavioural) equations.

5.1 Extended Context Rewriting System

Firstly, context rewriting systems are extended from reductions between observational
contexts to reductions between sets of observational contexts. We will extend the de�ni-
tion of extended context rewrite rules step by step.

De�nition 81 Given a (behavioural) equation eq which satisfy the conditions of De�ni-
tion 71, let (8X)lhs ! rhs be the context rewrite rule generated from eq. The extended
context rewrite rule generated from eq is (8X)(flhsg ! frhsg). We may omit (8X)
when it is not needed. 2

De�nition 82 Left hand sides of extended context rewrite rules must be sets which have
exactly one element. 2

De�nition 83 Given a behavioural speci�cation (H ;�;E), let E 0 be the set of (behavioural)
equations which can generate extended context rewrite rules, and let R be the set of ex-
tended context rewrite rules generated from E 0. We call R the extended context rewrit-
ing system (ECRS) generated from (H ;�;E). We call extended context rewrite rules
generated from equations visible extended context rewrite rules. We call extended
context rewrite rules generated from behavioural equations hidden extended context
rewrite rules. 2

De�nition 84 Given an ECRS R, the one-step rewriting relation is de�ned for sets
of observational contexts OcSet = foc1; . . . ; oclg and OcSet' as follows:
OcSet) OcSet' i� there exists: a rule (8X)(flcg ! frc1; . . . ; rcmg) in R; an observa-
tional context ot 2 T�(f2g [Y) if the above rule is a hidden extended context rewrite
rule; a substitution sb : X ! T�(Y); and an index n such that:

42

ocn = ot [sb(lc)] (or ocn = sb(lc)) and
OcSet' = foci j i 6= n ^ i 2 [1; . . . l]g [foc0i j oc

0
i = ot [sb(rci)] for i 2 [1; . . . ;m]g

(or OcSet' = foci j i 6= n ^ i 2 [1; . . . l]g [foc0i j oc
0
i = sb(rci) for i 2 [1; . . . ;m]g),

respectively.
The extended context rewriting relation is the transitive reexive closure of one-step
rewriting relation, for which we write OcSet)� OcSet' and say that OcSet rewrites to
OcSet' (under R). 2

We will change the de�nitions of test sets, elimination rules, visible fragment application,
wall application, and wall, corresponding to the above changes.

De�nition 85 Given a behavioural speci�cation, let mlv be the maximum of the length
of the element of the left hand side of visible context rewrite rules, and let mlh be the
maximum of the length of the element of the left hand side of hidden context rewrite rules.
let lhf be the maximum of 1 and [mlh=2]. let lvf be the maximum of 1, lhf , and (mlv�lhf).
A test set is a cover set such that:

1. visible fragments are all combinations of an attribute and methods whose lengths are
equal or less than lvf ,

2. if the length of a visible fragment vf is less than lvf , there is no hidden fragments
assigned to vf , and

3. if the length of a visible fragment vf is equal to lvf , hidden fragments assigned to vf
are all combinations of methods whose lengths are equal to lhf . 2

De�nition 86 Let vf , vf 0i (vf
0
i 6= vf) be visible fragments and let hf , hf 0i (hf

0
i 6= hf) be

hidden fragments. We call the following extended context rewrite rules elimination rules.
fvf g ! fcvf 01 ; . . . ; cvf

0
l g where (cvf

0
i = ') or (cvf 0i = vf 0i), and

fhf g ! fchf 01 ; . . . ; chf
0
l g where (chf

0
i =) or (chf 0i = hf 0i). 2

De�nition 87 Let hf be a hidden fragment assigned to vf . We call the process which
calculates the normal form of fvf hf g visible fragment application to hf . 2

De�nition 88 Let wl and hf be hidden fragments assigned to vf . We call the process
which calculates the normal form of fwl hf g wall application to hf by wl. 2

De�nition 89 Let wl be a hidden fragment assigned to vf . A wall assigned to vf is
de�ned as follows:

1. if the result of visible fragment application to wl includes an observational context
except ', vf 0, or vf 0 hf 0(hf 0 6= wl), then wl is a wall, and

2. if the result of wall application to wl by a wall wl 0 includes a hidden context except
 , hf 0, or hf 0 hf 00 (hf 00 6= wl), then wl is a wall. 2

In ECRS, we deal with focg (or fmcg), instead of observational contexts oc (or method
contexts mc), respectively. So, we introduce the following de�nition.

De�nition 90 Let omc be observational contexts or method contexts. We call fomcg the
corresponding set of omc. 2

43

5.2 Elimination of condition (d)

In this section, we will eliminate the condition (d) from De�nition 71.
Let eq be an equation whose right hand side has more than one hidden variables. By

regarding these hidden variables as holes, eq has more than one observational contexts.

De�nition 91 Let eq be an equation that:

1. its left hand side is an observational context, and

2. its right hand side has more than one hidden variables.

We can write eq in the form:
oc = f (oc1; . . . ; ocl) where oc; oc1; . . . ; ocl are observational contexts, and f is a term
which does not include hidden sorted variables.

The extended context rewrite rule is fidel(oc)g ! fidel(oc1); . . . ; idel(ocl)g. 2

Property 17 Let oc = f (oc1; . . . ; ocl) be an equation where oc; oc1; . . . ; ocl are observa-
tional contexts, and f is a term which does not include hidden sorted variables. This
means that this equation satis�es the following conditions:

1. its left hand side is an observational context, and

2. its right hand side has more than one hidden variables.

Let (oc mc)id be an observational context where mc is a method context and id is the index
value of this observational context (let i be this index). Let (ocj mc)idj be an observational
context such that (oc mc)id = f ((oc1 mc)id1 ; . . . ; (ocl mc)idl), where idj is the index value of
this observational context (let ij be this index) for each j . Therefore, fidel((oc mc)id)g !
fidel((oc1 mc)id1); . . . ; idel((ocl mc)idl)g. Then given states s, s 0,
(
V
i2PossId((oc mc)i [s] == (oc mc)i [s

0]))
^ (
V
j2[1;...;l](

V
ij2PossIdj

((ocj mc)ij [s] == (ocj mc)ij [s
0])))

=
V
j2[1;...;l](

V
ij2PossIdj

((ocj mc)ij [s] == (ocj mc)ij [s
0])).

where PossId (PossIdj) denotes the set of all index values of i (ij), respectively. 2

By using Property 9 and Property 17 instead of Property 9, we get Theorem 10 of ECRS,
Property 11 of ECRS and Theorem 12 of ECRS, as follows:

Theorem 18 let an ECRS be complete. Then,
(s � s 0) =

V
C2NormCt(C [s] == C [s 0])

where NormCt denotes the set of elements of all normal forms of the corresponding sets
of all observational contexts without '. 2

Property 19 If one of elimination rules matches to the corresponding set of a visible
fragment vf (or a hidden fragment hf), then this fragment is an eliminable fragment. 2

Theorem 20 If an ECRS satisfy the following conditions, then we can get a simple form
of behavioural equivalence by GSB-algorithm:

44

1. an ECRS is complete, and

2. for each context rewrite rule,
(the length of the element of left hand side) �
(the length of each element of right hand side). 2

Example 21 ELM3
Let ELM3 be the following speci�cation:

mod* ELM3 {

pr(DATA)

[Elm3]

bop a_ : Elm3 -> Nat

bop a1_ : Elm3 -> Nat

bop a2_ : Elm3 -> Nat

var S : Elm3

eq a S = a1 S + a2 S .

}

The ECRS generated from ELM3 is
fag ! fa1; a2g.

So, the test set is
f(a; ;); (a1; ;); (a2; ;)g.

The process of GSB-algorithm is as follows:

1. fag ! fa1; a2g
Therefore, a is an eliminable fragment. Consequently, the generated cover set is
f(a1; ;); (a2; ;)g.

2. There is no hidden fragment.

3. There is no hidden fragment.

4. There is no hidden fragment.

5. The generated cover set is f(a1; ;); (a2; ;)g. Therefore, a simple form of behavioural
equivalence is (a1[s] == a1[s

0]) ^ (a2[s] == a2[s
0]).

2

5.3 Conditional Extended Context Rewrite Rule

In this section, we will extend test set coinduction for handling conditional (behavioural)
equations.

45

Recall that condition (d) of De�nition 71 is as follows:
if eq is a equation, there exists exactly one hidden sorted variable in the right hand side
of eq.

De�nition 92 Let
lc = rc1 if cd1

:
lc = rcl if cdl

be conditional (behavioural) equations eqi (i 2 [1; . . . ; l]) such that:

1. all visible sorted arguments in the left hand side of eqi are variables,

2. if each eqi is an equation, lc is an observational context,

3. if each eqi is a behavioural equation, there exists exactly one hidden sorted variable
in lc and rci , and

4. each cdi is a conjunction over the following forms:

cvvi ;j == vcvi ;j or coci ;j == vcci ;j

where cvvi ;j is a visible sorted variable which occurs in lc, coci ;j is an observational
context, and vcvi ;j , vcci ;j are visible sorted constants, such that both sides of the
above relations have the same sorts.

5. cd1 _ � � � _ cdl = true.

If these equations are equations which satisfy condition (d) of De�nition 71 or these
are behavioural equations, then the extended context rewrite rule is fidel(lc)g !
fidel(rc1); . . . ; idel(rcl)g.
If one of these equations is an equation which does not satisfy condition (d), then the
extended context rewrite rule is fidel(lc)g ! fidel(rc1;1); . . . ; idel(rcl ;ml

)g where
rci = fi(rci ;1; . . . ; rci ;mi

). 2

Property 21 Let
lc = rc1 if cd1

:
lc = rcl if cdl

be conditional behavioural equations beqi (i 2 [1; . . . ; l]) such that:

1. all visible sorted arguments in the left hand side of beqi are variables,

2. there exists exactly one hidden sorted variable in lc and rci , and

3. each cdi is a conjunction over the following forms:

cvvi ;j == vcvi ;j or coci ;j == vcci ;j

where cvvi ;j is a visible sorted variable which occurs in lc, coci ;j is an observational
context, and vcvi ;j , vcci ;j are visible sorted constants, such that both sides of the
above relations have the same sorts.

46

4. cd1 _ � � � _ cdl = true.

Let (oc lc mc)id be an observational context where oc is an observational context, mc is a
method context, and id is the index value of this observational context (let i be this index).
Given a state s, let (oc rcjs mc)idjs be an observational context where idjs is the index value
of this observational context (let ijs be this index) such that (oc lc mc)id = (oc rcjs mc)idjs .
Therefore, fidel((oc lc mc)id)g ! fidel(oc rc1 mc); . . . ; idel(oc rcl mc)g. Then given
states s, s 0,
(
V
i2PossId((oc lc mc)i [s] == (oc lc mc)i [s

0]))
^ (
V
j2[1;...;l](

V
ij2PossIdj

((oc rcj mc)ij [s] == (oc rcj mc)ij [s
0])))

^ (
V
i2[1;...;l](

V
j2[1;...;li]

(coci ;j [s] == coci ;j [s
0])))

= (
V
j2[1;...;l](

V
ij2PossIdj

((oc rcj mc)ij [s] == (oc rcj mc)ij [s
0])))

^ (
V
i2[1;...;l](

V
j2[1;...;li]

(coci ;j [s] == coci ;j [s
0]))).

where PossId (PossIdj) denotes the set of all index values of i (ij), respectively. 2

Property 22 Let
lc = rc1 if cd1

:
lc = rcl if cdl

be conditional equations eqi (i 2 [1; . . . ; l]) such that:

1. all visible sorted arguments in the left hand side of eqi are variables,

2. lc is an observational context,

3. each cdi is a conjunction over the following forms:

cvvi ;j == vcvi ;j or coci ;j == vcci ;j

where cvvi ;j is a visible sorted variable which occurs in lc, coci ;j is an observational
context, and vcvi ;j , vcci ;j are visible sorted constants, such that both sides of the
above relations have the same sorts.

4. cd1 _ � � � _ cdl = true, and

Let (lc mc)id be an observational context where mc is a method context and id is the index
value of this observational context (let i be this index). Given a state s, let (rcjs mc)idjs
be an observational context where idjs is the index value of this observational context (let
ijs be this index) such that (lc mc)id = (rcjs mc)idjs , and rcjs = fjs (rcjs ;1; . . . ; rcjs ;mjs

).
Therefore, fidel((lc mc)id)g ! fidel(rc1;1 mc); . . . ; idel(rcl ;ml

mc)g. Then given states s,
s 0,
(
V
i2PossId((lc mc)i [s] == (lc mc)i [s

0]))
^ (
V
j2[1;...;l](

V
k2[1;...;mj]

(
V
ij ;k2PossIdj ;k

((rcj ;k mc)ij ;k [s] == (rcj ;k mc)ij ;k [s
0]))))

^ (
V
i2[1;...;l](

V
j2[1;...;li]

(coci ;j [s] == coci ;j [s
0])))

= (
V
j2[1;...;l](

V
k2[1;...;mj]

(
V
ij ;k2PossIdj ;k

((rcj ;k mc)ij ;k [s] == (rcj ;k mc)ij ;k [s
0]))))

^ (
V
i2[1;...;l](

V
j2[1;...;li]

(coci ;j [s] == coci ;j [s
0]))).

where PossId (PossIdj ;k) denotes the set of all index values of i (ij ;k), respectively. 2

47

By using Property 9, Property 17, Property 21, and Property 22, instead of Property 9,
we get Theorem 10 of ECRS, Property 11 of ECRS and Theorem 12 of ECRS, as follows:

Theorem 23 let an ECRS be complete. Then,
(s � s 0) =

V
C2NormCt(C [s] == C [s 0])

where NormCt denotes the set of elements of all normal forms of the corresponding sets
of all observational contexts without '. 2

Property 24 If one of elimination rules matches to the corresponding set of a visible
fragment vf (or a hidden fragment hf), then this fragment is an eliminable fragment. 2

Theorem 25 If an ECRS satisfy the following conditions, then we can get a simple form
of behavioural equivalence by GSB-algorithm:

1. an ECRS is complete, and

2. for each context rewrite rule,
(the length of the element of left hand side) �
(the length of each element of right hand side). 2

Example 22 ELM4
Let ELM4 be the following speci�cation:

mod* ELM4 {

pr(DATA)

[Elm4]

bop a : DBool Elm4 -> Nat

bop a1_ : Elm4 -> Nat

bop a2_ : Elm4 -> Nat

var B : DBool

var S : Elm4

ceq a(B, S) = a1 S if B == t .

ceq a(B, S) = a2 S if B == f .

}

The ECRS generated from ELM4 is
fag ! fa1; a2g.

2

Example 23 COND
Let COND be the following speci�cation:

48

mod* COND {

pr(DATA)

[Cond]

op cnd_ : Cond -> DBool

op a_ : Cond -> Nat

op a1_ : Cond -> Nat

op a2_ : Cond -> Nat

var B : DBool

var S : Cond

ceq a S = a1 S if cnd S == t .

ceq a S = a2 S if cnd S == f .

}

The ECRS generated from COND is
fag ! fa1; a2g.

2

49

Chapter 6

Object Composition

In this chapter, we introduce an object-oriented approach into behavioural speci�cations.
We deal with the following behavioural speci�cations:

1. there is exactly one module which is declared by mod!, and

2. there are some modules which have exactly one hidden sort, have declarations related
to this hidden sort, and are declared by mod*.

The former module speci�es data structures. The latter modules correspond to classes.
Consider to specify a system by an object-oriented approach. Firstly, we divide this

system to many primitive components and specify these components. Then, we specify
a composition of components. This speci�cation is the speci�cation of the component
composed by the above components. By iterating to specify compositions of components,
we can specify this system. The above components are objects. We can regard a object
(component) as a black box. So, the speci�cation of this object (component) is the
module corresponding to the class of this object (component). The hidden sort of this
class includes the set of states of this black box.

6.1 Object Composition

Firstly, we give the formal de�nitions of the above behavioural speci�cations.

De�nition 93 A data module is a module constructed from the following declarations:

1. declarations of visible sorts,

2. declarations of operators of these sorts, and

3. declarations of conditional equations related to these operators. 2

De�nition 94 class modules are modules constructed from the following declarations:

1. importation declarations of a data module and other class modules,

50

2. a declaration of exactly one hidden sort,

3. declarations of operators of this sort,

4. declarations of behavioural operators of this sort, and

5. declarations of conditional (behavioural) equations related to these operators. 2

Given a class module C , we call this hidden sort the sort of C and we call this data module
the data module of C . We let �C denote (behavioural) operators of C , let AMC denote
attributes and methods of C , let EC denote conditional (behavioural) equations of C , and
let DC denote the data module of C .

De�nition 95 Object-oriented speci�cations are behavioural speci�cations which can
be regarded as class modules. We let (HC ;�C ;AEC) denote a class module C when we
regard a class module as a behavioural speci�cation. 2

In this chapter, we deal with object-oriented speci�cations.
Secondly, we give the formal de�nition of objects. There may be many objects for one

class. The sets of states of these objects are included in the sort of this class. So, we
need to make a distinction between sets of states of these objects. Recall that we treat
methods as operators which change states of a black box. So, if we regard methods as
connections between states of the same object, the sets of states of objects are connected
components in the sort of this class.

De�nition 96 Given an object-oriented speci�cation (H ;�;E), a class C , and hidden
�-algebra M , let hC be the sort of C and regard interpretations of methods of C on M
as connections between an element of MhC

corresponding to its arity and an element of
MhC

corresponding to its sort. We call connected components of MhC
objects of class

C on M. 2

In the processes to specify systems, we use two kinds of class modules. One is the
class modules which specify primitive components. Another is the class modules which
specify compositions of components. We specify these compositions by correspondences
between behavioural operators of composed objects and those of composing objects. We
use pseudo-projection operators to specify these correspondences. Finally, we give the
de�nitions of primitive modules, pseudo-projection operators, and pseudo-composition
modules.

De�nition 97 A primitive module is a class module whose importation declaration is
only importation declaration of a data module. 2

Before we can give the de�nition of pseudo-projection operators, we need the following
notation.

De�nition 98 Given an object-oriented speci�cation (H ;�;E) and a class C , let hC
be the sort of C . We call observational (method) �-contexts of sort hC observational
(method) C -contexts, respectively. 2

51

The de�nition of pseudo-projection operators for the cases that the correspondences can
be speci�ed by (behavioural) equations is as follows.

De�nition 99 Let O be a composed object, C be the class of O, and h be the sort
of C . Let Oi be a composing object, Ci be the class of Oi , and hi be the sort of Ci

for each i 2 ObjId where ObjId is a set of all identi�ers of composing objects. We
call behavioural operators �i : h ! hi which satisfy the following conditions pseudo-
projection operators of C :

1. given an attribute ab of C , there exists composing objects Oi1 ; . . . ;Oil
, observational

Cij -contexts ctij : hij ! vij , and a operator f : vi1 � � � vil ! v such that:

ab = f (cti1 �i1 ; . . . ; ctil �il),
1

2. given a method mt of C and a composing object Oi , there exists a method Ci-context
msi such that:

�i mt = msi �i , and

3. given a hidden constant hc of C and a composing object Oi , there exists a hidden
constant hci of Ci such that:

�i hc = hci .

We call the above (behavioural) equations composition de�nitions of C . 2

The de�nition of conditional composition de�nitions is as follows.

De�nition 100 We call conditional (behavioural) equations
lhs = rhs1 if cd1

:
lhs = rhsl if cdl

which satisfy the following conditions conditional composition de�nitions of C :

1. each (behavioural) equation is an ordinary composition de�nition of C whenever
condition is true,

2. let ctj be an observational Cj -context, let s be a state of the composed object O,
and let D be a visible sorted term which does not have hidden sorted variables and
hidden constants as subterms, then cdi is a �nite conjunction of the forms:

ctj �j [s] == D, and

3. cd1 _ � � � _ cdl = true. 2

De�nition 101 A pseudo-composition module C is a class module C such that:

1. importation declarations are an importation declaration of a data module and impor-
tation declarations of other class modules (which correspond to composing objects),

1Precisely, ab(s) = f (cti1 �i1(s); . . . ; ctil �il
(s)).

52

2. declarations of behavioural operators are declarations of attributes, methods, hidden
constants, and pseudo-projection operators of C , and

3. declarations of conditional (behavioural) equations are declarations of (conditional)
composition de�nitions. 2

Example 24 DATA, CELL and PCARR
DATA module is a data module.

mod! DATA {

[Nat < Int]

op 0 : -> Nat

op s_ : Nat -> Nat

op s_ : Int -> Int

op p_ : Int -> Int

op _+_ : Int Int -> Int

[DBool]

op t : -> DBool

op f : -> DBool

op not_ : DBool -> DBool

vars I1 I2 : Int

eq s p I1 = I1 .

eq p s I1 = I1 .

eq I1 + 0 = I1 .

eq I1 + s I2 = s(I1 + I2) .

eq I1 + p I2 = p(I1 + I2) .

var B : DBool

eq not t = f .

eq not f = t .

eq not not B = B .

}

CELL module is a primitive module.

mod* CELL {

pr(DATA)

[Cell]

bop view_ : Cell -> DBool

bop set : DBool Cell -> Cell

var B : DBool

53

var C : Cell

eq view set(B, C) = B .

}

PCARR module is a pseudo-composition module which constructed from DATA module
and CELL module. ObjId is Int and �i(2) is cell(i ;2).

mod* PCARR {

pr(DATA)

pr(CELL)

[CArr]

bop get : Int CArr -> DBool

bop put : DBool Int CArr -> CArr

-- pseudo-projection operator

bop cell : Int CArr -> Cell

vars I J : Int

var B : DBool

var CA : CArr

-- conditional composition definitions

eq get(I, CA) = view cell(I, CA) .

ceq cell(I, put(B, J, CA)) = set(B, cell(I, CA))

if I == J .

ceq cell(I, put(B, J, CA)) = cell(I, CA)

if I =/= J .

}

2

From now on, we use the following de�nitions.

De�nition 102 Given an object-oriented speci�cation (H ;�;E) and a class C , let hC be
the sort of C . We call behavioural �-equivalence of sort hC behavioural C -equivalence.
2

For behavioural C -equivalence of a composed object of class C and behavioural Ci-
equivalences of composing objects of class Ci , the next theorem holds.

Theorem 26 Let O be a composed object, let C be the class of O, and let � be behavioural
C -equivalence. Let Oi be a composing object, Ci be the class of Oi , and �i be behavioural
Ci -equivalence for each i 2 ObjId where ObjId is a set of all identi�ers of composing
objects. Let �i be a pseudo-projection operator of C for each i 2 ObjId. Then, given
states s, s 0 of O,
(s � s 0) = ^i2ObjId(�i(s) �i �i(s

0)).

54

Proof : Let h be a sort of class C and hi be a sort of class Ci .
Behavioural C -equivalence is a conjunction over observational C -contexts | sequences

of behavioural operators. We categorize observational C -contexts as follows:

1. ab mt1 � � �mtl (l � 0),

2. abi mti ;1 � � �mti ;li �i mt1 � � �mtl (li � 0 l � 1), and

3. abi mti ;1 � � �mti ;li �i (li � 0),

where ab is an attribute of C , mt1; . . . ;mtl are methods of C , abi is an attribute of Ci ,
mti ;1; . . . ;mti ;l are methods of Ci .

Therefore, to prove this theorem, we should show that behavioural C -equivalence is
the conjunction over all observational C -contexts of 3.

A: The cases that there is no conditional composition de�nition of C
Firstly, we will eliminate observational C -contexts of 1. From De�nition 99, for each
attribute ab of C , there exists an observational Cij -context ctij : hij ! vij for j 2
[1; . . . ;m], and a operator f : vi1 � � � vim ! v such that ab = f (cti1 �i1 ; . . . ; ctim �im).
We let cpmij = ctij �ij mt1 � � �mtl , then cpmij is an observational C -context of 2 and
ab mt1 � � �mtm = f (cpmi1 ; � � � ; cpmim). Therefore, given states s , s 0 of O ,
(ab mt1 � � �mtl [s] == ab mt1 � � �mtl [s

0]) ^ (
V
j2[1;���;m](cpmij

[s] == cpmij
[s 0]))

= (
V
j2[1;���;m](cpmij [s] == cpmij [s

0])).
From this fact, behavioural C -equivalence is the conjunction over all observational C -
contexts of 2 and 3.

Secondly, we will eliminate observational C -contexts of 2. From De�nition 99, for
each method mt of C , there exists a method Ci -context msi ;j such that �i mtj = msi ;j �i .
Then, abi mti ;1 � � �mti ;li �i mt1 � � �mtl = abi mti ;1 � � �mti ;li msi ;1 � � �msi ;l �i . We let lhs
denote the left hand side of the above equation, and let rhs denote the right hand side of
it. Note that rhs is an observation C -context of 3. Given states s, s 0 of O ,
(lhs [s] == lhs[s 0]) ^ (rhs [s] == rhs [s 0]) = (rhs [s] == rhs [s 0]).

From this fact, behavioural C -equivalence is the conjunction over all observational C -
contexts of 3.

B : The cases that there are conditional composition de�nitions of C
Firstly, we will eliminate observational C -contexts of 1. We assume that:
ab mt1 � � �mtl = f (cpmi1;1 ; � � � ; cpmi1;m1

) if cd1,
:

ab mt1 � � �mtl = f (cpmin;1
; � � � ; cpmin;mn

) if cdn , and
cd1 _ � � � _ cdn = true (conditional composition de�nitions).

Let ctj ;1 �i 0
j ;1
; � � � ; ctj ;nj �i 0j ;nj

be observational C -contexts which occur in cdj . We can

select cdj , depending on the observational value through
V
j2[1;���;n](

V
k2[1;���;nj]

ctj ;i 0
j ;k

�i 0
j ;k
),

hereafter denoted obs . Therefore, given states s, s 0 of O ,

55

(ab mt1 � � �mtl [s] == ab mt1 � � �mtl [s
0])

^ (
V
j2[1;���;n](

V
k2[1;���;mj]

(cpmij ;k
[s] == cpmij ;k

[s 0]))) ^ (obs [s] == obs [s 0])

= (
V
j2[1;���;n](

V
k2[1;���;mj]

(cpmij ;k
[s] == cpmij ;k

[s 0]))) ^ (obs [s] == obs [s 0]).
Note that cpmij ;k

is an observational C -context of 2 and obs is a conjunction over obser-
vational C -contexts of 3. Therefore, behavioural C -equivalence is the conjunction over
all observational C -contexts of 2 and 3.

Secondly, we will eliminate observational C -contexts of 2. We assume that:
�i mtj = msi ;j ;1�i if cdj ;1,

:
�i mtj = msi ;j ;mj

�i if cdj ;mj
, and

cdj ;1 _ � � � _ cdj ;mj
= true (conditional composition de�nitions).

Let ctj ;j 0;1 �i 00
j ;j 0;1

; � � � ; ctj ;j 0;nj ;j 0 �i 00j ;j 0;nj ;j 0
be observational C -contexts which occur in cdj ;j 0 .

We can select cd1;j 0
1
; . . . ; cdl ;j 0

l
, depending on the observational value through

V
j2[1;���;m](

V
j 02[1;���;mj]

(
V
j 002[1;���;nj ;j 0]

ctj ;j 0;j 00 �i 00
j ;j 0;j 00

)), hereafter denoted obs. We let lhs =

abi mti ;1 � � �mti ;li �i mt1 � � �mtl . Regard conditional composition de�nitions as conditional
rewrite rules. Then, let rhsj 0

1
;���;j 0

l
be normal forms of lhs under the condition cd1;j 0

1
^ . . . ^

cdl ;j 0
l
= true. Let CondId be the set of all identi�ers of rhsI . Then, given states s, s 0 of

O ,
(lhs [s] == lhs[s 0]) ^ (

V
j2CondId(rhsj [s] == rhsj [s

0])) ^ (obs[s] == obs[s 0])
= (

V
j2CondId(rhsj [s] == rhsj [s

0])) ^ (obs[s] == obs[s 0]).
Note that rhsj is an observational C -context of 3 and obs is a conjunction over observa-
tional C -contexts of 3. From this fact, behavioural C -equivalence is the conjunction over
all observational C -contexts of 3. 2

�i is generated by GSB-algorithm. The idea of the proof of Theorem 26 is the same
with that of Theorem 25 (Theorem 12). Both ideas are elimination of redundant contexts.
So, Theorem 26 can be seen as the generalization of GSB-algorithm of test set coinduction.

Example 25 DATA, CELL and PCARR (continued)
A simple form �CELL of behavioural CELL-equivalence generated by GSB-algorithm is
that
(s �CELL s 0) = (view s == view s 0).

So, from Theorem 26, a simple form �PCARR of behavioural PCARR-equivalence is that
(s �PCARR s 0) = (

V
i 2Int(view cell(i ; s) == view cell(i ; s 0))).

2

6.2 Composition of Objects and Data

Let O be a composed object, C be a class of O , and h be a sort of C . Let v be a visible
sort and Iv be an identity of v | for all terms t of sort v , Iv t = t . Let at be an attribute
of C whose sort is v . We can regard at as Iv at . So, by regarding Iv as an \attribute" of
v , we can regard v as an \object", and at as a \pseudo-projection operator" of C .

We extend the de�nition of pseudo-projection operators to data.

56

De�nition 103 Let O be a composed object, C be the class of O, and h be the sort of
C . Let Oi be a composing object, Ci be the class of Oi , and hi be the sort of Ci for each
i 2 ObjId where ObjId is a set of all identi�ers of composing objects. Let vj be a visible
sort for each j 2 DId where DId is a set of identi�ers of visible sorts. We call behavioural
operators �i : h ! hi which satisfy conditional composition de�nitions and behavioural
operators �j : h ! vj pseudo-projection operators of C . 2

From now on, we select a method or a pseudo-projection operator for a meaning of a
behavioural operator whose rank is hh; vj i, depending on the purpose.

We extend Theorem 26 to this pseudo-projection operator.

Corollary 27 Let O be a composed object, let C be the class of O, and let � be be-
havioural C -equivalence. Let Oi be a composing object, Ci be the class of Oi , and �i

be behavioural Ci-equivalence for each i 2 ObjId where ObjId is a set of all identi�ers of
composing objects. Let vj be a visible sort for each j 2 DId where DId is a set of identi�ers
of visible sorts. Let �i and �j be pseudo-projection operators of C for each i 2 ObjId and
each j 2 DId. Then, given states s, s 0 of O,
(s � s 0) = (

V
i2ObjId(�i(s) �i �i(s

0))) ^ (
V
j2DId(�j (s) == �j (s

0))). 2

Example 26 PAPHSS
PAPHSS class is composed from ARR class and Nat sort as follows.

mod* ARR {

pr(DATA)

[Arr]

bop get : Int Arr -> DBool

bop put : DBool Int Arr -> Arr

vars I J : Int

var B : DBool

var A : Arr

ceq get(I, put(B, J, A)) = B

if I == J .

ceq get(I, put(B, J, A)) = get(I, A)

if I =/= J .

}

mod* PAPHSS {

pr(DATA)

pr(ARR)

[APHss]

bop get_ : APHss -> DBool

bop put : DBool APHss -> APHss

57

bop rest_ : APHss -> APHss

-- pseudo-projection operators

bop arr_ : APHss -> Arr

bop ptr_ : APHss -> Int

var AP : APHss

var B : DBool

-- composition definitions

eq get AP = get(ptr AP, arr AP) .

eq ptr put(B, AP) = s ptr AP .

eq arr put(B, AP) = put(B, s ptr AP, arr AP) .

eq ptr rest AP = p ptr AP .

eq arr rest AP = arr AP .

}

A simple form �ARR of behavioural ARR-equivalence generated by GSB-algorithm is that
(s �ARR s 0) = (

V
i 2Int(get(i ; s) == get(i ; s 0))).

So, from Corollary 27, a simple form �PAPHSS of behavioural PAPHSS-equivalence is that
(s �PAPHSS s 0) = (

V
i 2Int(get(i ; arr s) == get(i ; arr s 0))) ^ (ptr s == ptr s 0).

2

6.3 Projection Operator

Consider to construct HSS class from ARR class and a pointer (Nat sort). If we use
pseudo-projection operators, the class of the composed object is not HSS (see Example
26). Because, in PAPHSS, we can observe the contents of cells upper than a pointer, but,
in HSS, we can not observe these contents. Moreover, the value of a pointer is not nec-
essary in HSS. In PAPHSS, there are observational contexts in which pseudo-projection
operators occur. This means that there are observational contexts without observational
contexts which constructed from attributes and methods of HSS. To eliminate these obser-
vational contexts, we introduce projection operators that are pseudo-projection operators
but ordinary operators.

The formal de�nition of projection operators is as follows.

De�nition 104 Let O be a composed object, C be the class of O, and h be the sort of
C . Let Oi be a composing object, Ci be the class of Oi , and hi be the sort of Ci for each
i 2 ObjId where ObjId is a set of all identi�ers of composing objects. Let vj be a visible
sort for each j 2 DId where DId is a set of identi�ers of visible sorts. We call ordinary
operators �i : h ! hi which satisfy conditional composition de�nitions and behavioural
operators �j : h ! vj projection operators of C . 2

Also, we de�ne composition modules as follows.

58

De�nition 105 A composition module C is a class module C such that:

1. importation declarations are an importation declaration of a data module and impor-
tation declarations of other class modules (which correspond to composing objects),

2. declarations of operators are declarations of projection operators of C , and

3. declarations of behavioural operators are declarations of attributes, methods, and
hidden constants of C , and

4. declarations of conditional (behavioural) equations are declarations of (conditional)
composition de�nitions. 2

Example 27 APHSS
APHSS module is a composition module which constructed from DATA module and ARR
module.

mod* ARR {

pr(DATA)

[Arr]

bop get : Int Arr -> DBool

bop put : DBool Int Arr -> Arr

vars I J : Int

var B : DBool

var A : Arr

ceq get(I, put(B, J, A)) = B

if I == J .

ceq get(I, put(B, J, A)) = get(I, A)

if I =/= J .

}

mod* APHSS {

pr(DATA)

pr(ARR)

[APHss]

bop get_ : APHss -> DBool

bop put : DBool APHss -> APHss

bop rest_ : APHss -> APHss

-- projection operators

op arr_ : APHss -> Arr

op ptr_ : APHss -> Int

59

var AP : APHss

var B : DBool

-- composition definitions

eq get AP = get(ptr AP, arr AP) .

eq ptr put(B, AP) = s ptr AP .

eq arr put(B, AP) = put(B, s ptr AP, arr AP) .

eq ptr rest AP = p ptr AP .

eq arr rest AP = arr AP .

}

2

60

Chapter 7

Stepwise Re�nement

In this chapter, we introduce stepwise re�nements into object-oriented speci�cations.
Consider to specify a system under stepwise re�nements. Firstly, we specify an abstract

level speci�cation. Then, we specify a more concrete level speci�cation. All models of
the latter speci�cation must satisfy all conditional (behavioural) equations of the former
one. Specifying more concrete level speci�cations again and again, a re�ned speci�cation
reach the level that we want to specify the system.

In object-oriented speci�cations, the above re�nement process corresponds to exchang-
ing a primitive module for a composition module that:

1. it is constructed from primitive modules, in the sense that importation declarations
of class modules are declarations of these primitive modules, and

2. all its models satisfy all conditional (behavioural) equations of the original primitive
module.

7.1 Stepwise Re�nement

The formal de�nition of re�nements is as follows.

De�nition 106 Given behavioural speci�cations (H ;�;E) and (H 0;�0;E 0), A hidden sig-
nature morphism ' : �! �0 is a re�nement ' : (H ;�;E)! (H 0;�0;E 0) i� 'M 0 j�� E
for each hidden (�0;E 0)-model M 0. 2

Remark 5 In the de�nition of re�nements in [GM97], a hidden signature map (which
is a hidden signature morphism that preserves hidden sorts) are used instead of a hidden
signature morphism. But, in the re�nement process, only correspondence of hidden sorts
between H and H 0 is necessary. Consequently, we used a hidden signature morphism
instead of a hidden signature map in the above de�nition. 2

As to re�nements, the following property holds.

Property 28 Let ' : (�;E)! (�0;E 0) and '0 : (�0;E 0)! (�00;E 00) be re�nements. The
composition '0 ' : (�;E)! (�00;E 00) is a re�nement, too. 2

61

In this section, we describe stepwise re�nements between object-oriented speci�cations.

De�nition 107 Let PM be a primitive module and CM be a composition module such
that:

1. DPM = DCM and

2. AMPM = AMCM (regarding hPM = hCM where hPM (hCM) is the sort of PM (CM),
respectively).

From the above property, �PM � �CM . So, the inclusion i : �PM ! �CM is a hidden
signature morphism. We call CM a corresponding composition module of PM i�
i : �PM ! �CM is a re�nement i : (HPM ;�PM ;AEPM)! (HCM ;�CM ;AECM). 2

Theorem 29 Let PM be a primitive module and let (H ;�;E) be an object-oriented spec-
i�cation which include PM. Let CM be a corresponding composition module of PM . By
exchanging PM for CM, we get an object-oriented speci�cation from (H ;�;E). We let
(H 0;�0;E 0) denote this object-oriented speci�cation. By regarding hPM = hCM (where hPM
(hCM) is the sort of PM (CM), respectively), � � �0. Then, the inclusion i : �! �0 is
a re�nement i : (H ;�;E)! (H 0;�0;E 0).

Proof : Let Eps be the set of conditional (behavioural) equations such that Eps[EPM = E
and Eps \ EPM = ;. So, Eps [ECM = E 0 and Eps \ ECM = ;. Given a (�0;E 0)-
model M . Because i : � ! �0 is an inclusion, iM j� Eps . On the other hand, from
De�nition 107, iM j� EPM . Therefore, iM j� E . So, i : � ! �0 is a re�nement
i : (H ;�;E)! (H 0;�0;E 0). 2
By exchanging primitive modules for corresponding composition modules again and again,
a re�ned speci�cation reach the level that we want to specify the system.

Example 28 HSS, APHSS, and, CAPHSS
Recall that HSS is the following module:

mod* HSS {

pr(DATA)

[Hss]

bop get_ : Hss -> DBool

bop put : DBool Hss -> Hss

bop rest_ : Hss -> Hss

var B : DBool

var S : Hss

eq get put(B, S) = B .

beq rest put(B, S) = S .

}

Recall that ARR and APHSS are the following modules.

62

mod* ARR {

pr(DATA)

[Arr]

bop get : Int Arr -> DBool

bop put : DBool Int Arr -> Arr

vars I J : Int

var B : DBool

var A : Arr

ceq get(I, put(B, J, A)) = B

if I == J .

ceq get(I, put(B, J, A)) = get(I, A)

if I =/= J .

}

mod* APHSS {

pr(DATA)

pr(ARR)

[APHss]

bop get_ : APHss -> DBool

bop put : DBool APHss -> APHss

bop rest_ : APHss -> APHss

-- projection operators

op arr_ : APHss -> Arr

op ptr_ : APHss -> Int

var S : APHss

var B : DBool

-- composition definitions

eq get S = get(ptr S, arr S) .

eq ptr put(B, S) = s ptr S .

eq arr put(B, S) = put(B, s ptr S, arr S) .

eq ptr rest S = p ptr S .

eq arr rest S = arr S .

}

Note that HSS module is a primitive module. Firstly, we prove that the inclusion
'1 : �Hss ! �APHss is an re�nement, by showing that APHSS module is a corresponding
composition module of HSS. As discussed in Example 20, a simple form �HSS of be-
havioural HSS-equivalence is that:

V
i2Nat(get rest�(s; i) == get rest�(s 0; i)). So, this

63

process is as follows:

--> Verifying refinement from HSS to APHSS

open .

op rest* : APHss Nat -> APHss .

op p* : Int Nat -> Int .

var S : APHss .

var I : Int .

var N : Nat .

eq rest*(S, 0) = S .

eq rest*(S, s N) = rest*(rest S, N) .

eq p*(I, 0) = I .

eq p*(I, s N) = p*(p I, N) .

eq ptr rest*(S, N) = p*(ptr S, N) .

eq arr rest*(S, N) = arr S .

op b : -> DBool .

op n : -> Nat .

op h : -> APHss .

--> eq get put(B, S) = B .

red get put(b, h) == b .

--> beq rest put(B, S) = S .

red get rest put(b, h) == get h .

red get rest*(rest put(b, h), s n) == get rest*(h, s n) .

close

The result is as follows:

--> Verifying refinement from HSS to APHSS

-- opening module APHSS.. done._

--> eq get put(B, S) = B ._*

-- reduce in % : get put(b,h) == b

true : Bool

(0.000 sec for parse, 7 rewrites(0.000 sec), 23 match attempts)

--> beq rest put(B, S) = S .

-- reduce in % : get (rest put(b,h)) == get h

true : Bool

(0.017 sec for parse, 10 rewrites(0.000 sec), 44 match attempts)

-- reduce in % : get rest*(rest put(b,h),s n) == get rest*(h,s n)

true : Bool

(0.000 sec for parse, 20 rewrites(0.017 sec), 86 match attempts)

Because each execution of red command returns true, APHSS module is a corresponding
composition module of HSS. So, the inclusion '1 : �Hss ! �APHss is an re�nement.

64

CELL module, CARR module, and CAPHSS module are the following modules:

mod* CELL {

pr(DATA)

[Cell]

bop view_ : Cell -> DBool

bop set : DBool Cell -> Cell

var B : DBool

var C : Cell

eq view set(B, C) = B .

}

mod* CARR {

pr(DATA)

pr(CELL)

[CArr]

bop get : Int CArr -> DBool

bop put : DBool Int CArr -> CArr

-- projection operator

op cell : Int CArr -> Cell

vars I J : Int

var B : DBool

var A : CArr

-- conditional composition definitions

eq get(I, A) = view cell(I, A) .

ceq cell(I, put(B, J, A)) = set(B, cell(I, A))

if I == J .

ceq cell(I, put(B, J, A)) = cell(I, A)

if I =/= J .

}

mod* CAPHSS {

pr(DATA)

pr(CARR)

[CAPHss]

bop get_ : CAPHss -> DBool

bop put : DBool CAPHss -> CAPHss

65

bop rest_ : CAPHss -> CAPHss

-- projection operators

op carr_ : CAPHss -> CArr

op ptr_ : CAPHss -> Int

var S : CAPHss

var B : DBool

-- composition definitions

eq get S = get(ptr S, carr S) .

eq ptr put(B, S) = s ptr S .

eq carr put(B, S) = put(B, s ptr S, carr S) .

eq ptr rest S = p ptr S .

eq carr rest S = carr S .

}

Secondly, we prove that the inclusion '2 : �APHss ! �CAPHss is an re�nement, by showing
that CARR module is a corresponding composition module of ARR. This process is as
follows:

--> Verifying refinement from ARR to CARR

open .

ops i j : -> Int .

op e : -> DBool .

op a : -> CArr .

--> ceq get(I, put(B, J, A)) = B if I == J .

red get(i, put(e, i, a)) == e .

--> ceq get(I, put(B, J, A)) = get(I, A) if I =/= J .

red get(i, put(e, j, a)) == get(i, a) .

close

The result is as follows:

--> Verifying refinement from ARR to CARR

-- opening module CARR.. done.

--> ceq get(I, put(B, J, A)) = B if I == J ._*

-- reduce in % : get(i,put(e,i,a)) == e

true : Bool

(0.000 sec for parse, 6 rewrites(0.017 sec), 12 match attempts)

--> ceq get(I, put(B, J, A)) = get(I, A) if I =/= J .

-- reduce in % : get(i,put(e,j,a)) == get(i,a)

true : Bool

(0.017 sec for parse, 5 rewrites(0.000 sec), 16 match attempts)

66

Because each execution of red command returns true, CARR module is a corresponding
composition module of ARR. Therefore, the inclusion '2 : �APHss ! �CAPHss is an re-
�nement. From Property 28, the inclusion '2 '1 : �Hss ! �CAPHss is an re�nement, too.
2

As to behavioural equivalence of corresponding composition modules, the following
theorem holds.

Theorem 30 Let PM be a primitive module and CM be a corresponding composition
module of PM . Let R be the simple form of behavioural PM -equivalence generated by GSB-
algorithm. Then, R is a simple form of behavioural CM-equivalence (regarding hCM =
hPM where hCM (hPM) is the sort of CM (PM), respectively), too.

Proof : Because AMCM = AMPM (regarding hCM = hPM where hCM (hPM) is the sort of
CM (PM), respectively) and there are no behavioural operators without attributes and
methods in CM , the set of all sequences of behavioural operators of CM (which can be re-
garded as observational CM -contexts) coincides with those of PM . There is a re�nement
i : (HPM ;�PM ;AEPM) ! (HCM ;�CM ;AECM) and this re�nement is an inclusion. So,
M 0 j��CM EPM for each (�CM ;AECM)-model M

0. Therefore, we can construct an ECRS
of observational CM -contexts from EPM . Consequently, the simple form of behavioural
CM -equivalence generated by GSB-algorithm using this ECRS coincides with R. 2

Example 29 APHSS (continued)
From Theorem 30, a simple form �APHSS of behavioural APHSS-equivalence is that
(s �APHSS s 0) =

V
i2Nat(get rest

(i)[s] == get rest(i)[s 0]).
2

67

Chapter 8

Related Work

One topic of behavioural semantics | especially, hidden algebras | is a generalization of
process algebra [Hoa85, Mil89, BW90]. As to this topic, there is a research by Dr.Goguen
and Dr.Malcolm (abbreviate GM group) [GM97]. Also, there are researches about hidden
algebras themselves [GM97, MG96].

Another topic of behavioural semantics is veri�cations of re�nement from abstract
speci�cations to concrete speci�cations. As to this topic, there are researches by Dr.Bidoit,
Dr.Hennicker et al (abbreviate BH group) [Hen90, GP91, BH94, BH96] and researches by
GM group [GM97, MG96].

BH group researches re�nement from abstract speci�cations to implementations (con-
crete speci�cations). For example, context induction [Hen90, GP91], and the method
using partial congruences [BH94, BH96].

On the other hand, GM group researches re�nement from abstract behavioural speci-
�cations to concrete behavioural speci�cations as restriction of models which satisfy spec-
i�cations [GM97, MG96]. But, these researches are not satisfactory.

In this chapter, we describe the above researches more detail.

8.1 Context Induction

The �rst veri�cation method of behavioural properties is context induction.

Algorithm 4 Consider veri�cation of a behavioural property s � s 0. The algorithm of
context induction is as follows:

1. prove that at [s] == at [s 0] for each attribute at,

2. prove that at mc [s] == at mc [s 0] for each attribute at and each method context
mc. 2

The sort of eachmc is a hidden sort. So, they thought that any induction hypothesis could
not use [GP91]. Note that context induction is not induction over length of contexts.

68

Example 30 IHSS and IARR
IARR is a speci�cation of an array and IHSS is a speci�cation of an implementation of
HSS using an array and a pointer. Note that semantics of each module is initial semantics
(mod!).

mod! IARR {

pr(DATA)

[Arr]

op get : Int Arr -> DBool

op put : DBool Int Arr -> Arr

vars I J : Int

var B : DBool

var A : Arr

ceq get(I, put(B, J, A)) = B

if I == J .

ceq get(I, put(B, J, A)) = get(I, A)

if I =/= J .

}

mod! IHSS {

pr(DATA)

pr(IARR)

[Hss]

op get_ : Hss -> DBool

op put : DBool Hss -> Hss

op rest_ : Hss -> Hss

op _||_ : Int Arr -> Hss

var I : Int

var A : Arr

var B : DBool

eq get(I || A) = get(I, A) .

eq put(B, I || A) = s I || put(B, s I, A) .

eq rest(I || A) = p I || A .

}

Consider to prove a property (rest put(t ; S)) � (S) in IHSS. The process of context
induction is as follows [GP91]:

--> Prove (rest put(t, S)) Reqv (S) .

--> at[rest put(t, S)] == at[S]

69

open .

red get rest put(t, I || A) == get (I || A) .

close

--> at mc[rest put(t, S)] == at mc[S]

open .

op mc_ : Hss -> Hss .

red get mc rest put(t, I || A) == get mc (I || A) .

close

The result is as follows:

--> Prove (rest put(t, S)) Reqv (S) .

--> at[rest put(t, S)] == at[S]

-- opening module IHSS.. done.

-- reduce in % : get (rest put(t,I || A)) == get (I || A)

true : Bool

(0.000 sec for parse, 8 rewrites(0.017 sec), 19 match attempts)

--> at mc[rest put(t, S)] == at mc[S]

-- opening module IHSS.. done._*

-- reduce in % : get (mc (rest put(t,I || A))) == get (mc (I || A)

)

false : Bool

(0.017 sec for parse, 4 rewrites(0.000 sec), 8 match attempts)

red get mc rest put(t, I || A) == get mc (I || A) . returns false. So, to prove
the property, we use case analysis as follows:

--> (1) mc = z

open .

op mc_ : Hss -> Hss .

red get rest put(t, I || A) == get (I || A) .

close

--> (2) mc = put(B) mc

--> lemma: get put(B, S) = B

open .

red get put(B, I || A) == B .

close

--> Prove mc = put(B) mc with the above lemma

open .

op mc_ : Hss -> Hss .

var S : Hss .

eq get put(B, S) = B .

red get put(B, mc rest put(t, I || A)) == get put(B, mc (I || A)) .

close

70

--> (3) mc = rest mc

open .

op mc_ : Hss -> Hss .

red get rest mc rest put(t, I || A) == get rest mc (I || A) .

close

The result is as follows:

--> (1) mc = z

-- opening module IHSS.. done._*

-- reduce in % : get (rest put(t,I || A)) == get (I || A)

true : Bool

(0.017 sec for parse, 8 rewrites(0.017 sec), 19 match attempts)

--> (2) mc = put(B) mc

--> lemma: get put(B, S) = B

-- opening module IHSS.. done.

-- reduce in % : get put(B,I || A) == B

true : Bool

(0.000 sec for parse, 6 rewrites(0.000 sec), 10 match attempts)

--> Prove mc = put(B) mc with the above lemma

-- opening module IHSS.. done._*

-- reduce in % : get put(B,mc (rest put(t,I || A))) == get put(B,

mc (I || A))

true : Bool

(0.033 sec for parse, 6 rewrites(0.000 sec), 12 match attempts)

--> (3) mc = rest mc

-- opening module IHSS.. done._*

-- reduce in % : get (rest (mc (rest put(t,I || A)))) == get (rest

(mc (I || A)))

false : Bool

(0.033 sec for parse, 4 rewrites(0.000 sec), 10 match attempts)

red get rest mc rest put(t, I || A) == get rest mc (I || A) . returns false.
So, we need more case analysis, to prove the property. As discussed in Example 16, a
simple form � of behavioural equivalence is that: (s � s 0) =

V
i2Nat(get rest(i)[s] ==

get rest(i)[s 0]). Therefore, these case analyses continues forever. 2

In view of induction over length of contexts, the problem of context induction (Example
30) is that for proving the n-th step, the n + 1-th step is necessary. So, induction over
length of contexts does not have this problem.

8.2 Finding hidden congruences

The method using partial congruences and coinduction are similar. Consider to verify
re�nement from a speci�cation � to a speci�cation � (� � �). Partial congruences cor-
respond to �-behavioural equivalence or �-behavioural equivalence on hidden �-algebras

71

which are also hidden �-algebras. From this fact, GSB-algorithm of test set coinduction
is useful for the method using partial congruences.

Users must give hidden congruences to coinduction, or partial congruences to the
method using partial congruences. In [BH94, BH96, GM97], �rstly, users select

V
A2AllAttr

(A[s] == A[s 0]) where AllAttr denotes the set of all attributes, as a candidate of hidden
congruences. If this candidate is not a hidden congruence, then users should �nd another
hidden congruence. A su�cient condition | �=�-complete | that this candidate co-
incides with a hidden congruence is given in [GM97]. Heuristic methods to �nd partial
congruences are given in [BH96].

8.3 Re�nement

GM group researches re�nement from abstract behavioural speci�cations to concrete
behavioural speci�cations as restriction of models which satisfy speci�cations [GM97,
MG96]. Their method is as follows:

Example 31 GARR and GHSS
GARR module and GHSS module are the following modules:

mod* GARR {

pr(DATA)

[Arr]

bop get : Int Arr -> DBool

bop put : DBool Int Arr -> Arr

vars I J : Int

var B : DBool

var A : Arr

ceq get(I, put(B, J, A)) = B

if I == J .

ceq get(I, put(B, J, A)) = get(I, A)

if I =/= J .

}

mod* GHSS {

pr(DATA)

pr(GARR)

[Hss]

bop get_ : Hss -> DBool

bop put : DBool Hss -> Hss

bop rest_ : Hss -> Hss

72

bop _||_ : Int Arr -> Hss

var I : Int

var A : Arr

var B : DBool

eq get(I || A) = get(I, A) .

eq put(B, I || A) = s I || put(B, s I, A) .

eq rest(I || A) = p I || A .

}

mod* PROOF {

pr(GHSS)

-- hidden congruence

op _R_ : Hss Hss -> Bool

vars I I1 I2 : Int

vars A A1 A2 : Arr

eq (I || A) R (I || A) = true .

eq (I1 || A1) R (I2 || A2) = I1 == I2 and

get(I1, A1) == get(I2, A2) and

(p I1 || A1) R (p I2 || A2) .

}

They proved equations of HSS on the states in the form (I || A) by using coinduction
with this R. This means that they treat Hss sort as the set of the states in the form
(I || A). But, it is not true. There are states except (I || A). Note that equations in
GHSS are de�ned on the states in the form (I || A). So, for states except (I || A), there
is no equation. This means that there is no re�nement from HSS to GHSS. 2

The reason of this problem (Example 31) is that there are states except (I || A). By
using projection operators, we eliminate these strange states as in Chapter 7.

They may give a new semantics, that are given by all models whose carriers are
constructed from states in the form (I || A). Note that states in the form (I || A)
are inductively de�ned. So, to prove equations of HSS, induction and some lemmas are
necessary [GM97]. On the other hand, our method in Chapter 7 does not need induction
and any lemmas.

8.4 Projection Operator

As to pseudo-projection operators (we call these operators projection operators in [IMD+,
DF98]), there are co-operative researches with Mr.Iida, Dr.Diaconescu, and Dr.Lucanu
[IMD+, DF98]. We only wrote our contribution in this thesis. Their interest is to spec-
ify dynamic systems using pseudo-projection operators. By changing contents of ObjId

73

dynamically, we can specify dynamic systems.

74

Chapter 9

Conclusion

9.1 Conclusion

We researched veri�cation methods for behavioural speci�cations. Concretely, we pro-
vided test set coinduction, object-oriented speci�cation, and the stepwise re�nement
methods of object-oriented speci�cations.

To use coinduction, users must �nd the simple form of behavioural equivalence. In
test set coinduction, this simple form is automatically generated by GSB-algorithm. By
analysing the structure of the set of all visible contexts, we show the su�cient condition
that the simple form generated by GSB-algorithm is the simplest form.

Until now, coinduction was regarded more e�cient than induction over length of con-
texts [GM97, BH94, BH96]. By analysing the structure of the set of all visible contexts,
we show the case that coinduction (test set coinduction) coincides with induction over
length of contexts.

As to research of stepwise re�nements of behavioural speci�cations as restriction of
possible implementations, there are researches [GM97, MG96]. But, these are not satis-
factory. Firstly, they give the original speci�cation (for example, a stack). Then, they
construct it from primitive modules (for example, an array and a pointer) in the re-
�ned speci�cation. Finally, they prove that the composed module (for example, a stack
constructed from the array and the pointer) satisfy the original speci�cation. In the last
process, they treat the composed module as data values. But, in behavioural speci�cation,
speci�cations of systems must be treated as black boxes.

To specify the composed module as a black box, we provided object-oriented spec-
i�cations composing by projection operators. Then, we provided the method to verify
stepwise re�nement of object-oriented speci�cations.

9.2 Acknowledgments

First of all, I am grateful to my main supervisor Professor Kokichi Futatsugi who has not
only provided valuable suggestions but also shown me the right direction of my study.
In addition, I thank Associate Professor Takuo Watanabe, Associate Kazuhiro Ogata,

75

and Associate R�azvan Diaconescu. Next, I thank LDL members, especially Mr. Iida, for
helpful discussions about hidden algebras. Finally, I thank my employer PFU Limited,
which supports my life at JAIST.

76

Bibliography

[BD92] Rod Burstall and R�azvan Diaconescu. Hiding and behaviour: An institutional
approach. In A.W. Roscoe, editor, A Classical Mind Essays in Honour of
C.A.R. Hoare, chapter 5, pages 75{92. Prentice Hall, 1992.

[BH94] Michel Bidoit and Rolf Hennicker. Proving behavioural theorems with stan-
dard �rst-order logic. In 4th International Conference, ALP'94, number 850
in LNCS, pages 41{58. Springer-Verlag, 1994.

[BH96] Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of
behavioural properties. Theoretical Computer Science, 165:3{55, 1996.

[Bou97] Adel Bouhoula. Automated theorem proving by test set induction. Journal
of Symbolic Computation, 23(1):47{77, 1997.

[BW90] J.C.M. Baeten and W.P. Weijland. Communication and Concurrency. Pren-
tice Hall, 1990.

[DF96] R�azvan Diaconescu and Kokichi Futatsugi. Logical semantics for CafeOBJ.
Technical Report IS-RR-96-0024S, Japan Advanced Institute of Science and
Technology (JAIST), 1996.

[DF98] R�azvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report. AMAST. World
Scienti�c, 1998. To appear.

[FGJM85] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jos�e
Meseguer. Principles of OBJ2. In Proceedings of the 12th ACM Symposium
on Principles of Programming Languages, pages 52{66. ACM, 1985.

[FS95] Kokichi Futatsugi and Toshimi Sawada. Design considerations for Cafe spec-
i�cation environment. In The 10th Anniversary of OBJ2, 1995.

[Fut97] Kokichi Futatsugi. An overview of cafe speci�cation environment | an alge-
braic approach for creating, verifying and maintaining formal speci�cations
over the net |. In First IEEE International Conference on Formal Engi-
neering Methods. IEEE, 1997.

77

[GB92] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for
speci�cation and programming. Journal of the Association for Computing
Machinery, 39(1), 1992.

[GD94] Joseph Goguen and R�azvan Diaconescu. An Oxford survey of order sorted
algebra. Mathematical Structures in Computer Science, 4(4), 1994.

[GM92] Joseph Goguen and Jos�e Meseguer. Order-sorted algebra I: Equational deduc-
tion for multiple inheritance, overloading, exceptions and partial operations.
Theoretical Computer Science, 105(2), 1992.

[GM97] Joseph A. Goguen and Grant Malcolm. A hidden agenda. Technical Report
CS97-538, UCSD Technical Report, 1997.

[Gog] Joseph A. Goguen. Theorem proving and algebra. To appear.

[GP91] Marie-Claude Gaudel and Igor Privara. Context induction: an exercise. Tech-
nical Report 53, PDCS, 1991.

[GWM+93] Joseph Goguen, Timothy Winkler, Jos�e Mesegure, Kokichi Futatsugi, and
Jean-Pierre Jouannaud. Introducing OBJ. Technical report, SRI Interna-
tional, Computer Science Laboratory, 1993.

[Hen90] Rolf Hennicker. Context induction: a proof principle for behavioural ab-
stractions. In Design and Implementation of Symbolic Computation Systems.
International Symposium DISCO 1990, number 429 in LNCS, pages 101{110.
Springer-Verlag, 1990.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[IMD+] Shusaku Iida, Michihiro Matsumoto, R�azvan Diaconescu, Kokichi Futatsugi,
and Dorel Lucanu. Concurrent object composition in CafeOBJ. To appear.

[Klo92] J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer
Science, volume 2, pages 1{116. Oxford Science Publications, 1992.

[Mes92] Jos�e Meseguer. Conditional rewriting logic as a uni�ed model of concurrency.
Theoretical Computer Science, 93:73{155, 1992.

[Mes93] Jos�e Meseguer. A logical theory of concurrent objects and its realization in the
Maude language. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors,
Research Directions in Concurrent Object-Oriented Programming. The MIT
Press, 1993.

[MG96] Grant Malcolm and Joseph A. Goguen. Proving correctness of re�nement and
implementation. Technical Report PRG-114, Oxford University Computing
Laboratory Technical Monograph, 1996.

78

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[SF95] Toshimi Sawada and Kokichi Futatsugi. Basic features of CHAOS speci�ca-
tion kernel language. In The 10th Anniversary of OBJ2, 1995.

79

