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Abstract

As is well known, the computational complexity in the mixed integer programming (MIP) problem is one of the main issues
in model predictive control (MPC) of hybrid systems such as mixed logical dynamical systems. Thus several efficient MIP
solvers such as multi-parametric MIP solvers have been extensively developed to cope with this problem. On the other hand,
as an alternative approach to this issue, this paper addresses how a deterministic finite automaton, which is a part of a hybrid
system, should be expressed to efficiently solve the MIP problem to which the MPC problem is reduced. More specifically,
a modeling method to represent a deterministic finite automaton in the form of a linear state equation with a smaller set
of binary input variables and binary linear inequalities is proposed. After a motivating example is described, a derivation
procedure of a linear state equation with linear inequalities representing a deterministic finite automaton is proposed as three
steps; modeling via an implicit system, coordinate transformation to a linear state equation, and state feedback binarization.
Various significant properties on the proposed modeling are also presented throughout the proofs on the derivation procedure.

Key words: hybrid systems, mixed logical dynamical systems, deterministic finite automata, model predictive control,
mixed integer programming, binary property of variables.

1 Introduction

The model predictive control (MPC) method based on a mixed logical dynamical (MLD) model [3] will be one of
the most useful approaches to control of hybrid systems, and many works on its applications have been reported so
far; traction control [8], automotive gearbox control [4], power plant [2,10], DC-DC converter [12] and so on. One
of the main issues of this approach is, however, that a mixed integer programming (MIP) problem, to which the
MPC problem is reduced, cannot in general be solved in a sufficiently small time. This is also a common problem for
most of the other optimal control schemes of hybrid systems [14], and is one of the main reasons to impede progress
on applications to a larger class of systems. Thus various improvements on this weakness have been developed. A
multi-parametric optimization approach [9,19] has been proposed by focusing on the fact that the MIP problem in
MPC depends on the current state. Furthermore, several further improvements on this approach have been provided
(e.g., see [13]).

As the other recent approach to reduce the computation time of the MIP problem, a logic-based solution method has
been proposed in [6]. This method decomposes the constraints appearing in an MIP problem into three parts, i.e.,
integer-valued constraints, continuous-valued constraints, and mixed-valued constraints, to exploit a satisfiability
(SAT) solver and an LP/QP solver.
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The above works concentrate on the improvements of the algorithm for efficiently solving the MIP problem appearing
in the control problem. On the other hand, the efficient modeling of hybrid systems is also very important from the
viewpoint of computational issues because the worst computation time for solving the MIP problem exponentially
grows with the number of binary variables. For example, it will be desirable in general that discrete dynamics such
as deterministic finite (for simplicity, DF) automata are represented in terms of equality relations. To our knowledge,
however, few results from the above points of view have been obtained in the previous literatures. Indeed the binary-
inequality based representation is well known as a method for expressing DF automata [3,23], but it will not be
desirable for the branch and bound method, which is one of the standard methods for solving the MIP problem,
because the so-called relaxed problem, where some binary variables in the original MIP problem are replaced by real
variables in [0, 1], does not effectively work for the binary inequalities expressing DF automata within the framework
of the MPC problem (see [15] for more details).

This paper thus proposes a new approach to representing a DF automaton as a linear state equation and linear
inequalities with a relatively small number of free binary variables (called here binary input variables), based on the
implicit system representation, i.e., the equality-based representation [1,18].

Our modeling has three steps; (i) modeling via an implicit system, (ii) coordinate transformation to a linear state
equation with binary linear inequalities, and (iii) state feedback binarization. At the first step, a given DF automaton
is expressed in terms of an implicit system with binary variables assigned to arcs, based on the input-output relation
of arcs at each node. Then at the next step the implicit system is transformed into a linear constrained system
with the binary property of variables preserved. One of the significant issues at these steps is how to find a kind
of coordinate transformation on the real number field such that the newly defined variables still have the binary
property. It is remarked that this problem is closely related to the behavioral approach [22], in particular, the
behavioral approach on the finite field, which is applied to the coding theory [20,21]. However, the MIP problem
appearing in the MPC problem of hybrid systems, should be described on the real number field in order to use the
existing MIP solvers. In other words, the DF automaton should be represented in the form of a linear state-equation
on the real number field with linear constraints including the binary variables. Hence the existing methods of the
behavioral approach on the finite field cannot be directly applied to our problem because, e.g., a linear function on
the finite field is in general expressed by a non-linear function on the real number field. Thus this paper will take a
direct way to discuss this issue, that is, discuss it on the real number field.

The third step in the proposed modeling is to eliminate the redundant binary input variables if the linear state
equation transformed according to the above steps includes them. However, it is not easy to eliminate them with
the binary property preserved; thus a kind of state-feedback transformation will be exploited in our modeling.

The organization of the paper is as follows. In Section 2, the standard method and the proposed method to represent
a DF automaton are briefly explained, and it is shown by a numerical example that the proposed method is more
effective in view of the computation-time for solving an MPC control problem. In Section 3, a modeling method of
expressing a given DF automaton as a linear state equation with linear inequalities is proposed. Section 4 provides
some discussions on the meaning of binary input variables in the proposed model, and the upper bound of the
number of them. In Section 5, some concluding remarks are given.

The following notation is used. Let {0, 1}m×n express the set of m × n matrices, which consists of elements 0 and
1, and also let {−1, 0, 1}m×n express the set of m × n matrices, which consists of elements −1, 0 and 1. Let In,
0m×n and en express the n× n identity matrix, the m× n zero matrix and the n× 1 vector whose elements are all
one, respectively. But for simplicity of notation, we sometimes use the symbol 0 instead of 0m×n, and the symbol
I instead of In. By T{0, 1}n denote the product of a matrix T ∈ Rm×n and a finite set of vectors {0, 1}n, i.e.,
T{0, 1}n := {Ta | a ∈ {0, 1}n }.

2 Motivating example

This section presents a motivating example on the modeling issues of deterministic finite (DF) automata.

As an example, we consider a simple motorbike model with five gears [5]. In this model, only the speed v (Km · h−1)
and the engine speed ω (×102 rpm) are considered as continuous state variables. In addition, the engine torque ut

(N · m) and the braking force ub (N) are regarded as continuous control inputs. I ∈ {1, 2, 3, 4, 5} denotes the I-th
gear. Then the continuous dynamics are described by the following discrete-time state equation

xc(k + 1) = AI(k)
c xc(k) +Bcuc(k) (1)
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(a) Inequality-based model

(b) State-equation-based model

Fig. 1. Gear shift logic

where xc(k) = [ v(k) ω(k) ]T ∈ R2, uc(k) = [ ut(k) ub(k) ]
T ∈ R2,

AI(k)
c =

[
1− αI(k) βI(k)

0 1

]
, Bc =

[
0 −0.3

0.2 −0.4

]
,

α1 = 0.1, α2 = 0.08, α3 = 0.06, α4 = 0.04, α5 = 0.02, and β1 = 0.5, β2 = 0.4, β3 = 0.3, β4 = 0.2, β5 = 0.1. Note
that αI(k), βI(k) are constants that depend on the gear. The gear shift logic is given by the DF automaton in Fig. 1.
For simplicity of discussion, we assume that gear shifts depend on only automaton, not continuous state variables.
The system consisting of (1) and the gear shift logic in Fig. 1 is a discrete-time switched linear system, and can be
expressed as a mixed logical dynamical (MLD) system model. To express this system as the MLD model, first, we
focus on the modeling of the automaton in Fig. 1.

To express the automaton in Fig. 1, binary variables are frequently used. In the modeling method in [3], which is
called here the inequality-based method, a binary variable δi is assigned to node i (mode i), and δi(k) = 1 and

δj(k) = 0 for all j �= i hold when the mode at time k is i, which implies the equality constraint
∑5

i=1 δi(k) = 1 (see
Fig. 1 (a)). In the proposed modeling method, a binary variable δij is assigned to the arc (directed edge) from node
i to node j, with which the input-output relation at each node can be expressed (see Fig. 1 (b)).

In the inequality-based method, a DF automaton in Fig. 1 is formulated as the propositions δi(k) →
∨

j∈I(i) δj(k+1),

i = 1, 2, . . . , 5, where → and ∨ denote implication and OR operators, respectively. In addition, I(i) is the index set
of nodes, which are adjacent to node i, and we have I(1) = {1, 2}, I(2) = {1, 2, 3}, I(3) = {2, 3, 4}, I(4) = {3, 4, 5},
and I(5) = {4, 5}. Moreover, based on the equivalence relations between propositions and linear inequalities, the
above propositions can be expressed by the binary linear inequalities

δi(k) ≤
∑

j∈I(i)
δj(k + 1), i = 1, 2, . . . , 5. (2)

Thus this automaton is represented by a state equation

δi(k + 1) = ui(k), i = 1, 2, . . . , 5 (3)

for a new free binary variable ui(k), together with the binary linear inequalities (2) whose δi(k + 1) are replaced by
ui(k). This is called here the inequality-based model.

In the proposed method, we focus on the input-output relation at each node. For example, we consider the input-
output relation at node 2. Then binary variables corresponding to input-arcs at node 2 are δ12, δ22, and δ32. In
a similar way, binary variables corresponding to output-arcs at node 2 are δ21, δ22, and δ23. Using these binary
variables, the input-output relation at node 2 is represented by the equation

δ21(k + 1) + δ22(k + 1) + δ23(k + 1) = δ12(k) + δ22(k) + δ32(k).
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Thus by expressing the input-output relation for every node in a similar way, the automaton in Fig. 1 is represented
as the following discrete-time implicit system model with an equality constraint on the initial state:

Eξ(k + 1) = Fξ(k), eT13 ξ(0) = 1 (4)

where ξ = [ δ11 δ12 δ21 δ22 δ23 δ32 δ33 δ34 δ43 δ44 δ45δ54 δ55 ]T , and E and F are certain matrices. Then we
can show that under a certain linear transformation of coordinates, the implicit system (4) is rewritten as the state
equation with linear constraints

{
x(k + 1) = Ax(k) +Bu(k),

Cx(k) +Du(k) ≤ G, eT5 x(0) = 1
(5)

where x = Eξ = [ δ11 + δ12 δ21 + δ22 + δ23 δ32 + δ33 + δ34 δ43 + δ44 + δ45 δ54 + δ55 ]T ∈ R5, u = [ δ11 + δ21 δ12 +
δ22 + δ32 δ23 + δ33 + δ43 δ34 + δ44 + δ54 ]T ∈ {0, 1}4. See Section 3.5 for the details. In this case, u is a free binary
variable with dimu = 4. This model is called here the state-equation-based model for brevity.

In both the inequality-based method and the proposed method, the other steps in the derivation of the MLD model
are the same, and the technique described in [3] can be used. Thus a model consisting of the state equation (1), the
inequality-based model (2), (3) (or the state-equation-based model (5)), and state/input constraints is represented
as an MLD model of

x̄(k + 1) = Āx̄(k) + B̄v̄(k), (6)

C̄x̄(k) + D̄v̄(k) ≤ Ḡ, (7)

where x̄(k) ∈ Rnc × {0, 1}nd is the state, v̄(k) is given by v̄(k) = [ ūT (k) z̄T (k) δ̄T (k) ]T , ū(k) ∈ Rm1c × {0, 1}m1d

is the control input, and z̄(k) ∈ Rm2 and δ̄(k) ∈ {0, 1}m3 are auxiliary continuous and binary variables, respectively.
In this example, we have x̄ = [ xT

c xT ]T , v̄ = [ uT
c uT z̄T ]T (z̄ ∈ R10 is a auxiliary continuous variable), and

nc = 2, nd = 5, m1c = 2, m1d = 5, m2 = 10, and m3 = 0 for the inequality-based model, and m1d = 4 for the
state-equation-based model; the other variables have the same values as those in the inequality-based model. For this
MLD model, the finite-time optimal/model predictive control problem is considered. By a simple calculation, this
control problem is reduced to a mixed integer quadratic programming (MIQP) problem with v̄(k), k = 0, 1, . . . , N−1
as decision variables.

Numerical experiments of the finite-time optimal control problem are shown. The cost function is given as J =∑N−1
i=0

{
x̂T (i)Qx̂(i) + v̄T (i)Rv̄(i)

}
+ x̂T (N)Qf x̂(N), where x̂(i) := x̄(i) − xd, xd = [ 20 20 ]T is the offset vector,

and Q = block-diag(10Inc
, 0), R = block-diag(Im1c

, 0), Qf = block-diag(102Inc
, 0. The initial state is given as

x̄0 = [ 60 45 | 1 0 0 0 0 ]T . In this experiment, the prediction horizon length is fixed as N = 20, and the numbers
of binary variables are given as 5N = 100 in the inequality-based model and 4N = 80 in the state-equation-based
model, respectively. Then the computation times for solving the MIQP problem are given as

161.04 (sec) for the inequality-based model,

8.48 (sec) for the state-equation-based model

where we used ILOG CPLEX 11.0 [24] as an MIQP solver on the computer with the Intel Core 2 Duo 3.0GHz
processor and the 4GB memory. From this result, we see that the computation time in the case of the state-equation-
based model is 20 times faster than that in the case of the inequality-based model. So the state-equation-based model
is more practical for the case such as Fig. 1.

What we have to remark here is that theoretical evaluation of the computation time is difficult in the general case
of MIP problems. The actual computation time depends on the number of binary and continuous variables, the
number of constraints, and the structure of the cost function and constraints. Of course, the computation time
heavily depends on the kind of an MIQP solver. However, it has been proven that the computational complexity
exponentially grows with the number of binary variables. That is, the worst computation time exponentially grows
with the number of binary variables. In addition, it will be desirable in general that discrete dynamics such as DF
automata are represented in terms of equality relations such as the state equation. This is because the so-called
relaxed problem, where some binary variables in the original MIQP problem are replaced by real variables in [0, 1],
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does not effectively work for the inequality-based model (see also [15]). The relaxed problem is frequently used in
MIQP solvers. Therefore, even if the difference in the number of binary variables between two models is small, then
the difference in the computation time may appear.

In this paper, instead of the computation cost itself, we focus on the number of binary variables in the MIP problem.
Then the state-equation-based model is theoretically proven to be effective in the sense that the number of binary
variables is smaller than that in the inequality-based model (see Section 4). Thus in addition to numerical results,
the state-equation-based model is also useful from the theoretical viewpoint. In view of this, this paper discusses it
in detail.

3 State-equation-based modeling of deterministic finite automata

This section proposes a novel method for systematically deriving the state equation such as (5) for a general class
of DF automata appeared in hybrid dynamical systems. The proposed method consists of three steps. First, a given
DF automaton will be expressed as the so-called implicit system. Next, the implicit system will be transformed into
a state equation via a kind of coordinate transformation. Finally, redundant input (free) variables appeared in the
state equation at the second step will be excluded by a kind of input feedback transformation.

3.1 Modeling via implicit systems

In this subsection we derive an implicit system expressing a DF automaton. This paper considers the case of a
DF automaton, i.e., the case in which one of nodes in the DF automaton, which expresses the mode (the discrete
state) of the corresponding hybrid dynamical system, becomes active at each discrete time according to the discrete
dynamics specified by the DF automaton.

Denote by the input-(output-)arc at a node the arc whose arrowhead(rear) is connected to the node. Then the
following assumption is made for this automaton.

Assumption 1 A DF automaton is given as a connected directed graph, where both ends of every arc are connected
into some node(s), and every node has at least one input-arc and at least one output-arc.

By Assumption 1, four cases as shown in Fig. 2 can be excluded. In the cases of Fig. 2 (a),(b) the solution of
discrete dynamics cannot be extended after a state transition from the node in question, which implies that it is
not well-posed in some sense. On the other hand, in the cases of Fig. 2 (c), (d) the arc whose end point is going
into node 1 is regarded as a special arc because a state transition at this arc occurs only if the initial state of this
dynamics is in this arc. Thus this situation can be exceptionally and easily treated in the optimal control problem of
hybrid dynamical systems. Hence these four cases are excluded here, and the DF automaton satisfying Assumption
1 is denoted by A hereafter.

For the automaton A, the following implicit system is considered. Let m and n denote the number of the nodes and
that of the arcs in the automaton, respectively. Suppose that each arc is labeled with the index j, j = 1, 2, . . . , n, and
also a binary variable δj ∈ {0, 1}, j = 1, 2, . . . , n is assigned to each arc j. Each node is also labeled with the index i,
i = 1, 2, . . . ,m. Let II(i) and IO(i) denote the index sets of input-arcs and output-arcs at node i, respectively. Then
the dynamical relation between input-arcs and output-arcs at node i at each discrete time k can be expressed as∑

j∈IO(i)

δj(k + 1) =
∑

j∈II(i)

δj(k)

together with
∑n

j=1 δj(k) = 1. Thus such a relation for every node yields an implicit system model given by

Eξ(k + 1) = Fξ(k), ξ(k) ∈ {0, 1}n, eTn ξ(k) = 1 (8)

where ξ(k) := [ δ1(k) δ2(k) · · · δn(k) ]
T ∈ {0, 1}n and E, F ∈ {0, 1}m×n. Note that, by Assumption 1, the number

of nodes is less than that of arcs, i.e., m ≤ n. Furthermore, this implicit system has the following properties.

Lemma 2 For the implicit system (8), the following conditions hold:
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Fig. 2. Exceptional cases of DF automata

(i) The implicit system (8) expresses all state transitions of the automaton A.

(ii) The system (8) has no noncausal behavior.

(iii) max
z∈C

rank (F − zE) = m, where C denotes the complex number field.

(iv) rankE = rankF = m.

(v) The following relations hold:
m∑
i=1

E(i) = eTn ,
m∑
i=1

F (i) = eTn (9)

where E(i) ∈ {0, 1}1×n, F (i) ∈ {0, 1}1×n, i = 1, 2, . . . ,m, are the i-th row vector of E and F , respectively.

(vi) If ξ(0) satisfies eTn ξ(0) = 1, then Eξ(k + 1) = Fξ(k), ξ(k) ∈ {0, 1}n implies that eTn ξ(k) = 1 holds for all k.

PROOF. First, (i) follows from the fact that (8) expresses all constraints in the state transition at each node by
construction. Next, since the state transitions of A are causal, the state ξ(k+1) does not depend on ξ(k̄), k̄ > k+1,
from which (ii) follows. The proof of (iii) is given as follows. For an arc j̄ ∈ II (̄i) at node ī, we have

{
Fī,j̄ = 1,

Fi,j̄ = 0, i �= ī
(10)

where Fi,j denotes the (i, j)-th element of F . This condition holds for each node ī ∈ {1, 2, . . . ,m}. Thus from m ≤ n
(by Assumption 1) it follows that rankF = m, which implies that (iii) holds for z = 0 and the second relation in (iv)
holds. In a similar way, the first relation in (iv) holds because for an arc j̄ ∈ IO (̄i) at node ī we have

{
Eī,j̄ = 1,

Ei,j̄ = 0, i �= ī
(11)

where Ei,j denotes the (i, j)-th element of E. Furthermore, (v) follows from (10), (11) and m ≤ n. Finally, (vi) is
proven as follows. Suppose that eTn ξ(0) = 1 and δj̄(0) = 1 for an arc j̄ ∈ II (̄i) at node ī. From (10), we see that the
following relation holds for (8):

Eξ(1) = Fξ(0) = [ 0 · · · 0 1︸︷︷︸
ī

0 · · · 0 ]T .

This implies ∑
j∈IO (̄i)

δj(1) = 1, δj(1) = 0, j ∈ {1, 2, . . . , n}/IO (̄i).

Hence eTn ξ(1) = 1 holds. Repeating the above discussion yields (vi). This completes the proof. �

Since (i) in Lemma 2 holds, we see that the implicit system (8) can express every mode behavior according to the
discrete dynamics of an automaton A. Conditions (ii) and (iii) are assumptions usually used for implicit systems. The
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noncausal behavior in (ii) corresponds to the impulsive behavior in continuous-time systems. Condition (iii) implies
that there exist no redundant equations in (8), in other words, (8) has m independent equations. For example, if
(8) has two same equations ξ1(k + 1) + ξ2(k + 1) = ξ1(k) + ξ2(k), then these are dependent (see [1,18]). Condition
(iv) will be used in Section 3.2. Condition (v) will be frequently used. From (vi), we see that the set of ξ satisfying
eTn ξ = 1 is positively invariant for the implicit system (8). Thus the implicit system (8) is equivalently rewritten as

Eξ(k + 1) = Fξ(k), ξ(k) ∈ {0, 1}n, eTn ξ(0) = 1. (12)

Since (12) does not explicitly include the constraint eTn ξ(k) = 1, it may be relatively simpler for discussion.

Next, let δMi (k) denote a binary variable assigned to mode (node) i at time k, where δMi = 1 if mode i is active,
otherwise δMi = 0, and also δM := [δM1 δM2 · · · δMm ]T . Let li(j) denote the node to which the arc j ∈ IO(i) is
connected. Then the relation between δj and a pair (δMi , δMli(j)) is defined by

δj(k) := δMi (k)δMli(j)(k + 1), j ∈ IO(i). (13)

The following lemma provides the relation between ξ(k) and δM (k).

Lemma 3 For the implicit system (8), the following relations hold.

(i) eTmδM (k) = 1.

(ii) Eξ(k) = δM (k).

(iii) The mode at time k + 1, i.e., δM (k + 1), is uniquely determined for a given ξ(k).

PROOF. First, from the definition of δMi (k), (i) holds straightforwardly.

Next, (ii) is proven. Define the symbol η(k) as η(k) := Eξ(k). From the definition of E, the i-th element ηi(k) of
η(k) corresponds to a sum of binary variables assigned to output-arcs at node i, i.e., ηi(k) =

∑
j∈IO(i) δj(k). From

(13), we have

ηi(k) = δMi (k)
∑

j∈IO(i)

δMli(j)(k + 1). (14)

If δMi (k) = 1 holds, then
∑

j∈IO(i) δ
M
li(j)

(k+1) = 1 holds from the definition of li(j), i.e., ηi(k) = 1 holds. Conversely,

If δMi (k) = 0 holds, then
∑

j∈IO(i) δ
M
li(j)

(k + 1) = 0 or 1 holds, i.e., ηi(k) = 0 holds. This is because node li(j) may

be adjacent to other nodes except for node i. The converse also holds, i.e., if ηi = 0 we have δMi (k) = 0. This means
ηi(k) = δMi (k). Hence the proof of relation (ii) is completed.

Finally, (iii) is proven immediately from the fact that δM (k + 1) = Eξ(k + 1) = Fξ(k). This completes the proof.
�

From this Lemma, we see that the initial state of this system should be carefully defined. In the optimal control
problem of hybrid dynamical systems, in general, an initial mode is given. However, by Lemma 3 (iii), the value
of the next mode, δM (1), is uniquely determined if ξ(0) is given in advance. So we suppose that the initial mode
δM0 ∈ M0 is given as an initial state of this system, where

M0 :=
{
η ∈ {0, 1}m | eTmη = 1

}
.

Then applying the set Ξ0(δ
M
0 ) defined as

Ξ0(δ
M
0 ) :=

{
η ∈ {0, 1}n | eTnη = 1, Eη = δM0

}
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to (12), we hereafter consider the following implicit system:

ΣI :

{
Eξ(k + 1) = Fξ(k),

ξ(k) ∈ {0, 1}n, ξ(0) ∈ Ξ0(δ
M
0 ).

(15)

Thus we will address the problem of transforming (15) into the following form, which is regarded as a part of the
MLD model:

Σtarget :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(k + 1) = Ax(k) +Bu(k),

Cx(k) +Du(k) ≤ G,

x(k) ∈ Rp, u(k) ∈ {0, 1}r,
x(0) = ΓδM0 , u(0) ∈ {0, 1}r

(16)

where x(k) is the state, and u(k) is a free binary variable, called “(binary) input variable” here, p, r denote some
dimension of x, u, respectively, and A ∈ Rp×p, B ∈ Rp×r, C ∈ Rs×p, D ∈ Rs×r, G ∈ Rs×1, and Γ ∈ Rp×m

are appropriate matrices. The system Σtarget will be often called the linear state equation for brevity, although it
includes a kind of linear inequalities.

It is remarked here that the condition x(k) ∈ Rp is given in (16), instead of x(k) ∈ {0, 1}p. If the binary condition
x(k) ∈ {0, 1}p is given in (16), then it has to be explicitly added as the constraints of binary variables in the optimal
control problem problem of hybrid dynamical systems, i.e., the mixed integer programming (MIP) problem. Thus
the number of binary variables in the resultant MIP problem is increased. On the other hand, it can be expected that
the binary condition x(k) ∈ {0, 1}p will be indirectly guaranteed by some conditions based on the binary property of
input variables and the initial state condition. This means that the binary variables for expressing a DF automaton
in the MIP problem may be given by only binary input variables. Note also that the initial state condition does not
appear in the MIP problem because the initial state value is given in advance.

3.2 Coordinate transformation to linear state equation

In this subsection, the procedure of transformation from the implicit system ΣI into the linear state equation Σtarget

is given.

By Assumption 1 and (iv), (v) of Lemma 2, we can show that for the implicit system ΣI of (15) there always exists

a permutation matrix P ∈ {0, 1}n×n satisfying EP = [ Im Ẽ ] for some matrix Ẽ ∈ {0, 1}m×(n−m). So for this
permutation matrix P , we define [

F̃a F̃b

]
:= FP,

[
ξa

ξb

]
:= P−1ξ

where F̃a ∈ {0, 1}m×m, F̃b ∈ {0, 1}m×(n−m). It is remarked that ξa ∈ {0, 1}m and ξb ∈ {0, 1}n−m hold for ξ ∈ {0, 1}n,
and the converse case holds as well because P−1 is also a permutation matrix.

First, a characterization of Ξ0(δ
M
0 ) is given as follows.

Lemma 4 For a given δM0 ∈ M0, Ξ0(δ
M
0 ) is expressed as

Ξ0(δ
M
0 ) =

{
P

[
Im

0(n−m)×m

]
δM0 + P

[
−Ẽ

In−m

]
z

∣∣∣∣∣ z ∈ {0, 1}n−m, δM0 − Ẽz ≥ 0

}

where P is the permutation matrix satisfying EP = [ Im Ẽ ] for some Ẽ ∈ {0, 1}m×(n−m).
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PROOF. First, it is proven that if ξ ∈ Ξ0(δ
M
0 ), then there exists z ∈ {0, 1}n−m satisfying δM0 − Ẽz ≥ 0 and

ξ = P

[
Im

0(n−m)×m

]
δM0 + P

[
−Ẽ

In−m

]
z. (17)

From EP = [ Im Ẽ ] and [ ξTa ξTb ]T = P−1ξ, Eξ = δM0 for ξ ∈ {0, 1}n is rewritten as

[
Im Ẽ

] [ ξa

ξb

]
= δM0 (18)

where ξa ∈ {0, 1}m and ξb ∈ {0, 1}n−m. By solving (18) with respect to [ ξTa ξTb ]T , we can see that[
ξa

ξb

]
=

[
Im

0(n−m)×m

]
δM0 +

[
−Ẽ

In−m

]
z

holds for any z. From ξb ∈ {0, 1}n−m, z satisfies z ∈ {0, 1}n−m. Furthermore, from ξa ∈ {0, 1}m, ξa = δM0 − Ẽz ≥ 0

holds. Thus there exists z ∈ {0, 1}n−m satisfying δM0 − Ẽz ≥ 0 and (17).

Conversely, it is proven that every ξ satisfying (17) with z ∈ {0, 1}n−m and δM0 − Ẽz ≥ 0 is included in Ξ0(δ
M
0 ).

First, it follows from (17) that

Eξ =EP

[
Im

0(n−m)×m

]
δM0 + EP

[
−Ẽ

In−m

]
z

=
[
Im Ẽ

] [
Im

0(n−m)×m

]
δM0 +

[
Im Ẽ

] [ −Ẽ

In−m

]
z

= δM0 ,

i.e., Eξ = δM0 holds. Next, it is proven that

δM0 − Ẽz ∈ {0, 1}m, (19)[
eTm eTn−m

] [ δM0 − Ẽz

z

]
= 1. (20)

It is remarked that by definition Ẽ ∈ {0, 1}m×(n−m) holds. Suppose that the i-th element of δM0 is 1. Then the i-th

element of δM0 − Ẽz takes the value of 0 or 1 thanks to δM0 − Ẽz ≥ 0, Ẽ ∈ {0, 1}m×(n−m), and z ∈ {0, 1}n−m. On

the other hand, if the i-th element of δM0 is 0, then the i-th element of δM0 − Ẽz is also 0. Hence we obtain (19).

Furthermore, (20) follows from eTmẼ = eTn−m (by Lemma 2 (v)) and eTmδM0 = 1.

Therefore, applying (19) and z ∈ {0, 1}n−m into (17) yields P−1ξ ∈ {0, 1}n, which implies ξ ∈ {0, 1}n, and applying
(20) and eTnP = eTn into (17) yields eTn ξ = 1. This means ξ ∈ Ξ0(δ

M
0 ), which completes the proof. �

Lemma 4 provides the main result in this subsection as follows.

Theorem 5 Consider the implicit system ΣI of (15) for a given δM0 ∈ M0, which expresses an automaton A, and

the permutation matrix P ∈ {0, 1}n×n satisfying EP = [ Im Ẽ ] for some matrix Ẽ ∈ {0, 1}m×(n−m). Then under
the coordinate transformation of [

x̂

û

]
:= V̂ ξ, V̂ :=

[
Im Ẽ

0(n−m)×m In−m

]
P−1 (21)
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the system ΣI is equivalently expressed as the following state equation:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̂(k + 1) = Âx̂(k) + B̂û(k),

Ĉx̂(k) + D̂û(k) ≤ Ĝ,

x̂(k) ∈ Rm, û(k) ∈ {0, 1}n−m,

x̂(0) = Γ̂δM0 , û(0) ∈ {0, 1}n−m

(22)

where Â := F̃a, B̂ := −F̃aẼ + F̃b, Ĉ := −Im, D̂ := Ẽ, Ĝ := 0m×1, and Γ̂ := Im.

PROOF. We will prove that under (21), (a) (22) is obtained by transforming (15) , and conversely (b) (15) is
obtained by transforming (22).

Proof of (a): First, noting that

V̂ −1 = P

[
Im −Ẽ

0(n−m)×m In−m

]

we obtain

EV̂ −1 =EP

[
Im −Ẽ

0(n−m)×m In−m

]

=
[
Im Ẽ

] [
Im −Ẽ

0(n−m)×m In−m

]

=
[
Im 0m×(n−m)

]
(23)

and

FV̂ −1 = FP

[
Im −Ẽ

0(n−m)×m In−m

]

=
[
F̃a F̃b

] [
Im −Ẽ

0(n−m)×m In−m

]

=
[
Â B̂

]
. (24)

Thus by (21) Eξ(k + 1) = Fξ(k) of ΣI is transformed into

[
Im 0m×(n−m)

] [ x̂(k + 1)

û(k + 1)

]
=

[
Â B̂

] [ x̂(k)

û(k)

]

which implies x̂(k + 1) = Âx̂(k) + B̂û(k) in (22).

Next, it will be shown that the remaining relations in (22) always follow from the solution ξ(k) satisfying (15). Recall
that ξ(k) satisfies ξ(k) ∈ {0, 1}n, eTn ξ(k) = 1 by Lemma 2 (vi).

Since (21) implies x̂(k) = Eξ(k) for any k, x̂(k) ∈ M0 holds from Lemma 3. Furthermore, by applying Lemma 4 to
this case, ξ(k) is parametrized as

ξ(k) = P

[
Im

0(n−m)×m

]
x̂(k) + P

[
−Ẽ

In−m

]
z(k) (25)
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for z(k) ∈ {0, 1}n−m satisfying x̂(k) − Ẽz(k) ≥ 0. By applying (25) into the transformation (21), we obtain z = û,

which implies û(k) ∈ {0, 1}n−m and x̂(k)− Ẽû(k) ≥ 0. Furthermore, x̂(0) = Eξ(0) = δM0 holds from ξ(0) ∈ Ξ0(δ
M
0 ).

Hence we have (22).

Proof of (b): We can see that under (21) the matrices E and F in ΣI are obtained as E = [ Im 0(n−m)×m ]V̂ and

F = [ Â B̂ ]V̂ . Thus from (22) we obtain Eξ(k + 1) = Fξ(k).

Next, we will prove that ξ(k) ∈ {0, 1}n and ξ(0) ∈ Ξ0(δ
M
0 ) hold from (x̂(k), û(k)) satisfying (22).

From (21) it follows

ξ(0) = P

[
Im

0(n−m)×m

]
δM0 + P

[
−Ẽ

In−m

]
û(0).

Thus since (22) yields û(0) ∈ {0, 1}n−m, δM0 − Ẽû(0) ≥ 0, by Lemma 4 we have ξ(0) ∈ Ξ0(δ
M
0 ).

In addition, by ξ(0) ∈ Ξ0(δ
M
0 ) and Fξ(0) = Eξ(1) = x̂(1), Lemma 3 concludes x̂(1) ∈ M0. In a similar way to

the case of k = 0, we have ξ(1) ∈ Ξ0(x̂(1)) thanks to û(1) ∈ {0, 1}n−m, x̂(1) − Ẽû(1) ≥ 0. Thus we can prove
ξ(k) ∈ {0, 1}n for any k.

This completes the proof. �

From Theorem 5, we see that under (22), only û(k) can be regarded as a binary decision variable in the MIP problem.

3.3 State feedback binarization

Since the m× (n−m) matrix B̂ in (22) is not a column full-rank matrix in general, there may exist some redundant

binary variables among variables of û. So we denote the rank of B̂ by α̂, i.e., α̂ := rankB̂(≤ min{m,n −m}). The
following lemma shows the properties of B̂, which will be used in the reduction of binary variables.

Lemma 6 For the m× (n−m) matrix B̂ in (22) the following statements hold:

(i) α̂ is invariant under the coordinate transformation (21).

(ii) B̂ is an incidence matrix of some directed graph.

(iii) There exist a permutation matrix PB ∈ {0, 1}m×m and a nonsingular matrix TB ∈ R(n−m)×(n−m) such that

B̂ = PB

[
Iα̂ 0

B̃ 0

]
TB (26)

where each element of the matrix B̃ is an integer.

PROOF. First (i) will be proven. From FP = [ F̃a F̃b ], B̂ = −F̃aẼ + F̃b is rewritten as

B̂ = FP

[
−Ẽ

In−m

]
.

Since permutation matrices are in general nonsingular, rankB̂ are invariant under (21).

For (ii), next, it will be proven that each column vector of B̂ is a zero vector, or is composed of a ’+1’, a ’−1’, and

m−2 zeros. From (9) in (v) of Lemma 2 and the permutation matrix P , each column vector of F̃a, F̃b and Ẽ consists
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of a ’1’ and m−1 zeros. So each column vector of F̃aẼ also consists of a ’1’ and m−1 zeros. Therefore, each column
vector of B̂ = −F̃aẼ + F̃b ∈ {−1, 0,+1}m×(n−m) is a zero vector, or is composed of a ’+1’, a ’−1’ and m− 2 zeros.

This implies that B̂ is the incidence matrix of some directed graph.

Finally, (iii) will be proven. Since B̂ ∈ {−1, 0,+1}m×(n−m) holds thanks to (ii), there exist permutation matrices

P1, P2 such that B̂11 ∈ {−1, 0,+1}α̂×α̂ is a nonsingular matrix, and B̂22 = B̂21B̂
−1
11 B̂12, where[

B̂11 B̂12

B̂21 B̂22

]
:= P1B̂P2

(see e.g., [11]). Then for

T0 :=

[
B̂−1

11 −B̂−1
11 B̂12

0 In−m−α̂

]

we have

P1B̂P2T0 =

[
Iα̂ 0

B̂21B̂
−1
11 0

]
.

Thus PB = P−1
1 , TB = (P2T0)

−1, and B̃ = B̂21B̂
−1
11 provide a form as the same as that of (26).

Since B̂ is an incidence matrix of some directed graph, it is totally unimodular [16]. So P1B̂P2 is also totally

unimodular. Since every minor determinant of a totally unimodular matrix is −1, 0, or +1, B̂−1
11 ∈ {−1, 0,+1}α̂×α̂

holds. Hence from B̂21 ∈ {−1, 0,+1}(m−α̂)×α̂ it follows that each element of B̃ = B̂21B̂
−1
11 is an integer. �

From Lemma 6 (i), we see that the value of α̂ is uniquely determined for the automaton A, independently of the
coordinate transformation (21). Lemma 6 will be used in Theorem 9 and Theorem 11.

From (26) we define [
ũ(k)

ũe(k)

]
:=

[
T a
B

T b
B

]
û(k),

[
T a
B

T b
B

]
:= TB (27)

where ũ(k) ∈ T a
B{0, 1}n−m and ũ(k) ∈ T b

B{0, 1}n−m. If the value of each element of ũ(k) is still binary, then n−m−α

redundant (binary) input variables ũe(k) among variables of û should be eliminated, where PB [ Iα̂ B̃T ]T is regarded
as an input matrix. However, ũ(k) is not binary variables in general. Thus ũ(k) will be transformed into the binary
variable by exploiting the state variables without adding new variables as follows.

As a preparation, two lemmas are shown. First, the following lemma provides the relation between the matrices E,
F , and ξ(k), δM (k), δM (k + 1).

Lemma 7 Consider an automaton A. Suppose that a binary vector ξ(k) ∈ {0, 1}n assigned to arcs and a binary
vector δM (k) ∈ {0, 1}m assigned to modes are given. Then the following relation holds:

Eξ(k) = diag(δM1 (k), δM2 (k), . . . , δMm (k))EFT δM (k + 1).

where δMi (k), i = 1, 2, . . . ,m is the i-th element of δM (k).

PROOF. We use the symbol li(j) defined for the proof of Lemma 3 again. From the definition of F , FT δM (k+ 1)
is the n-dimensional vector consisting of δMli(j)(k + 1), i = 1, 2, . . . ,m, j ∈ IO(i). Then from (14) and the definition

of E, we obtain this lemma. �

Next, another lemma is given as follows.
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Lemma 8 For the state variable x̂(k) in (22), x̂(k) = δM (k) holds.

PROOF. From (21) and EP = [ Im Ẽ ], we have Eξ(k) = x̂(k). Thus Lemma 3 (ii) completes the proof. �

Then we are in a position to complete the state-equation-based modeling.

Theorem 9 The state equation (22) is equivalently expressed as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(k + 1) = Ax(k) +Bu(k),

Cx(k) +Du(k) ≤ G,

x(k) ∈ Rm, u(k) ∈ {0, 1}α̂,
x(0) = ΓδM0 , u(0) ∈ {0, 1}α̂

(28)

where

A := PB

[
0 0

−B̃ Im−α̂

]
P−1
B Â, B := PB

[
Iα̂

B̃

]
,

C :=

⎡
⎢⎢⎣
Im − EFTA

eTmA

−eTmA

⎤
⎥⎥⎦ , D :=

⎡
⎢⎢⎣
−EFTB

eTmB

−eTmB

⎤
⎥⎥⎦ , G :=

⎡
⎢⎢⎣
0m×1

1

−1

⎤
⎥⎥⎦ , Γ := Im.

PROOF. First, we will derive the state equation, which is equivalent to (22). From Theorem 5, (15) and (22) are
equivalent. So if (22) holds, then ξ(k) ∈ {0, 1}n, [ ξTa (k) ξTb (k) ]

T = P−1ξ(k) hold, and ξa(k) ∈ {0, 1}m is obtained.

Furthermore, ξa(k) = x̂(k)− Ẽû(k) ∈ {0, 1}m holds from (25). Thus (22) is transformed into⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̂(k + 1) = Âx̂(k) + B̂û(k),

−x̂(k) + Ẽû(k) = −ξa(k),

x̂(k) ∈ Rm, û(k) ∈ {0, 1}n−m, ξa(k) ∈ {0, 1}m,

x̂(0) = Γ̂δM0 , û(0) ∈ {0, 1}n−m.

(29)

Obviously (29) is transformed into (22). Hereafter we will prove that (a) (28) follows from (29), and conversely (b)
(29) from (28).

Proof of (a): Suppose that (29) is given. First, we will obtain x(k + 1) = Ax(k) + Bu(k) in (28). For x̂(k + 1) =

Âx̂(k) + B̂û(k) in (29), consider the following linear transformation of coordinates:

x̄(k) = T x̂(k), T :=

[
Iα̂ 0

−B̃ Im−α̂

]
P−1
B . (30)

So from (26) and (27) we obtain

x̄(k + 1) =

[
Āa

Āb

]
x̄(k) +

[
Iα̂

0

]
ũ(k) (31)

where [ ĀT
a ĀT

b ]T := TÂT−1. Letting
u(k) := ũ(k) + Āax̄(k) (32)

13



(31) can be expressed as

x̄(k + 1) =

[
0

Āb

]
x̄(k) +

[
Iα̂

0

]
u(k). (33)

Since Theorem 5 proves that x(k) ∈ M0 holds for all k in (29), (30) implies

u(k) =
[
Iα̂ 0α̂×(m−α̂)

]
x̄(k + 1) ∈ {0, 1}α̂. (34)

Finally, transforming x̄(k) into x̂(k) via the converse transformation of (30) in (33) yields x̂(k+1) = Ax̂(k)+Bu(k).
Thus the state equation in (28) together with x(k) ∈ Rm, u ∈ {0, 1}α̂, x(0) ∈ ΓδM0 is obtained by using a new
symbol x instead of x̂.

Next, we will obtain the inequality in (28). Note that we have (21) and ξb = û by definition. So −x̂(k) + Ẽû(k) =
−ξa(k) in (29) implies x̂(k) = Eξ(k). Thus from Lemma 7 and Lemma 8 it follows that

x̂(k) = diag(x̂1(k), . . . , x̂m(k))EFT x̂(k + 1)

holds, where x̂i is the i-th element of x̂. This implies

x̂(k) ≤ EFT x̂(k + 1) (35)

thanks to x̂i(k) ∈ {0, 1}. Consider the relation (35) with x̂ replaced by a new symbol x. So substituting Ax(k)+Bu(k)
into x(k + 1) there yields (Im − EFTA)x(k) − EFTBu(k) ≤ 0 in (28). Finally, since eTmx(k + 1) = 1 holds from
x(k) ∈ M0, the second inequalities in (28) are obtained. Hence we have (28).

Proof of (b): Suppose that (28) is given. First, we will prove that x(k) ∈ M0 holds in (28). Consider the following
linear transformation of coordinate using the permutation matrix PB :[

x̃a(k)

x̃b(k)

]
= x̃(k) = P−1

B x(k)

where x̃a(k) ∈ Rα̂, x̃b(k) ∈ Rm−α̂. Then from x(k + 1) = Ax(k) +Bu(k) in (28), we obtain

x̃a(1) = u(0),

x̃b(1) =
[

− B̃ Im−α̂

]
P−1
B ÂPBx̃(0) + B̃u(0).

Noting here that x̃(0) ≤ P−1
B EFTPBx̃(1), P

−1
B EFTPB ∈ {0, 1}m×m hold from the inequality in (28), we obtain

x̃(1) ≥ 0 from x̃(0) = P−1
B δM0 ∈ M0. Therefore, since eTmx(1) = eTmx̃(1) = 1 holds from the inequality in (28), we

should consider two cases in u(0), i.e., eTα̂u(0) = 1 and u(0) = 0. First, consider the case of eTα̂u(0) = 1. Then since
x̃b(1) = 0 is obtained from x̃(1) ≥ 0 and eTmx̃(1) = 1, x̃(1) ∈ M0 holds. Next, consider the case of u(0) = 0. First,

P−1
B ÂPBx̃(0) = P−1

B ÂδM0 ∈ M0 holds from Â = F̃a, [ F̃a F̃b ] = FP and Lemma 2 (v). Next, noting that each

element of −B̃ is an integer from Lemma 6(iii) and P−1
B ÂδM0 ∈ M0 holds, each element of x̃b(1) is given as an

integer. Furthermore, from x̃(1) ≥ 0 and eTmx̃(1) = 1, x̃b(1) is a binary vector satisfying em−α̂x̃b(1) = 1, that is,
x̃(1) ∈ M0 holds. By repeating recursively, we can prove x(k) ∈ M0 for any k.

Next, consider the linear transformation of input variables u(k) = Āax̄(k) + ũ(k) (x̄ = Tx). Since x(k) ∈ M0 holds
for any k, we can set ũ(k) ∈ T a

B{0, 1}n−m in a similar way to the proof of (a). Furthermore, adding redundant
binary input variables ũe(k) ∈ T b

B{0, 1}n−m, and using a new symbol x̂ instead of x, the state equation in (28) is
transformed into

x̂(k + 1) = Âx̂(k) + PB

[
Iα̂ 0

B̃ 0

][
ũ(k)

ũe(k)

]

= Âx̂(k) + B̂û(k)
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in (29).

Finally, using a new symbol x̂ instead of x, consider (Im − EFTA)x̂(k) − EFTBu(k) ≤ 0 in (28). Obviously this
inequality is equivalent to x̂(k) ≤ EFT x̂(k+1). Noting that x̂(k), x̂(k+1) ∈ M0, EFT ∈ {0, 1}m×m hold, if the i-th
element x̂i(k) of x̂(k) is equal to 1, then x̂i(k) = 1 = (EFT )ix̂(k+1), i.e., x̂i(k) = x̂i(k)(EFT )ix̂(k+1) holds, where
(EFT )i is the i-th row of EFT . If x̂i(k) = 0 holds, then x̂i(k) = 0 ≤ (EFT )ix̂(k+1), i.e, x̂i(k) = x̂i(k)(EFT )ix̂(k+1)
holds. Thus if x̂(k) ≤ EFT x̂(k+1) holds, then x̂(k) = diag(x̂1(k), . . . , x̂m(k))EFT x̂(k+1) holds. Furthermore, since
x̂(k), x̂(k + 1) ∈ M0, x̂(0) = δM0 , x̂(k) ≤ EFT x̂(k + 1) hold, x̂(k) is regarded as δM (k) (see Definition 10). So from

Lemma 7, we obtain −x̂(k) + Eξ(k) = 0, i.e., −x̂(k) + Ẽû(k) = −ξa(k) in (29). Hence we have (29).

This completes the proof. �

It is remarked here that (28) is a state-equation-based model with a smaller number of binary input variables, which
can be directly used in the MLD model.

3.4 Procedure for deriving a state-equation-based model

The above discussions conclude the procedure for deriving a state-equation-based model as follows.

Procedure for deriving a state-equation based model (Summary):

Step 1: For an automaton satisfying Assumption 1, derive an implicit system (15).

Step 2: In terms of V̂ of (21), and (23), (24), transform the implicit system (15) into a linear state equation (22). If

B̂ is full row rank, then (22) with x(k) := x̂(k) and u(k) := û(k) is the linear state equation to be found. Otherwise,
go to Step 3.

Step 3: Represent the matrix B̂ in (22) by (26), and obtain (28) from the state feedback binarization (32).

3.5 Example

This section shows by the simple example in Fig. 3, which satisfies Assumption 1, how the derivation procedure in
Section 3.4 is applied.

• Step 1: Derivation of the implicit system ΣI of (15)

First, from the input-output relation at each node, the implicit system Eξ(k+1) = Fξ(k) in (15) (or (4)) is derived,
where n = 7, m = 3, and

E =

⎡
⎢⎢⎣
1 1 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 0 0 1 1

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣
1 0 1 0 0 0 0

0 1 0 1 0 1 0

0 0 0 0 1 0 1

⎤
⎥⎥⎦ .

• Step 2: Transformation of the implicit system ΣI of (15) into the state equation (22)

15



Fig. 3. Simple 3-node DF automaton

As P and Ẽ satisfying EP = [ Im Ẽ ], we consider

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ẽ =

⎡
⎢⎢⎣
1 0 0 0

0 1 1 0

0 0 0 1

⎤
⎥⎥⎦ .

It is remarked here that P is not uniquely determined. From the above P and Ẽ, the matrix V̂ of (21) is obtained
as follows:

V̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 0 0 1 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We also have

FP =

⎡
⎢⎢⎣
1 0 0 0 1 0 0

0 1 0 1 0 0 1

0 0 1 0 0 1 0

⎤
⎥⎥⎦ =

[
F̃a F̃b

]
.

Then applying V̂ to (23) and (24) yields the state equation (22), where x̂(k) = [ δ11(k) + δ12(k) δ21(k) + δ22(k) +
δ23(k) δ32(k) + δ33(k) ]

T , û(k) = [ δ12(k) δ21(k) δ23(k) δ32(k) ]
T , and

Â = I3, B̂ =

⎡
⎢⎢⎣
−1 1 0 0

1 −1 −1 1

0 0 1 −1

⎤
⎥⎥⎦ .

Since B̂ is not full row rank, go to Step 3.

• Step 3: Reduction of the input matrix B̂ and state feedback binarization

From rankB̂ = 2(≤ 4) we see that û(k) includes two redundant variables. So these redundant variables will be
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eliminated as follows. First, the matrix B̂ is rewritten as (26); for example,

B̂ =

⎡
⎢⎢⎣
1 0 0

0 0 1

0 1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
PB

⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

−1 −1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎢⎣
−1 1 0 0

0 0 1 −1

1 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
TB

.

Note also that PB is not uniquely determined. From the matrix TB , we have

[
ũ(k)

ũe(k)

]
= TBû(k) =

⎡
⎢⎢⎢⎢⎢⎣
−δ12(k) + δ21(k)

+δ23(k)− δ32(k)

δ12(k)

δ32(k)

⎤
⎥⎥⎥⎥⎥⎦

where ũ(k) is an independent variable, and ũe(k) is a dependent variable. Thus ũe(k) can be eliminated. However,
we see that ũ(k) is not a binary variable because its elements can take the value of −1, 0, 1. Hence a further
transformation of ũ(k) to a binary variable is required without the dimension of ũ(k) increased.

So consider a state feedback binarization (32). Then from B̃ = [ − 1 − 1 ], we obtain a state feedback binarization
ũ(k) = −Āax̄(k) + u(k) as

ũ(k) = −
[
1 0 0

0 1 0

]
︸ ︷︷ ︸

Āa

⎡
⎢⎢⎣
1 0 0

0 0 1

1 1 1

⎤
⎥⎥⎦x(k)

︸ ︷︷ ︸
x̄(k)

+u(k).

Note that x(k) is defined as x̂(k). From Theorem 9 u(k) is treated as a free binary variable. Thus we obtain the
following state equation representation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) =

⎡
⎢⎢⎣
0 0 0

1 1 1

0 0 0

⎤
⎥⎥⎦x(k) +

⎡
⎢⎢⎣

1 0

−1 −1

0 1

⎤
⎥⎥⎦u(k),

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −1

−1 0 −1

−1 −1 0

1 1 1

−1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
x(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 0

1 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u(k) ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

x(k) ∈ R3, u(k) ∈ {0, 1}2,
x(0) = δM0 ∈ M0, u(0) = u0 ∈ {0, 1}2.

The obtained state equation can be directly expressed in the form of the MLD model.

Finally, we discuss the computation cost of the proposed procedure. In the proposed procedure, permutation matrices
P, PB are not uniquely determined. However, from Lemma 6 (i), the dimension α̂ of the binary input variables does
not depend on the selection of P, PB . So we may consider to find one P, PB . Therefore, since the procedure includes
no calculation of iterations, the computation cost is small. For example, consider 100 randomly directed graphs with
20 nodes. Then the worst computation time of the proposed procedure is 0.0396 (sec), where we used the MATLAB.
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4 Further discussions on state-equation-based modeling

This section provides further results on our modeling method. First, we clarify the meaning of the binary input
variables in the state-equation-based model. Next, the upper bound of the dimension α̂ of the input vector in (28)
is directly derived from the numbers of modes and arcs. From the obtained result, it will be shown that the input
dimension in the state-equation-based model is necessarily smaller than or equal to that in the inequality-based
model and the implicit system.

4.1 Relation among state/input variables in deterministic finite automata representations

In this subsection, after showing the relation on variables between the inequality-based model and the state-equation-
based model (or the implicit system), we discuss what are binary input variables appeared in the state-equation-based
model.

The relation between the state-equation-based model (28) and the implicit system (15) has been already shown in
the previous subsections. Thus we focus on the inequality-based model such as (3) and (2), which is formally defined
as follows.

Definition 10 The inequality-based model expressing a given automaton A with δM0 ∈ M0 is defined as

{
δM (k + 1) = uM (k), δM (k) ≤ ΦδM (k + 1),

uM (k) ∈ M0, δM (0) = δM0
(36)

where Φ ∈ {0, 1}m×m is the adjacency matrix of the automaton A.

Then since x(k) = δM (k) holds from Lemma 8, we see that the state x(k) of the state-equation-based model (28)
equivalently corresponds to the mode variables δM (k). Also in the inequality-based model, δM (k) is the state variable,
and uM (k) = δM (k+1) is the input variable. Furthermore, by eTmη = 1 in M0, m−1 elements of uM (k) are regarded
as free binary variables. However, since Fξ(k) = uM (k) follows from the proof of (iii) in Lemma 3, we see that the

degree of freedom in uM (k) depends on the matrix F . Furthermore, since Fξ(k) = Âx(k)+ B̂û(k) = Ax(k)+Bu(k)
holds by the proofs of Theorems 5 and 9, we have uM (k) = AδM (k) +Bu(k). Thus if dimu(k) < m− 1 holds, then
the inequality-based model includes redundant binary variables.

Therefore, from the above discussion, we see that the state-equation-based model (28) is obtained from the following
system using (15) and (36)

{
δM (k + 1) = Fξ(k), δM (k) ≤ ΦδM (k + 1),

ξ(k) ∈ {0, 1}n, ξ(0) ∈ Ξ0(δ
M
0 ).

(37)

Then the inequalities δM (k) ≤ ΦδM (k + 1) in (37) can be regarded as the constraints for guaranteeing the binary
property of δM (k + 1) in (28).

Finally, we discuss the meaning of the binary input variables of the state-equation-based model. From (34) and
x(k + 1) = δM (k + 1), u(k) is given as

u(k) = [ Iα̂ 0α̂×(m−α̂) ]P
−1
B δM (k + 1).

Noting that PB is the permutation matrix obtained by (26), we see that the input variable vector u(k) consists of
α̂ elements in δM (k + 1), that is, u(k) at least implies the next mode itself which the system can be transited to,
although the meaning in the graph structure of α̂ cannot be exactly captured by the above analysis.

4.2 Upper bound of input dimension

The dimension α̂ of the input vector in (28) corresponds to the number of the input binary variables in the MLD
model. So it is important to determine the value of α̂ in (28) directly from the graph structure of a given automaton
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A, because the worst computation time of the MIP problem increases exponentially with the dimension of the binary
variables (= (m1d +m3)N). However this issue will be very hard in general. Thus we will find an upper bound of
α̂, derived directly from the numbers m, n of the nodes and the arcs. Then Lemma 6 in Section 3.3 enables us to
derive the upper bound of α̂ as follows.

Theorem 11 For the input dimension α̂ of the state-equation-based model (28), the following relation holds:

α̂ ≤ min{n−m, m− 1} (38)

where m, n are the number of the nodes and the arcs in the automaton A.

PROOF. Suppose that m − 1 ≤ n − m. From Lemma 6(ii), B̂ ∈ {−1, 0,+1}m×(n−m) is the incidence matrix of

some directed graph. Then α̂(= rankB̂) is given by m− c, where c(≥ 1) is the number of connected components of
some directed graph [7]. Therefore, (38) holds because the minimum value of c is equal to 1. On the other hand, if

n−m < m− 1 holds, then α̂(= rankB̂) ≤ n−m holds directly. �

Note that the free input dimension of the inequality-based model can be given as m−1, and the free input dimension
of the implicit system (15) as n−m because m equations, i.e., Eξ(k + 1) = Fξ(k), hold. Therefore, from Theorem
11, we see that the number of the free binary variables of the state-equation-based model is necessarily smaller than
or equal to that of the inequality-based model and the implicit system. In addition, if a given directed graph has
sparse structure, then n−m becomes small. So the effectiveness of the state-equation-based model is big for sparse
directed graphs.

We show two examples. First, consider the DF automaton in Fig. 4 (a). This automaton has 4(= m) nodes and
7(= n) arcs. Then from Theorem 11, α̂ ≤ min{3, 3} = 3 holds. In particular, applying the proposed procedure to

this automaton, we obtain x(k + 1) = Âx(k) + B̂û(k) of (22) as

x(k + 1) =

⎡
⎢⎢⎢⎢⎢⎣
1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦x(k) +

⎡
⎢⎢⎢⎢⎢⎣
−1 1 0

1 −1−1

0 0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ û(k).

So we see that α̂ = rankB̂ = 2 < 3 holds.

Next, consider the DF automaton in Fig. 4 (b). This automaton has 7(= m) nodes and 10(= n) arcs. Then α̂ ≤
min{3, 6} = 3 holds. Applying the proposed procedure yields Â and B̂ of (22) as

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0

0 0 0

0 0 −1

1 0 0

0 −1 0

0 0 1

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then we have α̂ = 3.

From these examples, we see that in Theorem 11, both cases of α̂ < min{n−m, m−1} and α̂ = min{n−m, m−1}
will be able to occur.
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(a) (b)

Fig. 4. Examples of DF automata

5 Conclusion

In this paper, we have proposed a state-equation-based modeling method of a DF automaton as a method for
reducing the computation time spent to solve the MIP problem, i.e., the MPC problem of a class of hybrid systems.
Furthermore, we have discussed the meaning of binary input variables in the proposed model, and derived the upper
bound of the binary input dimension.

To clarify the relation between the binary input dimension and the graph structure is still one of the most interesting
future topics. In addition, it will be one of significant topics to exploit our model in solving various kinds of control
problems. Based on our model, the stabilization problem of a hybrid system /DF automaton has been addressed in
[17].
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