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PAPER Special Section on Mathematical Systems Science and its Applications

Optimal Control of Boolean Biological Networks Modeled
by Petri Nets

Koichi KOBAYASHI†a) and Kunihiko HIRAISHI†, Members

SUMMARY A Boolean network model is one of the models of gene
regulatory networks, and is widely used in analysis and control. Although a
Boolean network is a class of discrete-time nonlinear systems and expresses
the synchronous behavior, it is important to consider the asynchronous be-
havior. In this paper, using a Petri net, a new modeling method of asyn-
chronous Boolean networks with control inputs is proposed. Furthermore,
the optimal control problem of Petri nets expressing asynchronous Boolean
networks is formulated, and is reduced to an integer programming problem.
The proposed approach will provide us one of the mathematical bases of
control methods for gene regulatory networks.
key words: asynchronous behavior, Boolean networks, integer program-
ming, optimal control, Petri nets

1. Introduction

In recent years, there have been a lot of studies on mod-
eling, analysis, and control of biological networks such as
gene regulatory networks and metabolic networks in both
the control theory community and the theoretical biology
community. In particular, it is important to develop control
methods of gene regulatory networks as a basis of gene ther-
apy technologies in the future. In theoretical studies on con-
trol of gene regulatory networks, the control input is given
as the concentration of certain genes, and we assume that its
value can be arbitrarily manipulated (see e.g., [1], [3], [7],
[8], [12]–[14]). It is difficult at the current stage to imple-
ment such genes. On the other hand, in [15], feedback con-
trol of synthetic biological circuits has been implemented,
and the experimental result in which cellular behavior is reg-
ulated by control has been obtained. In this experiment, the
control input is given as the light pulses. This result suggests
that control methods of biological networks can be realized,
and the control input may be given as the status of interven-
tions to a cell.

Biological networks are in general expressed by ordi-
nary/partial differential equations with high nonlinearity and
high dimensionality. In order to deal with such a system, it
is important to consider a simple model, and various models
such as Bayesian networks, Boolean networks, hybrid sys-
tems (piecewise affine models), and Petri nets have been de-
veloped so far (see e.g., [10]). In control problems, Boolean
networks and hybrid systems are frequently used [1], [3],
[7], [12], [14]. However, in the hybrid systems-based ap-
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proach, a class of biological networks are limited to low-
dimensional systems, because the computation time to solve
the control problem is too long. In Boolean networks, dy-
namics such as interactions between genes are expressed by
Boolean functions [11]. There is a criticism that a Boolean
network is too simple as a model of biological networks, but
this model can be relatively applied to large-scale systems.
Although a Boolean network is a class of discrete-time non-
linear systems and expresses the synchronous behavior, it
is important to consider the asynchronous behavior for ad-
equately representing a variety of time scales. Some meth-
ods for expressing asynchronous Boolean networks (ABNs)
have been already proposed (see e.g., [8], [19]). In [19],
ABNs are modeled by non-deterministic dynamical sys-
tems, and the asynchronous behavior is expressed as the
probabilistic behavior. However, only n combinations for
n genes are considered (see also Example 1). In [8], it is as-
sumed that a combination at each time is periodically given
in advance, but it is difficult to consider many combinations.
Although it is desirable to consider all (2n) combinations, in
the existing methods it is difficult to consider all combina-
tions.

On the other hand, a Petri net is well known as a model
expressing the asynchronous behavior [16], [24]. A Petri net
is a class of directed bipartite graphs, in which the nodes
represent transitions and places. The methods to express
asynchronous Boolean networks as Petri nets have been pro-
posed in [5], [18]. However, in these methods, only constant
control inputs are considered, and these methods cannot be
directly applied to the control problem with dynamical con-
trol inputs.

Thus in this paper, the optimal control problem of asyn-
chronous Boolean networks modeled by Petri nets is dis-
cussed. First, based on the method proposed in [5] and
the notation of external input places [9], [20], we propose
a new method to transform asynchronous Boolean networks
with control inputs into Petri nets with external input places.
Next, the optimal control problem is formulated, and is re-
duced to an integer linear programming (ILP) problem. In
addition, the biological significance is also discussed by
using a simple example. Finally, the effectiveness of the
proposed approach is shown by a numerical example on a
WNT5A network [22]. The proposed approach provides us
a new control method of gene regulatory networks.

This paper is organized as follows. In Sect. 2, syn-
chronous Boolean networks and asynchronous Boolean net-
works are introduced. In Sect. 3, Petri nets expressing asyn-
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chronous Boolean networks are derived. In Sect. 4, the op-
timal control problem is addressed. In Sect. 5, the effec-
tiveness is shown by a numerical example. In Sect. 6, we
conclude this paper.

Notation: Let R denote the set of real numbers. Let
{0, 1}m×n denote the set of m × n matrices, which consists
of elements 0 and 1. For the finite set M, let |M| denote
the number of elements. For a matrix X, let XT denote the
transpose of X.

2. Boolean Biological Networks

First, consider synchronous Boolean networks (SBNs). A
general form of SBNs is given by

x(k + 1) = fa(x(k)) (1)

where x ∈ {0, 1}n is the state (e.g., the concentration of
genes), k = 0, 1, 2, . . . is the discrete time. fa : {0, 1}n →
{0, 1}n is a given Boolean function with logical operators
such as AND (∧), OR (∨), and NOT (¬). Since the SBN
(1) is deterministic, x(k + 1) is uniquely determined for a
given x(k).

To consider the control problems, we add the control
input to the SBN (1) as follows:

x(k + 1) = f (x(k), u(k)) (2)

where u ∈ {0, 1}m is the control input, i.e., the value of u
(e.g., the concentration of genes) can be arbitrarily given,
and f : {0, 1}n × {0, 1}m → {0, 1}n is a given Boolean func-
tion. The i-th element of the state x, the i-th element of the
control input u and the i-th element of the Boolean function
f are denoted by xi, ui and fi, respectively. Also in the SBN
(2), x(k + 1) is uniquely determined for given x(k) and u(k).

Next, consider asynchronous Boolean networks
(ABNs). Suppose that a Boolean function assigned to each
gene (i.e., xi) is given by fi(x(k), u(k)), fi : {0, 1}n×{0, 1}m →
{0, 1}. For each state xi, either

xi(k + 1) = fi(x(k), u(k))

or

xi(k + 1) = xi(k)

is selected at each time. Therefore, the number of com-
binations of Boolean functions is given by 2n. In [19],
asynchronous Boolean networks are modeled by non-
deterministic dynamical systems, and the asynchronous be-
havior is expressed as the probabilistic behavior. In [8], it
is assumed that a combination at each time is periodically
given in advance.

Using the result in [19], we show an example of SBNs
and ABNs.

Example 1: In [19], the behavior of ABNs is given by the
union of the behaviors of the following n SBNs:

Σi :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi(k + 1) = fi(x(k), u(k)),
x j(k + 1) = x j(k),

∀ j ∈ {1, 2, . . . , n} \ {i}
(3)

where i = 1, 2, . . . , n. As a simple example, consider the
following SBN of an apoptosis network:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1(k + 1) = ¬x2(k) ∧ u(k),
x2(k + 1) = ¬x1(k) ∧ x3(k),
x3(k + 1) = x2(k) ∨ u(k)

(4)

where the concentration level (high or low) of the inhibitor
of apoptosis proteins (IAP) is denoted by x1, the concentra-
tion level of the active caspase 3 (C3a) by x2, and the con-
centration level of the active caspase 8 (C8a) by x3. The con-
centration level of the tumor necrosis factor (TNF, a stimu-
lus) is denoted by u, and is regarded as the control input.
This model is described in [6], and is a simplified version of
an apoptosis network model in [19]. In this model, x2(k) = 0
implies cell survival, and x1(k) = 0, x2(k) = 1 imply cell
death [6]. Then, by using this model, we can find an initial
state and a control input sequence such that the state reaches
cell death (or cell survival).

In the case of synchronous Boolean dynamics, state
transitions can be computed by directly using (4). For ex-
ample, for x(0) = [ 1 1 1 ]T and u(k) = 0, we obtain
x(1) = [ 0 0 1 ]T . By computing the transition from each
state, we obtain the state transition diagram in Fig. 1 (left).
In Fig. 1, the number assigned to each node denotes x1, x2,
x3 (elements of the state).

In the case of asynchronous Boolean dynamics, accord-
ing to (3), we consider the following three SBNs

Σ1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1(k + 1) = ¬x2(k) ∧ u(k),
x2(k + 1) = x2(k),
x3(k + 1) = x3(k),

(5)

Σ2 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1(k + 1) = x1(k),
x2(k + 1) = ¬x1(k) ∧ x3(k),
x3(k + 1) = x3(k),

(6)

Σ3 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1(k + 1) = x1(k),
x2(k + 1) = x2(k),
x3(k + 1) = x2(k) ∨ u(k).

(7)

State transitions can be computed by using (5), (6), (7). For
example, for x(0) = [ 1 1 1 ]T and u(k) = 0, we obtain
x(1) = {[ 0 1 1 ]T , [ 1 0 1 ]T , [ 1 1 1 ]T }. In a similar way,
by computing the transition from each state, we obtain the
state transition diagram in Fig. 1 (right).

Fig. 1 (Left) State transition diagram of (4) and u(k) = 0, (Right) State
transition diagram of (5), (6), (7) and u(k) = 0.
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Comparing the left figure with the right figure in Fig. 1,
we see that a part of behaviors is clearly different. �

Although it is desirable to consider all (2n) combina-
tions, this is difficult in the method of [19]. Also in the
method of [8], it may be difficult to set periodic patterns
for a large-scale network. To overcome these technical is-
sues, ABNs are modeled by Petri nets, not multiple SBNs.
By using the Petri net-based model, we can consider sev-
eral situations. One example is shown as follows. Activa-
tion/inactivation of a part of a given biological network may
be able to be controlled by external stimuli. In the case of
inactivation, dynamics are given as x(k + 1) = 0. If there
exist some patterns in which different parts of a network
can be activated/inactivated, then this implies that a part of
the asynchronous behavior can be controlled by selecting
among 2n combinations of Boolean functions. In the pro-
posed approach, we can treat such a situation by using the
Petri net-based model.

3. Petri Net-Based Modeling of Boolean Biological Net-
works

First, the outline of Petri nets is explained. A Petri net
is one of the model of concurrent and distributed systems,
and is a directed bipartite graph consisting of four compo-
nents: places, transitions, arcs, and tokens. These compo-
nents are denoted by circles, rectangles, arrows, and dots,
respectively. Figure 2 shows a simple example of Petri nets.
Places, transitions, arcs express the structure of a given Petri
net. Each transition has input places and output places, and
direct connections between two places or two transitions are
not allowed. The state of Petri nets is given by the distri-
bution of tokens on places, and is changed by firing of tran-
sitions. If input places contain at least one token, then the
transition can fire by consuming one token of input places,
one token is added in output places. In the example of Fig. 2,
the transitions t1, t2, and t3 may fire. If the transition t1 fires,
then one token in p2 is moved to p1. See e.g., [16], [24] for
further information on Petri nets.

Now, let us consider expressing an ABN as a Petri net
by using each Boolean function fi in the SBN (2). A Petri
net expressing an ABN has been proposed in [5], [18], but
only constant control inputs can be considered, and dynami-
cal control in which the value of the control input is switched

Fig. 2 A simple example of Petri nets.

cannot be realized. In this paper, as an extension of the
method in [5], we propose a modeling method of a Petri
net expressing an ABN with dynamical control inputs.

We introduce the following notation. By I( f j), j =
1, 2, . . . , n, denote a finite set consisting of the state variable
and the control input variable included in the Boolean func-
tion f j. In the example of (4), we obtain I( f1) = {x2, u},
I( f2) = {x1, x3}, and I( f3) = {x2, u}. Next, we define a log-
ical parameter Kj(X) ∈ {0, 1}, X ⊆ I( f j), j = 1, 2, . . . , n.
Kj(X) is given as the value of f j(x, u) under the condition
that the value of each variable included in X is ‘1’ and the
value of each variable included in I( f j) \ X is ‘0’. In the
example of (4), we can obtain{

K1(∅) = 0, K1({x2}) = 0,
K1({u}) = 1, K1({x2, u}) = 0,{
K2(∅) = 0, K2({x1}) = 0,
K2({x3}) = 1, K2({x1, x3}) = 0,{
K3(∅) = 0, K3({x2}) = 1,
K3({u}) = 1, K3({x2, u}) = 1.

Next, consider deriving a Petri net expressing Boolean
networks. In the derived Petri net, the number of places is
given as 2(n + m), that is, for each xi in (2), two places xi

and xi are prepared. In a similar way, for each ui in (2), two
places ui and ui are prepared. xi and ui are called comple-
mentary places [5]. The number of transitions is given as∑n

i=1 2|I( fi)|. In the example of (4), the number of transitions
is given as 22 + 22 + 22 = 12. From the property of Boolean
networks, the following assumptions are made.

Assumption 1: The maximum number of tokens in each
place is equal to 1.

Assumption 2: A sum of the number of tokens in xi (ui)
and that in xi (ui) is equal to 1.

In addition, suppose that ui and ui are given as an ex-
ternal input place [9], [20]. In ui and ui, a token is arbitrary
generated, but the above two assumptions must be satisfied.

Finally, we remark that the case of a self-regulator (i.e.,
xi ∈ I( fi)) is slightly different to the case of xi � I( fi). If
xi ∈ X holds, then Ki(X) = 1 does not lead any change on
xi. If xi � X holds, then Ki(X) = 0 does not lead any change
on xi.

Under the above preparations, we define a Petri net ex-
pressing an ABN. In [5], the Petri net expressing an ABN
without the control input is defined. The following defini-
tion gives the Petri net expressing an ABN with the control
input, and is an extension of the definition in [5].

Definition 1: For a given SBN (2), the Petri net Nc express-
ing an ABN is defined as follows:

Nc = (P ∪ Pc, T, Pre, Post) (8)

where

• P = {x1, x1, x2, x2, . . . , xn, xn} is the set of places,

• Pc = {u1, u1, u2, u2, . . . , um, um} is the set of external
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input places,

• T = {txi,X , i = 1, 2, . . . , n, X ⊆ I( fi)} is the set of tran-
sitions,

• Pre : (P ∪ Pc) × T → {0, 1} is the mapping defining
arcs between places and transitions,

• Post : T × (P ∪ Pc) → {0, 1} is the mapping defining
arcs between transitions and places.

The functions Pre and Post are defined as follows:
(i) Case of xi � I( fi) (xi is not a self-regulator): For a given
transition txi,X , the following terms are defined (all the other
terms are equal to zero):

Pre(xi, txi,X) = Post(txi ,X , xi) = 1 − Ki(X),

Pre(xi, txi,X) = Post(txi ,X , xi) = Ki(X),

Pre(x j, txi,X) = Post(txi ,X , x j) = 1, ∀x j ∈ X,

Pre(x j, txi,X) = Post(txi ,X , x j) = 1,

∀x j ∈ I( fi) − X,

Pre(uj, txi,X) = 1, ∀uj ∈ X,

Pre(uj, txi,X) = 1, ∀uj ∈ I( fi) − X.

(ii) Case of xi ∈ I( fi) (xi is a self-regulator): Consider a
given transition txi,X .
If xi ∈ X, then only the case of Ki(X) = 0 is considered.
Therefore, the following terms are defined:

Pre(xi, txi,X) = Post(txi ,X , xi) = 1,

Pre(x j, txi,X) = Post(txi ,X , x j) = 1,

∀x j ∈ X, x j � xi,

Pre(x j, txi,X) = Post(txi ,X , x j) = 1,

∀x j ∈ I( fi) − X,

Pre(uj, txi,X) = 1, ∀uj ∈ X,

Pre(uj, txi,X) = 1, ∀uj ∈ I( fi) − X.

If xi � X, then only the case of Ki(X) = 1 is considered.
Therefore, the following terms are defined:

Pre(xi, txi,X) = Post(txi ,X , xi) = 1,

Pre(x j, txi,X) = Post(txi ,X , x j) = 1, ∀x j ∈ X,

Pre(x j, txi,X) = Post(txi ,X , x j) = 1,

∀x j ∈ I( fi) − X, x j � xi,

Pre(uj, txi,X) = 1, ∀uj ∈ X,

Pre(uj, txi,X) = 1, ∀uj ∈ I( fi) − X.

�

In the above definition, a sum of the number of tokens
in ui and that in ūi becomes zero by firing some transition.
In this case, to satisfy Assumption 1 and Assumption 2, a
token is generated in either ui or ūi.

We show a simple example.

Example 2: Consider the following simple SBN:

Fig. 3 Petri net expressing an ABN.

{
x1(k + 1) = x2(k),
x2(k + 1) = u(k)

(9)

From x1(k + 1) = x2(k), we obtain K1(∅) = 0 and K1({x2}) =
1. In a similar way, from x2(k+1) = u(k), we obtain K2(∅) =
0 and K2({u}) = 1. Then we consider four transitions tx1,∅,
tx1,{x2}, tx2,∅, and tx2,{u}. We denote these transitions by tx1 ,
tx1,x2 , tx2 , and tx2,u, respectively. Then we obtain the Petri net
in Fig. 3, where the placement of tokens represents x1(k) =
1, x2(k) = 0, and u(k) = 1. In this case, transitions tx1 and
tx2,u can fired. For example, one token on the place x1 is
moved to the place x̄1 by firing tx1 , and one token on the
place x̄2 stays.

In addition, suppose that one token is included in place
x̄1, x̄2, and u. Then the transition tx2,u may fire. If the transi-
tion tx2,u fires, then one token is moved from x̄2 and u to x2.
A pair of x2 and x̄2 satisfies Assumption 1 and Assumption
2, but a pair of u and ū does not satisfy Assumption 2. So
one token must be added in either u and ū with fire.

Finally, a matrix representation of Pre and Post in (8)
is obtained as follows.

Pre =

tx1 tx1,x2 tx2 tx2,u⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

x̄1

x2

x̄2

u
ū

Post =

x1 x̄1 x2 x̄2 u ū⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
tx1

tx1,x2

tx2

tx2,u

�

4. Optimal Control

For the Petri net (8) expressing an ABN, consider the op-
timal control problem. First, the state equation of the Petri
net (8) is derived. Next, the optimal control problem is for-
mulated.

4.1 State Equation of Petri Nets

First, we introduce the notation. By xi(k), x̄i(k), ui(k), ūi(k) ∈
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{0, 1}, denote existence or non-existence of a token in place
xi, x̄i, ui, ūi ∈ {0, 1} at time k. Since xi(k), x̄i(k), ui(k), ūi(k)
are binary variables, Assumption 1 is satisfied. To sat-
isfy Assumption 2, ui(k) + ūi(k) = 1 is imposed. Also,
xi(k) + x̄i(k) = 1 must be imposed, but this condition is sat-
isfied under the initial condition xi(0) + x̄i(0) = 1. Next,
by txi,Xj (k) ∈ {0, 1}, i = 1, 2, . . . , n, j = 1, 2, . . . , 2|I( fi)|, de-
note the fire in the transition txi,Xj . If txi,Xj (k) = 1, then the
transition txi,Xj fires at time k. Otherwise, txi,Xj does not fire.
Finally, we define

x(k) = [ x1(k) x̄1(k) · · · xn(k) x̄n(k) ]T ,

u(k) = [ u1(k) ū1(k) · · · um(k) ūm(k) ]T ,

t(k) =
[

tx1,X1 (k) · · · tx1,X2|I( f1)| (k)

· · · txn,X1 (k) · · · txn,X2|I( fn)| (k)
]T
.

According to the conventional result in Petri nets (see
e.g., [16], [24]), we can obtain the following state equation
of Petri nets (8)[

x(k + 1)
u(k + 1)

]
=

[
x(k)
u(k)

]
+ Bat(k),

Pre t(k) ≤
[

x(k)
u(k)

]

where Ba := PostT − Pre. If the number of firing transitions
at each time is equal to or less than 1, then the inequality
condition [ 1 · · · 1 ]t(k) ≤ 1 must be imposed. Further-
more, from the obtained state equation, we can obtain the
following state equation

x(k + 1) = Ax(k) + Bv(k), (10)

Cx(k) + Dv(k) ≤ E (11)

where v(k) := [ uT (k) tT (k) ]T , and

A = I2n,

B =
[

02n×2m [I2n 02n×2m]Ba

]
,

C =

[ −I2n

02m×2n

]
,

D =

[ [
02n×2m

−I2m

]
Pre

]
,

E = 02(n+m)×1.

4.2 Optimal Control Problem

Next, for the state Eqs. (10), (11) expressing the Petri net
(8), consider the following optimal control problem.

Problem 1: For the state Eqs. (10), (11) expressing the
Petri net (8), suppose that the initial state x(0) = x0 satis-
fying Assumption 1 is given. Then find an input sequence
v(0), v(1), . . . , v(N − 1) minimizing the linear cost function

J =
N−1∑
k=0

{Qx(k) + Rv(k)} + Qf x(N) (12)

where Q,Qf ∈ R1×nd , R ∈ R1×md are weighting vectors
whose element is a non-negative real number. �

Suppose that there exist genes such that expression
must be inhibited. For the states corresponding to these
genes, high weights are set. That is, certain elements of
Q are given as a high value. In addition, if it is desirable
that the value of the control input is zero, then certain el-
ements of R are given as a high value. By minimizing J,
which is given according to the above policy, inhibition of
gene expression and derivation of the desirable control input
sequence can be achieved.

For simplicity of discussion, a linear function with re-
spect to x and u is considered as a cost function, but a
quadratic cost function may be used. In addition, suppose
that the desired state xd ∈ {0, 1}nd is given. Then the state
x(k) must be replaced to x̂(k) := x(k)− xd, and the cost func-
tion (12) is also replaced to J =

∑N−1
i=k {Q|x̂(k)| + Rv(k)|} +

Qf |x̂(N)|. Although a longer N is desirable, the computa-
tion time to solve Problem 1 must be also considered.

In Problem 1, v(0), v(1), . . . , v(N − 1) are free binary
variables (of course, the inequality constraint (11 must be
satisfied). However, there is a possibility that a given bio-
logical system does not satisfy this assumption. Then sup-
pose that some candidates of input sequences are given. In
Problem 1, the optimal input sequence minimizing the cost
function (12) is selected among the set of the candidates
B ⊆ {0, 1}md N . This extension is easy. In this sense, Problem
1 can be applied to optimal control of asynchronous Boolean
networks such that the updating time of each state is given
in advance. Of course, this problem can also be applied to
optimal control of SBNs. Thus Problem 1 includes several
situations.

We show an example for setting weighting vectors
from the biological viewpoint.

Example 3: Consider the Boolean network expressing an
apoptosis network (4) in Example 1 again. From (4), we
obtain the Petri net (8) with 6 places, 2 external input places,
and 12 transitions. In addition, from the obtained Petri net,
we obtain the state Eqs. (10), (11). For the obtained state
equation, we consider to find a control strategy such that a
stimulus is not applied as much as possible, and cell survival
is achieved. u(k) = 0 implies that a stimulus is not applied
to the system, and x1(k) = 1, x2(k) = 0 express cell survival.
Then as one of appropriate cost functions, we can consider
the following cost function

J =
N−1∑
k=0

{10|x1(k) − 1| + 10|x2(k) − 0| + u(k)}

+100|x1(N) − 1| + 100|x2(N) − 0|.
By the appropriate coordinate transformation, this cost func-
tion can be rewritten as the form of (12). See also Sect. 5.2
and [7], [8], [13] for biological examples on the optimal con-
trol problems. �

Finally, by using the state Eqs. (10), (11), Problem 1
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can be written as the following integer linear programming
(ILP) problem: find v(k), k = 1, 2, . . . ,N − 1 minimizing
the cost function (12) subject to the system (10), (11). The
ILP problem can be solved by using a suitable solver such
as IBM ILOG CPLEX [23].

4.3 Discussion on the Effectiveness of the Petri Net-Based
Modeling

One of the simple methods for modeling of ABNs is to se-
lect one combination at each time among all (2n) combina-
tions of Boolean functions. In the case of (9) in Example 2,
we obtain the following 2n = 4 combinations, i.e.,

Σ1 : x1(k + 1) = x1(k), x2(k + 1) = x2(k),

Σ2 : x1(k + 1) = x2(k), x2(k + 1) = x2(k),

Σ3 : x1(k + 1) = x1(k), x2(k + 1) = u(k),

Σ4 : x1(k + 1) = x2(k), x2(k + 1) = u(k).

From these subsystems, we can obtain the following system
expressing an ABN:

x1(k + 1) = (δ1(k) + δ3(k))x1(k)

+(1 − δ1(k) − δ3(k))x2(k), (13)

x2(k + 1) = (δ1(k) + δ2(k))x2(k)

+(1 − δ1(k) − δ2(k))u(k) (14)

where δ1(k), δ2(k), δ3(k) are binary variables satisfying
δ1(k) + δ2(k) + δ3(k) ≤ 1, and correspond to Σ1,Σ2,Σ3, re-
spectively. Furthermore, z1 := δ1x1, z2 := δ3x1, z3 := δ1x2,
z4 := δ3x2, z5 := δ2x2, z6 := δ1u, and z7 := δ2u are defined,
and the result† proposed in [4] is applied to z1, z2, . . . , z7.
Thus we can obtain the linear system, where the number of
input decision variables is 1 + 3 + 7 = 11. This method
is called here a direct approach. In the case using the state
Eqs. (10), (11), dim v = 6 is derived.

In general, in the direct approach, the dimension of
binary variables to switch Boolean functions and the con-
trol input is given as m + 2n − 1. In the proposed Petri
net-based approach, the dimension v in (10), (11) is given
as 2m +

∑n
i=1 2|I( fi)|. In real gene regulatory networks, it is

well known that |I( fi)| is relatively smaller than n (see e.g.,
[2]). For example, consider the case of n = 10, m = 3, and
|I( fi)| = 3. Then we can obtain 2n − 1 + m = 1026 and
2m +

∑n
i=1 2|I( fi)| = 86 are obtained.

Thus, in modeling of real gene regulatory networks, it
is not appropriate to use the direct approach, and the pro-
posed Petri net-based method provides us a simpler model
of ABNs.

5. Numerical Example

In this section, we show the effectiveness of the proposed
approach by using a numerical example with a WNT5A net-
work [22]. First, a Boolean network model of a WNT5A
network is explained. Next, we show the computation re-
sult.

5.1 WNT5A Network

Consider a gene regulatory network with the gene WNT5A.
The gene WNT5A is related to melanoma, which is a kind
of skin cancers. It is known that overexpression of the gene
WNT5A is closely related to tumor growth. Thus it impor-
tant to consider inhibiting the concentration level of the gene
WNT5A (see also [21]).

The Boolean network x(k + 1) = fa(x(k)) is given by

x1(k + 1) = ¬x5(k),

x2(k + 1) = ¬x6(k),

x3(k + 1) = x3(k),

x4(k + 1) = ¬x6(k) ∨ u(k),

x5(k + 1) = x2(k) ∨ x3(k),

x6(k + 1) = x6(k) ∨ ¬u(k)

where the concentration level (high or low) of the gene
WNT5A is denoted by x1, the concentration level of the
gene S100P by x2, the concentration level of the gene RET1
by x3, the concentration level of the gene MART1 by x4, the
concentration level of the gene HADHB by x5, and the con-
centration level of the gene STC2 by x6. See [22] for further
details. According to discussion on [7], we suppose that in
the BN model of a WNT5A network, the control input u is
given by the concentration level of the gene pirin.

5.2 Computation Result

First, consider deriving a Petri net expressing the Boolean
network model of a WNT5A network. Then we can derive
the Petri net with 14 places and 15 transitions. See Appendix
for details of matrices Pre, Post.

For the obtained state equation, consider solving Prob-
lem 1. As a purpose of control, we suppose that the follow-
ing properties are desirable: (i) the concentration level of the
gene WNT5A, x1 is inactive, (ii) the concentration levels of
STC and pirin, i.e., x6 and u are active. The property (i) is
introduced according to [21]. The property (ii) is artificially
given for verifying the effectiveness of control. To realize
these properties, Q,Qf ,R in the cost function (12) are given
as

Q = Qf =
[

10 0︸︷︷︸
Q1

0 · · · 0 0 10︸︷︷︸
Q6

]
,

R =
[

0 1︸︷︷︸
R1

0 · · · 0
]
.

Q1 = [ 10 0 ] corresponds to x1 and x̄1. By setting the
weight for x1 bigger than that for x̄1, the property (i), i.e.,
x1 = 0 and x̄1 = 1 will be achieved. Q6 and R1 are also set
in a similar way. In addition, N in the cost function (12) are

†For binary variables δ1, δ2, . . . , δn ∈ {0, 1}, the product z =
δ1δ2 · · · δn is equivalent to a pair of

∑n
i=1 δi−z ≤ n−1 and −∑n

i=1 δi+
nz ≤ 0.



538
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

Table 1 Time sequences of the focusing states x1, x6, and the control
input u.

Time 0 1 2 3 4 5 6 7 8 9 10

x1 1 1 0 0 0 0 0 0 0 0 0
x6 0 0 0 0 0 0 1 1 1 1 1
u 1 1 1 1 1 0 1 1 1 1 –

given as N = 10, and the initial state is given as

x0 = [ 1 0 1 0 0 1 1 0 1 0 0 1 ]T .

Next, consider imposing constraints on fires of transitions.
The set of transitions are separated as follows:

T = Ta ∪ Tb ∪ Tc,

Ta =
{
tx4,{u}, tx4,{x6,u}, tx4,{x6}, tx5,{x2}, tx5,{x3}

}
,

Tb =
{
tx1,∅, tx1,{x5}, tx2,∅, tx2,{x6}, tx4,∅

}
,

Tc =
{
tx5,{x2,x3}, tx5,∅, tx6,∅, tx6,{x6,u}, tx6,{u}

}
.

In a similar way to the method in [8], one transition included
in Ta is allowed to fire at each time, one transition included
in Tb is allowed to fire at only time 1, 3, 5, 7, 9, and one
transition included in Tc is allowed to fire at only time 5, 9.
Of course, a firing transition at each time may be uniquely
given. Thus we can obtain the ILP problem with 17N = 170
binary variables. Note that in the case using the direct ap-
proach explained in Sect. 4.3, the optimal control problem is
rewritten as the ILP problem with 202N = 2020. From this,
we see that the size of the ILP problem becomes smaller by
the proposed approach.

Next, we show the computation result. Table 1 shows
the time sequences of the state x1, x6, and the control input u.
Here, the transition tx4,{x6} fired at time 0, the transition tx1,{x5}
fired at time 1, and the transition tx6,∅ fired at time 5. From
this result, we see that the above properties (i) and (ii) are
achieved by appropriately selecting a firing sequence and a
control input sequence. In addition, this result suggests that
there is a possibility that the concentration level of WNT5A
can be controlled.

Finally, the computation time for solving Problem 1
was 15 [msec], where we used IBM ILOG CPLEX 11.0 [23]
as an ILP solver on the computer with the Intel Core 2 Duo
3.0 GHz processor and the 4 GB memory. In the case of
N = 20, the computation time was 20 [msec].

6. Conclusion

In this paper, we have discussed optimal control of asyn-
chronous Boolean networks with control inputs. First, we
have proposed a method to transform a Boolean network
with control inputs into a Petri net with external input places.
Next, the optimal control problem has been formulated.
This problem is a general formulation including several bio-
logical situations. Finally, the effectiveness of the proposed
approach is shown by a numerical example. The proposed
approach will become one of the mathematical bases toward
control of biological networks in the future.

One of the future works is to apply the proposed ap-
proach to several biological systems. From the practical
viewpoint, an extension to probabilistic Boolean networks
proposed in [17] is also important. In addition, for large-
scale Boolean networks, the computation time to solve the
problem will be long. So it is significant to consider to re-
duce the computation time to solve the problem. Then logic
minimization is also important [18].

This work was partially supported by Grant-in-Aid for
Young Scientists (B) 23760387.
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Appendix: Details of Matrices Pre, Post

We show matrices Pre, Post in Sect. 5 as follows:

Pre =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 1 1 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Post =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where places are arranged in order of x1, x̄1, . . . , x6, x̄6, u, ū.

In addition, transitions are arranged in order of

tx1,∅, tx1,{x5},
tx2,∅, tx2,{x6},
tx4,∅, tx4,{x6}, tx4,{u}, tx4,{x6,u},

tx5,∅, tx5,{x2}, tx5,{x3}, tx4,{x2,x3},
tx6,∅, tx6,{u}, tx6,{x6,u}.
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