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Probabilistic-Constrained Optimal Control of a Class of
Stochastic Hybrid Systems

Koichi Kobayashi, Koichiro Matou, and Kunihiko Hiraishi

Abstract: Stochastic hybrid systems have several applications such as biological systems and
communication networks, but it is difficult to consider control of general stochastic hybrid sys-
tems. In this paper, a class of discrete-time stochastic hybrid systems, in which only discrete
dynamics are stochastic, is considered. For this system, a solution method for the optimal control
problem with probabilistic constraints is proposed. Probabilistic constraints guarantee that the
probability that the continuous state reaches a given unsafe region is less than a given constant. In
the propose method, first, continuous state regions, from which the state reaches a given unsafe
region, are computed by a backward-reachability graph. Next, mixed integer quadratic program-
ming problems with constraints derived from the backward-reachability graph are solved. The
proposed method can be applied to model predictive control.

Keywords: backward-reachability graphs, optimal control, probabilistic constraints, stochastic
hybrid systems

1. INTRODUCTION

A hybrid system is a class of dynamical systems com-
posed of continuous dynamics such as differential or dif-
ference equations and discrete dynamics such as finite au-
tomata. Recently, analysis and control of hybrid systems
have been extensively studied in the control theory com-
munity and the computer science community. Further-
more, the framework on analysis and control of hybrid
systems has been extended to stochastic hybrid systems
(SHSs) (see e.g., [1–3]). SHSs are well known as a model
of communication networks [4] and biological systems
[1], and developing analysis and control methods is one of
the significant works from theoretical and practical view-
points.

In particular, the optimal control problem is one of the
fundamental problems, and has been extensively studied.
For example, in [5], optimal control for a general class of
SHSs has been studied. In [6], a class of SHSs has been
considered as a plant. In [7], the case of switched linear
stochastic systems has been studied. On the other hand,
a class of SHSs in which continuous dynamics are deter-
ministic is frequently considered. Even if the system is
limited to such a class, then there are several applications
such as failure-prone systems [8–10]. In control of such
a class of SHSs, an approximate method for solving the
finite-time optimal control problem has been proposed so
far [11]. In this problem, the cost function is given as the
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expected value of some non-negative function. In [8, 12],
the lower bound of some non-negative function itself is
minimized under the constraint that the probability that
the optimal mode (discrete state) sequence is realized is
larger than a given constant. Especially, in [8], a given
system is modeled by a mixed logical dynamical (MLD)
model [13], and the above problem is reduced to a mixed
integer quadratic programming (MIQP) problem. On the
other hand, in [14], probabilistic reachability has been dis-
cussed for controlled discrete-time stochastic hybrid sys-
tems, and the set of the initial state such that the proba-
bility of staying within a given safe set is maximized is
computed. In stochastic systems, it is desirable to impose
probabilistic constraints, and the above method is useful
for analysis of SHSs. However, generating the control in-
put has not been discussed. To our knowledge, the op-
timal control problem with probabilistic constraints has
not been considered so far. Also for the other classes of
stochastic hybrid systems (see e.g., [5–7]), probabilistic
constraints have not been considered.

In this paper, for a class of discrete-time SHSs, in which
continuous dynamics are deterministic and only discrete
dynamics are stochastic, a solution method for the opti-
mal control problem with probabilistic constraints is pro-
posed. Probabilistic constraints in this paper are given as
a constraint that the probability that the continuous state
reaches a given unsafe region is less than a given constant.
The proposed solution method consists of two steps. First,
a backward-reachability graph is computed. In backward-
reachability graphs, paths of continuous state regions such
that the continuous state reaches a given unsafe region
at N discrete-time step are enumerated, where N is the
prediction horizon. Backward-reachability graphs can be
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computed by using a suitable tool (e.g., POLKA [15] and
PolyLib [16]) to manipulate convex polyhedra. From the
backward-reachability graph, the probability that the con-
tinuous state reaches a given unsafe region can be com-
puted, and state and input constraints required for satis-
fying a probabilistic constraint can be derived. Next, the
optimal input can be generated by solving MIQP problems
with state and input constraints derived from the backward-
reachability graph. MIQP problems can be solved by us-
ing a suitable solver such as CPLEX [17]. The proposed
approach provides us a new framework on optimal control
with probabilistic constraints.

This paper is organized as follows. In Section 2., SHSs
to be studied here are explained. In Section 3., the opti-
mal control problem with probabilistic constraints is for-
mulated. In Section 4., the outline of the proposed solu-
tion method is explained at first, and a solution method
for a general case is proposed. Furthermore, application
to model predictive control is also discussed. In Section
5., by a numerical example, the effectiveness of the pro-
posed method is shown. In Section 6., we conclude this
paper.

Notation: Let R denote the set of real numbers. Let
{0,1}n denote the set of n-dimensional vectors, which con-
sists of elements 0 and 1. For a set M, let 2M denote the
power set. For two events A and B, let P(A|B) denote the
conditional probability.

2. STOCHASTIC HYBRID SYSTEMS

First, a class of stochastic hybrid systems (SHSs) to be
studied here is defined.

Definition 1: A stochastic hybrid system is given by a
tuple

H = (Xc,Xd ,Uc, f ,P,g) (1)

where

• Xc ⊆ Rnc represents a continuous state space, and is
given as a convex polyhedron. xc ∈ Xc is called here a
continuous state.

• Xd represents a finite set of a discrete state space with
|Xd |= nd . xd ∈Xd is called here a mode or discrete state.
In addition, (xd ,xc) ∈ Xd ×Xc is called here a hybrid
state.

• Uc ⊆ Rmc represents a continuous input space, and is
given as a convex polyhedron. uc ∈ Uc is called here a
continuous input.

• f : Xc ×Xd ×Uc → Xc represents a flow map. A flow
map expresses continuous dynamics as follows:

xc(k+1) = Axd(k)xc(k)+Bxd(k)uc(k)+axd(k)

where k ∈ {0,1,2, . . .} is discrete time, and Axd ,Bxd , and
axd are certain matrices/vectors given for each xd ∈ Xd .

• P represents a finite set of md discrete probabilistic dis-
tributions. A distribution pr ∈P , r = 1,2, . . . ,md is given
by

{pi(r), j1(r), pi(r), j2(r), . . . , pi(r), jq(r) (r)}
where i(r), j1, j2, . . . , jq(r) ∈ Xd , and

pi, j(l) := P(xd(k+1) = j | xd(k) = i,r = l)

and ∑ j pi(r), j(r) = 1 for fixed r. i(r), j1, j2, . . . , jq(r) are
given, and (i(r), j1),(i(r), j2), . . . ,(i(r), jq(r)) corresponds
to edges in the directed graph expressing discrete dynam-
ics in SHSs.

• A mapping g : P → 2Xc represents a guard condition.
Each guard condition is given as a convex polyhedron.
Assume that an intersection of guard conditions is empty
except for guard conditions associated with a trap mode.
If the discrete state transits to a given trap mode, then the
discrete state stay at the trap mode.

In this paper, we consider a discrete time setting, and
continuous dynamics are given as linear systems. Basi-
cally, the SHS (1) is the same as discrete hybrid stochastic
automata proposed in [8], but different notations are used.

We show a simple example.

Example 1: Consider a tank system in Fig. 1, where
xc is the water level, uc is the volume of water charged to
the tank. When the mode is “off”, the water level is al-
ways decreased. The transition from “on” (“off”) to “off”
(“on”) is probabilistic. If it is repeatedly failed to switch
the mode, then the mode transits to “stop”. The mode
“stop” is a trap mode, that is, if the mode reaches “stop”,
then the mode stays at “stop”.

In this tank system, nc = 1, Xd = {on,off,stop}, mc =
1, md = 7. Continuous dynamics are given as on: xc(k+
1) = xc(k) + uc(k)− a, off: xc(k + 1) = xc(k)− a, stop:
xc(k+1)= xc(k). P = {p1, p2, . . . , p7} is given as follow:

p1 = {poff,off}, poff,off = 1.0,

p2 = {poff,off, poff,on}, poff,off = 0.1, poff,on = 0.9,

p3 = {poff,stop}, poff,stop = 1.0,

p4 = {pon,on}, pon,on = 1.0,

p5 = {pon,off, pon,on}, pon,off = 0.9, pon,on = 0.1,

p6 = {pon,stop}, pon,stop = 1.0,

p7 = {pstop,stop}, pstop,stop = 1.0.

The guard condition for p1 is given by

g(p1) = {xc(k+1) | N1 ≤ xc(k+1)<U} .
In a similar way, we obtain

g(p2) = {xc(k+1) | L ≤ xc(k+1)< N1} ,
g(p3) = {xc(k+1) | xc(k+1)< L} ,
g(p4) = {xc(k+1) | L ≤ xc(k+1)< N2} ,
g(p5) = {xc(k+1) | N2 ≤ xc(k+1)<U} ,
g(p6) = {xc(k+1) | U ≤ xc(k+1)} ,
g(p7) = {xc(k+1) | xc(k+1)< L∨U ≤ xc(k+1)} .
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Fig 1: Simple tank system

Note that the intersection of guard conditions except for
g(p7) is empty. In implementation, the conditions such as
xc(k+1)< L must be replaced. For example, xc(k+1)<
L is replaced to xc(k + 1) ≤ L + α , where α is a small
positive real number.

3. PROBLEM FORMULATION

In this section, the optimal control problem to be stud-
ied here is formulated.

First, as preparations, we define one symbol. By

πxd(0),xd(1),...,xd(N−1)(0,N −1)

or π(0,N − 1) for short, we denote the probability that
some mode sequence xd(0),xd(1), . . . ,xd(N − 1) is real-
ized. For the example of Fig. 1, suppose that the initial
mode is given as “off”. Then the probability πoff,on,off(0,2)
that the mode sequence off, on, off is realized is 0.81.

Next, an unsafe mode is given for the system. In Fig.
1, “stop” corresponds to an unsafe mode. In addition, an
unsafe state region assigned to an unsafe mode is given.
In Fig. 1, an unsafe state region is xc < L and xc ≥U . The
following assumptions are made for the unsafe mode and
the unsafe state region.

Assumption 1: The unsafe mode is a trap, i.e., if xd(k)
is the unsafe mode, then for all k̄ > k, xd(k̄) is also the
unsafe mode.

Assumption 2: The unsafe state region is given as one
convex polyhedron.

Assumption 1 implies that if the mode reaches the un-
safe mode, then the system stays at the unsafe mode. The
tank system in Fig. 1 satisfies Assumption 1, but does not
satisfy Assumption 2. If the probabilistic distribution p2 is
given as p2 = {poff,on}, poff,on = 1.0, then this system sat-
isfies Assumption 2. As one of the other methods, either
xc < L or xc ≥ U may be ignored. Although Assumption

2 is imposed for simplicity of discussion, the proposed
method in Section 4. can be extended to the case that the
unsafe state region is given as more than two convex poly-
hedra.

Then, for the SHS (1), consider the following optimal
control problem.

Problem 1: Suppose that for the SHS (1), the initial
hybrid state xc(0) = xc0, xd(0) = xd0, the unsafe mode
d ∈ Xd , the unsafe state region D ⊆ Xc, the constants
ε ,ρ ∈ [0,1], the control time N, the weighting matrices
Q,Q f ∈ Rnc×nc , R ∈ Rmc×mc , and the offset vector x̄ ∈
Xc are given. Then find a continuous input sequence
uc(0),uc(1), . . . ,uc(N −1) satisfying the following condi-
tions:
(i) the probability that the continuous state reaches a given
unsafe state region is equal to or less than ε ,
(ii) for all mode sequences satisfying

π(0,N −1)≥ ρ , (2)

the lower bound of the following cost function

J =
N−1

∑
i=0

{
x̂T

c (i)Qx̂c(i)+uT
c (i)Ruc(i)

}
+ x̂T

c (N)Q f x̂c(N)

(3)
is minimized, where x̂c(i) := xc(i)− x̄.

First, we discuss the condition (i). In the SHS (1), the
input constraints can be deterministically imposed. How-
ever, since the behavior of the SHS (1) is stochastic, it is
not appropriate to impose the state constraints determin-
istically. If the system does not satisfied state constraints,
then the system stops in many situations. So we impose
the probabilistic constraint of the condition (i) under As-
sumption 1.

Next, we discuss the condition (ii). In standard con-
trol methods of stochastic systems, the expected value of
some non-negative function is minimized. However, for
the SHS (1), it is difficult to evaluate the expected value,
because all combinations of mode sequences must be enu-
merated. Although all combinations can be enumerated
for simple SHSs [10], this method can be applied to only
small-scale systems. In this paper, instead of the expected
value, the lower bound of a given cost function is min-
imized and evaluated. Then, if the constraint (2) is not
imposed in Problem 1, i.e., ρ = 0, then the behaviors of
the SHS (1) are regarded as uncertain behaviors, and the
best performance is derived in Problem 1. However, since
combinations of mode sequences selected with low proba-
bility are included, the derived performance index may not
be appropriate. So in order to exclude such combinations,
we impose the constraint (2). One of the methods for de-
ciding ρ is to give ρ as the mean probability that some
mode sequence is selected, but details are one of future
works.

Problem 1 without the condition (i) has been discussed
in [8], and can be reduced to a mixed integer quadratic
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programming (MIQP) problem. However, the probabilis-
tic constraint has not been considered. So in this paper, a
solution method of Problem 1 is proposed.

4. PROPOSED SOLUTION METHOD

In this section, first, the outline of the proposed solution
method of Problem 1 is explained by using a simple exam-
ple. Next, a general case is explained. Finally, application
to model predictive control (MPC) is discussed.

4.1. Outline
The proposed solution method consists of two steps.

Procedure for solving Problem 1:
Step 1: Compute a backward-reachability graph from a
given unsafe state region.

Step 2: Solve MIQP problems with constraints derived
from the computed backward-reachability graph.

First, Step 1 is explained by using the tank system in
Fig. 1. Suppose that the unsafe state region is given as
91 ≤ xc ≤ 120. In addition, suppose that the input con-
straint is given as 20 ≤ u(k)≤ 30, and a is given as a = 6.
Consider finding the continuous state region such that the
continuous state reaches 91 ≤ xc ≤ 120. Then we can ob-
tain the backward-reachability graph in Fig. 2. Each node
corresponds to a hybrid state. Note that the continuous
state is given as some region. The label on each edge is
a transition probability at one discrete-time step, and a set
of linear inequalities with respect to the continuous state
and input is assigned to each edge. For example, the tran-
sition probability from (on, [77,91)) to (stop, [91,120]) is
given as 0.1 under the constraint 20≤ uc ≤ 30. Next, there
are two transitions in (on, [67,77)). In the transition to
(on, [77,91)), the transition probability is given as 0.1 un-
der the constraints

xc +uc < 97, uc ≥ 20, xc ≥ 67. (4)

In the transition to (stop, [91,120]), the transition proba-
bility is given as 0.1 under the constraints

xc +uc ≥ 97, uc ≤ 30, xc < 77. (5)

See Section 4.2. for further details. In (on, [67,77)), the
continuous state can transit to either (on, [77,91)) or (stop,
[91,120]) with the probability 0.1 by appropriately select-
ing the value of the continuous input. That is, we can
select either 0.1 or 0.01 as the transition probability from
(on, [67,77)) to (stop, [91,120]). In other words, if the
transition probability is selected as 0.01, then the probabil-
ity that the continuous state avoids the unsafe state region
is 0.99. Thus by using a backward-reachability graph, the
probability that the continuous state reaches a given un-
safe state region can be computed, and the constraints for
avoiding the unsafe state region can be derived.

Fig 2: Example of backward-reachability graphs

Next, Step 2 is explained. By assigning a binary vari-
able to each edge, the SHS (1) can be modeled by a mixed
logical dynamical (MLD) model [13]. Then Problem 1
without the condition (i) can be reduced to an MIQP prob-
lem [8]. Furthermore, by imposing the constraints derived
from the backward-reachability graph, Problem 1 includ-
ing the condition (i) can be reduced to MIQP problems.

The above is the outline of the proposed solution method
of Problem 1. In Section 4.2., a method to compute a
backward-reachability graph is proposed. In Section 4.3.,
we explain details of the procedure for reducing Problem
1 to MIQP problems.

4.2. Computation of Backward-Reachability Graphs
First, some symbols used in this subsection are defined.

By Pre(X), denote a set of a pair of the hybrid state and
input such that the hybrid state reaches a given set X = S×
T ⊂ Xd ×Xc at one discrete-time step. More precisely

Pre(X) := {(xd ,xc,uc) ∈ Xd ×Xc ×Uc |
∃x′c ∈ T, x′c = Axd xc +Bxd uc +axd

}
.

By ProX (Y ), denote a projection of Y ⊆ Xd ×Xc ×Uc

to the hybrid state space Xd ×Xc. Pre(X) and ProX (Y )
can be computed by using a suitable tool to manipulate
convex polyhedra, e.g., POLKA [15] and PolyLib [16]. In
addition, for given unsafe mode d ∈ Xd and state region
D ⊆ Xc, define the enlarged unsafe state region Du :=
{d}×D×Uc.

Then the following procedure for deriving a backward-
reachability graph (N ≥ 2) is proposed.

Procedure for deriving a backward-reachability graph:
Step 1: Set k = 1, and compute

Y1 := Pre(D)−Du, Yi := Pre(ProX (Yi−1))−Du

and Wi := ProX (Yi), i = 1,2, . . . , p̄, where p̄ = N.

Step 2:
Step 2-1: Split Wi, i = 1,2, . . . , p̄ to the following two sets

Wi −∪ j �=iWj, Wi ∩ (∪ j �=iWj)
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where j ∈ {1,2, . . . , p̄}.
Step 2-2: If obtained convex polyhedra are included in
multiple guard conditions, then split corresponding con-
vex polyhedra. By X1,X2, . . . ,Xp, denote the unsafe region
{d}×D and obtained convex polyhedra.
Step 2-3: For each Xi, assign the minimum number of
discrete-time steps such that the hybrid state included in
Xi reaches {d}×D.

Step 3: If a new split does not occur in Step 2, or k = N,
then go to Step 5. Otherwise, set k = k+1 and go to Step
4.

Step 4: Except Xi such that the minimum step is N, and
denote remaining Xi by X1,X2, . . . ,Xp̄, p̄ ≤ p. Compute

Wi := ProX (Pre(Xi)−Du), i = 1,2, . . . , p̄

and return to Step 2.

Step 5: Compute a backward-reachability graph, where
vertices correspond to the region X1,X2, . . . ,Xp. Edges
can be derived from the minimum number of steps such
that the hybrid state included in Xi reaches {d}×D. The
transition probability and the constraints assigned to each
edge can be derived from data computed in the above step.

Note here that in the proposed procedure, X1,X2, . . . ,Xp

are in general non-convex. If Xi is non-convex, then Xi is
expressed by a set of convex polyhedra.

Using the tank system in Fig. 1, the proposed proce-
dure is explained. Consider the case of a = 6, N1 = 41,
and N2 = 62. Suppose that the input constraint and the
prediction horizon are given as 20 ≤ uc ≤ 30 and N = 2,
respectively. The enlarged unsafe state region is given
as {stop}× [91,120]× [20,30]. Since the dimension of
Xc ×Uc is two, we can illustrate the space Xc ×Uc such
as Fig. 3 and Fig. 4. It is omitted to illustrate the space
Xd .

In Step 1, we can obtain Y1 and Y2 shown in Fig. 3,
where the mode for each region is “on”. In addition,

W1 = {on}× [67,91), W2 = {on}× [43,77)

can be derived.
In Step 2-1, from obtained W1,W2, W1 is split to

W1 −W2 = {on}× [77,91), W1 ∩W2 = {on}× [67,77).

In a similar way, W2 is split to

W2 −W1 = {on}× [43,67), W2 ∩W1 = {on}× [67,77).

In Step 2-2, noting N2 = 62, the set {on}× [43,67) is split
to

{on}× [43,62), {on}× [62,77).

Thus we can obtain X1,X2, . . . ,X5 (i.e., p = 5) shown in
Fig. 3. In Step 2-3, the minimum numbers of steps such
that the hybrid state included in Xi, i = 1,2, . . . ,5 reaches
{d}×D are 0, 1, 1, 2, and 2, respectively.

Fig 3: Step 1 and Step 2. It is omitted to illustrate the
space Xd .

Fig 4: Step 3 and Step 4. It is omitted to illustrate the
space Xd .

In Step 3, k = 1 is updated to k = 2, and go to Step 4.
In Step 4, X4 and X5 are excepted, because the mini-

mum step is 2(= N). That is, p̄ = 3 holds. In addition,
Pre(X1)−Du,Pre(X2)−Du(= Pre(X2)),Pre(X3)−Du(=
Pre(X3)) shown in Fig. 4 can be derived, where the mode
for each region is “on”. Thus

W1 = {on}× [67,91), W2 = {on}× [53,77),

W3 = {on}× [43,63)

can be derived, and return to Step 2.
In Step 2-1, W1 = {on}× [67,91) is split to

{on}× [67,77), {on}× [77,91).

W2 = {on}× [53,77) is split to

{on}× [63,67), {{on}× [53,63),{on}× [67,77)} .
The latter is a non-convex polyhedron, and is expressed as
two convex polyhedra. W3 = {on}× [43,63) is split to

{on}× [43,53), {on}× [53,63).

In Step 2-2, the region {on}× [53,63) is split to

{on}× [53,62), {on}× [62,63).

Thus we can obtain X1,X2, . . . ,X7 shown in Fig. 4.
In Step 3, since N = 2, go to Step 5.
In Step 5, a backward-reachability graph is computed.

Thus we can obtain the graph shown in Fig. 2.
In the case of N = 5, the backward-reachability graph

in Fig. 5 can be obtained.
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Fig 5: Example of backward-reachability graphs (N = 5).
If the probability assigned to the edge is equal to 1,
then this is not denoted.

4.3. Reduction to MIQP Problems
In this subsection, the outline of a method to model the

SHS (1) as the MLD model is explained by the tank sys-
tem in Fig. 1 at first. See [8, 13] for a general case.

First, a binary variable is assigned to each edge in Fig. 1
(see Fig. 6). Assume that the following equality constraint

δ 1
11(k)+δ 2

11(k)+δ12(k)+δ13(k)

+δ 1
22(k)+δ 2

22(k)+δ21(k)+δ23(k)+δ33(k) = 1

holds. In addition, a binary variable δi(k) is assigned to
each node in Fig. 1. “off”, “on” and “stop” correspond
to mode 1, 2 and 3, respectively (see also Fig. 6). If the
mode at time k is i, then δi(k) = 1 and δ j(k) = 0, j �= i
hold. In this case, the following relations

δ1(k) = δ 1
11(k)+δ 2

11(k)+δ12(k)+δ13(k),

δ2(k) = δ 1
22(k)+δ 2

22(k)+δ21(k)+δ23(k),

δ3(k) = δ33(k)

hold. A binary variable assigned to each edge is asso-
ciated with a given guard condition. Consider the guard
condition g(p1). Then, we obtain

[
δ 2

11(k) = 1
]→ [N1 ≤ xc(k+1)<U ] .

Also in guard conditions g(p2),g(p3), . . . ,g(p7), we ob-
tain

[
δ 1

11(k) = 1
]∨ [δ12 = 1] → [L ≤ xc(k+1)< N1] ,

[δ31(k) = 1] → [xc(k+1)< L] ,[
δ 2

22(k) = 1
] → [L ≤ xc(k+1)< N2] ,

[δ21(k) = 1]∨ [
δ 1

22 = 1
] → [N2 ≤ xc(k+1)<U ] ,

[δ23(k) = 1] → [U ≤ xc(k+1)] ,

[δ33(k) = 1] → [xc(k+1)< L

∨U ≤ xc(k+1)] .

Fig 6: Assignment of binary variables

These conditions can be expressed as a set of linear in-
equalities [13].

Continuous dynamics can be expressed as

xc(k+1) = δ1(k)(xc(k)−a)+δ2(k)(xc(k)+uc(k)−a)

+δ3(k)xc(k).

Although this expression is nonlinear, this can be trans-
formed into a linear form by using a set of linear inequal-
ities. Discrete dynamics can be expressed as

δ1(k+1) = δ 1
11(k)+δ 2

11(k)+δ21(k),

δ2(k+1) = δ 1
22(k)+δ 2

22(k)+δ12(k),

δ3(k+1) = δ33(k)+δ13(k)+δ23(k).

See [18] for further details.
By using the above expressions, the SHS (1) can be ex-

pressed as the following MLD model:
{

x(k+1) = Ax(k)+Bv(k),
Cx(k)+Dv(k)≤ E

(6)

where x(k) ∈ Rn1 ×{0,1}n2 is the state, v(k) is given by
v(k) = [ uT (k) zT (k) δ T (k) ]T , u(k) ∈ Rm1c ×{0,1}m1d

is the input, and z(k) ∈ Rm2 and δ (k) ∈ {0,1}m3 are aux-
iliary continuous and binary variables, respectively.

Next, consider how to express the constraint (2) as a
linear form. In the case of the tank system in Fig. 1 and
Fig. 6, we can obtain

lnπ(0,N −1) =
N−1

∑
k=0

LδL(k),

L := [ ln0.1 ln0.9 ln0.1 ln0.9 ] ,

δL(k) :=
[

δ 1
11(k) δ12(k) δ 1

22(k) δ21(k)
]T

.

So the constraint (2) can be transformed into a linear in-
equality constraint by using the natural logarithm.

Finally, paths such that the condition (i) in Problem 1
is satisfied are enumerated among paths of the computed
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backward-reachability graph. By Z(i) ⊆ (Xd ×Xc)
N+1,

i = 1,2, . . . , γ̄ , denote paths from some hybrid state to an
unsafe state region. By PZ(i), i = 1,2, . . . , γ̄ , denote the
probability that each path is realized. In addition, linear
inequality constraints corresponding to each path are de-
noted by

F(k, i)x(k)+G(k, i)v(k)≤ H(k, i) (7)

where k = 0,1, . . . ,N−1 and i = 1,2, . . . , γ̄ . Note here that
linear inequality constraints are in general time-varying.

Consider the backward-reachability graph in Fig. 2 as
an example. The initial hybrid state is given as (on,55).
Suppose N = 2. Then we obtain γ̄ = 2,

Z(1) = ((on, [53,62)),(on, [77,91)),(stop, [91,120])) ,

Z(2) = ((on, [53,62)),(on, [67,77)),(stop, [91,120]))

and PZ(1)= 0.1, PZ(2)= 0.1. Linear inequality constraints
can be derived from Fig. 4.

After paths are enumerated according to the initial hy-
brid state, we select paths such that the condition (i) in
Problem 1 is satisfied. By γ(≤ γ̄), denote the number of
selected paths. By imposing linear inequality constraints
(7) to the system (6), the condition (i) is satisfied, and γ
time-varying MLD models are derived. Note here that
even if any model is selected, then the condition (i) is sat-
isfied. So the optimal path is selected according to the
condition (ii) in Problem 1.

Based on the above discussion, let us consider solving
Problem 1. Consider the following γ MIQP problems.

i-th MIQP problem (i = 1,2, . . . ,γ):

find v(k), k = 0,1, . . . ,N −1

min Cost function (3)

subject to System (6), xc(0) = xc0, xd(0) = xd0,

F(k, i)x(k)+G(k, i)v(k)≤ H(k, i),

lnπ(0,N −1)≥ lnρ .

By J∗i , i= 1,2, . . . ,γ , denote the optimal value of a given
cost function in the i-th MIQP problem. Thus we obtain
the following theorem immediately.

Theorem 1: The optimal value J∗ of a given cost func-
tion in Problem 1 is derived as

J∗ = min
{

J∗1 ,J
∗
2 , . . . ,J

∗
γ
}
.

The optimal input sequence is derived as the input se-
quence corresponding to J∗.

From this theorem, we see that the optimal input se-
quence in Problem 1 can be derived by solving γ MIQP
problems.

4.4. Model Predictive Control

Problem 1 is frequently used in MPC. Finally of this
section, we propose an MPC law below.

[Offline Procedure]
Step 1: Compute a backward-reachability graph.
Step 2: Enumerate paths such that the condition (i) in
Problem 1 is satisfied.
Step 3: Formulate the MIQP problem for each enumer-
ated path.

[Online Procedure]
Step 1: Set t = 0, and give the initial hybrid state.
Step 2: Depending on the current hybrid state, select the
MIQP problems.
Step 3: Find the optimal input by solving the MIQP prob-
lems.
Step 4: Apply only uc(t) to the plant.
Step 5: Set t +1 → t, measure the hybrid state, and return
to Step 2.

In the online procedure of the proposed MPC law, MIQP
problems must be solved at each time. This is the compu-
tational burden. However, in control of SHSs, the pre-
diction horizon N will be small, because the behavior is
stochastic, and it is not realistic to set a large N. So the
computational burden will be near to that of MPC for de-
terministic hybrid systems. In addition, by using (7), the
lower and upper bounds of the cost function (3) can be es-
timated offline. So in the offline procedure, the number of
paths may be reduced from the viewpoint of optimality.

5. NUMERICAL EXAMPLE

In this section, we show a numerical example. Consider
solving Problem 1 for the tank system in Fig. 1.

Parameters in the tank system are given as a = 6, L =
13, N1 = 41, N2 = 62, and U = 91. The continuous state
space and the continuous input space are given as Xc =
[0,120] and Uc = [20,30], respectively. The initial hybrid
state is given as (on,21). The unsafe state region is given
as [91,120]. In the cost function (3), N, Q, Q f , R, and
x̄ are given as N = 5, Q = Q f = 1, R = 1, and x̄ = 50,
respectively. ε in the condition (i) of Problem 1 is given
as ε = 0.002. ρ in the constraint (2) is given as ρ = 0.1×
0.93.

Then we obtain the backward-reachability graph in Fig.
5. From Fig. 5, we can obtain the following three paths
such that the condition (i) of Problem 1 is satisfied:

Path 1: (on, [21,24))→ (on, [43,48))→ (on, [62,63))→
(on, [67,77)) → (on, [77,91))→ (stop, [91,120]),
Path 2: (on, [21,24))→ (on, [39,43))→ (on, [62,63))→
(on, [67,77)) → (on, [77,91))→ (stop, [91,120]),
Path 3: (on, [21,24))→ (on, [38,39))→ (on, [62,63))→
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Fig 7: Sample trajectories of the continuous state

(on, [67,77))→ (on, [77,91))→ (stop, [91,120]).

In addition, PZ(1) = PZ(2) = PZ(3) = 0.001.
By solving the MIQP problem for each path, we can

obtain

J∗1 = 3715, J∗2 = 3795, J∗3 = 3830.

So we see that Path 1 (Z(1)) is optimal. In addition, the
optimal continuous input sequence is derived as uc(0) =
28, uc(1) = 25, uc(2) = 20, uc(3) = 20, and uc(4) = 20.
Sample trajectories of the continuous state in the closed-
loop system are shown in Fig. 7. In addition, the num-
ber of trajectories such that the continuous state reaches
the unsafe state region [91,120] is 127 for 100000 sam-
ple trajectories of the continuous state. So we see that the
probabilistic constraint in the condition (i) of Problem 1 is
satisfied.

As the other case, suppose that ε is given as ε = 0.01.
Then we can obtain 26 paths. The control performance in
the case of ε = 0.01 may be better than that in the case
of ε = 0.002, because the number of the candidates of the
optimal paths in the case of ε = 0.01 is greater than that in
the case of ε = 0.002. However, the computation time to
find an optimal control input increase with the number of
paths. Therefore, noting the trade-off between the control
performance and the computation time, an appropriate ε
must be given.

6. CONCLUSION AND FUTURE WORKS

In this paper, we have considered the optimal control
problem of a class of stochastic hybrid systems. In par-
ticular, probabilistic constraints have been focused. In the
proposed solution method, first, a backward-reachability
graph is computed, and next, MIQP problems are solved.
The obtained result is useful as a method to solve the op-
timal control problem with probabilistic constraints.

The backward-reachability graph in this paper is closely
related to discrete abstraction techniques in hybrid sys-
tems [19]. It is one of future works to clarify the relation.

In addition, it is also significant to apply the proposed ap-
proach to several applications.
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