
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 多項式制約のためのSMTとその応用

Author(s) To, Van Khanh

Citation

Issue Date 2013-06

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/11445

Rights

Description Supervisor:小川　瑞史, 情報科学研究科, 博士

SMT for Polynomial Constraints and

Its Applications

by

TO VAN KHANH

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Mizuhito Ogawa

School of Information Science
Japan Advanced Institute of Science and Technology

June, 2013

Abstract

Solving polynomial constraints plays an important role in program verification, e.g.,

checking roundoff and overflow errors with fixed point or floating point arithmetic, mea-

sures for proving termination, and linear loop invariant generation. Tarski proved that

polynomial constraints over real numbers (algebraic numbers) are decidable, and later

Collins proposed Quantifier Elimination by Cylindrical Algebraic Decomposition, which

is nowadays implemented in Mathematica, Maple/SyNRAC, Reduce/Redlog, and QEP-

CAD. However, it is DEXPTIME with regard to the number of variables, and works fine

in practice up to 5 variables and lower degrees. For instance, 8 variables with degree 10

may require 20–30 hours by a supercomputer.

Motivated from numerous applications of polynomial constraint solving, this thesis

aims to propose an approach and develop an SMT solver for solving polynomial con-

straints. First, we focus on polynomial inequality constraints coming from following rea-

sons.

(a) In constructive analysis, solving equality constraints on real numbers is in general

undecidable (decidable only for algebraic numbers), whereas solving inequality is de-

cidable. In other words, a > b is computable, whereas a = b is not computable.

(b) Inequality allows approximations.

(c) Solving polynomial inequality on real numbers is reduced to that on rational numbers.

The reduction to rational numbers allows avoiding roundoff-errors in implementations.

Our approach and contributions in the thesis are summarized as follows:

(i) We propose an approach of iterative approximation refinement for solving con-

straints, which is formalized as an abstract DPLL(T) procedure for over/under-

approximations and refinements under a background theory T . An under approxi-

mation is sound for proving in the background theory T , and an over approximation

is sound for disproving. When they neither prove nor disprove, refinements are

applied to decompose an atomic formula of the input formula, i.e., ψ to ψ1 ∨ ψ2

such that ψ ⇔ ψ1 ∨ ψ2. The proposed approach combined DPLL(T) procedure

with over/under-approximations and refinements is sound and complete for solving

polynomial inequality constraints under certain restrictions.

i

(ii) We instantiate interval arithmetic to over approximation and testing to under ap-

proximation. A new form of affine interval, called Chebyshev Affine Interval, is

proposed. Chebyshev Affine Interval has an advantage over current affine intervals

such that it can keep sources of computation for high degree variables, which would

be useful for guiding refinements.

(iii) The proposed approach is implemented as the SMT solver raSAT, which applies

interval arithmetic (over-approximation, aiming to decide unsatisfiability), testing

(under-approximation, aiming to decide satisfiability), and refinements on interval

decompositions.

(iv) We propose UNSAT cores of polynomial constraints that can improve efficiency in

theory propagation of SMT. Computation of UNSAT cores in polynomial constraints

allows inferring other unsatisfiable domain when a particular domain is detected as

unsatisfiable. We propose an approach for incremental test data generation which

would be useful when performing a large number of test data (i.e., a large number

of variables).

(v) We propose strategies for refinements such that choices of intervals to decompose

and methods to decompose an interval into smaller intervals. These strategies are

guided from interval arithmetic, testing results, test data, and polynomials.

(vi) The proposed approach is also extended for greater-than-or-equal (≥) constraints,

i.e.,
∧
i

fi ≥ 0 is transformed to
∧
i

fi > 0 for proving satisfiability, and for proving

unsatisfiability
∧
i

fi ≥ 0 is transformed to
∧
i

fi > −δi for δi > 0.

(vii) We propose a non-constructive method for solving polynomial constraints including

equalities based on intermediate value theorem.

Key words: interval arithmetic, affine arithmetic, SAT Modulo Theories - SMT,

polynomial constraints, testing, abstract DPLL.

ii

To my wife, Nguyen Kieu Phuong, my son, To Van Nhat Minh, and my parents

iii

Acknowledgements

I would like to express my gratitude to all those who provided me the possibility to

complete this thesis.

Firstly, I would like to express my sincere gratitude to my supervisor, Professor

Mizuhito Ogawa, for his supervision, advice, assistance, and guidance during the whole

period of my doctoral course. Professor Mizuhito Ogawa always gave me useful comments

to clearly understand problems and asked me to have a deep view on doing research, which

was very useful for looking at new directions and further investigating in my field. These

helped me greatly to improve my skills and make much progress. He also provided me

kind encouragement and support not only in my research but also in my life.

I would like to thank the members in the Ogawa Laboratory for their help, especially

Associate Professor Nao Hirokawa for his guidance and advice during my studying in

Japan. He is very zealous in discussion and sharing ideas. I received a lot of valuable

suggestions from him for this thesis.

I would like to acknowledge the Ministry of Education and Training - Vietnam (MOET)

for their finance support of my study time in Japan. Without the support of MOET, I

could not complete the doctoral course in Japan.

I would also like to acknowledge University of Engineering and Technology (UET),

Vietnam National University, Hanoi, and Japan Advanced Institute of Science and Tech-

nology (JAIST), who gave me chance to join the FIVE-JAIST program and helped me to

complete the program. My colleagues in UET have provided me a good environment dur-

ing my studying in UET. Their support and encouragement helped me much to complete

this thesis. I would like to thank my co-supervisor in UET, Associate Professor Nguyen

Viet Ha, for his advice, kind support, and encouragement.

My wife, Nguyen Kieu Phuong always encouraged me to focus on doing my research

and took care of me. I also want to thank my little son To Van Nhat Minh. Seeing him

growing up everyday made me feel happy and helped me to release stress.

Lastly, I would like to give my special thanks to my family members, especially my

parents whose encouragement and sharing enabled me to complete my studies. Without

my family’s support, I would not have finished this thesis.

iv

Contents

Abstract i

Acknowledgements iv

1 Introduction 1

1.1 Polynomial Constraint Solving . 1

1.2 Existing Approaches . 2

1.3 The Proposed Approach and Contributions 4

1.4 Thesis Outline . 5

2 Abstract DPLL 7

2.1 The Abstract DPLL Procedure . 7

2.2 Abstract DPLL Modulo Theories . 10

3 Abstract DPLL for Approximation Theories and Refinements 13

3.1 Approximation Theories . 13

3.2 DPLL(T) Procedure with Over and Under Approximation Theories 14

3.3 DPLL(T) Procedure with Refinement and Heuristics 16

3.4 Soundness and Completeness of Approximation Theories on Polynomial

Inequality . 17

3.4.1 Polynomial Inequality Constraints 17

3.4.2 Open Boxes as Topological Basis 18

3.4.3 Soundness and Completeness . 19

4 Over and Under Approximations for Intervals 23

4.1 Interval Arithmetic . 23

4.1.1 Classical Interval . 23

4.1.2 Affine Interval . 25

4.1.3 Chebyshev Approximation Interval 32

4.2 Over and Under Approximations for Intervals 37

v

4.2.1 Interval Arithmetic as Over Approximation 37

4.2.2 Testing as Under Approximation 39

5 Strategies for Over/Under Approximations and Refinement 42

5.1 Strategies for Over and Under Approximations on Intervals 42

5.1.1 UNSAT Core in a Polynomial Inequality 42

5.1.2 Incremental Test Data Generation 45

5.2 Strategies for Refinement . 48

5.2.1 Selecting Intervals to Decompose 48

5.2.2 Interval Decomposition . 49

6 The SMT Solver raSAT and Experiments 56

6.1 Design Framework of raSAT . 56

6.2 Experiments . 60

6.2.1 Experiments on Different Measures 61

6.2.2 Experiments on Benchmarks of SMT-LIB 67

7 Extensions to Polynomial Equality 71

7.1 Greater-Than-or-Equal Handling . 71

7.2 Polynomial Equality Handling . 72

7.2.1 Polynomial Equality by Intermediate Value Theorem 72

7.2.2 Extension to Multiple Equalities . 74

8 Conclusions 76

8.1 Summary of the Thesis . 76

8.2 Future Directions . 78

8.2.1 raSAT Development . 78

8.2.2 Extensions of raSAT Loop . 79

8.3 Applications . 80

Publications 84

vi

List of Figures

3.1 Refinement loop on O.T , U.T , refinements, and heuristics 17

3.2 Proof of completeness . 22

3.3 Kissing situation . 22

3.4 Convergence situation . 22

4.1 Chebyshev approximation . 33

4.2 Chebyshev approximation of x2 and x|x| 33

4.3 Results of polynomial constraint by IA . 38

4.4 Results of testing . 39

4.5 Strategy for random generation of test data 40

5.1 Incremental test data generation . 47

6.1 Framework of raSAT . 57

6.2 Interval decompositions by raSAT for Example 6.1.1 58

6.3 The choices of r are far from the threshold n

√
1
k

. 63

6.4 The choices of r are close to the threshold n

√
1
k

. 63

7.1 Solving equality by intermediate value theorem 73

7.2 Solving multiple equalities . 74

vii

List of Tables

5.1 Experimental results with and without UNSAT core 45

5.2 Experimental results for selecting of intervals to decompose 48

5.3 Experimental results for different strategies of interval decomposition . . . 55

6.1 Experimental results for ψ = xn1 + xn2 < 1 ∧ (x1 − r)n + (x2 − r)n < 1 . . . 62

6.2 Experimental results for ψ =
k∑
i=1

xni < 1 ∧
k∑
i=1

(xi − r)n < 1 65

6.3 Experimental results for ψ = ψ1 ∧ ψ2 . 66

6.4 Experimental results for Hong, Zankl, and Meti-Tarski families 68

7.1 Experimental results for 15 equality problems of Zankl family 73

viii

Chapter 1

Introduction

1.1 Polynomial Constraint Solving

Polynomial constraint solving is to find an instance that satisfies given polynomial in-

equality/equality. For instance,

∃x, y.− y2 + (x2 − 1)y − 1 > 0 ∧ −x2 − y2 + 4 > 0

is such an example. This is an easy formula, but proving its satisfiability and showing a

satisfiable instance (e.g., x = 1.8, y = 0.9) are not so easy.

Many problems in hardware/software verifications and analysis can be reduced to

polynomial constraint solving.

• Automated detection of roundoff and overflow errors, which is such an

application [23, 24] in software verification. For instance, consider DSP decoder

like mpeg4. Usually, the decoder definition is given by a reference algorithm in

the programming language C, which uses floating point number. In an embedded

system, it is tempting to replace floating point into fixed point numbers. However,

naive replacement would cause recognizable noise and locating such roundoff error

source is not easy.

• Automatic termination proving, which is reduced to finding a suitable termi-

nation ordering [17]. There are lots of termination provers, e.g., TTT2
1, Aprove 2.

1http://cl-informatik.uibk.ac.at/software/ttt2/
2http://aprove.informatik.rwth-aachen.de

1

• Loop invariant generation. The use of Farkas’s lemma is a popular approach

in linear loop invariant generation [7]. Farkas’s lemma uses products of matrices,

and it requires solving polynomial constraints of degree 2. Non-linear loop invariant

generation [28] and hybrid systems [29] require more complex polynomials.

• Mechanical control design. PID control is simple but widely used. Fujitsu used

polynomial constraint solving to design PID control of HDD head movement [1].

Solving polynomial constraints on real numbers is decidable [31], though that on in-

tegers is undecidable (Hilbert’s 10th problem). Quantifier elimination by cylindrical al-

gebraic decomposition (QE-CAD) [6] is a well known technique, which is implemented

in Mathematica, Maple/SyNRAC, Reduce/Redlog, QEPCAD, and recently nlSAT [14].

An obstacle is that QE-CAD is DEXPTIME with respect to the number of variables. In

practice, it works fine up to 5 variables and lower degrees, but becomes rapidly harder.

For instance, solving a polynomial constraint with 8 variables and degree 10 requires over

20 hours on a supercomputer.

1.2 Existing Approaches

Currently decision procedures for solving polynomial constraints are classified into one

(or combinations) of five categories.

1. QE-CAD. RAHD [26] is based on the core computation of QE-CAD proposed by

Tarski. It applies different versions of QE-CAD implementations such as QEPCAD-

B, Reduce/Redlog. Because QE-CAD is DEXPTIME complexity in the number of

variables, solving problems with a lot of variables seems to be a challenge for QE-

CAD variants.

2. Interval constraint propagation (ICP). ICP applies interval arithmetic as an

over approximation for propagating conflict in a background theory. Many decision

procedures are based on ICP such as RSOLVER [27] and iSAT [12], which apply

classical interval (CI). To remove unsatisfiable elements, while RSOLVER develops

a pruning algorithm, iSAT apply a tight interaction of SAT solver and eager theory

propagation.

2

3. Bit-blasting. In this category, problems are reduced to SAT solving problems.

Input formulas are bit-blasting to propositional formulas, which are then solved

by a SAT solver. MiniSMT [33] applies bounded bit encoding to represent ratio-

nal numbers and then extend representations for some fragments of real numbers.

MiniSMT can show satisfiability quickly, but due to the bound on representation,

it cannot conclude unsatisfiability. UCLID [5] represents an input formula by a

bit-vector formula on a given finite width of bits. UCLID also applies both under

and over approximations to refine each other. Reducing number of bits to repre-

sent an input formula is regarded an under approximation, and constructing an

over-approximation formula by removing some clauses from the original formula.

UCLID aims at finite-precision integer arithmetic then unsatisfiable problems can-

not be detected when applying for real numbers.

4. Linearization. Several decision procedures apply linearization for polynomial

constraints and then call an SMT solver for linear constraints to solver constraints

obtained from linearization. Barcelogic [3] linearizes polynomial constraints by ap-

plying case analysis, which instantiates one of arguments in multiplication with

finitely possible integers in a given-bounded range. Barcelogic applies for integer

domain with finite input ranges. CORD [13] uses another technique for lineariza-

tion, called CORDIC (COrdinate Rotation DIgital Computer). Both Barcelogic and

CORD apply Yices as an SMT solver for solving linear constraints.

5. Virtual substitution (VS). VS method [32] is adapted for SMT solving. In

SMT-RAT toolbox [9, 10], combinations of VS method and incremental fashion for

SMT, less lazy and eager theory propagation, are implemented. Due to restriction

in degree of variables, required degree 2 (or at most degree 4), solving constraints

with higher degrees seems a challenge. Z3 [19], the winner in the category QF NRA

(Quantifier Free of Nonlinear Real Arithmetic) of SMT competition in 2011, also

applies VS in combinations with ICP and decision procedures for linear arithmetic.

3

1.3 The Proposed Approach and Contributions

Our aims are to propose an approach and develop an SMT solver for solving polyno-

mial constraints. First, the target problem of the thesis is solving polynomial inequality

constraints coming from following reasons.

(a) In constructive analysis, solving equality constraints on real numbers is in general

undecidable (decidable only for algebraic numbers), whereas solving inequality is de-

cidable. In other words, a > b is computable, whereas a = b is not computable.

(b) Inequality allows approximations. For instance, for a polynomial f , an over-approximation

evaluates the range O.range(f) of values of f as a superset of range(f). An under-

approximation is opposite, and evaluates the range U.range(f) as a subset of range(f).

Thus, if O.range(f) stays in negative values, f > 0 is detected UNSAT, and if

U.range(f) contains a positive value, f > 0 is detected SAT.

(c) Solving polynomial inequality on real numbers is reduced to that on rational numbers.

For instance, for a polynomial f , f(x) > 0 is satisfied with a real number x, it is

possible to take an enough close rational number y to x such that f(y) > 0. The

reduction to rational numbers also avoids roundoff-errors in implementations. Real

number representation is typically by floating point numbers in practice, in which

roundoff errors are not clear. Instead, rational numbers allow precise implementation,

e.g., the numerical packages of Ocaml.

Our approach and contributions in the thesis are summarized as follows:

(i) We propose an approach of iterative approximation refinement for solving con-

straints, which is formalized as an abstract DPLL(T) procedure for over/under-

approximations and refinements under a background theory T . An under approxi-

mation is sound for proving in the background theory T , and an over approximation

is sound for disproving. When they neither prove nor disprove, refinements are

applied to decompose an atomic formula of the input formula, i.e., ψ to ψ1 ∨ ψ2

such that ψ ⇔ ψ1 ∨ ψ2. The proposed approach combined DPLL(T) procedure

with over/under-approximations and refinements is sound and complete for solving

polynomial inequality constraints under certain restrictions.

4

(ii) We instantiate interval arithmetic to over approximation and testing to under ap-

proximation. A new form of affine interval, called Chebyshev Affine Interval, is

proposed. Chebyshev Affine Interval has an advantage over current affine intervals

such that it can keep sources of computation for high degree variables, which would

be useful for guiding refinements.

(iii) The proposed approach is implemented as the SMT solver raSAT, which applies

interval arithmetic (over-approximation, aiming to decide unsatisfiability), testing

(under-approximation, aiming to decide satisfiability), and refinements on interval

decompositions.

(iv) We propose UNSAT cores of polynomial constraints that can improve efficiency in

theory propagation of SMT. Computation of UNSAT cores in polynomial constraints

allows inferring other unsatisfiable domain when a particular domain is detected as

unsatisfiable. We propose an approach for incremental test data generation which

would be useful when performing a large number of test data (i.e., a large number

of variables).

(v) We propose strategies for refinements such that choices of intervals to decompose

and methods to decompose an interval into smaller intervals. These strategies are

guided from interval arithmetic, testing results, test data, and polynomials.

(vi) The proposed approach is also extended for greater-than-or-equal (≥) constraints,

i.e.,
∧
i

fi ≥ 0 is transformed to
∧
i

fi > 0 for proving satisfiability, and for proving

unsatisfiability
∧
i

fi ≥ 0 is transformed to
∧
i

fi > −δi for δi > 0.

(vii) We propose a non-constructive method for solving polynomial constraints including

equalities based on intermediate value theorem.

1.4 Thesis Outline

The structure of the thesis is organized as follows:

• Chapter 2 introduces preliminaries about the abstract DPLL procedure for SAT

solving and abstract DPLL modulo theories for SMT solving under a background

theory T , DPLL(T).

5

• Chapter 3 proposes the abstract DPLL(T) for over/under-approximation theories

and refinement. Soundness and (restricted) completeness of the procedure are also

given in this chapter.

• Chapter 4 presents interval arithmetic as over-approximation theory and testing as

under-approximation theory. A new form of affine interval called CAI is newly

proposed.

• Chapter 5 proposes UNSAT cores of a polynomial inequality, which allow inferring

domain of unsatisfiability, and an approach of incremental test data generation for

performing large test data. Strategies for refinement, such as choices of intervals

for decomposition and how to decompose an interval into smaller intervals, are also

presented in Chapter 5.

• Chapter 6 shows the design framework of the SMT solver raSAT and demonstrates

how raSAT works in an example by different strategies for interval decomposition.

Experimental results of raSAT for preliminary evaluation and benchmarks of SMT-

LIB are shown in the chapter.

• We extend our approach for greater-than-or-equal constraints and equality handling

in Chapter 7.

• Finally, conclusions, future directions, and applications are given in Chapter 8.

6

Chapter 2

Abstract DPLL

2.1 The Abstract DPLL Procedure

In this section, we introduce the DPLL procedure [25] applied for searching a satisfying

truth assignment for a given conjunctive normal form (CNF) formula F of propositional

logic. The assignment is incrementally built step by step. At each step, a next assignment

is deduced from a current assignment and the CNF formula F , which is called boolean

constraint propagation, or by a non-deterministic guess (decision) on the truth value of

one of the remaining undefined variables. If the search fail, it causes backtrack from wrong

decisions.

As notational convention, for a finite set of atoms (propositional symbols) A, an atom

a ∈ A is a positive literal and ¬a is a negative literal. The negation of a literal l, written

¬l, denotes ¬a if l is a, and a if l is ¬a. A clause is denoted C which is a set of literals,

and a CNF formula F is a set of clauses (it is also regarded as conjunctions of clauses

F = C1 ∧ · · · ∧Cn). M is a (partial truth) assignment, which is sequences of literals (it is

also regarded as a set of literals), such that {a,¬a} ⊆M for no a. If l ∈M then l is true

in M , if ¬l ∈M then l is false in M , and undefined otherwise. M is a full assignment if

no literal of F is undefined. The empty assignment is denoted ∅. A clause C is true in

M if C ∩M 6= ∅, denoted M |= C, is false in M , denoted M |= ¬C, if all its literals are

false in M , and is undefined otherwise. We write M |= F , if all clauses of F are true

in M , which is called a model (a propositional model) of F . If F has no model then it is

unsatisfiable. We write F |= C if the clause C is true in all models of F . We denote C ∨ l

7

for the clause including the literal l and all literals of C.

A binary relation over states is denoted =⇒, called the transition relation, where a

state is either fail or a pair of an assignment M and a CNF F , denoted M‖F . The DPLL

procedure consists of rules describing transitions from a state to another state.

Followings are four basic DPLL procedure rules,

• UnitPropagate:

M ‖ F ∧ (C ∨ l) =⇒Ml ‖ F ∧ (C ∨ l) if

M |= ¬C and

l is undefined in M

• Decide:

M ‖ F =⇒Mld ‖ F if

l or ¬l occurs in a clause of F and

l is undefined in M

If l is selected for the decide rule, it is called a decision literal, denoted as ld, in the

assignment Mld.

• Fail:

M ‖ F ∧ C =⇒ fail if

M |= ¬C and

M contains no decision literals

• Backjump:

MldM1 ‖ F =⇒Ml′ ‖ F if



there is some clause C ∨ l′ such that

F |= C ∨ l′,

M |= ¬C,

l′ is undefined in M and

l′ or ¬l′ occurs in a clause of F

The DPLL procedure takes an input CNF formula F and computes a finite sequences of

the form ∅ ‖ F =⇒ · · · =⇒ S. It starts from the initial state ∅ ‖ F and terminates when

8

it reaches to a final state S, which is either fail when F is unsatisfiable, or in the form

of M ‖ F ′, where M is a model of F (M |= F), when F is satisfiable. Note that the

CNF formula F ′ in a final state can be different from the input F by adding some clauses

during the DPLL procedure.

The unitPropagate rule (unit propagation) is applied for deducing a next assignment

from the current assignment M and the current CNF formula F . Decide rule is applied for

a non-deterministic guess on the truth value of an undefined literal. The fail and backjump

rules are applied when there is a conflict, i.e., a clause in the current CNF formula F that

is false in the current assignment M . If the CNF formula F is unsatisfiable, the fail rule is

applied when there are no decision literals in M . Otherwise the backjump rule is applied.

Example 2.1.1. This is an example applying the basic DPLL rules for finding a model

of the input CNF formula F = (l1 ∨ ¬l2) ∧ (¬l4 ∨ ¬l3) ∧ (¬l4 ∨ ¬l1 ∨ l5).

∅ ‖ (l1 ∨ ¬l2) ∧ (¬l4 ∨ ¬l3) ∧ (¬l4 ∨ ¬l1 ∨ l5) =⇒ (Decide)

ld2 ‖ (l1 ∨ ¬l2) ∧ (¬l4 ∨ ¬l3) ∧ (¬l4 ∨ ¬l1 ∨ l5) =⇒ (UnitPropagate)

ld2 l1 ‖ (l1 ∨ ¬l2) ∧ (¬l4 ∨ ¬l3) ∧ (¬l4 ∨ ¬l1 ∨ l5) =⇒ (Decide)

ld2 l1 l
d
4 ‖ (l1 ∨ ¬l2) ∧ (¬l4 ∨ ¬l3) ∧ (¬l4 ∨ ¬l1 ∨ l5) =⇒ (UnitPropagate)

ld2 l1 l
d
4¬l3 ‖ (l1 ∨ ¬l2) ∧ (¬l4 ∨ ¬l3) ∧ (¬l4 ∨ ¬l1 ∨ l5) =⇒ (UnitPropagate)

ld2 l1 l
d
4 ¬l3 l5 ‖ (l1 ∨ ¬l2) ∧ (¬l4 ∨ ¬l3) ∧ (¬l4 ∨ ¬l1 ∨ l5) Final state: model found

In addition to basic rules, the DPLL procedure with clause learning consists of two

additional rules, which are learn and forget rules.

• Learn:

M ‖ F =⇒M ‖ F ∧ C if

F |= C and

all atoms of C occur in F

• Forget:

M ‖ F ∧ C =⇒M ‖ F if F |= C

In these two rules, the clause C is said to be learned and forgotten, respectively. In

9

the backjump rule, the clause C ∨ l′, called a conflict clause, is discovered by implication

graph [11], which is applied for finding causes of a conflict. Then the conflict clause is

learned by learn rule to avoid producing the same conflict. Forget rule is applied for free

memory by removing a clause C with low activity (i.e., the number of times C causes

conflict or unit propagation) [22].

Example 2.1.2. This is an example applying the backjump rule and the learn rule for

finding a model of the input CNF formula F = (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4).

∅ ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4) =⇒ (Decide)

ld1 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4) =⇒ (UnitPropagate)

ld1 l2 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4) =⇒ (Decide)

ld1 l2 l
d
3 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4) =⇒ (UnitPropagate)

ld1 l2 l
d
3 l4 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4) =⇒ (Backjump)

ld1 l2 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4) =⇒ (Learn)

ld1 l2 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4) ∧ (¬l1 ∨ ¬l3) =⇒ (UnitPropagate)

ld1 l2 ¬l3 ‖ (¬l1 ∨ l2) ∧ (¬l3 ∨ ¬l2 ∨ l4) ∧ (¬l3 ∨ ¬l4) ∧ (¬l1 ∨ ¬l3) Final state: model found

2.2 Abstract DPLL Modulo Theories

Satisfiability Modulo Theories (SMT) is a problem to detect satisfiable instances

under a background theory. Whereas SAT solving, focusing only on satisfiability (SAT) of

propositional formulas, SMT aims to detect satisfiable instances in more expressive logics.

SMT separates case analysis as SAT solving and a decision procedure for a background

theory T , denoted as DPT , which is applied for checking consistency of atoms given by

SAT solving, or deducing consequent from these atoms.

For example, a formula in the theory of non-linear arithmetic is,

F = (x > 0 ∨ x < −2) ∧ (y > 0) ∧ (x2 + y < 4)

Atoms of F are x > 0, x < −2, y > 0, and x2 + y < 4. If SAT solving gives a model for

F as M = (x < −2), (y > 0), (x2 + y < 4), then conjunction of literals in M is checked by

10

a DPT . In this case, the DPT decides satisfiability of (x < −2) ∧ (y > 0) ∧ (x2 + y < 4).

If it is satisfiable, it is T-consistent, otherwise it is T-inconsistent. In this example,

(x < −2) ∧ (y > 0) ∧ (x2 + y < 4) is T-inconsistent and (x > 0) ∧ (y > 0) ∧ (x2 + y < 4)

is T-consistent.

We write F |=T ¬G if F ∧G is T-inconsistent.

Interaction between SAT solving and theory has very lazy theory learning, less lazy

theory learning, and eager theory propagation, which are described below as abstract DPLL

modulo theories [25].

• Very lazy theory learning interacts with DPT when a full assignment is obtained

from a SAT solver. If the theory DPT disproves the full assignment, the SAT solver

learns a clause ¬l1 ∨ · · · ∨ ¬ln ∨ ¬l and is started again.

MlM1 ‖ F =⇒ ∅ ‖ F ∧ (¬l1 ∨ · · · ∨ ¬ln ∨ ¬l) if


MlM1 |= F ,

{l1, . . . , ln} ⊆M , and

l1 ∧ · · · ∧ ln |=T ¬l.

Note that MlM1 is a full assignment.

• Less lazy theory learning interacts with DPT when a (partial) assignment is

obtained from a SAT solver and the DPT refutes l1 ∧ ... ∧ ln ∧ l, it will learns the

clause ¬l1 ∨ · · · ∨ ¬ln ∨ ¬l.

MlM1 ‖ F =⇒ MlM1 ‖ F∧(¬l1∨· · ·∨¬ln∨¬l) if


{l1, . . . , ln} ⊆M ,

l1 ∧ · · · ∧ ln |=T ¬l, and

¬l1 ∨ · · · ∨ ¬ln ∨ ¬l /∈ F .

Note that MlM1 is possibly a partial assignment and the SAT solver does not need

to restart when it learns a clause.

• Eager theory propagation interacts with DPT during the DPLL procedure of

SAT solving, and the DPLL procedure continues when the theory admits the current

decisions. By applying this rule, next assignments are deduced from the current

11

assignment M based on the DPT for the background theory T .

M ‖ F =⇒Ml ‖ F if


M |=T l,

l is undefined in M , and

l or ¬l occurs in F .

It is easy to separate work for SAT solving and the DPT procedure by applying very

lazy theory learning, thus we do not need to look inside process of SAT solving. Whereas

less lazy theory learning and eager theory propagation require tighter interaction between

SAT solving and DPT , which needs internal modification on process of SAT solving.

12

Chapter 3

Abstract DPLL for Approximation

Theories and Refinements

In this chapter, we introduce abstract DPLL(T) for sandwiching by over/under-approximation

theories and their refinements. The DPLL(T) procedure applies over and under approxi-

mations for proving or disproving (i.e., T-consistent, T-inconsistent in Chapter 2) in the

background theory T , respectively. When they neither prove nor disprove, refinement in

the DPLL(T) procedure is applied, which leads to better approximations. Soundness and

(restricted) completeness of the DPLL(T) procedure for approximations and refinements

are also given in this chapter.

3.1 Approximation Theories

We start with a general framework, and assume that a target constraint F is a CNF

formula of first-order logic. In Section 3.4.1, we will instantiate F as a conjunction of I

and P , where I is an interval constraint, x1 ∈ (a1, b1) ∧ · · · ∧ xn ∈ (an, bn), and P is a

conjunction of polynomial inequalities,
m∧
i=1

fi(x1, · · · , xn) > 0.

In the very lazy theory learning, full truth assignments (obtained from a SAT solver)

are proved or disproved by a decision procedure (DPT) in a background theory T . We

abuse the symbol |=T in the following way. As notational convention, m (the lower case)

denotes an instance (m is aimed at variable assignments) of variables appearing in literals,

and M (the upper case) denotes a (full) truth assignment on literals. We regard M as a

13

conjunction of literals in a background theory T .

• If an instance m of variables appearing in F satisfies F , we denote m |=T F .

• For a truth assignment M , if an instance m satisfies M we denote m ∈ M . If m

satisfies F for each instance m ∈M , we denote M |=T F .

Definition 3.1.1. For a constraint F and a truth assignment M , we say that F is

• T -valid under M if M |=T F ,

• T -satisfiable (T -SAT) under M if m |=T F for some m ∈M , and

• T -unsatisfiable (T -UNSAT) under M if M |=T ¬F .

If T is clear from the context, we simply say valid, satisfiable, and unsatisfiable.

Definition 3.1.2. Let T , O.T , and U.T be theories. We say that,

• O.T is an over-approximation theory of T if O.T -UNSAT implies T -UNSAT, and

• U.T is an under-approximation theory of T if U.T -SAT implies T -SAT.

We further assume that O.T -valid implies T -valid.

The intuition behind is that O.T is applied for proving unsatisfiability (UNSAT) and

U.T is applied for proving satisfiability (SAT) of formulas in a background theory T .

Later in Chapter 4, we will instantiate O.T and U.T with interval arithmetic and testing,

respectively.

3.2 DPLL(T) Procedure with Over and Under Ap-

proximation Theories

When solving a constraint F by SMT, we first project each literal (in first-order logic) in

F to a boolean variable (i.e., a literal of propositional logic), denoted by proj(F), which

is a CNF of propositional formula. SAT solver will give a truth assignment (if satisfiable).

We present the DPLL(T) procedure in very lazy theory learning, denoted as =⇒VL,

and use |=O.T and |=U.T for proving or disproving a full truth assignment given from SAT

solver. It works as,

14

(i) M will be chosen by SAT solver and will be evaluated by |=O.T or |=U.T .

(ii) If either |=O.T or |=U.T proves SAT (SAT rule is applied), the DPLL(T) procedure

terminates and outputs SAT.

(iii) If |=O.T disproves (very lazy theory learning rule is applied), SAT solver will detect

another M .

(iv) When |=O.T and |=U.T neither prove nor disprove, a refinement rule decomposes an

atomic formula ψ in F to ψ1 ∨ ψ2 such that they are mutually exclusive.

Assume that M is a conjunction of literals in F such that proj(M) |= proj(F) (i.e.,

proj(M) is a truth assignment returned by SAT solver).

• SAT rule is applied when either M |=O.T F , or m |=U.T F for some m ∈M .

M ‖ F =⇒VL SAT if

M |=O.T F , or

m |=U.T F for some m ∈M .

• Fail rule is applied when SAT solver returns UNSAT.

∅ ‖ F =⇒VL fail if proj(F) is UNSAT

• Very lazy theory learning rule is applied when M |=O.T ¬F .

M ‖ F =⇒VL ∅ ‖ (¬l1 ∨ · · · ∨ ¬ln) ∧ F if

{l1, . . . , ln} ⊆M and

l1 ∧ · · · ∧ ln |=O.T ¬F .

Whenever either SAT rule or fail rule are applied, the DPLL(T) procedure terminates

and informs SAT or UNSAT, respectively. Note that in very lazy theory learning rule, if

l1∧· · ·∧ ln is chosen to be minimal (on the number of literals), it is an UNSAT core, which

causes unsatisfiability. Finding an UNSAT core improves efficiency in theory propagation

(learning) of the DPLL(T) procedure, which will be presented in Section 5.1.1.

15

3.3 DPLL(T) Procedure with Refinement and Heuris-

tics

Definition 3.3.1. For a constraint F , ψ is an atomic formula in F if prof(ψ) is a

propositional literal of prof(F).

When |=O.T and |=U.T neither prove nor disprove M , a refinement rule decomposes an

atomic formula ψ in F to ψ1∨ψ2 such that theories are mutually exclusive (ψ ⇔ ψ1∨ψ2).

• Refinement rule is applied when |=O.T and |=U.T neither prove nor disprove M ,

and F is refined to F ′ = (ψ ⇔ ψ1 ∨ · · · ∨ ψn) ∧ F .

M ‖ F =⇒VL ∅ ‖ (ψ ⇔ ψ1 ∨ · · · ∨ ψn) ∧ F
if ψ is an atomic formula in F

and ψ ⇔ ψ1 ∨ · · · ∨ ψn.

An example of the refinement rule is described below for a target constraint F includ-

ing constraints for variable ranges, which will be presented in Section 3.4.1 as interval

constraints, i.e., x ∈ (a, b) represented for a < x < b.

Example 3.3.2. Assume that x ∈ (0, 2) is an atomic formula in F , it is refined into

x ∈ (0, 2)⇔ x ∈ (0, 1] ∨ x ∈ (1, 2).

M ‖ F =⇒VL ∅ ‖ (x ∈ (0, 2)⇔ x ∈ (0, 1) ∨ (x = 1) ∨ x ∈ (1, 2)) ∧ F

A heuristic rule is to halt the DPLL(T) procedure by setting termination heuristics

isHalt, i.e., refined too much, etc. In Section 3.4.3, we will give definition of isHalt for

polynomial inequality constraints. It is applied when the size of each interval becomes

small enough, i.e., less than a given threshold.

• Heuristic rule learns a clause ¬M when M holds isHalt(M)

M ‖ F =⇒VL ∅ ‖ ¬M ∧ F if isHalt(M)

If heuristic rules are applied in the DPLL(T) procedure, the fail rule becomes ∅ ‖

F =⇒VL unknown if proj(F) is UNSAT, and the DPLL (T) procedure cannot con-

16

SAT solver

A target constraint F

UNSAT ResultTermination
SAT solver

clauses for
conflict

UNSAT Result

(UNSAT/unknown)

A SAT
solution M

Termination

Heuristics clauses for
heuristics

isHalt clauses for
refinement

Over-approximation

theory
Refinement

Theory

Propagation

O.T-UNSAT

solution Mrefinement

theory

O.T-SAT
O.T-VALID

Propagation

U.T-UNSAT

Under-approximation

theory

U.T-SAT Result

(SAT)

Figure 3.1: Refinement loop on O.T , U.T , refinements, and heuristics

clude UNSAT, though SAT rules correctly conclude SAT. Heuristic rule more focuses

on detecting SAT, when the execution time becomes too long. Refinement loop of the

DPLL(T) procedure that applies O.T , U.T , refinements, and heuristics is demonstrated

in Figure 3.1.

3.4 Soundness and Completeness of Approximation

Theories on Polynomial Inequality

3.4.1 Polynomial Inequality Constraints

We focus on polynomial inequality constraints with input ranges as open boxes which is

described in Definition 3.4.1.

Definition 3.4.1. A polynomial inequality constraint F = I ∧ P consists of

• an interval constraint I = x1 ∈ (a1, b1) ∧ · · · ∧ xn ∈ (an, bn), and

• a polynomial constraint P =
m∧
i=1

fi(x1, · · · , xn) > 0

17

for ai, bi ∈ R and a polynomial fi(x1, · · · , xn) over variables x1, · · · , xn. F is satisfiable if

there is an instance satisfying I ∧ P . fi(x1, · · · , xn) > 0 is called an atomic polynomial

inequality (API).

We also assume that all variables appearing in P appear in I. The intuition behind is

that I and P describe input restrictions and a target property, respectively. By regarding

I to be a truth assignment (i.e., xi ∈ (ai, bi) is regarded as a literal), we denote I |= P if

P is valid under I.

Example 3.4.2. An example of a polynomial inequality constraint with 2 variables and

2 APIs is,

F = x ∈ (−1, 3) ∧ y ∈ (2, 4) ∧ (x3y − y4 > 0) ∧ (y3 − xy > 0)

3.4.2 Open Boxes as Topological Basis

For mathematical simplicity, we prepare terminologies of topology [4, 16].

Definition 3.4.3. Let X be a set and T be a set of subsets on X. If T satisfies the

following conditions:

(i) ∅ ∈ T and X ∈ T

(ii) If U1 ∈ T and U2 ∈ T, then U1 ∩ U2 ∈ T

(iii) If T′ ⊂ T then ∪T′ ∈ T,

T is a topology on X and X is called a topological space. A member of T is called an

open set of X. A closed set of X is the complement of an open set. The intersection of

all closed sets of X containing A is the closure of A, and the union of all open subsets of

A is the interior of A.

Example 3.4.4. Let T be a set of all open intervals, {(a, b) | a, b ∈ R, a ≤ b}. T

is a topology on R and the pair (T,R) is a topological space. An open interval (a, b)

is an open set of R and a closed interval [a, b] is a closed set of R. The closure of

A is the smallest closed set of X containing A, for instance, closure((1, 4)) = [1, 4],

closure({(x, y) | x2 − xy > 0}) = {(x, y) | x2 − xy ≥ 0}.

18

Definition 3.4.5. An open box of dimension n is a set (a1, b1)×· · ·×(an, bn) where ai, bi ∈

R, ai ≤ bi. For a = (a1, · · · , an) and b = (b1, · · · , bn), we denote (a1, b1)× · · ·× (an, bn) by

(a, b).

The set of all open boxes of dimension n is a topology on Rn. We will consider covering

by open boxes only, i.e., for a subset U of X, a covering is a set {Bλ} of open boxes such

that U ⊆ ∪Bλ. A set U is compact, if, for each covering of U , there exists its finite subset

that is a covering of U . In Euclidian space, a set U is compact if, and only if, U is a

bounded closed set.

Definition 3.4.6. Let X, Y be topological spaces and f : X 7→ Y be a map from X into

Y . A map f is continuous, if, for each open set U of Y , f−1(U) is an open set of X.

3.4.3 Soundness and Completeness

In this section we discuss about soundness and (restricted) completeness of the DPLL(T)

procedure, presented in Section 3.2 and 3.3, for polynomial inequality constraints defined

in Definition 3.4.1.

Definition 3.4.7. Let F be polynomial inequality constraint, S(F) = {x ∈ Rn | F holds}.

Since a polynomial is a continuous function, S(
m∧
i=1

fi > 0) is an open set. Since Q is

dense in R (closure of Q is R), next lemma is immediate.

Lemma 3.4.8. ∃x ∈ Rn. F (x)⇐⇒ ∃x ∈ Qn. F (x)

Lemma 3.4.8 says that proving SAT of F among real numbers is reduced to that

among rational numbers.

Lemma 3.4.9. Suppose that aj < bj for 1 ≤ j ≤ n and fi are polynomials. Assume

ak < c < bk for 1 ≤ k ≤ n. Then, x ∈ (a1, b1) × · · · × (an, bn) ∧
m∧
i=1

fi > 0 is SAT (resp.

UNSAT) if, and only if, (x ∈ (a1, b1)×· · · (ak, c) · · ·×(an, bn)∨x ∈ (a1, b1)×· · · (c, bk) · · ·×

(an, bn)) ∧
m∧
i=1

fi > 0 is SAT (resp. UNSAT).

Proof. We show for the SAT case. If-part is obvious. For only-if-part, since S(
m∧
i=1

fi > 0)

is an open set, if y ∈ (a1, b1) × · · · {c} · · · × (an, bn) satisfies
m∧
i=1

fi > 0, there exists

19

x ∈ (a1, b1) × · · · (ak, c) · · · × (an, bn) (also x ∈ (a1, b1) × · · · (c, bk) · · · × (an, bn)) that

satisfies
m∧
i=1

fi > 0. The same proof is applied for the UNSAT case.

For a polynomial inequality constraint F = I ∧ P , when an atomic formula x ∈ (a, b)

is refined into x ∈ (a, b)⇔ x ∈ (a, c) ∨ x ∈ (c, b) (instead of x ∈ (a, b)⇔ x ∈ (a, c] ∨ x ∈

(c, b)), it does not change SAT (resp. UNSAT) from Lemma 3.4.9. We apply this interval

decomposition as a refinement rule in abstract DPLL. Note that initially, I and P have

conjunctions only. By refinements, I becomes a CNF, though P has conjunctions only.

Thus, during abstract DPLL only proj(I) is sent to a SAT solver, and then a full truth

assignment M is in the form of M = x1 ∈ (l1, h1) ∧ · · · ∧ xn ∈ (ln, hn), which is a box

represented for input ranges of variables. If P is a CNF, prof(I ∧ P) is sent to a SAT

solver, instead.

Let us recall Example 3.4.2 for a refinement rule.

Example 3.4.10. Let M = I = x ∈ (−1, 3) ∧ y ∈ (2, 4), x ∈ (−1, 3) and y ∈ (2, 4) are

refined to smaller intervals.

M ‖ F =⇒VL ∅ ‖ (x ∈ (−1, 3)⇔ x ∈ (−1, 1)∨x ∈ (1, 3))∧(y ∈ (2, 4)⇔ y ∈ (2, 3)∨y ∈ (3, 4))∧F

For a polynomial inequality constraint, termination condition isHalt is defined based

on length of intervals, i.e., less than a given threshold.

Definition 3.4.11. For M = x1 ∈ (l1, h1) ∧ · · · ∧ xn ∈ (ln, hn) and a bound δ > 0 ∈ R,

isHalt(M) = (h1 − l1 < δ) ∧ · · · ∧ (hn − ln < δ).

For a polynomial inequality, we fix DPLL(T)A.R for the DPLL(T) procedure that

applies the SAT, Fail, Very Lazy Theory Learning, Refinement, and Heuristic rules. If

we set the threshold for isHalt enough small, we can conclude soundness and (restricted)

completeness of DPLL(T)A.R. Note that such threshold is not easy to compute (if we

use QE-CAD algorithm, we may be able to compute), and in our raSAT, it is left as a

heuristics.

Definition 3.4.12. Let F = I ∧ P with P = (
m∧
i=1

fi > 0) be a polynomial inequality

constraint such that I is bounded. An over-approximation theory O.T is complete (w.r.t.

20

F) if, for each δ > 0 and c = (c1, · · · , cn) satisfying I, there exists γ > 0 such that
n∧
j=1

xj ∈ (cj − γ, cj + γ) |=O.T

m∧
i=1

(fi(c)− δ < fi(x) < fi(c) + δ).

Definition 3.4.13. Let I =
n∧
j=1

Ij for Ij = xj ∈ (aj, bj) and F = I∧
m∧
i=1

fi(x1, · · · , xn) > 0.

An interval decomposition strategy is fair, if, for each cj ∈ (aj, bj) and γ > 0, an interval

decomposition for xj for each j eventually occurs in (cj − γ, cj + γ) (as long as neither

I ′ |= P nor I ′ |= ¬P , where I ′ is a decomposed box).

Theorem 3.4.14. Let I =
n∧
j=1

Ij for Ij = xj ∈ (aj, bj), F = I ∧
m∧
i=1

fi(x1, · · · , xn) > 0 and

S(fi) = {(x1, · · · , xn) | fi(x1, · · · , xn) > 0}. Assume that an over-approximation theory

O.T is complete (w.r.t. F). If the threshold for isHalt is enough small and an interval

decomposition strategy is fair, the followings hold.

• Soundness: If DPLL(T)A.R reports SAT (UNSAT), F is really SAT (UNSAT).

• Completeness:

– If F is SAT, DPLL(T)A.R eventually find SAT instances

– If ∩closure(S(fi)) = ∅ and closure(I) is compact, DPLL(T)A.R eventually

detects UNSAT.

Proof. Soundness : it is obvious from the definitions of O.T and U.T (the SAT rule).

Completeness : If F is SAT, ∩S(fi) 6= ∅, and there exists an open box in it with the

size δ > 0 (the left of Figure 3.2). If ∩closure(S(fi)) = ∅ and closure(I) is compact,

let δ(fi)(x) = max{|fi(x) − f1(x)|, · · · , |fi(x) − fm(x)|}. Since ∩closure(S(fi)) = ∅,

δ(fi)(x) > 0 for each i. Since δ(fi) is continuous and closure(I) is compact, δ(fi)(x) has

the minimal value for x ∈ closure(I). Thus, δi = min{δ(fi)(x) | x ∈ I} > 0. We set

δ = min{δi}
2

, and δ > 0.

In either case, since O.T is complete, there exists γ > 0 satisfying Definition 3.4.12.

We set γ to be the threshold of isHalt. Since an interval decomposition strategy is fair,

decomposed boxes detect either SAT or UNSAT, respectively.

Limitations for proving UNSAT come from kissing and convergence situations. Figure

3.3 describes an example of kissing situation for the constraint x2 + y2 < 22 ∧ (x− 4)2 +

(y−3)2 < 32. In this example, closure(x2 + y2 < 22)∩ closure((x−4)2 + (y−3)2 < 32) =

(x = 1.6, y = 1.2). Thus, the condition ∩closure(S(fi)) = ∅ avoids kissing situation.

21

SATSAT UNSATUNSAT

Figure 3.2: Proof of completeness

Figure 3.3: Kissing situation Figure 3.4: Convergence situation

Figure 3.4 is an example of convergence for the constraint y > x+ 1
x
∧ y < x ∧ x > 0.

To avoid convergence, closure(I) must be compact, i.e., bounded.

Note that the theorem requires only O.T to be complete, since O.T -valid works as

U.T -SAT. Later in Chapter 4, we apply an interval arithmetic as O.T and testing as U.T .

It is not difficult to see that an interval arithmetic is complete, and the aims of U.T are,

• to obtain practical efficiency, and

• to guide interval decomposition (like “First Test-UNSAT” in Section 5.2.1).

22

Chapter 4

Over and Under Approximations for

Intervals

We present interval arithmetic (IA) as an over-approximation theory, denoted as |=O.T ,

and testing as an under-approximation theory, denoted as |=U.T , in this chapter.

4.1 Interval Arithmetic

In this section, we first show interval arithmetic in the presentations of classical interval

(CI) [21] and affine arithmetic (AF,AF1, AF2) [18], and we propose a new form of affine

interval, called Chebyshev Affine Interval (CAI) [15].

4.1.1 Classical Interval

A popular example of IA is Classical Interval (CI), introduced in 1960s by Moore [21],

which keeps a lower bound and an upper bound for representing a range of a variable.

Definition 4.1.1. CI arithmetic consisting of {+,−,×,÷} are defined as follows:

• (a, b) + (c, d) = (a+ c, b+ d)

• (a, b)− (c, d) = (a− d, b− c)

• (a, b)× (c, d) = (min(ac, ad, bc, bd),max(ac, ad, bc, bd))

• (a, b)÷ (c, d) = (a, b)× (1
d
, 1
c
) if 0 /∈ (c, d)

23

CI arithmetic is over approximation presented as the lemma below.

Lemma 4.1.2. For x ∈ (a, b) and y ∈ (c, d), then z = x � y ∈ (a, b) � (c, d) where

� ∈ {+,−,×,÷}.

Proof. It is obvious from the definitions of {+,−,×,÷} in CI arithmetic.

Followings are examples of CI arithmetic.

Example 4.1.3. Let x ∈ x̄ = (−2, 5) and y ∈ ȳ = (4, 6). By using CI arithmetic, the

bounds (over-approximation bounds) of z = x� y (� ∈ {+,−,×,÷}) are,

• addition z = x+ y:

z̄ = x̄+ ȳ

= (−2, 5) + (4, 6)

= (−2 + 4, 5 + 6)

= (2, 11)

We can conclude that z ∈ (2, 11). Note that (2, 11) is an over-approximation bounds

of z.

• subtraction z = x− y:

z̄ = x̄− ȳ

= (−2, 5)− (4, 6)

= (−2− 6, 5− 4)

= (−8, 1)

then z ∈ (−8, 1).

24

• multiplication z = x× y:

z̄ = x̄× ȳ

= (−2, 5)× (4, 6)

= (min(−2× 4,−2× 6, 5× 4, 5× 6),max(−2× 4,−2× 6, 5× 4, 5× 6))

= (min(−8,−12, 20, 30),max(−8,−12, 20, 30))

= (−12, 30)

then z ∈ (−12, 30).

• division z = x÷ y:

z̄ = x̄÷ ȳ

= (−2, 5)÷ (4, 6)

= (−2, 5)× (
1

6
,
1

4
)

= (min(−2

6
,−2

4
,
5

6
,
5

4
),max(−2

6
,−2

4
,
5

6
,
5

4
))

= (−1

2
,
5

4
)

We can conclude that

z ∈ (−1

2
,
5

4
).

The weakness of CI is loss of dependency among values which leads imprecision for

subtractions. For instance, if x ∈ x̄ = (2, 4), then x−x ∈ x̄− x̄ = (2, 4)− (2, 4) = (−2, 2).

To overcome the weakness of CI, Affine Interval is an alternative representation for interval

arithmetic.

4.1.2 Affine Interval

Affine Interval (AI) [8, 18] introduces noise symbols ε, which are interpreted as values in

(−1, 1). AI allows to keep source of computation based on variable’s noise symbols (ε)

and it is likely to improve precision when applying subtractions among dependent values.

25

For instance, x ∈ (2, 4) is represented as x = 3 + ε, and x− x = (3 + ε)− (3 + ε) is safely

evaluated to 0.

Forms of AI vary by choices how to estimate multiplications. For instance, let x ∈ (0, 2)

and y ∈ (1, 3), the affine form of x is 1 + ε1 and the affine form of y is 2 + ε2. Thus,

x2 − x× y = (1 + ε1)2 − (1 + ε1)(2 + ε2)

= (1 + 2ε1 + ε1ε1)− (2 + ε2 + 2ε1 + ε1ε2)

= −1− ε2 + ε1ε1 − ε1ε2.

Choices are,

(i) ε1ε2 is replaced with a fresh noise symbol (AF) [8, 30],

(ii) ε1ε2 is pushed into the fixed error noise symbol ε± ∈ (−1, 1) (AF1 and AF2) [18],

(iii) ε1ε2 is replaced by (−1, 1)ε1 or (−1, 1)ε2 (EAI) [23],

(iv) ε1ε1 is replaced by the fixed positive noise symbol ε+ ∈ (0, 1) or the negative noise

symbol ε− ∈ (−1, 0) (AF2) [18] based on signs of coefficients.

Followings are the affine forms of AF , AF1, AF2 and their arithmetic.

The AF form

Definition 4.1.4. An AF of x is a formula of the form:

ẍ = a0 +
n∑
i=1

aiεi

where x ∈ (a0 −
n∑
i=1

|ai|, a0 +
n∑
i=1

|ai|) and εi ∈ (−1, 1) is a noise symbol.

For AF arithmetic, linear operations (i.e., addition and subtraction) are straight-

forward operations and nonlinear operations such that multiplication is applied (i) for

approximating.

Definition 4.1.5. Let ẍ = a0 +
n∑
i=1

aiεi and ÿ = b0 +
n∑
i=1

biεi. AF arithmetic consisting

of {+,−,×,÷} are defined as follows:

26

• ẍ+ ÿ = (a0 + b0) +
n∑
i=1

(ai + bi)εi

• ẍ− ÿ = (a0 − b0) +
n∑
i=1

(ai − bi)εi

• ẍ× ÿ = (a0b0) +
n∑
i=1

(a0bi + b0ai)εi + (
n∑
i=1

|ai|)(
n∑
i=1

|bi|)εn+1

• ẍ÷ ÿ = ẍ× 1
ÿ

if 0 /∈ (b0 −
n∑
i=1

|bi|, b0 +
n∑
i=1

|bi|)

where εn+1 is a fresh noise symbol, interpreted as a value in (−1, 1), and 1
ÿ

is computed

by Chebyshev approximation [30].

Conversion between CI and AF

• CI to AF : for a CI x̄ = (l, h), a corresponding AF form of x is ẍ = h+l
2

+ h−l
2
εx.

• AF to CF : for a given AF ẍ = a0+
n∑
i=1

aiεi, the CI form of ẍ is x̄ = (a0−
n∑
i=1

|ai|, a0+

n∑
i=1

|ai|).

Followings are examples of AF arithmetic.

Example 4.1.6. Let x ∈ (1, 5) and y ∈ (−1, 3). The AF forms of x and y are,

• ẍ = 3 + 2ε1

• ÿ = 1 + 2ε2

By using AF arithmetic, the bounds of z = x� y (� ∈ {+,−,×,÷}) are,

• addition z = x+ y:

z̈ = ẍ+ ÿ

= 3 + 2ε1 + 1 + 2ε2

= 4 + 2ε1 + 2ε2

The AF projection of z̈ is (4− 2− 2, 4 + 2 + 2) = (0, 8). Then we can conclude that

z ∈ (0, 8).

27

• subtraction z = x− y:

z̈ = ẍ− ÿ

= 3 + 2ε1 − 1− 2ε2

= 2 + 2ε1 − 2ε2

The AF projection of z̈ is (2− 2− 2, 2 + 2 + 2) = (−2, 6), then z ∈ (−2, 6).

• multiplication z = x× y:

z̈ = ẍ× ÿ

= (3 + 2ε1)× (1 + 2ε2)

= 3 + 6ε2 + 2ε1 + 4ε1ε2

= 3 + 4ε1 + 6ε2 + 4ε3

The AF projection of z̈ is (3 − 4 − 6 − 4, 3 + 4 + 6 + 4) = (−11, 17). Then we

can conclude that z ∈ (−11, 17). Note that ε3 is a new fresh noise symbol which is

created by a multiplication from ẍ× ÿ.

• division z = x÷ y, we cannot compute the bounds of z because 0 ∈ (−1, 3).

The drawback of AF is increasing of fresh noise symbols when a number of non-linear

operations is large.

The AF1 form

Definition 4.1.7. An AF1 of x is a formula of the form:

x̂ = a0 +
n∑
i=1

aiεi + an+1ε±

where x ∈ (a0 −
n∑
i=1

|ai| − an+1, a0 +
n∑
i=1

|ai| + an+1), εi ∈ (−1, 1) is a noise symbol,

ε± ∈ (−1, 1) is the fixed error noise symbol and an+1 ≥ 0.

28

For AF1 arithmetic, linear operations (i.e., addition and subtraction) are straight-

forward operations and nonlinear operations such that multiplication is applied (ii) for

approximating.

Definition 4.1.8. Let x̂ = a0 +
n∑
i=1

aiεi + an+1ε± and ŷ = b0 +
n∑
i=1

biεi + bn+1ε±. AF1

arithmetic consisting of {+,−,×,÷} are defined as follows:

• x̂+ ŷ = (a0 + b0) +
n∑
i=1

(ai + bi)εi + (an+1 + bn+1)ε±.

• x̂− ŷ = (a0 − b0) +
n∑
i=1

(ai − bi)εi + (an+1 + bn+1)ε±.

• x̂× ŷ = (a0b0) +
n∑
i=1

(a0bi + b0ai)εi + (|a0|bn+1 + |b0|an+1) + (
n∑
i=1

|ai|)(
n∑
i=1

|bi|)ε±

• x̂÷ ŷ = x̂× 1
ŷ

if 0 /∈ (b0 −
n∑
i=1

|bi| − bn+1, b0 +
n∑
i=1

|bi|+ bn+1)

Note that 1
ŷ

is computed by Chebyshev approximation [30], an+1, bn+1 ≥ 0, and the

coefficient of ε± is (an+1 + bn+1) for subtraction (−).

Followings are examples of AF1 arithmetic.

Example 4.1.9. Recall from Example 4.1.6, the AF1 form of x and y are,

• x̂ = 3 + 2ε1

• ŷ = 1 + 2ε2

By using AF1 arithmetic, the bounds of z = x� y (� ∈ {+,−,×}) are,

• addition z = x+ y and subtraction z = x− y are the same as AF .

• multiplication z = x× y:

ẑ = x̂× ŷ

= (3 + 2ε1)× (1 + 2ε2)

= 3 + 6ε2 + 2ε1 + 4ε1ε2

= 3 + 4ε1 + 6ε2 + 4ε±

29

The AF1 projection of ẑ is the same as AF (z ∈ (−11, 17)). Note that all of

non-linear parts are pushed into ε±.

• division z = x÷ y, we cannot compute because 0 ∈ (−1, 3).

AF1 solves the problem of increasing fresh noise symbols in AF by approximating

non-linear parts into the unique error noise symbol ε±.

The AF2 form

Definition 4.1.10. An AF2 of x is a formula of the form:

x̆ = a0 +
n∑
i=1

aiεi + an+1ε+ + an+2ε− + an+3ε±

where x ∈ (a0 −
n∑
i=1

|ai| − an+2 − an+3, a0 +
n∑
i=1

|ai|+ an+1 + an+3), εi ∈ (−1, 1) is a noise

symbol, ε+ ∈ (0, 1) is the positive noise symbol, ε− ∈ (−1, 0) is the negative noise symbol,

ε± ∈ (−1, 1) is the fixed error noise symbol and an+1, an+2, an+3 ≥ 0.

AF2 applies (ii) and (iv) for approximating multiplications.

Definition 4.1.11. Let x̆ = a0+
n∑
i=1

aiεi+an+1ε++an+2ε−+an+3ε± and y̆ = b0+
n∑
i=1

biεi+

bn+1ε+ +bn+2ε−+bn+3ε±. AF2 arithmetic consisting of {+,−,×,÷} are defined as follows:

• x̆+ y̆ = (a0 +b0)+
n∑
i=1

(ai+bi)εi+(an+1 +bn+1)ε+ +(an+2 +bn+2)ε−+(an+3 +bn+3)ε±.

• x̆− y̆ = (a0−b0)+
n∑
i=1

(ai−bi)εi+(an+1 +bn+2)ε+ +(an+2 +bn+1)ε−+(an+3 +bn+3)ε±.

• x̆× y̆ = (a0b0) +
n∑
i=1

(a0bi + b0ai)εi +K1ε+ +K2ε− +K3ε±

where:

K1 =
n+2∑

i=1,aibi>0

aibi +



a0bn+1 + b0an+1 if a0, b0 ≥ 0

a0bn+1 − b0an+2 if a0 > 0, b0 < 0

−a0bn+2 + b0an+1 if a0 < 0, b0 > 0

−a0bn+2 − b0an+2 if a0, b0 < 0

30

K2 =
n+2∑

i=1,aibi<0

aibi +



a0bn+2 + b0an+2 if a0, b0 ≥ 0

a0bn+2 − b0an+1 if a0 > 0, b0 < 0

−a0bn+1 + b0an+2 if a0 < 0, b0 > 0

−a0bn+1 − b0an+1 if a0, b0 < 0

K3 =
n+3∑
i=1

n+3∑
j=1,j 6=i

|aibj|+ (|a0|bn+3 + |b0|an+3) + an+3bn+3

• x̆÷y̆ = x̆× 1
y̆

if 0 /∈ (b0−
n∑
i=1

|bi|−bn+1−bn+2−bn+3, b0+
n∑
i=1

|bi|+bn+1+bn+2+bn+3)

(1
y̆

is computed by Chebyshev approximation [30])

Followings are examples of AF2 arithmetic.

Example 4.1.12. Let x ∈ (0, 2) and y = 2− x. The AF2 form of x and y are,

• x̆ = 1 + ε1

• y̆ = 2− (1 + ε1) = 1− ε1

By using AF2 arithmetic, the bounds of z = x� y (� ∈ {+,−,×}) are,

• addition z = x+ y:

z̆ = x̆+ y̆

= (1 + ε1) + (1− ε1)

= 2

We can conclude that z = 2.

• subtraction z = x− y:

z̆ = x̆− y̆

= (1 + ε1)− (1− ε1)

= 2ε1

The AF2 projection of z̆ is (−2, 2), then z ∈ (−2, 2).

31

• multiplication z = x× y:

z̆ = x̆× y̆

= (1 + ε1)× (1− ε1)

= 1− ε1 + ε1 − ε1ε1

= 1 + ε−

The AF2 projection of z̆ is (0, 1) (ε− ∈ (−1, 0)), then z ∈ (0,1), which provides a

better approximation than applying CI, AF and AF1,

CI : z ∈ (0, 4)

AF : z ∈ (0, 2)

AF1 : z ∈ (0, 2)

AF2 can improve precision when approximating product of two same noise symbols,

which are pushed into the positive or negative noise symbols (ε+ or ε−) depending on

their coefficients.

4.1.3 Chebyshev Approximation Interval

In this section, we propose a new form of affine interval, called Chebyshev Approximation

Interval (CAI), which is based on Chebyshev approximation.

Definition 4.1.13. A CAI of x is a formula of the form:

x̊ = ā0 +
n∑
i=1

āiεi +
n∑
i=1

āi+nεi+n + ā2n+1ε±

where εi ∈ (−1, 1) is a noise symbol, ε± ∈ (−1, 1) is the fixed error noise symbol, εi+n ∈

(0, 1) represents for the absolute value |εi| of εi, and a coefficient āi represents for a CI.

Ideas behind are,

(v) introduction of noise symbols for absolute values (εi+n = |εi|) and

(vi) Chebyshev approximation of x2 with noise symbols for absolute values.

(vi) comes from the observation that, for x ∈ (−1, 1),

32

a u b

Figure 4.1: Chebyshev approximation

|x| − 1
4
≤ x2 = |x|2 < |x| and x− 1

4
≤ x|x| ≤ x+ 1

4

which are explained in Figure 4.2. This observation leads symbolic manipulation on

products of the same noise symbol ε as

εε = |ε||ε| = |ε|+ (−1
4
, 0) and ε|ε| = ε+ (−1

4
, 1

4
).

y = x2

y

y = x2

1

x-1 1

-0.25

x-1 1

y y = x|x|

0.25

1

x
-0.25

0.25

1-1
-0.25

-1-1

Figure 4.2: Chebyshev approximation of x2 and x|x|

Definition 4.1.14. Let x̊ and ẙ be represented by CAI form,

• x̊ = ā0 +
n∑
i=1

āiεi +
n∑
i=1

āi+nεi+n + ā2n+1ε±

• ẙ = b̄0 +
n∑
i=1

b̄iεi +
n∑
i=1

b̄i+nεi+n + b̄2n+1ε±

and c̄ = (−1, 1). CAI arithmetic consisting of {+,−,×,÷} are defined as follows (āb̄

is denoted for ā× b̄):

33

• x̊+ ẙ = (ā0 + b̄0) +
2n∑
i=1

(āi + b̄i)εi + (c̄ā2n+1 + c̄b̄2n+1)ε±

• x̊− ẙ = (ā0 − b̄0) +
2n∑
i=1

(āi − b̄i)εi + (c̄ā2n+1 + c̄b̄2n+1)ε±

• x̊× ẙ = K0 +K1εi +K2εi+n +Kε±, where {+,−,×} are CI arithmetic, and

– K0 = ā0b̄0 +
n∑
i=1

(āib̄i(−
1

4
, 0)+ āib̄i+n(−1

4
,
1

4
)+ b̄iāi+n(−1

4
,
1

4
)+ āi+nb̄i+n(−1

4
, 0))

– K1 =
n∑
i=1

(ā0b̄i + āib̄0 + āib̄i+n + āi+nb̄i)

– K2 =
n∑
i=1

(ā0b̄i+n + āi+nb̄0 + āib̄i + āi+nb̄i+n)

– K = (c̄ā0b̄2n+1 + c̄b̄0ā2n+1)+
n∑
i=1

n∑
j=1,j 6=i

c̄āib̄j +
n∑
i=1

n∑
j=1,j 6=i

c̄āib̄j+n+
n∑
i=1

c̄āib̄2n+1+

n∑
i=1

n∑
j=1,j 6=i

c̄āi+nb̄j +
n∑
i=1

n∑
j=1,j 6=i

c̄āi+nb̄j+n +
n∑
i=1

c̄āi+nb̄2n+1 + c̄ā2n+1b̄2n+1

• x̊÷ ẙ = x̊× 1
ẙ

if 0 /∈ projection of ẙ (CI bounds of ẙ)

Note that ε± is propagated from unknown sources, then its coefficient is computed

by applying multiplication other coefficients with c̄ = (−1, 1), and 1
ẙ

is computed by

Chebyshev approximation [30].

Remark 4.1.15. Introduction of Chebyshev approximation is not new. For instance,

Stolfi [30] proposed it based on the mean-value theorem, as in the Figure 4.1. Miyajima

et al. [20] applied not only for products of the same noise symbols but also those of

different noise symbols. However, their estimation on x2 is only in the positive interval

using the fact x − 1
4
≤ x2 < x for x ∈ (0, 1). We newly introduce noise symbols for

absolute values. The advantage is, coefficients are half compared to them, which reduce

the effect of the offset [−1
4
, 0). Currently, we only focus on products of the same noise

symbols, which is useful for computation of high degrees like in Taylor expansion.

Roughly speaking that CAI applies (ii), (v) and (vi). Followings are examples of CAI

arithmetic.

34

Example 4.1.16. Let f = x3 − 3x + x2 with x ∈ (−3, 1). The CAI form of x is

x̊ = −1 + 2ε.

f̊ = x̊3 − 3x̊+ x̊2

= (−1 + 2ε)× (−1 + 2ε)× (−1 + 2ε)− (−3 + 6ε) + (−1 + 2ε)× (−1 + 2ε)

= (1− 4ε+ 4ε2)× (−1 + 2ε)− (−3 + 6ε) + (1− 4ε+ 4ε2)

= (1− 4ε+ 4(|ε|+ (−1

4
, 0)))× (−1 + 2ε)− (−3 + 6ε) + (1− 4ε+ 4(|ε|+ (−1

4
, 0)))

= (1− 4ε+ 4|ε|+ (−1, 0))× (−1 + 2ε)− (−3 + 6ε) + (1− 4ε+ 4|ε|+ (−1, 0))

= ((0, 1)− 4ε+ 4|ε|)× (−1 + 2ε)− (−3 + 6ε) + ((0, 1)− 4ε+ 4|ε|)

= ((−1, 0) + (0, 2)ε+ 4ε− 8ε2 − 4|ε|+ 8ε|ε|)− (−3 + 6ε) + ((0, 1)− 4ε+ 4|ε|)

= ((−1, 0) + (0, 2)ε+ 4ε− 8(|ε|+ (−1

4
, 0))− 4|ε|+ 8(ε+ (−1

4
,
1

4
)))− (−3 + 6ε) + ((0, 1)− 4ε+ 4|ε|)

= ((−1, 0) + (0, 2)ε+ 4ε− 8|ε| − (−2, 0)− 4|ε|+ 8ε+ (−2, 2))− (−3 + 6ε) + ((0, 1)− 4ε+ 4|ε|)

= ((−3, 4) + (12, 14)ε− 12ε)− (−3 + 6ε) + ((0, 1)− 4ε+ 4|ε|)

= (0, 8) + (2, 4)ε− 8|ε|

Note that we write a real number r for representation of a CI (r, r), i.e., 4 is represented

for (4, 4). For CAI projection, we apply case analyses for |ε|, which are ε ∈ (0, 1) and

ε ∈ (−1, 0),

• if ε ∈ (0, 1), then f̊ = (0, 8) + (2, 4)ε − (8, 8)ε = (0, 8) + (−6,−4)ε. The projection

of f̊ is (−6, 8).

• if ε ∈ (−1, 0), then f̊ = (0, 8) + (2, 4)ε + (8, 8)ε = (0, 8) + (10, 12)ε. The projection

of f̊ is (−12, 8).

For ε ∈ (−1, 1), the projection of f̊ is (−6, 8) ∪ (−12, 8) = (−12, 8), then f ∈ (-12,8). In

comparison with CI, AF1 and AF2, we have the following results:

CI : f ∈ (−33, 27)

AF1 : f ∈ (−25, 31)

AF2 : f ∈ (−13, 19)

In Example 4.1.16, the affine form of x is −1 + 2ε. When approximating for ε3, AF2

pushes it into the fixed error noise symbol (ε±) while CAI estimates it by a form of ε,

35

which allows to keep information about sources of computation. In comparison with AF2,

CAI can keep sources of computation for high degrees (i.e., degrees ≥ 3), whereas AF2

can handle up to degree 2.

Like CI, AI’s arithmetic is over approximation, which is presented as the lemma below.

Lemma 4.1.17. For x ∈ (a, b) and y ∈ (c, d), x and y are denoted for the affine forms

of x and y in AF , AF1, AF2, or CAI. Then z = x� y ∈ x � y where � ∈ {+,−,×,÷}.

Proof. Proofs are directly obtained from the definitions of AF , AF1, AF2, and CAI

arithmetic for {+,−,×,÷}.

We present below two additional examples to compare the results of CAI with CI,

AF1 and AF2. The first one is a polynomial of degrees 4 and the second one is a Taylor

expansion of sin(x) function, which is expanded to degree 9. In both of them, CAI gives

the best bounds.

Example 4.1.18. Given f = (x2 − 2y2 + 7)2 + (3x + y − 5)2 with x ∈ (−1, 1) and

y ∈ (−2, 0), the bounds of f computed by CI, AF1, AF2 and CAI are,

CI : (−12, 164)

AF1 : (−98, 220)

AF2 : (−53, 191)

CAI : (-4.6875,163.25)

Example 4.1.19. Given sin(x) = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
with x ∈ (0, 0.523598) (x is

ranged from 0 to π
6

and π = 3.141588), the bounds of sin(x) computed by CI, AF1, AF2

and CAI are,

CI : 10−6(−23926.630584, 523925.958917)

AF1 : 10−6(−6290.490992, 523927.832027)

AF2 : 10−6(−6188.005805, 514955.797111)

CAI1 : 10−6(−1591.614677, 503782.471931)

When IA has a noise symbol ε, we define sensitivity [23] of a variable as the absolute

value of the coefficient of corresponding ε. CAI can keep information about sources of

36

computation for high degrees. For instance, in CAI form of Example 4.1.20, the coefficient

3 of |ε1| has the largest sensitivity, which indicates x is the most influential.

Example 4.1.20. Let f = x3−2xy with x ∈ (0, 2) (x = 1+ε1) and y ∈ (1, 3) (y = 2+ε2),

we have,

• by AF2, f̆ = −3− ε1−2ε2 +3ε+ +3ε± and the bounds of f are estimated as (−9, 6),

• by CAI, f̊ = (−4,−11
4

) + (−1
4
, 0)ε1 − 2ε2 + 3|ε1| + (−2, 2)ε± and the bounds of f

are estimated as (-8,4.5).

4.2 Over and Under Approximations for Intervals

4.2.1 Interval Arithmetic as Over Approximation

Interval arithmetic (IA) is applied for estimating bounds of polynomials under a given

input range (a box), and we use it as an over-approximation theory. We instantiate IA

to O.T in Chapter 3, and obtain the definition below.

Definition 4.2.1. Given an interval constraint I = x1 ∈ (a1, b1) ∧ · · · ∧ xn ∈ (an, bn), a

polynomial constraint P of the form

m∧
i=1

fi(x1, · · · , xn) > 0.

Let f li (x1, · · · , xn) and fui (x1, · · · , xn) be lower and upper bounds estimated by IA when

xi holds the interval constraint I. We say,

• P is IA-VALID under I, if IA evaluates ∀i ∈ (1,m). f li (x1, · · · , xn) > 0,

• P is IA-UNSAT under I, ∃i ∈ (1,m). fui (x1, · · · , xn) ≤ 0, and

• P is IA-SAT under I, if (∃j ∈ (1,m). f lj(x1, · · · , xn) ≤ 0) ∧ (
m∧
i=1

fui (x1, · · · , xn) > 0).

Note that lower and upper bounds estimated by IA are over-approximation bounds

(Lemma 4.1.2, 4.1.17). Figure 4.3 shows results of a polynomial constraint decided by

IA. IA-VALID and IA-UNSAT safely reason satisfiability (SAT) and unsatisfiability (UN-

SAT), respectively. However, IA-SAT cannot conclude SAT. IA-SAT is regarded as un-

known and shifted to under approximation (testing) for finding a SAT solution. For

interval arithmetic, we aim at applying affine intervals such as AF,AF1, AF2, and CAI.

37

f(x1, x2, …, xn) > k

Bounds of a polynomial function

estimated by IA

f(x1, x2, …, xn) > k

k

IA-UNSATIA-UNSAT

k

IA-VALID

kk

IA-SAT

Figure 4.3: Results of polynomial constraint by IA

Example 4.2.2. Given an interval constraint I = x ∈ (0, 2) ∧ y ∈ (1, 3) and three

polynomial constraints,

• (f1 = x5 − 3x2y + y3 + 20) > 0

• (f2 = xy2 − 2xy − y3 − 7) > 0

• (f3 = x2y3 − y4) > 0

by applying CAI arithmetic, the bounds of polynomials are

• f1 ∈ (0.9375, 67.75),

• f2 ∈ (−38.75, 0) and

• f3 ∈ (−131.5, 94.125)

Then, we can conclude that

• f1 > 0 is IA-VALID under I,

• f2 > 0 is IA-UNSAT under I and

• f3 > 0 is IA-SAT under I.

38

Satisfiable test cases

Unsatisfiable test cases

f(x1, x2, …, xn) > r

r

Test-UNSAT

r

Test-SAT

Figure 4.4: Results of testing

4.2.2 Testing as Under Approximation

We instantiate testing to U.T in Chapter 3 and obtain the definition below.

Definition 4.2.3. Given an interval constraint I = x1 ∈ (a1, b1) ∧ · · · ∧ xn ∈ (an, bn), a

polynomial constraint P of the form

m∧
i=1

fi(x1, · · · , xn) > 0,

and a choice function θ : (R× R)n → Rn with θ(I) ∈ (a1, b1)× · · · × (an, bn).

For a finite set Θ of choice functions, we say

• P is Test-SAT under I if P holds for some θ ∈ Θ, and

• P is Test-UNSAT under I if P never holds for each θ ∈ Θ.

The set Θ of choice functions in Definition 4.2.3 is a set of test data. Note that Test-

SAT implies SAT and Test-UNSAT does not imply UNSAT (Figure 4.4), which will be

applied for refinements (i.e., an interval is decomposed into smaller intervals).

There are two immediate strategies [24] to generate random test data.

39

A random test data

A periodic test data

k-random ticks = {c , c , …, c }k-random ticks = {c1, c2, …, ck}

ci Є (a0+(i-1)Δ, a0+iΔ) are randomly generated

with Δ = (ak-a0)/k and i Є {1,…,k}

a0 a1 a2
akak-1

k-periodic ticks = {c, c+θ, …, c+(k-1)θ}k-periodic ticks = {c, c+θ, …, c+(k-1)θ}

c Є (a0, a0+ Δ) is randomly generated with Δ = (ak-a0)/k

a0 a1 a2
akak-1

Figure 4.5: Strategy for random generation of test data

Definition 4.2.4. For an interval (l, h) and k ≥ 1,

• the k-random ticks are {c1, · · · , ck}, and

• the k-periodic ticks are {c, c+ ∆, · · · , c+ (k − 1)∆},

where ∆ = h−l
k

, ci ∈ (l+ (i− 1)∆, l+ i∆) and c ∈ (l, l+ ∆) are randomly generated (with

i ∈ {1, ..., k}).

Example 4.2.5. Recall from Example 4.2.2, for an interval constraint I = x ∈ (0, 2)∧y ∈

(1, 3) and a polynomial constraint (f3 = x2y3−y4) > 0, f3 > 0 is shifted to testing because

it is IA-SAT. By applying 2-random ticks for generating test data,

• if the test data in Θ1 is {x = 0.5, x = 1.2, y = 1.5, y = 2.5}

x = 0.5, y = 1.5 f3 = x2y3 − y4 = −4.21875

x = 0.5, y = 2.5 f3 = x2y3 − y4 = −35.15625

x = 1.2, y = 1.5 f3 = x2y3 − y4 = −0.2025

x = 1.2, y = 2.5 f3 = x2y3 − y4 = −16.5625

40

then f3 > 0 is Test-UNSAT in Θ1.

• If the test data in Θ2 is {x = 0.8, x = 1.7, y = 1.5, y = 2.5}

x = 0.8, y = 1.5 f3 = x2y3 − y4 = −2.9025

x = 0.8, y = 2.5 f3 = x2y3 − y4 = −29.0625

x = 1.5, y = 1.5 f3 = x2y3 − y4 = 2.53125

x = 1.5, y = 2.5 f3 = x2y3 − y4 = −3.90625

then f3 > 0 is Test-SAT in Θ2 by the test data x = 1.5 and y = 1.5. We can

conclude that x ∈ (0, 2) ∧ y ∈ (1, 3) ∧ (f3 = x2y3 − y4) > 0 is SAT.

41

Chapter 5

Strategies for Over/Under

Approximations and Refinement

5.1 Strategies for Over and Under Approximations

on Intervals

5.1.1 UNSAT Core in a Polynomial Inequality

The aim of (very lazy) theory learning is to remove UNSAT domain (UNSAT boxes) from

searching domain. If we can infer other UNSAT boxes from a particular UNSAT box,

it would be useful for theory propagation in the sense that a large UNSAT domain is

removed from the searching domain.

Generally, an UNSAT core is defined as a minimal set M0 = {l1, · · · , ln} ⊆M (M is a

full truth assignment given from a SAT solver represented for input ranges of variables)

that disproves F (w.r.t. |=O.T) in the very lazy theory learning rule (Section 3.2). To

obtain a precise minimal M0 is not easy. As a strategy to obtain smaller M0, we introduce

an UNSAT core f̂ of a polynomial f based on the IA-UNSAT judgment. Then, M0 is

selected as literals in M corresponding to variables in f̂ .

Definition 5.1.1. f̂ is an UNSAT core of a polynomial f if IA-UNSAT of f̂ > 0 implies

IA-UNSAT of f > 0.

Definition 5.1.1 says that, for an interval constraint I, if f̂ > 0 is IA-UNSAT under I,

then f > 0 is IA-UNSAT under I.

42

We apply the following steps for UNSAT core computation,

(a) finding an (API) f > 0 causing unsatisfiability of a given polynomial inequality when

a conflict (IA-UNSAT) occurs,

(b) finding all UNSAT cores f̂ of f , and

(c) generating learning clauses from UNSAT cores f̂ by selecting only literals correspond-

ing to variables of f̂ .

To compute an UNSAT core f̂ of a polynomial f , we consider sub polynomials of f

that cause unsatisfiability of the API f > 0. Ideas are,

• first, f is represented by two sub polynomials f1 and f2 from monomials of f such

that f = f1 + f2,

• if f2 ≤ 0 for all values of its variables, then f1 is an UNSAT core of f .

Example 5.1.2. For a polynomial inequality (f = x2−xy−xz) > 0 with x, y, z ∈ (0,∞),

f consists of 2 UNSAT cores, which are,

• f̂1 = x2 − xy, because f = f̂1 − xz and −xz < 0 for x, z ∈ (0,∞)

• f̂2 = x2 − xz, because f = f̂2 − xy and −xy < 0 for x, y ∈ (0,∞)

Finding UNSAT cores improves efficiency in theory propagation (learning) of the

DPLL(T) procedure. It only learns minimal clauses, clauses with minimal numbers of

literals. The example below demonstrates uses of applying UNSAT cores for the very lazy

theory learning rule.

Example 5.1.3. For a polynomial inequality (taken from Hong benchmark of SMT-LIB

[2]) P = (1−x2
0−x2

1−· · ·−x2
9 > 0)∧(x0x1 · · ·x9−1 > 0). Interval constraint is presented

in the form of x ∈ (−∞,−1) ∨ x ∈ (−1, 1) ∨ x ∈ (1,∞) for each variable x.

43

Considering a polynomial f = 1− x2
0 − x2

1 − · · · − x2
9, UNSAT cores of f are,

1− x2
0 1− x2

0 − x2
1 1− x2

0 − x2
2 1− x2

0 − x2
1 − x2

2 · · ·

1− x2
1 1− x2

1 − x2
2 1− x2

1 − x2
3 1− x2

1 − x2
2 − x2

3 · · ·

1− x2
2 1− x2

2 − x2
3 1− x2

2 − x2
4 1− x2

2 − x2
3 − x2

4 · · ·

1− x2
3 1− x2

3 − x2
4 1− x2

3 − x2
5 1− x2

3 − x2
4 − x2

5 · · ·

· · ·

1− x2
9

Assume that M = (x0 ∈ (1,∞))∧ · · · ∧ (x9 ∈ (1,∞)) is chosen from SAT solver. P is

IA-UNSAT under M , then the very lazy learning rule learns the clause

¬M = ¬(x0 ∈ (1,∞)) ∨ ¬(x1 ∈ (1,∞)) ∨ · · · ∨ ¬(x9 ∈ (1,∞))

as usual.

By applying UNSAT cores, the very lazy theory learning rule learns only clauses with

minimal number of literals, which are,

¬(x0 ∈ (1,∞)) from the UNSAT core 1− x2
0

¬(x1 ∈ (1,∞)) from the UNSAT core 1− x2
1

· · ·

¬(x9 ∈ (1,∞)) from the UNSAT core 1− x2
9

These clauses help to remove large UNSAT boxes from the searching boxes. Note that

we consider the UNSAT cores 1− x2
0, 1− x2

1, · · · , 1− x2
9 rather than others, i.e.,1− x2

0 −

x2
1, 1− x2

0− x2
2, · · · because their minimal number of variables lead to create short clauses

for learning, which are more useful in theory propagation.

On the other hand, learning clauses from UNSAT cores avoids learning a large num-

ber of other clauses. For instance, learning the clause ¬(x0 ∈ (1,∞)) prevents 39

clauses from being learning as usual (i.e., for the remaining 9 variables and 3 choices

(−∞,−1), (−1, 1), (1,∞) for each, then their combinations are 39 clauses as total).

44

UNSAT core: on/off
SAT UNSAT

No. Problems Time(s) No. Problems Time(s)

With UNSAT core 37 983.921 9 0.512

Without UNSAT core 38 1480.812 9 0.512

Table 5.1: Experimental results with and without UNSAT core

We compare efficiency of raSAT when applying and not applying UNSAT core, and

their results are shown in Table 5.1. The problems in the experiment are taken from 151

inequality problems of Zankl family (in the division QF NRA of SMT-LIB [2]). Among

them, 41 problems are solved with UNSAT core and 42 for without UNSAT core. When

applying UNSAT core, the number of detected problems is not improved, but we observed

that running time is slightly improved (by examination of running time for each detected

problem). One reason would be that our current implementation for UNSAT core is

not well organized. For identifying UNSAT cores of an UNSAT API, we evaluate all

sub polynomials of the API and this process could take much time. We are planning to

optimize for this step.

5.1.2 Incremental Test Data Generation

Performing a large number of test data generations affects efficiency. For instance, if we

consider a polynomial constraint with 30 variables and we generate 2 test data for each

variable, we have 230 test data as total, which is intractable. The ideas for incremental

test data generation are,

(i) an atomic polynomial inequality (API)-wise test data generation with dynamic sort-

ing of IA-SAT APIs, and

(ii) thinning test data that does not satisfy an API.

Note that, during test data generation, test data are generated for IA-SAT APIs only

because these APIs are regarded as unknown by IA. Let {fi > 0} be the set of IA-SAT

APIs, and let V ar(fi) be the set of variables appearing in an API fi.

For an API-wise test data generation, an ordering of testing of IA-SAT APIs affects

the efficiency. Our ideas are,

• API with a smaller variable set,

45

• bottleneck API w.r.t. dependency (V ar(fi) ⊆ V ar(fj)), and

• API with a smaller additional test data generation

have priority. To formalize them, let DEPfi = {fj | fj ∈ P ∧ V ar(fi) ⊆ V ar(fj)} and

depfi = |DEPfi |. Then, during an API-wise test data generation, {fj} is dynamically

sorted at the choice of next API to hold,

(a) V ar(fi) ⊂ V ar(fj) implies i ≤ j,

(b) depf1 is the largest, and

(c) if, for some j < m, V ar(fm) ⊆
j⋃
i=1

V ar(fi) and ∀n. V ar(fn) *
j⋃
i=1

V ar(fi), then

m ≤ n,

Note that |DEPfi | is denoted for cardinality of the set DEPfi and APIs are dynami-

cally sorted as f1, f2, ..., fk.

An API-wise test data generation requires storing previous test results of tested APIs.

To reduce stored test results, test data refuting APIs are removed. When they become

empty, it returns Test-UNSAT, and shifts the API that refutes all test data to the refine-

ment.

Example 5.1.4. Let the set of IA-SAT APIs for testing be f1 = 2x − y2 − 2 > 0,

f2 = x2 − 1 > 0, f3 = xy − yz − zx > 0, f4 = u2 − x2y > 0, and f5 = 2yv2 − ux2 − 1 > 0

with x, y, z, u, v ∈ (0, 2), and 2-random ticks be applied for testing. We have, depf1 = 3,

depf2 = 5, depf3 = 2, depf4 = 2 and depf5 = 1. Dynamically sorted order of these APIs is

f2, f1, f3, f4, f5, shown in Figure 5.1. Testing bases on this order for generating test data,

which is,

• first, f2 = x2 − 1 > 0 is chosen, since depf2 is the largest. Assume that generated

test data are {x = 1.2, x = 0.5}. The satisfiable test set for x2− 1 > 0 is {x = 1.2}.

• Next f1 = 2x − y2 − 2 > 0 is chosen, since {y} is a smaller set of additional

variables and V ar(f1) ⊂ V ar(f3), V ar(f4), V ar(f5). Assume that generated test

data are {y = 1.4, y = 0.5}. The satisfiable test set 2x − y2 − 2 > 0 becomes

{x = 1.2, y = 0.5}.

46

x

f2 =x2 -1 > 0

x, y

f1 =2x-y2 -2 > 0

x
x, y

f3=xy-yz-zx>0

x, y,

u

x, y,

z

f4 =u2-x2y >0

u
z

x, y,

f5 =2yv2-ux2-1 >0

x, y,

u,v

Figure 5.1: Incremental test data generation

• The API f3 = xy−yz−zx > 0 is chosen (we can choose either f3 = xy−yz−zx > 0

or f4 = u2− x2y > 0 because V ar(f3) ⊂ V ar(f5) and V ar(f4) ⊂ V ar(f5)). Assume

that generated test data are {z = 0.8, z = 0.3} and the satisfiable test set is {x =

1.2, y = 0.5, z = 0.3}.

• For f4 = u2 − x2y > 0, assume that test data are {u = 1.05, u = 0.25} and the

satisfiable test set is {x = 1.2, y = 0.5, z = 0.3, u = 1.05}.

• Finally, for f5 = 2yv2−ux2−1 > 0, assume that generated test data are {v = 0.7, v =

1.3}. Neither satisfies it and Test-UNSAT is reported, and f5 = 2yv2− ux2− 1 > 0

is shifted to interval decomposition. If generated test data are {v = 1.13, v = 1.77},

{x = 1.2, y = 0.5, z = 0.3, u = 1.05, v = 1.77} satisfies the IA-SAT APIs and testing

reports SAT.

Example 5.1.4 shows that instead of generating 25 test data at beginning, number of

test data kept in memory decreases much by incremental test data generation based on

an ordering of IA-SAT APIs for testing.

47

Selecting Intervals
SAT UNSAT

to decompose No. Problems Time(s) No. Problems Time(s)

Random choice of an API 20 123.623 9 0.512

The first Test-UNSAT API 38 1480.812 9 0.512

Table 5.2: Experimental results for selecting of intervals to decompose

5.2 Strategies for Refinement

Similar to explosion of test data generation, interval decomposition may cause exponential

explosion of boxes. We need to consider the choice of intervals to decompose, and how to

decompose an interval.

5.2.1 Selecting Intervals to Decompose

The choice of intervals to decompose consists of two steps.

(a) Choose an API such that its variables are candidates for interval decomposition.

(b) Among variables of the selected API, choose influential ones.

(a) follows incremental test data generation in Section 5.1.2 where APIs are sorted

based on their dependencies on variables. When an API fj > 0 firstly refutes all generated

test data, testing reports Test-UNSAT. Such an API fj > 0 is called the first Test-UNSAT

API. Then, variables appearing in fj are candidates for interval decompositions, since fj is

a direct cause of Test-UNSAT. In Example 5.1.4, the Test-UNSAT API 2yv2−ux2−1 > 0 is

reported with {v = 0.7, v = 1.3}, and x, y, u, v ∈ (0, 2) (variables of the first Test-UNSAT

API) become candidates for interval decomposition.

For (b), among variables in the selected API fj > 0, we further filter variables that

have sensitivity (Example 4.1.20) beyond a threshold, since they are expected to be more

influential. Sensitivity is detected by previous IA-SAT detection phase.

Among presented strategies, only (a) is implemented in our current solver raSAT

((b) is not yet implemented), and we select all variables in the first Test-UNSAT API for

interval decomposition.

Table 5.2 shows experimental results when we apply two different selections for select-

ing an API whose variables are candidate for interval decomposition in raSAT. One is

48

random choice of an API among IA-SAT APIs and the other selects the first Test-UNSAT

API. Then, all variables in the selected API are applied for interval decomposition. The

problems chosen for the experiment are 151 inequality problems of Zankl family (in the di-

vision QF NRA of SMT-LIB [2]). The number of solved problems and their total running

time are indicated in SAT and UNSAT columns of Table 5.2.

Selecting the first Test-UNSAT API gives a better result than random choice of an

API, i.e., 38 SAT problems are detected by selecting the first Test-UNSAT API, only

20 SAT problems are detected by random choice. The experiment shows that choice of

variables for interval decomposition affects efficiency, and in raSAT, we apply a guidance

from testing results (the first Test-UNSAT API), which would be useful because,

• an API that is more difficult to find SAT instances, i.e., a Test-UNSAT API, has

high priority for examination. If the API is UNSAT, raSAT only applies interval

decomposition for its variables without considering others. If it is SAT, raSAT

quickly narrows its SAT domain.

• UNSAT domain is quickly removed because interval decomposition for variables of

Test-UNSAT APIs helps to identify UNSAT domain.

Another SMT solver iSAT [12] for polynomial constraints, applies both interval arith-

metic (classical interval) and interval decomposition too, unfortunately it is not clear in

iSAT how variables are chosen for interval decomposition. Choice of variables for interval

decomposition is quite important when solving problems with a large number of variables,

i.e., 30, 40, > 100 variables, such as problems of Zankl family.

5.2.2 Interval Decomposition

We present below 3 strategies for decomposing an interval into smaller intervals, which

are balanced, monotonic, and tick decomposition.

Balanced Decomposition

Balanced decomposition decomposes an interval into two intervals exactly half.

Definition 5.2.1. For an interval x ∈ (a, b), a balanced decomposition is

Db(x ∈ (a, b)) = {x ∈ (a,
a+ b

2
), x ∈ (

a+ b

2
, b)}

49

For example, x ∈ (0, 2) is decomposed into x ∈ (0, 1) and x ∈ (1, 2) by balanced

decomposition, and we add the following clauses to the SAT solver for encoding interval

decomposition,

x ∈ (0, 2)⇒ x ∈ (0, 1) ∨ x ∈ (1, 2)

∧ x ∈ (0, 1)⇒ x ∈ (0, 2)

∧ x ∈ (1, 2)⇒ x ∈ (0, 2)

∧ (¬(x ∈ (0, 1)) ∨ ¬(x ∈ (1, 2)))

Note that ⇒ is denoted for implication and u⇒ v is equivalent with ¬u ∨ v.

Monotonic Decomposition

Monotonic decomposition introduces a bias δ to an interval decomposition, if a value of

a corresponding variable monotonically affects on a value of a polynomial.

Definition 5.2.2. Let f(x1, · · · , xk) be a polynomial, a variable xi (1 ≤ i ≤ k) is

• monotonically increasing in f if

∀x′i ≥ x′′i implies f(x1, · · · , x′i, · · · , xk) ≥ f(x1, · · · , x′′i , · · · , xk), and

• monotonically decreasing in f if

∀x′i ≥ x′′i implies f(x1, · · · , x′i, · · · , xk) ≤ f(x1, · · · , x′′i , · · · , xk).

Posf and Negf denote for the sets of monotonically increasing and decreasing variables

of a polynomial f , respectively.

For a polynomial f = 2yv2 − ux2 − 1 where x, y, u, v ∈ (0,∞), Posf = {y, v} and

Negf = {x, u}.

Definition 5.2.3. Let x ∈ (a, b) and δ < b−a for a bound δ. A monotonic decomposition

is,

Dm(x ∈ (a, b)) =


{x ∈ (a, b− δ), x ∈ (b− δ, b)} if x ∈ Posf

{x ∈ (a, a+ δ), x ∈ (a+ δ, b)} if x ∈ Negf

{x ∈ (a, a+b
2

), x ∈ (a+b
2
, b)} otherwise

50

Example 5.2.4. In Example 5.1.4, if the API f = 2yv2 − ux2 − 1 > 0 is Test-UNSAT

under I = x ∈ (0, 2) ∧ y ∈ (0, 2) ∧ u ∈ (0, 2) ∧ v ∈ (0, 2), the following clauses are added

to the SAT solver for monotonic decomposition (with assumption δ = 0.25),

• x ∈ Negf then x ∈ (0, 2) is decomposed into x ∈ (0, 0.25) and x ∈ (0.25, 2),

x ∈ (0, 2)⇒ x ∈ (0, 0.25) ∨ x ∈ (0.25, 2)

∧ x ∈ (0, 0.25)⇒ x ∈ (0, 2)

∧ x ∈ (0.25, 2)⇒ x ∈ (0, 2)

∧ (¬(x ∈ (0, 0.25)) ∨ ¬(x ∈ (0.25, 2)))

• y ∈ Posf then y ∈ (0, 2) is decomposed into y ∈ (0, 1.75) and y ∈ (1.75, 2),

y ∈ (0, 2)⇒ y ∈ (0, 1.75) ∨ y ∈ (1.75, 2)

∧ y ∈ (0, 1.75)⇒ y ∈ (0, 2)

∧ y ∈ (1.75, 2)⇒ y ∈ (0, 2)

∧ (¬(y ∈ (0, 1.75)) ∨ ¬(y ∈ (1.75, 2)))

• u ∈ Negf then u ∈ (0, 2) is decomposed into u ∈ (0, 0.25) and u ∈ (0.25, 2),

u ∈ (0, 2)⇒ u ∈ (0, 0.25) ∨ u ∈ (0.25, 2)

∧ u ∈ (0, 0.25)⇒ u ∈ (0, 2)

∧ u ∈ (0.25, 2)⇒ u ∈ (0, 2)

∧ (¬(u ∈ (0, 0.25)) ∨ ¬(u ∈ (0.25, 2)))

• v ∈ Posf then v ∈ (0, 2) is decomposed into v ∈ (0, 1.75) and v ∈ (1.75, 2),

v ∈ (0, 2)⇒ v ∈ (0, 1.75) ∨ v ∈ (1.75, 2)

∧ v ∈ (0, 1.75)⇒ v ∈ (0, 2)

∧ v ∈ (1.75, 2)⇒ v ∈ (0, 2)

∧ (¬(v ∈ (0, 1.75)) ∨ ¬(v ∈ (1.75, 2)))

51

We apply δ in Definition 5.2.3 (heuristic rule) as the bias δ, by regarding δ as a unit

of searching. For a balanced decomposition, the SAT solver will choose an arbitrary

combination of input ranges. However, for a monotonic decomposition, we would like

to force the SAT solver to choose a narrower sub-interval (i.e., (b − δ, b) for Posf , and

(a, a + δ) for Negf), which makes upper and lower bounds of the polynomial f increase,

and provides more chances to lead f satisfiable. In Example 5.2.4, the choice is x ∈

(0,0.25)∧ y ∈ (1.75,2)∧ u ∈ (0,0.25)∧ v ∈ (1.75,2) for the next evaluation by IA and

testing. MiniSat 2.2 chooses literals by the “activity” measure, and we manually increase

the activity of literals corresponding to a narrowed sub-interval.

Tick Decomposition

Tick decomposition divides an interval into two or three sub intervals based on a given

point (tick) inside the interval.

Definition 5.2.5. Let x ∈ (a, b), δ < b− a for a bound δ and a tick t ∈ (a, b), dp, dn and

dpn are defined as follows:

dp(x ∈ (a, b)) =

{x ∈ (a, t) ∨ x ∈ (t, t+ δ) ∨ x ∈ (t+ δ, b)} if t+ δ < b

{x ∈ (a, t) ∨ x ∈ (t, b)} otherwise

dn(x ∈ (a, b)) =

{x ∈ (a, t− δ) ∨ x ∈ (t− δ, t) ∨ x ∈ (t, b)} if t− δ > a

{x ∈ (a, t) ∨ x ∈ (t, b)} otherwise

dpn(x ∈ (a, b)) =


{x ∈ (a, t+ 0.5δ) ∨ x ∈ (t+ 0.5δ, b)} if t− 0.5δ ≤ a

{x ∈ (a, t− 0.5δ) ∨ x ∈ (t− 0.5δ, b)} if t+ 0.5δ ≥ b

{x ∈ (a, t− 0.5δ) ∨ x ∈ (t− 0.5δ, t+ 0.5δ) ∨ x ∈ (t+ 0.5δ, b)} otherwise

Definition 5.2.6. Let x ∈ (a, b), δ < b − a for a bound δ and a tick t ∈ (a, b). Tick

decomposition is,

Dt(x ∈ (a, b)) =


dp if x ∈ Posf

dn if x ∈ Negf

dpn otherwise

52

Example 5.2.7. In Example 5.1.4, assume that the API f = 2yv2 − ux2 − 1 > 0 is

Test-UNSAT under I = x ∈ (0, 2) ∧ y ∈ (0, 2) ∧ u ∈ (0, 2) ∧ v ∈ (0, 2), δ = 0.25 and ticks

are given by tx = 1.2, ty = 0.5, tu = 1.05 and tv = 1.3 (a test data in Example 5.1.4).

Because x, u ∈ Negf and y, v ∈ Posf , clauses for tick decomposition are,

• x ∈ (0, 2) is decomposed into x ∈ (0, 0.95), x ∈ (0.95, 1.2) and x ∈ (1.2, 2),

x ∈ (0, 2)⇒ x ∈ (0, 0.95) ∨ x ∈ (0.95, 1.2) ∨ x ∈ (1.2, 2)

∧ x ∈ (0, 0.95)⇒ x ∈ (0, 2)

∧ x ∈ (0.95, 1.2)⇒ x ∈ (0, 2)

∧ x ∈ (1.2, 2)⇒ x ∈ (0, 2)

∧ (¬(x ∈ (0, 0.95)) ∨ ¬(x ∈ (0.95, 1.2)))

∧ (¬(x ∈ (0, 0.95)) ∨ ¬(x ∈ (1.2, 2)))

∧ (¬(x ∈ (0.95, 1.2)) ∨ ¬(x ∈ (1.2, 2)))

• y ∈ (0, 2) is decomposed into y ∈ (0, 0.5), y ∈ (0.5, 0.75) and y ∈ (0.75, 2),

y ∈ (0, 2)⇒ y ∈ (0, 0.5) ∨ y ∈ (0.5, 0.75) ∨ y ∈ (0.75, 2)

∧ y ∈ (0, 0.5)⇒ y ∈ (0, 2)

∧ y ∈ (0.5, 0.75)⇒ y ∈ (0, 2)

∧ y ∈ (0.75, 2)⇒ y ∈ (0, 2)

∧ (¬(y ∈ (0, 0.5)) ∨ ¬(y ∈ (0.5, 0.75)))

∧ (¬(y ∈ (0, 0.5)) ∨ ¬(y ∈ (0.75, 2)))

∧ (¬(y ∈ (0.5, 0.75)) ∨ ¬(y ∈ (0.75, 2)))

53

• u ∈ (0, 2) is decomposed into u ∈ (0, 0.8), u ∈ (0.8, 1.05) and u ∈ (1.05, 2),

u ∈ (0, 2)⇒ u ∈ (0, 0.8) ∨ u ∈ (0.8, 1.05) ∨ u ∈ (1.05, 2)

∧ u ∈ (0, 0.8)⇒ u ∈ (0, 2)

∧ u ∈ (0.8, 1.05)⇒ u ∈ (0, 2)

∧ u ∈ (1.05, 2)⇒ u ∈ (0, 2)

∧ (¬(u ∈ (0, 0.8)) ∨ ¬(u ∈ (0.8, 1.05)))

∧ (¬(u ∈ (0, 0.8)) ∨ ¬(u ∈ (1.05, 2)))

∧ (¬(u ∈ (0.8, 1.05)) ∨ ¬(u ∈ (1.05, 2)))

• v ∈ (0, 2) is decomposed into v ∈ (0, 1.3), v ∈ (1.3, 1.55) and v ∈ (1.55, 2),

v ∈ (0, 2)⇒ v ∈ (0, 1.3) ∨ v ∈ (1.3, 1.55) ∨ v ∈ (1.55, 2)

∧ v ∈ (0, 1.3)⇒ v ∈ (0, 2)

∧ v ∈ (1.3, 1.55)⇒ v ∈ (0, 2)

∧ v ∈ (1.55, 2)⇒ v ∈ (0, 2)

∧ (¬(v ∈ (0, 1.3)) ∨ ¬(v ∈ (1.3, 1.55)))

∧ (¬(v ∈ (0, 1.3)) ∨ ¬(v ∈ (1.55, 2)))

∧ (¬(v ∈ (1.3, 1.55)) ∨ ¬(v ∈ (1.55, 2)))

In implementation of raSAT, a given tick is the test data that makes the first Test-

UNSAT API fj be max value. Intuitionally, we would like to force the SAT solver to

choose a narrower sub-interval around the max value test data (i.e., (t, t+ δ) or (t, b) for

Posf , (t − δ, t) or (a, t) for Negf). In Example 5.2.7, the choice is x ∈ (0.95,1.2) ∧ y ∈

(0.5,0.75) ∧ u ∈ (0.8,1.05) ∧ v ∈ (1.3,1.55) for the next evaluation by IA and testing.

We also compare results when applying different strategies for interval decomposition.

Table 5.3 shows experimental results for 151 problems of Zankl family. The first column

indicates 3 strategies, which are Balanced, Monotonic and Tick Decomposition. The

number of solved problems (SAT/UNSAT) and their total running time are shown in the

other columns. Though Monotonic Decomposition gives the best results, the difference

54

Interval Decomposition
SAT UNSAT

No. Problems Time(s) No. Problems Time(s)

Balanced 35 1490.759 9 1.362

Monotonic 38 1480.812 9 0.512

Tick 24 431.475 9 0.512

Table 5.3: Experimental results for different strategies of interval decomposition

with Balanced Decomposition is not large. We also plan to investigate other choices, i.e.,

adjusting length of smaller intervals, identifying UNSAT domain, etc.

55

Chapter 6

The SMT Solver raSAT and

Experiments

6.1 Design Framework of raSAT

We implement the SMT solver raSAT following to the DPLL(T) procedure in Chapter

3 by instantiating Interval Arithmetic (IA) and Testing as O.T and U.T , respectively.

Figure 6.1 shows its framework.

Initial input constraint is represented in the form of F = I ∧ P where I is an

interval constraint, I = (x1 ∈ (a1, b1)) ∧ · · · ∧ (xn ∈ (an, bn)), presented for a target

domain of searching, and polynomial constraint P is in the form of
m∧
i=1

fi(x1, · · · , xn) > 0.

Note that P is conjunction of fi, then only I is sent to SAT solver. After processes of

interval decomposition or removing UNSAT domain (by learning clauses in SAT solver),

I becomes a CNF formula represented for current searching domain.

We use MiniSat2.2 as backend SAT solver. It is asked to choose a box represented

for a combination of input ranges for all variables, which is first evaluated by IA. If IA

informs IA-UNSAT, the combination is sent to UNSAT cores in Theory Propagation for

computing minimal combinations that make IA-UNSAT. The very lazy theory learning is

applied for learning clauses of minimal combinations obtained from UNSAT cores, which

is aimed at removing UNSAT domain from the target domain. Then the SAT solver

chooses another box. If IA informs IA-VALID, raSAT terminates and outputs SAT.

Otherwise, testing is applied.

56

SAT solver

Initial input constraint

F = I Λ P

UNSAT Result
Heuristics SAT solver

learnt
clauses

UNSAT Result

(UNSAT/unknown)

A SAT
solution M

Heuristics
learnt clauses

isHalt

Interval arithmetic
Domain

decomposition
Theory

Propagation

IA-UNSAT

solution M

decomposition

IA-SAT
IA-VALID

Propagation

Test-UNSAT

Testing
Test-SAT Result

(SAT)

Figure 6.1: Framework of raSAT

Testing generates test data from the box (a given combination of input ranges for

all variables). Testing will stop when it results Test-SAT, i.e., a SAT solution is found.

Otherwise it finds the first Test-UNSAT API by incremental test data generation in Sec-

tion 5.1.2. It is sent to domain decomposition for refinements on the box, i.e., interval

decomposition is applied to decomposing the box into smaller boxes.

If the box becomes small enough, i.e., less than a given threshold, Heuristic is applied

by using heuristic rule to remove that box. Once heuristic rules are used, raSAT con-

cludes unknown when the SAT solver informs UNSAT. If they are never used, raSAT

concludes UNSAT when the same occurs.

Example 6.1.1. Figure 6.2 describes process of solving the polynomial inequality con-

straint F = (x ∈ (−1, 3)∧y ∈ (−1, 3))∧(x3−x2 +y−1.99 > 0). raSAT initially searches

on the box x ∈ (−1, 3) ∧ y ∈ (−1, 3), and executes a refinement loop for searching on

their sub boxes.

We present process of raSAT for balanced and monotonic decomposition by the

DPLL(T) rules for approximation refinement. P is denoted for the polynomial constraint

x3 − x2 + y − 1.99 > 0.

57

(y)

3

Sat solution

x=1.49217901342 y=1.3984060087

2

1

0

-1

-1 (x)0 1 2 3

-1

(a) Balanced decomposition

(y)

3

Sat solution

x=0.991800094431 y=2.75151227326

2.75

-1

-1 (x)0 1 2 3

-1

(b) Monotonic decomposition with δ=0.25

Figure 6.2: Interval decompositions by raSAT for Example 6.1.1

Note that =⇒V L (SAT solver) is the rule that forces the SAT solver to choose a

full assignment (a combination of input ranges). For an interval decomposition, i.e.,

x ∈ (−1, 3) is decomposed into x ∈ (−1, 1) ∨ x ∈ (1, 3), in implementation we add four

clauses below to the SAT solver,

x ∈ (−1, 3)⇒ x ∈ (−1, 1) ∨ x ∈ (1, 3)

∧ x ∈ (−1, 1)⇒ x ∈ (−1, 3)

∧ x ∈ (1, 3)⇒ x ∈ (−1, 3)

∧ (¬(x ∈ (−1, 1)) ∨ ¬(x ∈ (1, 3)))

But for simplicity in presentation of the DPLL(T) rules, we only add the clause x ∈

(−1, 1) ∨ x ∈ (1, 3) for the 4 clauses.

Balanced decomposition: Disjoin boxes applied balanced decomposition are shown in

the left of Figure 6.2. The red boxes are detected as UNSAT (IA-UNSAT).

58

∅ ‖ (x ∈ (−1, 3)) ∧ (y ∈ (−1, 3)) ∧ P =⇒V L (SAT solver)

M0 ‖ (x ∈ (−1, 3)) ∧ (y ∈ (−1, 3)) ∧ P =⇒V L (refinement)

∅ ‖ · · · ∧ (x ∈ (−1, 1) ∨ x ∈ (1, 3)) ∧ (y ∈ (−1, 1) ∨ y ∈ (1, 3)) ∧ P =⇒V L (SAT solver)

M1 ‖ · · · ∧ (x ∈ (−1, 1) ∨ x ∈ (1, 3)) ∧ (y ∈ (−1, 1) ∨ y ∈ (1, 3)) ∧ P =⇒V L (refinement)

∅ ‖ · · · ∧ (x ∈ (−1, 0) ∨ x ∈ (0, 1)) ∧ (y ∈ (−1, 0) ∨ y ∈ (0, 1)) ∧ P =⇒V L (SAT solver)

M2 ‖ · · · ∧ (x ∈ (−1, 0) ∨ x ∈ (0, 1)) ∧ (y ∈ (−1, 0) ∨ y ∈ (0, 1)) ∧ P =⇒V L (Learning)

∅ ‖ · · · ∧ (¬(x ∈ (−1, 0)) ∨ ¬(y ∈ (−1, 0))) ∧ P =⇒V L (SAT solver)

M3 ‖ · · · ∧ (¬(x ∈ (−1, 0)) ∨ ¬(y ∈ (−1, 0))) ∧ P =⇒V L (Learning)

∅ ‖ · · · ∧ (¬(x ∈ (−1, 0)) ∨ ¬(y ∈ (0, 1))) ∧ P =⇒V L (SAT solver)

M4 ‖ · · · ∧ (¬(x ∈ (−1, 0)) ∨ ¬(y ∈ (0, 1))) ∧ P =⇒V L (Learning)

∅ ‖ · · · ∧ (¬(x ∈ (0, 1)) ∨ ¬(y ∈ (−1, 0))) ∧ P =⇒V L (SAT solver)

M5 ‖ · · · ∧ (¬(x ∈ (0, 1)) ∨ ¬(y ∈ (−1, 0))) ∧ P =⇒V L (Learning)

∅ ‖ · · · ∧ (¬(x ∈ (0, 1)) ∨ ¬(y ∈ (0, 1))) ∧ P =⇒V L (SAT solver)

M6 ‖ · · · ∧ (¬(x ∈ (0, 1)) ∨ ¬(y ∈ (0, 1))) ∧ P =⇒V L (refinement)

∅ ‖ · · · ∧ (x ∈ (1, 2) ∨ x ∈ (2, 3)) ∧ (y ∈ (1, 2) ∨ y ∈ (2, 3)) ∧ P =⇒V L (SAT solver)

M7 ‖ · · · ∧ (x ∈ (1, 2) ∨ x ∈ (2, 3)) ∧ (y ∈ (1, 2) ∨ y ∈ (2, 3)) ∧ P =⇒V L (SAT rule)

SAT Model found

where Mi chosen by the SAT solver are,

• M0 = (x ∈ (−1, 3)) ∧ (y ∈ (−1, 3))

• M1 = (x ∈ (−1, 1)) ∧ (y ∈ (−1, 1))

• M2 = (x ∈ (−1, 0)) ∧ (y ∈ (−1, 0))

• M3 = (x ∈ (−1, 0)) ∧ (y ∈ (0, 1))

• M4 = (x ∈ (0, 1)) ∧ (y ∈ (−1, 0))

• M5 = (x ∈ (0, 1)) ∧ (y ∈ (0, 1))

• M6 = (x ∈ (1, 3)) ∧ (y ∈ (1, 3))

59

• M7 = (x ∈ (1, 2)) ∧ (y ∈ (1, 2))

When the SAT solver chooses M7 = (x ∈ (1, 2)) ∧ (y ∈ (1, 2)), IA results IA-SAT, and

testing finally finds a satisfiable test data x = 1.49217901342 and y = 1.3984060087 (Test-

SAT). Then, raSAT returns SAT.

Monotonic decomposition: Similar process but with monotonic decomposition is de-

scribed in the right of Figure 6.2 (with assumption δ = 0.25).

∅ ‖ (x ∈ (−1, 3)) ∧ (y ∈ (−1, 3)) ∧ P =⇒V L (SAT solver)

M0 ‖ (x ∈ (−1, 3)) ∧ (y ∈ (−1, 3)) ∧ P =⇒V L (refinement)

∅ ‖ · · · ∧ (x ∈ (−1, 1) ∨ x ∈ (1, 3)) ∧ (y ∈ (−1, 2.75) ∨ y ∈ (2.75, 3)) ∧ P =⇒V L (SAT solver)

M1 ‖ · · · ∧ (x ∈ (−1, 1) ∨ x ∈ (1, 3)) ∧ (y ∈ (−1, 2.75) ∨ y ∈ (2.75, 3)) ∧ P =⇒V L (refinement)

∅ ‖ · · · ∧ (y ∈ (−1, 2.75) ∨ y ∈ (2.75, 3)) ∧ (x ∈ (−1, 0) ∨ x ∈ (0, 1)) ∧ P =⇒V L (SAT solver)

M2 ‖ · · · ∧ (y ∈ (−1, 2.75) ∨ y ∈ (2.75, 3)) ∧ (x ∈ (−1, 0) ∨ x ∈ (0, 1)) ∧ P =⇒V L (SAT rule)

SAT Model found

where Mi chosen by the SAT solver are,

• M0 = (x ∈ (−1, 3)) ∧ (y ∈ (−1, 3))

• M1 = (x ∈ (−1, 1)) ∧ (y ∈ (2.75, 3))

• M2 = (x ∈ (0, 1)) ∧ (y ∈ (2.75, 3))

The SAT solver chooses M2 = x ∈ (0, 1) ∧ y ∈ (2.75, 3) and testing finds a satisfiable

test data with x = 0.991800094431 and y = 2.75151227326 (Test-SAT). With monotonic

decomposition, raSAT finds a satisfiable instance with fewer decompositions.

6.2 Experiments

In experiments, we first apply different measures, i.e., high degrees, number of variables,

number of APIs (atomic polynomial inequalities) to compare our solver raSAT with other

SMT solvers, and then we test on problems of the division QF NRA (Quantifier Free of

Nonlinear Real Arithmetic) in the benchmarks of SMT-LIB [2].

60

We compare raSAT with Z3 4.3. Z3 (version 3.1) is the winner of SMT competition

2011 for QF NRA and the latest version (Z3 4.3) is also called by another name nlSAT

[14], which is believed as the strongest SMT solver for non-linear arithmetic.

In fact, it is possible to apply classical interval (CI) for IA in raSAT, but we apply

affine intervals (i.e., AF2, CAI) coming from following reasons.

• Affine intervals could improve precision for estimating bounds of polynomials. They

are not always better than CI, however they are more likely for computing of de-

pendencies.

• Affine intervals are aimed at guiding refinements and testing from sensitivity of

variables, i.e., high degrees, large coefficients. However it is not yet implemented in

current raSAT, but it is planned for next implementation.

We apply 2-random ticks for testing, Test-UNSAT of testing and monotonic decomposition

for refinements are used. We do not apply UNSAT core computation in these experiments.

All tests are run on a system with Intel Core Duo L7500 1.6 GHz and 2 GB of RAM.

6.2.1 Experiments on Different Measures

The first and the second measures apply for the problems of the form

ψ =
k∑
i=1

xni < 1 ∧
k∑
i=1

(xi − r)n < 1 (6.1)

For experiments on the problems 6.1, we adjust values of r based on the threshold n

√
1
k
,

which is the threshold separating SAT and UNSAT problems when k and n are fixed. If r

is close to the threshold, the problems are more difficult to decide and vice versa. Figure

6.3 and 6.4 demonstrate the choices of r. In our experiments we choose values of r for

difficult SAT/UNSAT problems such that |r − n

√
1
k
| < 0.01.

For settings of raSAT, the unit searching δ is set to 0.005 and initial interval constraint

is presented as
∧
i

xi ∈ (−1, 1).

The first measure: degree of polynomials

61

SAT/UNSAT k n r
Time(s)

Z3 4.3 raSAT

SAT 2 4 1.68 0.080 0.062

UNSAT 2 4 1.69 0.050 0.328

SAT 2 6 1.78 0.390 0.250

UNSAT 2 6 1.79 0.300 0.375

SAT 2 8 1.83 1.330 0.265

UNSAT 2 8 1.84 0.580 0.328

SAT 2 10 1.86 4.530 0.140

UNSAT 2 10 1.87 125.000 0.796

SAT 2 12 1.88 0.360 0.140

UNSAT 2 12 1.89 40.280 1.390

SAT 2 14 1.90 0.480 0.296

UNSAT 2 14 1.91 78.730 0.531

SAT 2 16 1.91 2.250 0.109

UNSAT 2 16 1.92 174.000 0.484

SAT 2 18 1.92 289.110 0.562

UNSAT 2 18 1.93 391.670 0.765

SAT 2 20 1.93 1259.560 1.468

UNSAT 2 20 1.94 1650.860 0.921

SAT 2 22 1.93 ? > 3600 0.437

UNSAT 2 22 1.94 ? > 3600 3.203

Table 6.1: Experimental results for ψ = xn1 + xn2 < 1 ∧ (x1 − r)n + (x2 − r)n < 1

62

1

-1

1

-1

11

-1

1

-1

Figure 6.3: The choices of r are far from the threshold n

√
1
k

1

-1

1

-1

1

-1

1

-1

Figure 6.4: The choices of r are close to the threshold n

√
1
k

We first show comparison of raSAT and Z3 4.3 in Table 6.1 for the problems,

ψ = xn1 + xn2 < 1 ∧ (x1 − r)n + (x2 − r)n < 1

when we fix the number of variables to 2 (k = 2), increase degrees n (i.e., n = 4, 6, 8, ..., 22),

and modify values of r.

In Table 6.1, the first column indicates problems that are either SAT or UNSAT, the

next are columns of k, n, and r, respectively. We compare running time in seconds of Z3

4.3 and raSAT for each problem in the last two columns. For the degree 22, the results

of Z3 4.3 are ′′? > 3600′′, which means that Z3 4.3 didn’t respond in 3600 seconds. Note

63

that we didn’t set timeout in the first experiment.

For the first experiment, we aim at seeing how raSAT and Z3 4.3 are performed for

problems with fewer variables (only 2) but high degrees. raSAT shows interesting results

beyond Z3 4.3, which are,

• raSAT reports results very fast, i.e., its solving time are almost around 1 second

and the longest running time is 3.203 seconds for the degree 22,

• raSAT does well for high degrees of 2 variables, while Z3 4.3 suffers from degree

increasing, i.e., 289.110 second for the degree 18 (SAT), 1259.560 seconds for the

degree 20 (SAT), and no response in 1 hour for the degree 22 (SAT and UNSAT).

• For each degree, we shift values of r a little from SAT to UNSAT (i.e., r is shifted

from 1.86 to 1.87 for the degree 10, from 1.92 to 1.93 for the degree 18), raSAT

can decide for both SAT and UNSAT problems in short time.

The second measure: number of variables

The problems in the second measure are taken from the formula (6.1) when we increase

their number of variables (e.g., from 3 to 6) and their degrees (e.g., 4, 6, 8). We aim at

seeing how raSAT and Z3 4.3 work when both dimensions and degrees are enlarged.

Results are shown in Table 6.2, which are,

• raSAT still outperforms Z3 4.3, i.e., 12 problems are solved by raSAT, and only

2 problems are solved by Z3 4.3 in total 20 problems,

• when dimension increasing, raSAT can detect for SAT problems but their running

time are increased much, i.e., from 0.390 seconds for 4 variables to 51.578 seconds

for 5 variables of the degree 4,

• however, raSAT suffers from increasing number of variables (dimensions), espe-

cially for UNSAT problems because of explosion on number of boxes. For UNSAT

problems, raSAT could extract all small boxes recognized by the unit searching

δ = 0.005, and proves them UNSAT by interval arithmetic.

In the second experiment, timeout is set to 600 seconds for each problem.

64

SAT/UNSAT k n r
Time(s)

Z3 4.3 raSAT

SAT 3 4 1.51 0.030 0.027

UNSAT 3 4 1.52 10.560 timeout

SAT 4 4 1.41 timeout 0.390

UNSAT 4 4 1.42 timeout timeout

SAT 5 4 1.33 timeout 51.578

UNSAT 5 4 1.34 timeout timeout

SAT 6 4 1.27 timeout 111.031

UNSAT 6 4 1.28 timeout timeout

SAT 3 6 1.66 timeout 0.890

UNSAT 3 6 1.67 timeout 62.765

SAT 4 6 1.58 timeout 1.156

UNSAT 4 6 1.59 timeout timeout

SAT 5 6 1.52 timeout 73.937

UNSAT 5 6 1.53 timeout timeout

SAT 6 6 1.48 timeout 239.968

UNSAT 6 6 1.49 timeout timeout

SAT 3 8 1.74 timeout 3.125

UNSAT 3 8 1.75 timeout 37.156

SAT 4 8 1.68 timeout 69.843

UNSAT 4 8 1.69 timeout timeout

Table 6.2: Experimental results for ψ =
k∑
i=1

xni < 1 ∧
k∑
i=1

(xi − r)n < 1

65

SAT/UNSAT k n r
Time(s)

Z3 4.3 raSAT

SAT 3 6 1.78 timeout 0.171

UNSAT 3 6 1.79 0.280 0.796

SAT 5 6 1.78 timeout 0.375

UNSAT 5 6 1.79 0.280 0.640

SAT 7 6 1.78 timeout 0.765

UNSAT 7 6 1.79 0.250 0.734

SAT 9 6 1.78 timeout 2.671

UNSAT 9 6 1.79 0.300 1.921

SAT 11 6 1.78 timeout 3.328

UNSAT 11 6 1.79 0.220 1.343

SAT 13 6 1.78 timeout 4.460

UNSAT 13 6 1.79 0.300 1.875

SAT 15 6 1.78 timeout 6.640

UNSAT 15 6 1.79 0.300 2.265

Table 6.3: Experimental results for ψ = ψ1 ∧ ψ2

The third measure: number of APIs

The third measure is on increasing number of APIs (atomic polynomial inequalities) and

its problems are taken from the formula ψ = ψ1 ∧ ψ2 where,

• ψ1 = xn0 + xn1 < 1 ∧ xn1 + xn2 < 1 ∧ · · · ∧ xnk + xn0 < 1

• ψ2 = (x0−r)n+(x1−r)n < 1∧(x1−r)n+(x2−r)n < 1∧· · ·∧(xk−r)n+(x0−r)n < 1

The initial interval constraints are set as
∧
i

xi ∈ (−1, 1) and timeout is set in 600

seconds. We fix the degree to 6 (n = 6) and adjust r such that |r − n

√
1
2
| < 0.01.

Comparison results of Z3 4.3 and raSAT are shown in Table 6.3. The number of

APIs is increased from 3 to 15, which is shown in the column k. The last 2 columns

show running time of Z3 4.3 and raSAT. While Z3 4.3 reports timeout for 7 problems

(among 14 as total and 600 seconds for timeout), raSAT can detect all of them. The

longest running time is 6.640 seconds for the problems of 15 APIs. By this measure on

number of APIs, raSAT still outperforms Z3 4.3.

Observation

66

From the experiments on three measures, we have some observations that are,

• Z3 4.3 meets difficulties for high degrees, i.e., problems of 2 variables with degrees

20, 22, and problems of 4, 5 variables with degrees 4, 6, 8 in our examples,

• raSAT outperforms Z3 4.3 in the experiment of three measures. It seems work

quite well for high degrees and increasing number of APIs.

• However raSAT suffers from enlarging dimensions for both SAT and UNSAT prob-

lems. We need further comparison, investigation, and reasonable strategies for in-

creasing dimensions because explosion of boxes occurs when intervals are decom-

posed many times in raSAT.

6.2.2 Experiments on Benchmarks of SMT-LIB

In SMT-LIB [2], benchmarks on non-linear real number arithmetic (the division QF NRA)

are categorized into Meti-Tarski, Keymaera, Kissing, Hong, and Zankl families. Until

SMT-COMP 2011, benchmarks are only Zankl family. In SMT-COMP 2012, other fami-

lies have been added, and currently growing. General comparison among various existing

tools on these benchmarks is summarized in Table.1 in [14], which shows Z3 4.3 is one of

the strongest.

The brief statistics and explanation of these families are as follows.

• Meti-Tarski contains 5364 inequalities among 8377, taken from elementary physics.

Typically, they are small problems which have lower degrees and few variables, i.e.,

3 or 4 variables in each problem. Linear constraints are frequently mixed in these

problems.

• Keymaera contains 161 inequalities among 4442.

• Kissing has 45 problems, all of which contains equality (mostly single equality).

• Hong has 20 inequalities among 20, tuned for QE-CAD and quite artificial.

• Zankl has 151 inequalities among 166, taken from termination provers. Problems

may contain many (> 100) variables, in which some APIs have > 15 variables

67

Solver
Hong (20) Zankl (151) Meti-Tarski (832)

SAT UNSAT time(s) SAT UNSAT time(s) SAT UNSAT time(s)

Z3 4.3 0 8 5.620 50 24 1144.320 502 330 33.350

raSAT 0 20 381.531 42 9 2417.931 501 156 21.989

Table 6.4: Experimental results for Hong, Zankl, and Meti-Tarski families

Due to restriction on polynomial inequality, we perform experiments only on 20 inequal-

ities of Hong, 151 inequalities of Zankl, and 832 inequalities of Meti-Tarski. Table 6.4

shows the number of solved problems (either SAT or UNSAT) and their total running

time (in seconds).

In Hong family, we present interval constraints as x ∈ (−∞,−1) ∨ x ∈ (−1, 1) ∨ x ∈

(1,∞) for each variable x. In Zankl family, all variables of problems are originally given a

lower bound which is ≥ 0. We first apply IA to estimate upper and lower bounds of these

constraints with an input range [0,∞) for all variables (note that our implementation of

IA allows to estimate infinite bound, i.e., [0,∞)). If IA says IA-SAT (IA cannot decide

SAT or UNSAT for the input range [0,∞)), upper bounds for all variables will be manually

given and we evaluate almost these problems with a given range (0, 2) (some problems

are applied for a range (0, 4)). The same is applied for the Meti-Tarski family with a

given range (0, 5). For infinite bounds, automatic choices of initial range decomposition

will be considered, i.e., (0,∞) is initially represented as (0, 2) ∨ (2,∞), however it is not

yet implemented.

We set the unit searching δ to 0.25 and timeout is set to 600 seconds for each problem.

Due to trade-off between precision and time consuming, we apply CAI for problems with

number of variables ≤ 15, and AF2 for problems with number of variables > 15.

Among 20 problems of Hong family, their degrees distribute from 1 to 20. raSAT

solved all of them (all are UNSAT). Z3 4.3 solved 8 problems, whose degrees are up to

8. Z3 4.3 becomes timeout for other problems, which have higher degrees than 8. Note

that iSAT [12] can solve all of problems in Hong family.

For Zankl family, Z3 4.3 shows better performance than raSAT. Z3 4.3 runs very

fast for problems that contain linear constraints combined with nonlinear constraints of

lower degrees (e.g., degree 4). We observed that raSAT outperforms Z3 4.3 for some

problems that contain a long monomial (e.g., 60) with higher degrees (e.g., 6) and more

68

variables (e.g., more than 14). For instance, raSAT can solve matrix-2-all-5,8,11,12 (each

less than 36 seconds), while these problem are timeout in Z3 4.3, and raSAT is quicker

to obtain SAT (by testing) in matrix-2-all-9,10 (3.8 and 2.3 seconds in raSAT; 93 and

436 seconds in Z3 4.3, respectively).

Zankl problems come from termination analysis of term rewriting and are regarded

as standard problems for the division QF NRA of SMT competition. In 2010, the first

year of SMT competition for the division QF NRA, MiniSmt [33] is the winner which can

solve 44 among 60 problems (44/60)1 (43 inequalities and 1 equality). However MiniSmt

cannot decide UNSAT problems because of bounded bit encoding. In 2011, the winner

Z3 (version 3.1) solved 53/63 problems2 (38 inequalities and 15 equalities). In 2012, there

is no participant reporting comparative results for the division QF NRA. Recently, there

are some proposed approaches for polynomial constraint solving using Zankl problems in

comparison with others, i.e., SMT-RAT (22/166) [10], and Z3 4.3 (89/166) [14] in com-

parison with iSAT (21/166), MiniSmt (46/166), Mathematica (50/166), and QEPCAD

(21/166).

Among large number of problems in Meti-Tarski, we extract 832 problems for the

experiment. Z3 4.3 solved all problems, and raSAT solved 657 (SAT/UNSAT) problems

among 832. Actually, raSAT solved almost all SAT problems, but UNSAT problems are

less. One reason is that kissing cases occur frequently in UNSAT problems of Meti-Tarski,

which raSAT cannot handle. Note that, in Table.1 in [14], only QE-CAD based tools

work fine (Z3 3.1 does not apply QE-CAD, whereas Z3 4.3 = nlSAT includes QE-

CAD). Although raSAT has certain limitations on UNSAT problems, it shows enough

comparable results in Meti-Tarski benchmarks and seems faster than most of QE-CAD

based tools (except for Z3 4.3).

Observation

At the moment, raSAT is not strong as Z3 4.3 in Zankl family. However we feel that the

results are encouraging. We judge that results of raSAT would be improved by solving

linear fragment separated from non-linear constraints.

• The linear fragment indicates vertices of intersecting, which would be candidates of

1http://www.smtcomp.org/2010/
2http://www.smtcomp.org/2011/

69

cutoff points for guiding interval decomposition.

• Solving the linear fragment can help to prove UNSAT directly or quicker by narrow-

ing domains of searching, i.e., identifying UNSAT domains. For instance, the linear

constraints x1−x2 > 0∧x2−x1 > 0 are contained in a problem of Zankl family but

raSAT cannot prove it UNSAT by interval arithmetic and interval decomposition.

70

Chapter 7

Extensions to Polynomial Equality

We extend our approach for polynomial constraints including greater-than-or-equal con-

straints and equality constraints.

7.1 Greater-Than-or-Equal Handling

We first give the definition of strict-UNSAT for greater-than-or-equal constraints (≥).

Definition 7.1.1. The constraint
∧
j

fj ≥ 0 is said strict-UNSAT if
∧
j

fj > −δj is

UNSAT for a δj > 0.

Similar for IA-strict-UNSAT, f > 0 is said IA-strict-UNSAT if f > −δ is IA-UNSAT

for δ > 0. We have two lemmas as followings.

Lemma 7.1.2. If the constraint
∧
j

fj ≥ 0 is strict-UNSAT, it is really UNSAT.

Lemma 7.1.3. If the constraint
∧
j

fj > 0 is SAT, then the constraint
∧
j

fj ≥ 0 is SAT.

For the greater-than-or-equal constraints
∧
j

fj ≥ 0, we apply Lemma 7.1.2 for proving

UNSAT, and Lemma 7.1.3 for proving SAT. Note that if
∧
j

fj ≥ 0 is SAT but
∧
j

fj > 0 is

UNSAT (i.e., kissing situation), raSAT says unknown and when
∧
j

fj = 0 is represented

by
∧
j

(fj ≥ 0 ∧ fj ≤ 0), raSAT simply answers unknown. In general, strict-UNSAT is

only applied for greater-than-or-equal constraints (fj ≥ 0) and IA-UNSAT is replaced by

IA-strict-UNSAT.

71

7.2 Polynomial Equality Handling

7.2.1 Polynomial Equality by Intermediate Value Theorem

For solving polynomial constraints with an equality (g = 0), we apply intermediate value

theorem. That is, if existing 2 test cases such that g > 0 and g < 0 then g = 0 is SAT.

Lemma 7.2.1. For a polynomial constraint

F = (x1 ∈ (a1, b1) ∧ · · · ∧ xn ∈ (an, bn))
m∧
j

fj(x1, · · · , xn) > 0 ∧ g(x1, · · · , xn) = 0,

if

(i) existing a box (l1, h1)×· · ·×(ln, hn) such that (li, hi) ⊆ (ai, bi) and
m∧
j

fj(x1, · · · , xn) >

0 is IA-VALID in the box,

(ii) existing two instances (t1, · · · , tn), (t′1, · · · , t′n) in the box such that g(t1, · · · , tn) > 0

and g(t′1, · · · , t′n) < 0,

then F is SAT.

We apply Lemma 7.2.1 for proving SAT of polynomial constraints containing an equal-

ity. In implementation, we first find an IA-VALID box by interval decomposition and in-

terval arithmetic for inequality constraints (i), and then find 2 instances in the IA-VALID

box by testing (ii). Note that, for (i), testing can guide for finding IA-VALID boxes,

i.e., a small box containing a test data which is Test-SAT for inequalities. Figure 7.1

demonstrates our approach when applying intermediate value theorem.

In Table 7.1 we show preliminary experiment for 15 problems that contain polynomial

equalities in Zankl family. raSAT works well for these SAT problems and it can detect all

SAT problems (11 among 15). At the current implementation, raSAT reports unknown

for UNSAT problems. The first 4 columns indicate name of problems, the number of

variables, the number of polynomial equalities, and the number of inequalities in each

problem, respectively. The last 2 columns show comparison results of Z3 4.3 and raSAT.

We also apply the same idea for multiple equalities
∧
i

gi = 0 such that V ar(gk) ∩

V ar(gk′) = ∅, where V ar(gk) is denoted for the set of variables in the polynomial gk, e.g.,

gen-05 to gen-09 in Table 7.1. In the next section we will present idea for solving general

cases of multiple equalities.

72

y
f(x,y)

0),(0),(),(),(2211 =∧>∧∈∧∈ yxgyxfhly hl x

IA-VALID

f(x,y) > 0
d

f(x,y)

g(u ,v) > 0

c

g(x,y)=0

g(u1,v1) > 0

g(u2,v2) < 0
c

ba x

Figure 7.1: Solving equality by intermediate value theorem

Problem No. No. No. Z3 4.3 (15/15) raSAT (11/15)

Name Variables Equalities Inequalities Result Time(s) Result Time(s)

gen-03 1 1 0 SAT 0.01 SAT 0.015

gen-04 1 1 0 SAT 0.01 SAT 0.015

gen-05 2 2 0 SAT 0.01 SAT 0.046

gen-06 2 2 1 SAT 0.01 SAT 0.062

gen-07 2 2 0 SAT 0.01 SAT 0.062

gen-08 2 2 1 SAT 0.01 SAT 0.062

gen-09 2 2 1 SAT 0.03 SAT 0.062

gen-10 1 1 0 SAT 0.02 SAT 0.031

gen-13 1 1 0 UNSAT 0.05 unknown 0.015

gen-14 1 1 0 UNSAT 0.01 unknown 0.015

gen-15 2 3 0 UNSAT 0.01 unknown 0.015

gen-16 2 2 1 SAT 0.01 SAT 0.062

gen-17 2 3 0 UNSAT 0.01 unknown 0.031

gen-18 2 2 1 SAT 0.01 SAT 0.078

gen-19 2 2 1 SAT 0.05 SAT 0.046

Table 7.1: Experimental results for 15 equality problems of Zankl family

73

b2

c1
d1

g1 < 0 g1 = 0 g1 > 0

c2

g > 0g2 > 0

g2 = 0

d2

g2 < 0

a1 b1

a2

g2 < 0

Figure 7.2: Solving multiple equalities

7.2.2 Extensions to Multiple Equalities

We first present an approach for solving polynomial constraints with 2 equalities and then

extend the same idea for general cases. We assume that constraints have two variables.

For a polynomial constraint F = (x1 ∈ (a1, b1) ∧ x2 ∈ (a2, b2))
∧
j

fj > 0 ∧ g1 =

0 ∧ g2 = 0, F can be proved as SAT by following steps:

• first, find a box such that
∧
j

fj > 0 is IA-VALID, i.e., (l1, h1)× (l2, h2),

• find 2 instances c1, d1 ∈ (l1, h1) such that g1 < 0 on {c1} × (l2, h2) and g1 > 0 on

{d1} × (l2, h2) (values of g1 are estimated by interval arithmetic),

• find 2 instances c2, d2 ∈ (l2, h2) such that g2 < 0 on (l1, h1) × {c2} and g2 > 0 on

(l1, h1)× {d2} (values of g2 are also estimated by interval arithmetic).

Figure 7.2 demonstrates our approach when solving polynomial constraints with 2

equalities. The idea behind is finding a box such that IA-VALID for polynomial inequal-

ities and proving that the line g1 = 0 intersects the line g2 = 0 insides the IA-VALID

box.

74

The idea above is applied for multiple equalities. For a polynomial constraint F =

(x1 ∈ (a1, b1) ∧ · · · ∧ xn ∈ (an, bn))
∧
j

fj > 0
m∧
k=1

gk = 0, F can be proved as SAT by

following steps:

• first, find a box such that
∧
j

fj > 0 is IA-VALID, i.e., (a1, b1)× · · · × (an, bn),

• find m instances c1, · · · , cm in the IA-VALID box such that gi < 0 is IA-VALID with

(a1, b1)×· · · {ci}× · · ·× (an, bn) (bounds of gi are estimated by interval arithmetic),

• find m instances d1, · · · , dm in the IA-VALID box such that gi > 0 is IA-VALID with

(a1, b1)×· · · {di}× · · ·× (an, bn) (bounds of gi are estimated by interval arithmetic),

with a restriction on variables of equalities ∀i1, · · · , ik. | ∪1≤l≤k V ar(gil)| ≥ k. The re-

striction guarantees that lines gk = 0 have the same intersection point in the IA-VALID

box.

For proving UNSAT of polynomial equality, we transform equalities into inequality

forms, i.e., for some δ > 0,
m∧
k=1

gk = 0 are transformed into
m∧
k=1

−δ < gk < δ. We apply

Lemma 7.2.2 for proving UNSAT of polynomial inequalities.

Lemma 7.2.2. For a polynomial constraint F = (x1 ∈ (a1, b1)∧· · ·∧xn ∈ (an, bn))
∧
j

fj >

0
m∧
k=1

gk = 0, if F ′ = (x1 ∈ (a1, b1) ∧ · · · ∧ xn ∈ (an, bn))
∧
j

fj > 0
m∧
k=1

(−δ < gk < δ) is

UNSAT for some δ > 0, then F is UNSAT.

75

Chapter 8

Conclusions

8.1 Summary of the Thesis

The aim of research is to propose an approach and develop an SMT for solving polynomial

constraints. In the thesis, we propose an iterative approximation refinement scheme, which

is applied for solving polynomial constraints on real numbers. The approximation scheme

consists of interval arithmetic (IA) (over-approximation, aiming to decide unsatisfiability),

and testing (under-approximation, aiming to decide satisfiability). If both of them fail to

decide, refinement is applied that allows to focus searching on narrower domains. This

scheme is described as an abstract DPLL(T) procedure, which performs as a refinement

loop of over approximation (IA), under approximation (testing), and refinement guided

from IA and testing. We implemented the scheme as the SMT solver raSAT.

Comparison with the SMT solver Z3 4.3, believed as the strongest SMT solver for

non-linear real arithmetic, was performed by preliminary evaluation on the different mea-

sures (i.e., high degrees, number of variables, number of APIs), and experiments on the

benchmarks of SMT-LIB. In comparison with Z3 4.3, raSAT is a little weak for Zankl

problems, however raSAT worked beyond Z3 4.3 in the preliminary evaluation and for

the Hong problems, and raSAT shows enough comparable results in Meti-Tarski prob-

lems. By applying single method without tuning in implementation, the experimental

results of raSAT seem encouraging and raSAT is still in improvements.

Our contributions are summarized as follows:

• We propose an approach of iterative approximation refinement for solving con-

76

straints, which is formalized as an abstract DPLL(T) procedure for over/under-

approximations and refinements under a background theory T in Chapter 3. An

under approximation is sound for proving in the background theory T , and an over

approximation is sound for disproving. When they neither prove nor disprove, re-

finements are applied to decompose an atomic formula of the input formula, i.e.,

ψ to ψ1 ∨ ψ2 such that ψ ⇔ ψ1 ∨ ψ2. The proposed approach combined DPLL(T)

procedure with over/under-approximations and refinements is sound and complete

for solving polynomial inequality constraints under certain restrictions.

• In Chapter 4, we instantiate interval arithmetic as an over approximation and test-

ing as an under approximation. A variant of affine interval, called Chebyshev Affine

Interval (CAI), is newly proposed. CAI has an advantage over existing ones (e.g.,

AF,AF1, AF2) such that it keeps sources of computation for high degree variables

(i.e., by introducing |ε|). This would be useful for guiding refinements from influen-

tial variables.

• In Chapter 5, we propose UNSAT cores of polynomial constraints that can im-

prove efficiency in theory propagation, i.e., the number of clauses for learning is

reduced. Computation of UNSAT cores in polynomial constraints allows inferring

other UNSAT domain when a particular domain is detected as UNSAT. Though

current implementation for UNSAT core is not well organized and we need further

improvement. When performing a large number of test data (i.e., a large number

of variables), the proposed approach for incremental test data generation would be

useful.

• One of key strategies is the choice of intervals to decompose into smaller intervals.

Otherwise, interval decompositions lead exponentially many boxes with respect to

the number of variables. The proposed strategy for selecting intervals showed effec-

tive results. Such strategy consists of three steps. First, after dynamically sorting

polynomials appearing in constraints with respect to certain dependencies, we con-

centrate on the first polynomial constraint that testing cannot find a SAT instance.

Second, choice on variables appearing in that polynomial is based on sensitivity,

which is detected during previous interval arithmetic computation. Finally, after

77

variables for interval decompositions are selected, a method for decomposing an

interval is chosen, such as monotonic decomposition or tick decomposition.

• Polynomial inequality handling is extended for greater-than-or-equal (≥) constraints,

i.e.,
∧
i

fi ≥ 0 is transformed to
∧
i

fi > 0 for proving SAT, and for proving UNSAT∧
i

fi ≥ 0 is transformed to
∧
i

fi > −δi for δi > 0.

• Solving polynomial constraints including equalities is extended in Chapter 7 by a

non-constructive approach based on intermediate value theorem. Preliminary exper-

iments of raSAT for polynomial equalities show that the non-constructive approach

reasonably works and its results seem to be comparable with Z3 4.3 (i.e., 11 solved

problems among 15 equalities of Zankl family).

8.2 Future Directions

We are just in the beginning and have lots of future work in both development of raSAT

and its extensions.

8.2.1 raSAT Development

• Avoiding local optimality: we plan to borrow the similar idea of restart in

MiniSAT for escaping from hopeless local search (i.e., solution set is not dense or

empty). Heuristics would be, after a deep interval decomposition of a box and

Test-UNSAT are reported, backtrack occurs to choose a randomly selected box.

• Separation of linear constraints: Many benchmarks contain linear constraints.

We expect improvement by separating them for existing SMT with Presburger arith-

metic. From their results, vertices of intersecting linear constraints would be candi-

dates of cutoff points for interval decompositions.

For example, if two linear constraints y−2x+1 > 0 and y+x−2 > 0 are included in a

polynomial inequality constraint, their intersecting vertices x = 1, y = 1 are applied

for interval decomposition. Assume that the intervals x ∈ (0, 5) and y ∈ (−10, 2)

78

are used for interval decomposition, choices are,

x ∈ (0, 5) ⇔ x ∈ (0, 1) ∨ x ∈ (1, 5)

y ∈ (−10, 2) ⇔ y ∈ (−10, 1) ∨ y ∈ (1, 2)

• Incremental DPLL: For interactions with a SAT solver, we currently apply the

very lazy theory learning. Combination of less lazy and eager theory propagation

would improve efficiency, in which we can propagate a conflict from a partial truth

assignment instead of waiting for a full truth assignment obtained by the SAT solver.

• Error guaranteed floating point arithmetic: Currently, standard floating point

arithmetic is used for both interval arithmetic and testing. Although this has ben-

efit on comparison between floating and fix point arithmetic behavior (e.g., round-

off/overflow error analysis [23]), the result may not be sound for exact real arith-

metic. Since polynomial inequality permits the reduction from real numbers to

rational numbers, we are planning to apply exact rational number arithmetic pack-

ages, e.g., the numerical packages of Ocaml.

• Other directions: we need further investigation for refinement strategies (both

strategies and experiments), i.e., choice of variables for interval decomposition, how

to decompose an interval into smaller intervals (i.e., based on sensitivity of vari-

ables), etc.

8.2.2 Extensions of raSAT Loop

• Solving polynomial constraints on integer numbers: we can extend our ap-

proach for integer numbers. In this domain, number of test data is finite if interval

constraints are bounded and Test-UNSAT can imply UNSAT if all test data is gen-

erated. A tight interaction between testing, i.e., generating test data, testing results,

and interval decomposition could be investigated.

• Equality handling: currently, raSAT loop can handle only an inequality by in-

termediate value theorem. We need further investigations, such as giving formal

proof of our idea for multiple equalities and showing experimental results. Com-

79

bining ideal based technique for handling equality, such as Gröbner basis, is also

considered.

8.3 Applications

We plan to apply our SMT solver raSAT for some problems of software/hardware veri-

fication, loop invariant generation, such as,

• Checking overflow and roundoff error: In the computers, the real numbers are

represented by finite numbers (i.e., floating point numbers, fixed point numbers).

Due to finite representation, the over-flow and roundoff errors (OREs) may occur.

The OREs will be propagated through computations of the program. Further, the

computations themselves also cause OREs because the arithmetic needs to round

the result to fit the number format. Besides, OREs are also affected by types

of statements, i.e., branch, loop, assignment statements. By symbolic execution,

ORE constraints are propagated from a program and ORE problems are reduced to

problems of solving ORE constraints for verifying whether OREs occur.

• Loop invariant generation. The use of Farkas’s lemma is a popular approach

in linear loop invariant generation [7]. Farkas’s lemma uses products of matrices,

and it requires solving polynomial constraints of degree 2. Non-linear loop invariant

generation [28] and hybrid systems [29] require more complex polynomials. We can

extend the target for non-linear loop invariant generation

80

Bibliography

[1] Anai, H. Algebraic methods for solving real polynomial constraints and their ap-
plications in biology. In In Algebraic Biology – Computer Algebra in Biology (2005),
pp. 139–147.

[2] Barrett, C., Stump, A., and Tinelli, C. The satisfiability modulo theories
library (SMT-LIB).

[3] Borralleras, C., Lucas, S., Navarro-Marset, R., Rodŕıguez-
Carbonell, E., and Rubio, A. Solving non-linear polynomial arithmetic via
sat modulo linear arithmetic. In Proceedings of the 22nd International Conference
on Automated Deduction (2009), CADE-22, Springer-Verlag, pp. 294–305.

[4] Bourbaki, N. General Topology. Springer-Verlag, 1989.

[5] Bryant, R. E., Kroening, D., Ouaknine, J., Seshia, S. A., Strichman, O.,
and Brady, B. Deciding bit-vector arithmetic with abstraction. In Proceedings of
the 13th international conference on Tools and algorithms for the construction and
analysis of systems (2007), TACAS’07, Springer-Verlag, pp. 358–372.

[6] Collins, G. E. Quantifier elimination by cylindrical algebraic decomposition –
twenty years of progress. In Quantifier Elimination and Cylindrical Algebraic Decom-
position (1998), B. F. Caviness and J. R. Johnson, Eds., Springer-Verlag, pp. 8–23.

[7] Colón, M., Sankaranarayanan, S., and Sipma, H. Linear invariant generation
using non-linear constraint solving. In CAV (2003), vol. 2725 of Lecture Notes in
Computer Science, Springer, pp. 420–432.

[8] Comba, J. L. D., and Stolfi, J. Affine arithmetic and its applications to com-
puter graphics. In Proceedings of VI SIBGRAPI. (1993), pp. 9–18.

[9] Corzilius, F., and Ábrahám, E. Virtual substitution for SMT-solving. In Pro-
ceedings of the 18th international conference on Fundamentals of computation theory
(2011), FCT’11, Springer-Verlag, pp. 360–371.

[10] Corzilius, F., Loup, U., Junges, S., and Ábrahám, E. SMT-RAT: an SMT-
compliant nonlinear real arithmetic toolbox. In Proceedings of the 15th interna-
tional conference on Theory and Applications of Satisfiability Testing (2012), SAT’12,
Springer-Verlag, pp. 442–448.

[11] Daniel Kroening, O. S. Decision Procedures: An Algorithmic Point of View.
Springer-Verlag, 2008.

81

[12] Franzle, M., Herde, C., Teige, T., Ratschan, S., and Schubert, T. Effi-
cient solving of large non-linear arithmetic constraint systems with complex boolean
structure. Journal on Satisfiability, Boolean Modeling and Computation 1 (2007),
209–236.

[13] Ganai, M., and Ivancic, F. Efficient decision procedure for non-linear arith-
metic constraints using cordic. In Formal Methods in Computer-Aided Design, 2009.
FMCAD 2009 (2009), pp. 61 –68.

[14] Jovanović, D., and de Moura, L. Solving non-linear arithmetic. In Proceedings
of the 6th international joint conference on Automated Reasoning (2012), IJCAR’12,
Springer-Verlag, pp. 339–354.

[15] Khanh, T. V., and Ogawa, M. SMT for polynomial constraints on real numbers.
Electr. Notes Theor. Comput. Sci. 289 (2012), 27–40.

[16] Klaas Pieter Hart, J.-i. N., and Vaughan, J. E. Encyclopedia of General
Topology. Elsevier, 2003.

[17] Lucas, S., and Navarro-Marset, R. Comparing csp and sat solvers for poly-
nomial constraints in termination provers. Electron. Notes Theor. Comput. Sci. 206
(Apr. 2008), 75–90.

[18] Messine, F. Extensions of affine arithmetic: Application to unconstrained global
optimization. Journal of Universal Computer Science 8, 2 (2002).

[19] Microsoft. Z3.

[20] Miyajima, S., T. M., and Kashiwagi, M. A new dividing method in affine
arithmetic. IEICE Transactions E86-A, 9 (2003), 2192–2196.

[21] Moore, R. E. Interval Analysis. Prentice-Hall, 1966.

[22] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S.
Chaff: engineering an efficient sat solver. In Proceedings of the 38th annual Design
Automation Conference (2001), DAC ’01, ACM, pp. 530–535.

[23] Ngoc, D. T. B., and Ogawa, M. Overflow and roundoff error analysis via
model checking. In Proceedings of the 2009 Seventh IEEE International Conference
on Software Engineering and Formal Methods (2009), SEFM ’09, IEEE Computer
Society, pp. 105–114.

[24] Ngoc, D. T. B., and Ogawa, M. Checking roundoff errors using counterexample-
guided narrowing. In Proceedings of the IEEE/ACM international conference on
Automated software engineering (2010), ASE ’10, ACM, pp. 301–304.

[25] Nieuwenhuis, R., Oliveras, A., and Tinelli, C. Abstract DPLL and abstract
DPLL modulo theories. In Logic for Programming, Artificial Intelligence, and Rea-
soning, F. Baader and A. Voronkov, Eds., vol. 3452 of Lecture Notes in Computer
Science. Springer-Verlag, 2005, pp. 36–50.

82

[26] Passmore, G. O., and Jackson, P. B. Combined decision techniques for the
existential theory of the reals. In Proceedings of the 16th Symposium, 8th Interna-
tional Conference. Held as Part of CICM ’09 on Intelligent Computer Mathematics
(2009), Calculemus ’09/MKM ’09, Springer-Verlag, pp. 122–137.

[27] Ratschan, S. Efficient solving of quantified inequality constraints over the real
numbers. ACM Trans. Comput. Logic 7, 4 (Oct. 2006), 723–748.

[28] Sankaranarayanan, S., Sipma, H. B., and Manna, Z. Non-linear loop in-
variant generation using gröbner bases. In Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (New York, NY, USA,
2004), POPL ’04, ACM, pp. 318–329.

[29] Sankaranarayanan, S., Sipma, H. B., and Manna, Z. Constructing invariants
for hybrid systems. Form. Methods Syst. Des. 32, 1 (2008), 25–55.

[30] Stolfi, J. Self-Validated Numerical Methods and Applications. PhD thesis, PhD.
Dissertation, Computer Science Department, Stanford University, 1997.

[31] Tarski, A. A decision method for elementary algebra and geometry. Bulletin of the
American Mathematical Society 59 (1951).

[32] Weispfenning, V. Quantifier elimination for real algebra - the quadratic case
and beyond. Applicable Algebra in Engineering, Communication and Computing 8
(1997), 85–101.

[33] Zankl, H., and Middeldorp, A. Satisfiability of non-linear (ir)rational arith-
metic. In Proceedings of the 16th international conference on Logic for programming,
artificial intelligence, and reasoning (2010), LPAR’10, Springer-Verlag, pp. 481–500.

83

Publications

[1] To Van Khanh, Mizuhito Ogawa. SMT for Polynomial Constraints on Real Num-
bers. (TAPAS’ 2012) Electronic Notes in Theoretical Computer Science, vol. 289,
Dec 2012, pages 27 – 40.

[2] To Van Khanh, Mizuhito Ogawa. raSAT: SMT for Polynomial Inequality. JAIST
Technical Report 2013, IS-RR-2013-003, http://hdl.handle.net/10119/11349.

84

