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Abstract: In this paper, a framework for representing vague knowledge based on
the notion of context model introduced by Gebhardt and Kruse (1993) is discussed.
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1 INTRODUCTION

The notion of context model was introduced by Gebhardt
and Kruse (1993) as an integrating model of vagueness and
uncertainty. The motivation for the context model arises
from the intention to develop a common formal framework
that supports a better understanding and comparison of
existing models of partial ignorance to reduce the rivalry
between well-known approaches. Particularly, the authors
presented basic ideas keyed to the interpretation of Bayes
theory and the Dempster-Shafer theory within the context
model. Furthermore, a direct comparison between these
two approaches based on the well-known decision-making
problems within the context model were also examined in
the paper.

In (Huynh and Nakamori, 2001), an approach to the
problem of mathematical modeling of fuzzy concepts was
introduced based on the theory of formal concept analysis
(Ganter and Wille, 1999) and the notion of context model
(Gebhardt and Kruse, 1993; Kruse et al., 1993). In par-
ticular, we introduced the notion of fuzzy formal concepts
within a context model and the membership functions as-
sociated with these fuzzy concepts. It is shown that fuzzy
formal concepts can be interpreted exactly as the collec-
tions of α-cuts of their membership functions. Further-
more, based on the meta-theory developed by Resconi et al.
(1992) and Resconi et al. (1993), in (Huynh et al., 2002) the
authors consider a model of modal logic for fuzzy concept
analysis from a context model. By this approach, one can
integrate context models by using a model of modal logic,
and then develop a method of calculating the expression
for the membership functions of composed and/or complex
fuzzy concepts based on values {0, 1} corresponding to the
truth values {F, T } assigned to a given sentence as the re-
sponse of a context considered as a possible world. It is
of interest that fuzzy intersection and fuzzy union opera-
tors by this model form a well-known dual pair of Product
t-norm TP and Probabilistic Sum t-conorm SP .

As such, the notion of context model can be used as a
framework for modeling fuzziness in concept formation as
well as uncertainty in decision analysis situations. In ad-
dition, one can also extend the notion of context model
to the so-called fuzzy context model to deal with situa-
tions of data analysis where both vagueness and conflict
co-exist. To clarify the motivation for such an extension,
let us recall briefly the interpretation of data and the kinds
of imperfectness within the context model (Gebhardt and
Kruse, 1993).

According to Gebhardt and Kruse (1993), data char-
acterizes the state of an object (obj) with respect to un-
derlying relevant frame conditions (cond). In this sense,
we assume that it is possible to characterize obj by an
element state(obj, cond) of a well-defined set dom(obj) of
distinguishable object states. dom(obj) is usually called
the universe of discourse (or frame of discernment) of obj
with respect to cond. Then we are interested in the prob-
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lem that the original characterization of state(obj, cond)
is not available due to a lack of information about obj

and cond. Generally, cond merely permits us to use
statements like “state(obj, cond) ∈ char(obj, cond)”, where
char(obj, cond) ⊆ dom(obj) and called an imprecise char-
acterization of obj with respect to cond. For example, You
were seeing a robbery taking place in front of Your eyes,
and You also noticed a suspicious character (Suspect) who
was running away. Assume that police then asked You
about, say, the height of Suspect. Obviously, in this case
You could not determine precisely the actual height of Sus-
pect (obj ), but by observation You might stated that Sus-
pect is between 1.65 meter and 1.75 meter tall. Fornally,
we may then define dom(obj) = [0, 3] as the domain of
the height variable, and by taking into account the frame
conditions cond (Your location, distance between You and
Suspect, and time of Your observation), Your statement is
formulated as state(obj, cond) ∈ [1.65, 1.75], i.e., the corre-
sponding characterization is defined by char(obj, cond) =
[1.65, 1.75].
The second kind of imperfect knowledge in context

model is conflict (Gebhardt and Kruse, 1993). This kind
of imperfectness is induced by information about prefer-
ences between the elements of char(obj, cond) that inter-
prets for the existence of contexts. The combined occur-
rence of imprecision and conflict in data reflects vagueness
in the context model, and state(obj, cond) is described by
the so-called vague characteristic of obj with respect to
cond.

Although information about preferences between the el-
ements of char(obj, cond) is modelled by contexts, this also
means they have the same possibility or chance to be the
unknown original value of state(obj, cond) in each context.
However, in many practical situations, even in the same
context elements of char(obj, cond) may have different de-
grees of possibility to be the unknown original value of
state(obj, cond). Especially in the situations where cond

only permits us to express in the form of verbal state-
ments like “state(obj, cond) is A”, where A is a linguistic
value represented by a fuzzy set in dom(obj).
The rest of this paper is organized as follows. In Sec-

tion 2, basic concepts of context model are briefly pre-
sented. Section 3 provides a review of fuzzy concept anal-
ysis within the framework of context model. In Section 4,
after introducing basic notions of Dempster-Shafer theory
in relation to the context model, the concept of fuzzy con-
text model is presented. Then a uncertainty measure of
type 2 called vague beliefs induced from the fuzzy context
model is discussed in Section 5. Finally, Section 6 presents
some concluding remarks.

2 BASIC CONCEPTS OF CONTEXT MODEL

Formally, a context model is defined as a triple
〈D,C,AC(D)〉, where D is a nonempty universe of dis-
course, C is a nonempty finite set of contexts, and the
set AC(D) = {a|a : C → 2D} which is called the set
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of all vague characteristics of D with respect to C. Let
a ∈ AC(D), a is said to be contradictory (respectively,
consistent) if and only if ∃c ∈ C, a(c) = ∅ (respectively,
⋂

c∈C a(c) 6= ∅). For a1, a2 ∈ AC(D), then a1 is said to be
more specific than a2 iff (∀c ∈ C)(a1(c) ⊆ a2(c)). In this
paper we confine ourselves to only vague characteristics
that are not contradictory in the context model.
If there is a finite measure PC : 2C → R

+ that fulfills
(∀c ∈ C)(PC({c}) > 0), then a ∈ AC(D) is called a val-
uated vague characteristic of D with respect to PC . Then
we call a quadruple

C = 〈D,C,AC(D), PC〉

a valuated context model. Mathematically, if PC(C) = 1
the mapping a : C → 2D is a random set but obviously
with a different interpretation within the context model.
Let a be a vague characteristic in the valuated con-

text model C. For each X ∈ 2D, we define the ac-
ceptance degree Acca(X) that evaluates the proposition
“state(obj, cond) ∈ X” is true. Due to inherent impreci-
sion of a, it does not allow us to uniquely determine ac-
ceptance degrees Acca(X), X ∈ 2D. However, as shown in
(Gebhardt and Kruse, 1993), we can calculate lower and
upper bounds for them as follows:

Acca(X) = PC({c ∈ C|∅ 6= a(c) ⊆ X}) (1)

Acca(X) = PC({c ∈ C|a(c) ∩X 6= ∅}) (2)

More details on the context model and its applications
can be found in (Gebhardt and Kruse, 1993, 1998; Geb-
hardt, 2000; Kruse et al., 1993).

3 FUZZY CONCEPT ANALYSIS

3.1 Fuzzy Concepts by Context Model

Fuzzy set was originally introduced as a mathematical
modeling of vague concepts in natural language. Obvi-
ously, the usefulness of a fuzzy set for modeling a linguis-
tic label depends on the appropriateness of its membership
function. Therefore, the practical determination of an ac-
curate and justifiable function for any particular situation
is of major concern.
As noted in (Resconi and Turksen, 2001), the specific

meaning of a vague concept in a proposition is usually
evaluated in different ways for different assessments of an
entity by different agents, contexts, etc. This observation
has been also implicitly accepted in, e.g. (Klir, 1994).
Let us consider a context model C = 〈D,C,AC(D)〉,

where D is a domain of an attribute at which is applied to
objects of concern, C is a non-empty finite set of contexts,
and AC(D) is a set of linguistic terms associated with the
domain D considered now as vague characteristics in the
context model. For example, consider D = [0, 3m] which is
interpreted as the domain of the attribute height for people,
C is a set of contexts such as Japanese, American, Swede,
etc., and AC(D) = {very short, short, medium, tall, more

or less tall, . . .}. Each context determines a subset of D
given as being compatible with a given linguistic term. For-
mally, each linguistic term can be considered as a mapping
from C to 2D. Furthermore, we can also associate with the
context model a weighting function or a probability dis-
tribution Ω defined on C. As such we obtain a valuated
context model

C = 〈D,C,AC(D),Ω〉

By this context model, each linguistic term a ∈ AC(D)
may be semantically represented by the fuzzy set A whose
membership function, µA, is defined for all x ∈ D as follows

µA(x) =
∑

c∈C

Ω(c)λa(c)(x)

where λa(c) denotes the characteristic function of a(c). In-
tuitively, while each subset a(c), for c ∈ C, represents the
c’s view of the vague concept a, the fuzzy set A is the
result of a weighted combination view of the vague con-
cept. At this juncture, we can formulate further for the
set-theoretic operations on fuzzy sets by a straightforward
manner in this model (Huynh et al., 2002, 2004).

3.2 Fuzzy Set Theoretic Operations by Context

Model

To deal with the general case of composed fuzzy sets which
represent linguistic combinations of linguistic terms of sev-
eral context models, let us consider a pair of variables x and
y which may be interpreted as the values of two attributes
at1 and at2 for objects of concern, ranging on domains D1

and D2, respectively. Let Ct = 〈Dt, Ct, ACt
(Dt),Ωt〉, for

t = 1, 2 be context models defined on D1 and D2, respec-
tively. Recall that each element in ACt

(Dt) is a linguistic
term understood as a mapping from Ct → 2Dt .

We now define a unified Kripke model as follows

M = 〈W,R, V,Ω〉

where W = C1 × C2, R is the identity relation on W , and

Ω : C1 × C2 → [0, 1]
w(i,j) 7→ ωij = ωiωj

where the simplified notations w(i,j) = (c1i , c
2
j), Ω(w(i,j)) =

ωij ,Ω1(c
1
i ) = ωi,Ω2(c

2
j) = ωj are used.

For at ∈ ACt
(Dt), for t = 1, 2, we now formulate com-

posed fuzzy sets, which represent combined linguistic terms
like “a1 and a2” and “a1 or a2” within model M .
For simplicity of notation, let us denote O a set of ob-

jects of concern which we may apply for two attributes
at1, at2 those values range on domains D1 and D2, respec-
tively. Then instead of considering fuzzy sets defined on
different domains, we can consider fuzzy sets defined only
on a universal set, the set of objects O. As such, we now
consider atomic propositions of the form

ao : “An object o is in relation to a linguistic term a”
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where a ∈ AC1
(D1) ∪ AC2

(D2) or a is a linguistic combi-
nation of linguistic terms in AC1

(D1) ∪ AC2
(D2).

Notice that this constructive formulation of composed
fuzzy sets is comparable with the notion of the transla-
tion of a proposition ao into a relational assignment equa-
tion (Zadeh, 1975).
Case 1: a is a single term.

Firstly we consider the case where a ∈ AC1
(D1). For this

case, we define the valuation function V in M for atomic
propositions ao by

V (w(i,j), ao) =

{

T if at1(o) ∈ a(c1i )
F otherwise

here at1(o) ∈ D1 denotes the value at attribute at1 of ob-
ject o. Let us denote

(i,j)ao =

{

1 if V (w(i,j), ao) = T

0 if V (w(i,j), ao) = F

Then the fuzzy set A which represents the meaning of
the linguistic term a is defined in the model M as follows

µM
A (o) =

n1
∑

i=1

n2
∑

j=1

ωij
(i,j)ao

Then, we have

µM
A (o) = µM1

A (o)

where µM1

A (o) is represented by µM1

A (at1(o)) in the model
M1 derived from C1.
Similar for the case where a ∈ AC2

(D2), we define the
valuation function V in M for atomic propositions ao by

V (w(i,j), ao) =

{

T if at2(o) ∈ a(c2j)
F otherwise

Obviously, we also have µM
A (o) = µM2

A (o).
Case 2: a is a composed linguistic term

We now consider for the case where a is a composed
linguistic term which is of the form like “a1 and a2” and
“a1 or a2”, where ai ∈ ACi

(Di), for i = 1, 2. To formulate
the composed fuzzy set A corresponding to the term a in
the model M , we need to define the valuation function V

for propositions ao. It is natural to express ao by

ao =

{

a1,o ∨ a2,o if a is “a1 or a2”
a1,o ∧ a2,o if a is “a1 and a2”

where at,o, for t = 1, 2, are propositions of the form

at,o : “An object o is in relation to linguistic term at.”

Consider the case where a is “a1 or a2”. Then, the val-
uation function V for propositions ao is defined as follows

V (w(i,j), a1,o ∨ a2,o) =







T if “at1(o) ∈ a1(c
1
i ) or

at2(o) ∈ a2(c
2
j )

′′

F otherwise

With this notation, we are now ready to define the com-
patible degree of any object o ∈ O to the composed lin-
guistic term “a1 or a2” in the model M by

µA(o) = µA1∪A2
(o) =

n1
∑

i=1

n2
∑

j=1

ωij
(i,j)(a1,o ∨ a2,o) (3)

where A1, A2 denote fuzzy sets which represent component
linguistic terms a1, a2, respectively.
Similar for the case where a is “a1 and a2”. The val-

uation function V for propositions ao is then defined as
follows

V (w(i,j), a1,o ∧ a2,o) =







T if “at1(o) ∈ a1(c
1
i ) and

at2(o) ∈ a2(c
2
j )

′′

F otherwise

and the compatible degree of any object o ∈ O to the
composed linguistic term “a1 and a2” in the model M is
defined by

µA(o) = µA1∩A2
(o) =

n1
∑

i=1

n2
∑

j=1

ωij
(i,j)(a1,o ∧ a2,o) (4)

Notice that in the case without the weighting function Ω
in the model M, the membership expressions of composed
fuzzy sets defined in (3) and (4) are comparable with those
given in (Resconi and Turksen, 2001).
With this formulation of fuzzy set theoretic operators,

we have
µA1∩A2

(o) = µA1
(o)µA2

(o) (5)

µA1∪A2
(o) = µA1

(o) + µA2
(o)− µA1

(o)µA2
(o) (6)

Expressions (5) and (6) show that fuzzy intersection and
fuzzy union operators by this model are truth-functional,
and, moreover, they form a well-known dual pair of Product
t-norm TP and Probabilistic Sum t-conorm SP (Klement,
1997). This justifies for the situation when linguistic terms
belong to different universes of discourse, for example tall

and high income, there is no constraint of semantic con-
sistency between them, and reflecting such independence,
the product-sum rule is appropriate in applications.

4 FUZZY CONTEXT MODEL

We first recall in this section necessary notions from the
Dempster-Shafer theory of evidence (DS theory, for short).
The theory aims at providing a mechanism for representing
and reasoning with uncertain, imprecise and incomplete
information.

4.1 Dempster-Shafer Theory within the Context

Model

DS theory originated from the work by Dempster (Demp-
ster, 1967) on the modeling of uncertainty in terms of up-
per and lower probabilities induced by a multivalued map-
ping.
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A multivalued mapping F from space Q into space S

associates to each element q of Q a subset F (q) of S. The
domain of F , denoted by Dom(F ), is defined by

Dom(F ) = {q ∈ Q|F (q) 6= ∅}

From a multivalued mapping F , a probability measure P

on Q can be propagated to S in such a way that for any
subset T of S the lower and upper bounds of probabilities
of T are defined as

P∗(T ) =
P (F−(T ))

P (F−(S))
(7)

P ∗(T ) =
P (F+(T ))

P (F+(S))
(8)

where

F−(T ) = {q ∈ Q|q ∈ Dom(F ) ∧ F (q) ⊆ T }
F+(T ) = {q ∈ Q|F (q) ∩ T 6= ∅}

Clearly, F+(S) = F−(S) = Dom(F ), and P∗, P
∗ are well

defined only when P (Dom(F )) 6= 0. Furthermore, Demp-
ster also observed that, in the case that S is finite, these
lower and upper probabilities are completely determined
by the quantities

P (F−1(T )), for T ∈ 2S

where for each T ∈ 2S,

F−1(T ) = {q ∈ Q|F (q) = T }

As such Dempster implicitly gave the prototype of a
mass function also called basic probability assignment.
Shafer’s contribution has been to explicitly define the basic
probability assignment and to use it to represent evidence
directly. Simultaneously, Shafer has reinterpreted Demp-
ster’s lower and upper probabilities as degrees of belief and
plausibility respectively, and abandoned the idea that they
arise as lower and upper bounds over classes of Bayesian
probabilities (Shafer, 1976).
As we already observed above, both DS theory and the

context model are closely related to the theory of multi-
valued mappings. In fact, each vague characteristic in the
context model is formally a multivalued mapping from the
set of contexts into the universe of discourse.
Let C = 〈D,C,AC(D), PC〉 be a valuated context model.

Here, for the sake of discussing essential remarks regarding
the interpretation of the Dempster-Shafer theory within
the context model, we assume that PC is a probability
measure on C. Let a be a vague characteristic in C con-
sidering now as a multivalued mapping from C into D.
Then a induces lower and upper probabilities, in the sense
of Dempster, on 2D as respectively defined in (7) and (8).
Namely, for any X ∈ 2D,

P (a)∗(X) =
PC(a

−(X))

PC(a−(D))

P (a)∗(X) =
PC(a

+(X))

PC(a+(D))

In the case where a is non-contradictory, we have
Dom(a) = C. Then, these probabilities coincide with lower
and upper acceptance degrees as defined in (1) and (2)
respectively. That is, for any X ∈ 2D,

P (a)∗(X) = Acca(X)

P (a)∗(X) = Acca(X)

Furthermore, Gebhardt and Kruse also defined the so-
called mass distribution ma of a as follows

ma(X) = PC(a
−1(X)), for any X ∈ 2D

Then, for any X ∈ 2D, we have

Acca(X) =
∑

A∈a(C):∅6=A⊆X

ma(A)

Acca(X) =
∑

A∈a(C):A∩X 6=∅

ma(A)

As such the mass distribution ma induced from a in the
context model C can be considered as the counterpart of a
basic probability assignment in the DS theory.

4.2 Fuzzy Context Model

Although the context model can be considered as an au-
tonomous approach to the handling of imperfect knowl-
edge, it in its standard form does not allow us to directly
model situations where cond only permits us to express
state(obj, cond) in each context in the form of verbal state-
ments like “state(obj, cond) is A”, where A is a linguistic
value represented by a fuzzy set in dom(obj). Let us con-
sider the following example.

Example 1. Assume that we want to forecast the tem-
perature of the next day. Let D = {−40, . . . , 40} be the
frame of discernment (temperatures measured in ◦C). We
are told by expert E1 that tomorrow’s temperature will be
very high, whereas another expert E2 asserts that it will be
medium. Assuming that we have degree of confidence of
0.4 in expert E1 and of 0.6 in expert E2, what is our belief
about some predicted intervals of tomorrow’s temperature?

This example is inspired by Denœux (2000). However,
Denœux proposed a principled approach to the representa-
tion and manipulation of imprecise degrees of belief within
the framework of DS theory (Denœux, 2000, 1999). In the
sequel we introduce an extension of the context model for
dealing with both vagueness and partial conflict in such a
situation. Let D be a nonempty universe of discourse, and
denote F(D) the set of all normal fuzzy subsets of D. Now
a fuzzy context model is defined as a quadruple

FC = 〈D,C,ΓC(D), PC〉,

where D,C, PC are previously defined as in Section 2, and

ΓC(D) = {a|a : C → F(D)}
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and each a ∈ ΓC(D) is called a context-dependent vague
characteristic. As such, we also restrict to consider only
context-dependent vague characteristics that are not con-
tradictory in the fuzzy context model.

It is of interest to note that each context-dependent
vague characteristic a in the fuzzy context model FC is
formally equivalent to a type-2 fuzzy set on C with respect
to D in the sense of Zadeh (1975). Furthermore, there is a
very close interrelation between context-dependent vague
characteristics within the fuzzy context model and the no-
tion of context-dependent fuzzy sets introduced by Thiele
(2001). Indeed, given a context-dependent vague charac-
teristic a ∈ ΓC(D), we then obtain a context-dependent
fuzzy set f defined as follows

f : D × C → [0, 1]
(d, c) 7→ f(d, c) =def a(c)(d)

So the notion of fuzzy context model can also provide a
constructive approach to fuzzy sets of type 2. However,
we do not consider this issue in the present paper. While
the notion of context-dependent fuzzy sets has been intro-
duced as an interpretation for vague concepts in connection
with linguistic variables, context-dependent vague charac-
teristics are motivated by situations of decision analysis
with linguistic information as illustrated above.

5 MODELING VAGUE BELIEFS

5.1 Vague Beliefs by Fuzzy Context Model

Now from a point of view of decision analysis, we also
intend to evaluate the acceptance degree Acca(X), for X ∈
2D, that the proposition “state(obj, cond) ∈ X” is true.
Obviously, vagueness and partial conflict due to contexts
in a do not allow us to uniquely determine an interval
of acceptance degrees as in the original form of context
model, but a fuzzy quantity in the set of non-negative real
numbers R

+. This can be done in terms of the α-cuts of
fuzzy sets a(c), c ∈ C, as follows.

Let α be any real number in (0, 1], and αa(c), for any
c ∈ C, the α-cut of a(c). Then by (1) and (2) we obtain

αAcca(X) = PC({c ∈ C| ∅ 6= αa(c) ⊆ X}) (9)

αAcca(X) = PC({c ∈ C| αa(c) ∩X 6= ∅}) (10)

For any α, β ∈ (0, 1] and α ≤ β, we have βa(c) ⊆ αa(c).
It directly follows by (9) and (10) that

αAcca(X) ≤ βAcca(X)

and
βAcca(X) ≤ αAcca(X)

Equivalently, we have

[βAcca(X), βAcca(X)] ⊆ [αAcca(X), αAcca(X)]

Under such a condition of monotonicity, now we can
define Acca(X) as a fuzzy set of R+ whose membership
function µAcca(X) is defined by

µAcca(X)(r) = sup
α

{α| r ∈ [αAcca(X), αAcca(X)]} (11)

Note that if a(c) is crisp for any c ∈ C, then Acca(X)
reduces to an interval ofR+, where lower and upper bounds
of the interval are determined by (1) and (2), respectively.

In the case where PC is a probability measure over C,
the function Acca is formally equivalent to a type-2 fuzzy
set of 2D, i.e. that a fuzzy set with fuzzy membership
values (Zadeh, 1975). Then, as the interpretation estab-
lished in the previous section, Acca(X) could be considered
now as the degree of belief, which is directly inferred from
“vague” evidence expressed linguistically, in the proposi-
tion “state(obj, cond) ∈ X”.

Example 2. This example models Example 1 by using the
notion of fuzzy context model. Let D = {−40, . . . , 40} be
the domain of temperature, and C = {E1, E2} be the set
of contexts. Assume that linguistic values very high and
medium are represented by normal fuzzy sets in D whose
membership functions are denoted by µVH and µM , respec-
tively. Then tomorrow’s temperature (temp) is considered
as a context-dependent vague characteristic, that is

temp : C −→ F(D)
E1 7−→ µVH

E2 7−→ µM

The measure PC that reflects degrees of confidence in Ex-
perts is defined by PC : 2C −→ R

+ so that PC(∅) =
0, PC({E1}) = 0.4, PC({E2}) = 0.6, and PC(C) = 1.

Assuming that we have to decide a forecasted interval
for tomorrow’s temperature from some predicted intervals
of temperature available, say TI1, T I2, T I3. By the pro-
cedure specified above, we can calculate Acctemp(TIi) for
TIi, i = 1, 2, 3. The next step in the decision process
may consist in comparison of the obtained fuzzy quanti-
ties. In the following we will provide a procedure for rank-
ing vague beliefs based on their alpha-cut representation
and comparison probabilities of interval values as proposed
in (Huynh et al., 2008).

5.2 Ranking Vague Beliefs

Let Xi ∈ 2D, i = 1, . . . , n, be a collection of subsets of D
available for evaluations of the form “state(obj, cond) ∈
Xi”, given a context-dependent vague characteristic a.
As discussed previously, for each Xi, we obtain Acca(Xi)
as a quantification of our belief about the proposition
“state(obj, cond) ∈ Xi”. In order to decide which one of
Xi (i = 1, . . . , n), say, for a description of state(obj, cond),
we might want to define a preference order on the set
{Xi}ni=1 induced by a ranking of vague beliefs Acca(Xi),
for i = 1, . . . , n. This can be done as follows.
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1. Based on the method proposed in (Huynh et al., 2008),
for any pair Xi and Xj, we first calculate:

S(Xi, Xj) , P (Acca(Xi) � Acca(Xj)) =
∫ 1

0

P (αAcca(Xi) �
αAcca(Xj))dα (12)

where αAcca(Xi) = [αAcca(Xi),
αAcca(Xi)], and

S(Xi, Xj) is interpreted as the strength of preference
of Xi over Xj defined by the expected probability of
Acca(Xi) dominating Acca(Xj).

2. Then, for each Xi, its score can be defined by

T (Xi) =
n
∑

j=1

S(Xi, Xj) (13)

as proposed in (Yager et al., 2001).

3. Finally, these scores can be used to obtain an ordering
over {Xi}

n
i=1.

Note that in case of subnormal fuzzy quantities Acca(Xi)
and Acca(Xj) in the expression (12) above, we define

S(Xi, Xj) , P (Acca(Xi) � Acca(Xj)) =
∫ β

0

P (αAcca(Xi) �
αAcca(Xj))dα (14)

where β = min(hgt(Acca(Xi)), hgt(Acca(Xj))), and
hgt(F ) denotes the height of fuzzy set F . More details
on this ranking procedure as well as its properties can be
referred to Huynh et al. (2008); Yager et al. (2001).
Note that an ordering over {Xi}ni=1 can be also in-

duced, for example, on the basis of a partial order such
as Acca(X1) ≤ Acca(X2) if and only if

αAcca(X1) ≤
αAcca(X2) (15)

and
αAcca(X1) ≤

αAcca(X2) (16)

for any α ∈ (0, 1]. However, in this case we have to admit
indeterminacy when two fuzzy degrees of belief are incom-
parable.
Let us consider the context-dependent vague characteris-

tic temp given in Example 2 again, and assume that mem-
bership functions of linguistic temperature values are de-
fined as graphically depicted in Fig. 1. Assume further
that we have two predicted intervals of tomorrow’s tem-
perature, say [20,27.5] and [25,32.5], available. Then, refer
to (11), we obtain

µAcctemp([20,27.5])(r) =

{

0.333, if 0 ≤ r ≤ 0.6
0.167, if 0.6 < r ≤ 1

and

µAcctemp([25,32.5])(r) =

{

0.433, if 0 ≤ r ≤ 0.4
0, otherwise
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Figure 1: Linguistic temperature values

Clearly, both Acctemp([20, 27.5]) and Acctemp([25, 32.5])
are subnormal fuzzy sets and, by applying (14), we get

S(Acctemp([20, 27.5]),Acctemp([25, 32.5])) = 0.836

which means the prediction of [20, 27.5] is preferred to the
prediction of [25, 32.5] when taking experts’ opinion into
account. Instead, if we use the partial order defined by
(15) and (16) for comparing the fuzzy quantities, we then
have Acctemp([20, 27.5]) and Acctemp([25, 32.5]) are incom-
parable.

Some Remarks

• The manipulation of fuzzy quantities may be consid-
erably simplified by restricting the consideration on
fuzzy numbers with the LL parameterization intro-
duced in (Dubois and Prade, 1987). Then many meth-
ods for total ordering of fuzzy numbers that have been
suggested in the literature can be used in the com-
parison of fuzzy degrees of acceptance. It should be
noticed that in the spirit of previous applications of
fuzzy set theory to decision analysis, e.g. (Dubois and
Prade, 1982; Freeling, 1980; Watson et al., 1979), the
utilities were often described in terms of fuzzy num-
bers.

• For any X ∈ 2D, as an alternative representation of
Acca(X), we also define the so-called fuzzy mass dis-
tribution ma of a via α-cuts as follows.

αma(X) = PC({c ∈ C| αa(c) = X})

Due to the additivity property of PC , we have

αAcca(X) =
∑

A∈αa(C):A⊆X

αma(A)

αAcca(X) =
∑

A∈αa(C):A∩X 6=∅

αma(A)
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6 CONCLUSIONS

The notion of context model can be viewed as a frame-
work for modeling and handling vagueness and uncertainty.
Furthermore, in order to deal with the problem of syn-
thesis of vague evidence linguistically provided by the ex-
perts in some situations of decision analysis, the notions
of context-dependent vague characteristics and fuzzy con-
text model have been introduced. Each context-dependent
vague characteristic within a fuzzy context model directly
induces a uncertainty measure of type 2 interpreted as
“vague” belief function, which is inferred from vague ev-
idence expressed linguistically. The notion of fuzzy con-
text model may allow us to model some situations where
heterogeneous data from a variety of sources considered as
contexts have to be taken into account. Especially, the pos-
sibility to describe states of belief employing verbal state-
ments is also expected to be useful in situations involving
the elicitation of degrees of belief from experts, such as en-
countered in the development of decision support systems.

Up to now we have considered the representation and
manipulation of vague knowledge by the fuzzy context
model. To justify how to come to decision-making as-
pects by the fuzzy context model, we may need to explore
further important operations such as conditioning, data
revision, combination on context-dependent vague charac-
teristics similar to those in (Gebhardt and Kruse, 1993).
Along with context-dependent vague characteristics, these
operations within the fuzzy context model may constitute
a flexible framework allowing to express, and reason with
vaguely specified degrees of belief. These problems are be-
ing the subject of our further work.
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