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PAPER

Optimal Control of Probabilistic Boolean Networks Using
Polynomial Optimization

Koichi KOBAYASHI†a) and Kunihiko HIRAISHI†, Members

SUMMARY In this paper, the optimal control problem of a probabilis-
tic Boolean network (PBN), which is one of the significant models in gene
regulatory networks, is discussed. In the existing methods of optimal con-
trol for PBNs, it is necessary to compute state transition diagrams with 2n

nodes for a given PBN with n states. To avoid this computation, a polyno-
mial optimization approach is proposed. In the proposed method, a PBN
is transformed into a polynomial system, and the optimal control problem
is reduced to a polynomial optimization problem. Since state transition
diagrams are not computed, the proposed method is convenient for users.
key words: optimal control, polynomial optimization, probabilistic
Boolean networks, systems biology

1. Introduction

In the field of systems biology, there have been a lot of
studies on modeling, analysis, and control of biological net-
works such as gene regulatory networks and metabolic net-
works. In control of biological networks, the control input
has the following significance. The value of the control in-
put expresses whether a stimulus is given to a cell. Then the
control input is designed to obtain the state trajectory that
transits from the initial state to the desired one. So the con-
trol input can represent the current status of therapeutic in-
terventions, which are realized by radiation, chemotherapy,
and so on. In order to develop gene therapy technologies
(see e.g., [17]) in future, control of biological networks is
important. Furthermore, in recent years, the important re-
sult on control of biological networks has been obtained in
[13]. That is, feedback control of synthetic biological cir-
cuits has been implemented, and the experimental result in
which cellular behavior is regulated by control has been ob-
tained. This result suggests that control methods of biolog-
ical networks can be realized. From these facts, it is impor-
tant to develop control methods of biological networks.

Biological networks are in general expressed by or-
dinary/partial differential equations with high nonlinearity
and high dimensionality. In control problems, Boolean net-
works and hybrid systems are frequently used [1], [3], [4],
[10], [12]. In the hybrid systems-based approach, a class of
biological networks are limited to low-dimensional systems,
because the computation time to solve the control problem
is too long. In Boolean networks, dynamics such as inter-
actions between genes are expressed by Boolean functions
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[9]. There is a criticism that a Boolean network is too sim-
ple as a model of biological networks (see e.g., [14]), but
this model can be relatively applied to large-scale systems.
In addition, since the behavior of gene regulatory networks
is stochastic by the effects of noise, it is appropriate that a
Boolean function is randomly decided at each time among
the candidates of Boolean functions. From this viewpoint,
a probabilistic Boolean network (PBN) has been proposed
in [18]. In the existing solution methods [5]–[8], [15], [16]
of optimal control of PBNs, state transition diagrams with
2n nodes (i.e., 2n × 2n transition probability matrices) must
be computed for a PBN with n states. As a result, in order
to compute state transition diagrams, several issues such as
memory consumption must be considered in implementa-
tion, and it is desirable to directly use a given Boolean func-
tion. The authors have proposed in [11] a control method in
which state transition diagrams are not computed, but in this
method the expected value of the state cannot be evaluated.

In this paper, a new method using polynomial opti-
mization is proposed. First, we propose a method to ex-
press the expected value of the state as a polynomial sys-
tem, which can be directly derived from a given Boolean
function. Next, by using the obtained polynomial system,
the optimal control problem is reduced to a polynomial opti-
mization problem. For large-scale PBNs, it is difficult at this
stage to solve a polynomial optimization problem. However,
by using a suitable solver such as SparsePOP [22], imple-
mentation is easy. In this sense, the proposed method pro-
vides us an easy-to-use method.

This paper is organized as follows. In Sect. 2, the out-
line of PBNs is explained. In Sect. 3, the optimal control
problem studied here is formulated. In Sect. 4 and Sect. 5, a
solution method is proposed. In Sect. 6, the effectiveness of
the proposed method is shown by using an artificial exam-
ple. In Sect. 7, the proposed method is applied to an example
on control of a WNT5A network. In Sect. 8, we conclude
this paper.

Notation: Let R denote the set of real numbers. Let
{0, 1}n denote the set of n-dimensional vectors, which con-
sists of elements 0 and 1. For a matrix/vector X, let XT de-
note the transpose of X. For an event A, let P(A) denote the
probability that A occurs. For two events A, B, let P(A|B) de-
note the conditional probability of A given B. For two events
A, B, let E(A|B) denote the conditional expected value of A
given B.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



KOBAYASHI and HIRAISHI: OPTIMAL CONTROL OF PBNS USING POLYNOMIAL OPTIMIZATION
1513

2. Probabilistic Boolean Networks

In this section, we introduce a probabilistic Boolean net-
work (PBN).

Consider the following PBN
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = f (1)(k, x(k), u(k)),
x2(k + 1) = f (2)(k, x(k), u(k)),
...
xn(k + 1) = f (n)(k, x(k), u(k))

(1)

where x = [x1 x2 · · · xn]T ∈ {0, 1}n is the state (e.g., the
expression of genes), u = [u1 u2 · · · um]T ∈ {0, 1}m is
the control input (e.g., the expression of genes), i.e., the
value of u can be arbitrarily given, k = 0, 1, 2, . . . is the
discrete time. For a fixed k ∈ {0, 1, . . .}, f (i) : {0, 1, . . .} ×
{0, 1}n × {0, 1}m → {0, 1}1 is a given Boolean function con-
sisting of logical operators such as AND (∧), OR (∨), and
NOT (¬). In deterministic Boolean networks, x(k + 1) is
uniquely determined for given k, x(k), and u(k). In PBNs,
candidates of f (i)(k, x(k), u(k)) are given, and for each xi,
selecting one Boolean function is probabilistically indepen-
dent at each time. Candidates of f (i)(k, x(k), u(k)) is denoted
by f (i)

j (x(k), u(k)), j = 1, 2, . . . , l(i), and the probability that

f (i)
j (x(k), u(k)) is selected is denoted by

c(i)
j = P

(
f (i)(k, x(k), u(k)) = f (i)

j (x(k), u(k))
)
.

Then the following relation

l(i)∑

j=1

c(i)
j = 1 (2)

must be satisfied.

Example 1: As a simple example, consider the PBN with
three states and one control input, which is a modified ver-
sion of the model discussed in [2]. A Boolean function is
given as

f (1) =

⎧⎪⎪⎨⎪⎪⎩
f (1)
1 = x3(k) ∧ u(k), c(1)

1 = 0.8,

f (1)
2 = ¬x3(k), c(1)

2 = 0.2,

f (2) = f (2)
1 = x1(k) ∧ ¬x3(k), c(2)

1 = 1.0,

f (3) =

⎧⎪⎪⎨⎪⎪⎩
f (3)
1 = x1(k) ∧ ¬x2(k), c(3)

1 = 0.7,

f (3)
2 = x2(k) ∧ u(k), c(3)

2 = 0.3

where l(1) = 2, l(2) = 1 and l(3) = 2 hold, and we see that
the relation (2) is satisfied. Next, consider the state trajec-
tories. Then for x(0) = [ 0 0 0 ]T and u(0) = 0, we can
obtain

P
(
x(1) = [ 0 0 0 ]T | x(0) = [ 0 0 0 ]T

)
= 0.8,

P
(
x(1) = [ 1 0 0 ]T | x(0) = [ 0 0 0 ]T

)
= 0.2.

In this example, the cardinality of the finite state set {0, 1}3

Fig. 1 State transition diagram under u(0) = u0.

is given by 23 = 8, and we can obtain the state transi-
tion diagram of Fig. 1 by computing the transition from
each state under u(0) = 0. In Fig. 1, the number assigned
to each node denotes x1, x2, x3 (elements of the state),
and the number assigned to each arc denotes the transi-
tion probability from some state to other state. Note here
that for simplicity, the state transitions from only x(k) =
[ 0 0 0 ]T , [ 0 0 1 ]T , [ 0 1 0 ]T , [ 1 1 0 ]T are il-
lustrated in Fig. 1. �

In the existing methods [5]–[8], [15], [16] for optimal
control of PBNs, it is necessary to compute the state transi-
tion diagram such as Fig. 1, i.e., the transition probability
matrix. The number of nodes in the state transition dia-
gram is given by 2n (n is the number of the state). From
this, transition probability matrices with 2n×2n must be ma-
nipulated in a solution method of the optimal control prob-
lem. Then, in naive implementation using MATLAB, ma-
trices with 215 × 215 cannot be created due to memory con-
sumption, where we used the standard computer on CPU:
Intel Core i7 1.2 GHz, Memory: 4 GB, Windows 7 Profes-
sional 64 bit. Therefore, it is important to consider a solution
method in which state transition diagrams are not computed.
In addition, it is desirable to directly use a given Boolean
function. In this paper, from this viewpoint, we propose a
new method using polynomial optimization.

3. Problem Formulation

For the PBN (1), consider the following optimal control
problem.

Problem 1: Suppose that for the PBN (1), the initial state
x(0) = x0 and the control time N are given. Then find a
control input sequence u(0), u(1), . . . , u(N − 1) minimizing
the cost function

J = E

⎡⎢⎢⎢⎢⎢⎢⎣
N−1∑

k=0

{Qx(k) + Ru(k)} + Qf x(N)

∣∣∣∣∣∣∣ x(0) = x0

⎤⎥⎥⎥⎥⎥⎦ (3)
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where Q,Qf ∈ R1×n, R ∈ R1×m are weighting vectors whose
element is a non-negative real number.

We consider that a linear cost function is appropriate
from the following two reasons:

(i) For a binary variable δ ∈ {0, 1}, the relation δ2 = δ
holds. That is, in the cost function, the quadratic term
such as x2

i (k) is not necessary.

(ii) In control of gene regulatory networks, the expression
of a certain gene is frequently focused (see e.g., [6]).
That is, in the cost function, the quadratic term such as
xi(k)x j(k), i � j is not necessary. See Sect. 7 for the
biological significance of this problem.

4. Transformation of PBNs into Polynomial Systems

Consider transforming PBNs into polynomial systems.
First, the relation between Boolean functions and polyno-
mials is given as a preparation. Next, a motivating example
is shown. Finally, the result for a general PBN is derived.

4.1 Preparation

As a preparation, the following lemma [20] is introduced.

Lemma 1: Consider two binary variables δ1 and δ2. Then
the following relations hold.
(i) ¬δ1 is equivalent to 1 − δ1.
(ii) δ1 ∧ δ2 is equivalent to δ1δ2.

(iii) δ1 ∨ δ2 is equivalent to δ1 + δ2 − δ1δ2. �

By Lemma 1, a given Boolean function can be trans-
formed into a polynomial on the real number field. For ex-
ample, δ1 ∨ ¬δ2 is equivalently transformed into δ1 + (1 −
δ2) − δ1(1 − δ2) = 1 − δ2 + δ1δ2.

4.2 Motivating Example

Using the PBN in Example 1, we explain the basic idea of
the proposed method.

Suppose that for the PBN in Example 1, x(0) and u(0)
are given as x(0) = x0 = [ 0 0 0 ]T and u(0) = 0, re-
spectively. Then from Fig. 1, we can obtain E[x1(1)|x(0) =
x0, u(0) = 0] = 0.8 · 0+ 0.2 · 1 = 0.2. This result can also be
obtained by using Lemma 1. By Lemma 1, x3(k) ∧ u(k) and
¬x3(k) are transformed into x3(k)u(k) and 1 − x3(k), respec-
tively. So we can obtain

E[x1(1)|x(0) = x0, u(0) = 0] = 0.8(x3(0)u(0))

+0.2(1 − x3(0))

= 0.2.

In a similar way, E[x2(1)|x(0) = x0, u(0) = 0] and
E[x3(1)|x(0) = x0, u(0) = 0] can be obtained as

E[x2(1)|x(0) = x0, u(0) = 0] = x1(0)(1 − x3(0))

= 0,

E[x3(1)|x(0) = x0, u(0) = 0] = 0.7{x1(0)(1 − x2(0))}
+0.3(x2(0)u(0))

= 0,

respectively.
Next, suppose that u(1) is given as u(1) = 0, and con-

sider deriving E[x(2)|x(0) = x0, u(0) = u(1) = 0] (hereafter,
the condition is omitted). Then, noting that a switch of a
Boolean function is probabilistically independent for each
state, we can obtain

E[x1(2)] = E[ f (1)(1, x(1), u(1))]

= 0.8E[ f (1)
1 (x(1), u(1))]

+0.2E[ f (1)
2 (x(1), u(1))],

= 0.8E[x3(1)u(1)] + 0.2E[1 − x3(1)]

= 0.8E[x3(1)]u(1) + 0.2 − 0.2E[x3(1)]

= 0.2,

E[x2(2)] = E[ f (2)(1, x(1), u(1))]

= 1.0E[x1(1)(1 − x3(1))]

= E[x1(1)] − E[x1(1)]E[x3(1)]

= 0.2,

E[x3(2)] = E[ f (3)(1, x(1), u(1))]

= 0.7E[x1(1) − x1(1)x2(1)]

+0.3E[x2(1)u(1)]

= 0.14.

By recursively repeating, we can obtain E[x(k)|∗], k ≥ 3.
From this example, we see in an intuitively way that the
expected value of the state can be expressed as a polynomial
system.

4.3 General Case

For the general case, we can obtain the following theo-
rem. Hereafter, for simplicity of notation, the condition in
E[xi(k)|∗] is omitted. In addition, by f̂ (i), denote the poly-
nomial corresponding to the Boolean function f (i). By f̂ (i)

j ,
denote the polynomial corresponding to the Boolean func-
tion f (i)

j .

Theorem 1: Suppose that for the PBN (1), the initial state
x(0) = x0 is given. Then the expected value of the state,
E[xi(k)] is expressed as the following polynomial system

Σi : E[xi(k + 1)] =
l(i)∑

j=1

c(i)
j f̂ (i)

j (E[x(k)], u(k)) (4)

Proof : Note the following two points: (i) a switch of a
Boolean function is probabilistically independent for each
state, i.e., E[xix j] = E[xi]E[x j], i � j holds, and (ii)
each term of the polynomial f̂ (i)

j is given as the form of
axe1

1 · · · xen
n uen+1

1 · · · uen+m
m , where a is an integer, and ei ∈

{0, 1}, i,e, terms such as x2
i are not included in f̂ (i)

j . From
these points and E[u(k)] = u(k), the system (4) is obtained
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as follows:

E[xi(k + 1)] = E[ f̂ (i)(k, x(k), u(k))]

=

l(i)∑

j=1

c(i)
j E[ f̂ (i)

j (x(k), u(k))]

=

l(i)∑

j=1

c(i)
j [ f̂ (i)

j (E[x(k)], u(k))]

�

Since f̂ (i)
j (x(k), u(k)) is a polynomial, the right-hand

side of (4) is also a polynomial. Therefore, from Theorem
1, we see that the expected value E[x(k)] of the state is ex-
pressed as a polynomial system.

5. Reduction to a Polynomial Optimization Problem

Consider reducing Problem 1 to a polynomial optimization
problem. Then by using (4) in Theorem 1, we can obtain the
following result.

Theorem 2: Problem 1 is equivalent to the following poly-
nomial optimization problem:

Problem A:

find E[x(k + 1)] ∈ Rn, u(k) ∈ Rm,

k = 0, 1, . . . ,N − 1,

min Cost function (3),

subject to System Σi, i = 1, 2, . . . , n,

x(0) = x0,

ui(k)(ui(k) − 1) = 0.

Proof : Noting E[u(k)] = u(k), this theorem is obtained
immediately. �

Since from Theorem 1 and its proof, we see that
E[x(k + 1)] ∈ [0, 1]n is satisfied automatically, we set
E[x(k + 1)] ∈ Rn in Problem A. In addition, by using a so-
lution of the system Σi of (4), E[x(k + 1)] can be eliminated
from decision variables in Problem A. However, implemen-
tation makes easy by directly using (4). So E[x(k + 1)] is
regarded as a decision variable.

The constraint ui(k)(ui(k) − 1) = 0 guarantees that u(k)
is a binary variable. However, this constraint is non-convex,
and its existence is one of the reason why the computation
time to solve the problem is long. In a practical manner,
instead of this non-convex constraint, it will be desirable to
use the relaxed constraint 0 ≤ ui(k) ≤ 1.

6. Artificial Example

In order to evaluate the computation time for solving the
problem, we consider one artificial example of a PBN with
15 states and 3 control inputs. We stress that the existing
method cannot be applied to the optimal control problem of
PBNs with such a size, because 215 × 215 matrices cannot be

created in MATLAB on the standard computer (see also the
last paragraph of Sect. 2). See Appendix for further details
of the considered PBN.

For the PBN in Appendix, consider solving the op-
timal control problem of Problem 1, where Q = Qf =

[10 0 0 0 0 10 0 0 0 0 1 0 0 0 0] and R = [1 1 1]. For
N, we consider four cases, i.e., N = 2, 3, 4, 5.

Next, we show the computation result. In the case of
N = 5, the control input can be obtained as u(0) = [1 1 1]T ,
u(1) = u(2) = u(3) = u(4) = [1 1 0]T . We remark that
the control input is not a constant vector. The computation
time for solving the optimal control problem was as follows:
N = 2: 0.6 [sec], N = 3: 19.6 [sec], N = 4: 218.8 [sec],
N = 5: 333.4 [sec], where we used SparsePOP [22] on the
standard computer on CPU: Intel Core i7 1.2 GHz, Memory:
4 GB, Windows 7 Professional 64 bit. We remark that the
computation time depends on also a form of given Boolean
functions. From this result, we see that the optimal control
problem, which cannot be solved by the existing method,
can be solved by the proposed method. In addition, we see
that for a small N, the optimal control problem can be solved
within practical time. For a large N and large-scale biologi-
cal networks, it will be necessary to consider an approximate
solution method.

7. Biological Example

Consider applying the proposed method to control of a
WNT5A network. First, a WNT5A network is explained.
Next, the computation result is shown.

7.1 WNT5A Network

Consider a gene regulatory network with the gene WNT5A,
which is related to melanoma. A Boolean network model is
given by

x1(k + 1) = ¬x6(k),

x2(k + 1) = (¬x2(k) ∧ x4(k) ∧ x6(k))

∨ {¬x2(k) ∧ (x4(k) ∨ x6(k))} ,
x3(k + 1) = ¬x7(k),

x4(k + 1) = x4(k),

x5(k + 1) = x2(k) ∨ ¬x7(k),

x6(k + 1) = x3(k) ∨ x4(k),

x7(k + 1) = ¬x2(k) ∨ x7(k)

where the concentration level (high or low) of the gene
WNT5A is denoted by x1, the concentration level of the
gene pirin by x2, the concentration level of the gene S100P
by x3, the concentration level of the gene RET1 by x4, the
concentration level of the gene MART1 by x5, the concen-
tration level of the gene HADHB by x6, and the concen-
tration level of the gene STC2 by x7. See [21] for further
details.

Next, suppose that the control input u is given by x2
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(the concentration level of the gene pirin), according to dis-
cussion on [6]. So by replacing x2 and x3, x4, . . . , x7 with u
and x2, x3, . . . , x6, respectively, we can obtain the following
model

x1(k + 1) = f (1)
d (x(k), u(k)) = ¬x5(k),

x2(k + 1) = f (2)
d (x(k), u(k)) = ¬x6(k),

x3(k + 1) = f (3)
d (x(k), u(k)) = x3(k),

x4(k + 1) = f (4)
d (x(k), u(k)) = ¬x6(k) ∨ u(k),

x5(k + 1) = f (5)
d (x(k), u(k)) = x2(k) ∨ x3(k),

x6(k + 1) = f (6)
d (x(k), u(k)) = x6(k) ∨ ¬u(k).

Furthermore, we add the probabilistic behavior as follows:

xi(k + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (i)
d (x(k), u(k)),

with the probability 0.8,
xi(k), with the probability 0.2,

where l(i) = 2 holds. Thus we can obtain the PBN model
expressing a WNT5A network.

7.2 Computation Result

For the obtained PBN model, consider solving Problem A in
Theorem 2. In a WNT5A network, it is important to inhibit
the concentration level x1 of the gene WNT5A [19]. From
this fact, Q,Qf ,R in Problem A are given as

Q = [ 1 0 0 0 0 0 ] , R = 1,

Qf = [ 10 0 0 0 0 0 ] ,

respectively. The initial state is given as x0 =

[ 1 1 0 1 0 0 ]T . In addition, we set N = 5.
Next, we show the computation result. By solving

Problem A, we obtain u(0) = u(1) = 1, u(2) = u(3) = u(4) =
0. The expected value of the state at each time is obtained
as

E[x(1)] = [ 1 1 0 1 0.8 0 ]T ,

E[x(2)] = [ 0.36 1 0 1 0.96 0 ]T ,

E[x(3)] = [ 0.104 1 0 1 0.992 0.8 ]T ,

E[x(4)] = [ 0.027 0.36 0 0.36 0.998 0.96 ]T ,

E[x(5)] = [ 0.007 0.104 0 0.104 0.488 0.992 ]T .

So we see that the concentration level x1 of the gene
WNT5A is inhibited with time.

Finally, we discuss the computation time to solve the
problem. The computation time to solve this problem was
1.65 [sec]. So we see that for a PBN with such a size, the
optimal control problem can be solved in practical time.

8. Conclusion

In this paper, we have proposed a new method for solving
the optimal control problem of probabilistic Boolean net-
works. In the proposed method, a given Boolean function is

directly used, and the optimal control problem is reduced to
a polynomial optimization problem. The proposed method
provides us an easy-to-use method for control theory of gene
regulatory networks.

There are several open problems. For example, it is
important to derive an efficient solution method for large-
scale biological networks. In addition, application to several
biological networks is also significant.

This work was partially supported by Grant-in-Aid for
Young Scientists (B) 23760387.
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Appendix: Details of the PBN in Sect. 6

In Sect. 6, we consider the following PBN with a cyclic
structure and l(i) = 2, i = 1, 2, . . . , 15:

f (1) =

⎧⎪⎪⎨⎪⎪⎩
f (1)
1 = x1(k) ∧ x2(k) ∧ x15(k),

f (1)
2 = ¬u1(k),

f (2) =

⎧⎪⎪⎨⎪⎪⎩
f (2)
1 = x1(k) ∧ x2(k) ∧ x3(k),

f (2)
2 = x2(k),

f (3) =

⎧⎪⎪⎨⎪⎪⎩
f (3)
1 = x2(k) ∧ x3(k) ∧ x4(k) ∧ u3(k),

f (3)
2 = x3(k),

f (4) =

⎧⎪⎪⎨⎪⎪⎩
f (4)
1 = x3(k) ∧ x4(k) ∧ x5(k),

f (4)
2 = x4(k),

f (5) =

⎧⎪⎪⎨⎪⎪⎩
f (5)
1 = x4(k) ∧ x5(k) ∧ x6(k),

f (5)
2 = x5(k),

f (6) =

⎧⎪⎪⎨⎪⎪⎩
f (6)
1 = x5(k) ∧ x6(k) ∧ x7(k),

f (6)
2 = ¬u2(k),

f (7) =

⎧⎪⎪⎨⎪⎪⎩
f (7)
1 = x6(k) ∧ x7(k) ∧ x8(k),

f (7)
2 = x7(k),

f (8) =

⎧⎪⎪⎨⎪⎪⎩
f (8)
1 = x7(k) ∧ x8(k) ∧ x9(k) ∧ u1(k),

f (8)
2 = x8(k),

f (9) =

⎧⎪⎪⎨⎪⎪⎩
f (9)
1 = x8(k) ∧ x9(k) ∧ x10(k),

f (9)
2 = x9(k),

f (10) =

⎧⎪⎪⎨⎪⎪⎩
f (10)
1 = x9(k) ∧ x10(k) ∧ x11(k),

f (10)
2 = x10(k),

f (11) =

⎧⎪⎪⎨⎪⎪⎩
f (11)
1 = x10(k) ∧ x11(k) ∧ x12(k),

f (11)
2 = ¬u3(k),

f (12) =

⎧⎪⎪⎨⎪⎪⎩
f (12)
1 = x11(k) ∧ x12(k) ∧ x13(k),

f (12)
2 = x12(k),

f (13) =

⎧⎪⎪⎨⎪⎪⎩
f (13)
1 = x12(k) ∧ x13(k) ∧ x14(k) ∧ u2(k),

f (13)
2 = x13(k),

f (14) =

⎧⎪⎪⎨⎪⎪⎩
f (14)
1 = x13(k) ∧ x14(k) ∧ x15(k),

f (14)
2 = x14(k),

f (15) =

⎧⎪⎪⎨⎪⎪⎩
f (15)
1 = x1(k) ∧ x14(k) ∧ x15(k),

f (15)
2 = x15(k).

In addition, c(i)
j is given as c(i)

j = 0.5.
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