
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Modeling Correct Safety Requirements Using KAOS

and Event-B

Author(s) Traichaiyaporn, Kriangkrai

Citation

Issue Date 2013-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/11496

Rights

Description
Supervisor:Toshiaki Aoki, Information Science,

Master

Modeling Correct Safety Requirements Using KAOS
and Event-B

By Kriangkrai Traichaiyaporn

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Toshiaki Aoki

September, 2013

Modeling Correct Safety Requirements Using KAOS
and Event-B

By Kriangkrai Traichaiyaporn (1110203)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Toshiaki Aoki

and approved by
Associate Professor Toshiaki Aoki

Professor Kokichi Futatsugi
Associate Professor Kazuhiro Ogata

August, 2013 (Submitted)

Copyright c© 2013 by Kriangkrai Traichaiyaporn

Abstract

Safety-critical systems are the systems whose failures can cause significant damage to life,
property, and environment in which the systems are working on. One major causes of the
system failures is the incorrectness of the safety requirements specifications described for
developing the systems. Thus, the correctness of the safety requirements specification is
crucial. Event-B is a famous formal specification language, which provides a refinement
mechanism and a set of proof obligations for modeling and verifying the specifications.
Event-B has a good potential for dealing with the correctness. However, Event-B lacks of
the semantics of the correctness, and the mechanism to perform requirements analysis and
elaboration. The semantics and the mechanism are necessary to ensure the correctness. In
addition, there is no guideline for using the refinement mechanism. These shortcomings
are hindrances for applying Event-B to the practical development of the safety-critical
systems.

This thesis aims to propose an approach to overcome the shortcomings of Event-B.
Firstly, the semantics of the properties preserved by the proof obligations are analyzed
based on the semantics of the correctness defined in an evolutionary framework. This
analysis claims that Event-B can preserve the correctness as defined in the evolutionary
framework. Secondly, a new model is proposed to assist structuring and understanding
Event-B. The model is named ORDER model. Thirdly, a set of refinement patterns for
the ORDER model are created based on the patterns of the KAOS method, which is a
goal-oriented requirements engineering method. The KAOS method has the capabilities
for requirements analysis and elaboration by the use of goals of systems and the notions
of goal refinement. Through the usage of the KAOS-based patterns, the ORDER model
can inherit the capabilities of the KAOS method, and the refinement in Event-B can be
used in the similar way as the goal refinement. By applying the evolutionary framework
and the KAOS method to Event-B, the shortcoming of Event-B can be overcome.

Evaluation of the approach is described through case studies. The case studies shows
that the KAOS-based patterns are capable to analyze and elaborate safety requirements.
Then, the requirements can be easily modeled in Event-B for verifying the correctness. In
summary, through the usage of KAOS and Event-B, a formal model, representing correct
safety requirements specification, can be obtained.

1

Contents

List of Figures 8

List of Tables 9

Acknowledgements 10

1 Introduction 11
1.1 Overview . 11

1.1.1 Software safety requirements specifications 11
1.1.2 Modeling and verifying the requirements specifications in Event-B . 12
1.1.3 An evolutionary framework of requirements correctness 12
1.1.4 KAOS method . 13

1.2 Shortcomings of Event-B . 13
1.3 Proposed Approach . 14
1.4 Thesis Structure . 15

2 Technical Background 17
2.1 Event-B . 17

2.1.1 Machine and context . 17
2.1.2 Proof obligations . 19

2.2 The evolutionary framework . 21
2.3 The KAOS method . 23

2.3.1 Linear Temporal Logic . 23
2.3.2 Goal, domain property, and their formal definitions 24
2.3.3 Goal model . 26
2.3.4 Goal refinement patterns . 27
2.3.5 Generic refinement tree for safety goals 28

2.4 Motivated examples . 28
2.4.1 Ambiguity of the correctness in Event-B 28
2.4.2 Lacks of the requirements analysis and guideline for the refinement 30

3 Preservation of correctness of safety requirements in Event-B 32
3.1 Rationale . 32
3.2 Converting Event-B into Evolutionary Framework 33

2

3.3 Preservation of Correctness in Event-B Refinement 35
3.3.1 Consistency . 35
3.3.2 Relative Completeness . 36
3.3.3 Domain Evolution . 37
3.3.4 Extension and results . 37

3.4 Example . 38
3.5 Discussion . 42
3.6 Summary . 43

4 ORDER model: a KAOS-based graphical approach to Event-B model-
ing 44
4.1 Rationale . 44
4.2 ORDER model . 45
4.3 Refinement tree diagram . 46

4.3.1 Components and links . 46
4.3.2 Construction rules . 49
4.3.3 Transformation to Event-B model 52
4.3.4 Correctness of the refinement tree 53

4.4 Event transition diagram . 54
4.4.1 Components and links . 54
4.4.2 Association with the refinement tree diagram 57
4.4.3 Example . 57

4.5 Refinement patterns . 58
4.6 Guideline for using ORDER model . 60
4.7 Summary . 61

5 ORDER model: refinement patterns 62
5.1 Format of pattern document . 62
5.2 Phase-decomposition refinement pattern 62

5.2.1 Description and applicability . 62
5.2.2 Illustration . 63
5.2.3 Transformation to Event-B model 63
5.2.4 Constraint . 64
5.2.5 Example . 64

5.3 Event-forking refinement pattern . 65
5.3.1 Description and applicability . 65
5.3.2 Illustration . 65
5.3.3 Transformation to Event-B model 66
5.3.4 Constraint . 66
5.3.5 Example . 67
5.3.6 Notes . 68

5.4 Case-decomposition refinement pattern . 68
5.4.1 Description and applicability . 68
5.4.2 Illustration . 69

3

5.4.3 Transformation to Event-B model 69
5.4.4 Constraint . 69
5.4.5 Example . 70
5.4.6 Notes . 71

5.5 Milestone-driven refinement pattern . 71
5.5.1 Description and applicability . 71
5.5.2 Illustration . 71
5.5.3 Transformation to Event-B model 72
5.5.4 Constraint . 72
5.5.5 Example . 74

6 Case study and evaluation 76
6.1 Powered sliding door . 76

6.1.1 Overview . 76
6.1.2 The first level . 77
6.1.3 The second level . 77
6.1.4 The third level . 77
6.1.5 The fourth level . 78

6.2 Automatic gate controller . 78
6.2.1 Overview . 78
6.2.2 The first level . 78
6.2.3 The second level . 79
6.2.4 The third level . 79
6.2.5 The fourth level . 79
6.2.6 The fifth level . 80

6.3 Electrical Power Steering (EPS) system . 80
6.3.1 Overview . 80
6.3.2 The first level . 81
6.3.3 The second level . 81
6.3.4 The third level . 81
6.3.5 The fourth level . 81
6.3.6 The fifth level . 81
6.3.7 The sixth level . 82
6.3.8 The seventh level . 82
6.3.9 The eighth level . 83

6.4 Result . 83
6.5 Discussion . 84

6.5.1 Coverage of the patterns . 84
6.5.2 Scalability of the patterns . 85
6.5.3 Preservation of the correctness . 85
6.5.4 Avoidance of Event-B deadlock . 85
6.5.5 Benefits of the phase-based approach 86
6.5.6 Overcoming the shortcomings of Event-B 86

6.6 Summary . 86

4

7 Related work 87
7.1 Correctness, completeness and consistency of requirements specification . . 87
7.2 Verification of requirements in requirements evolution 88
7.3 Event-B patterns . 88
7.4 Diagrams supporting Event-B modeling . 88
7.5 Guideline for using Event-B refinement . 89
7.6 Phase-based approach for Event-B modeling 90
7.7 KAOS and Event-B . 90
7.8 Semantics of Event-B refinement . 91

8 Conclusions and future work 92
8.1 Conclusion . 92
8.2 Future works . 93

8.2.1 Automated tool for transforming the ORDER model to Event-B . . 93
8.2.2 Extension of the ORDER model . 93
8.2.3 Modularization . 94
8.2.4 Formalization of the ORDER model 94

Appendix A Powered sliding door case study 95
A.1 Refinement tree diagram . 95
A.2 Refinement tree diagram . 97

A.2.1 Initial model . 97
A.2.2 First refinement . 97
A.2.3 Second refinement . 98
A.2.4 Third refinement . 98

A.3 Description of events . 99
A.3.1 Initial model . 99
A.3.2 First refinement . 99
A.3.3 Second refinement . 99
A.3.4 Third refinement . 100

A.4 Description of carrier sets, constants, and variables 100
A.5 Event-B specification . 100

A.5.1 Contexts . 100
A.5.2 Initial model . 101
A.5.3 First refinement . 102
A.5.4 Second refinement . 104
A.5.5 Third refinement . 107

Appendix B Automatic gate controller case study 111
B.1 Refinement tree diagram . 111
B.2 Event transition diagram . 114

B.2.1 Initial model . 114
B.2.2 First refinement . 114
B.2.3 Second refinement . 114

5

B.2.4 Third refinement . 115
B.2.5 Fourth refinement . 115

B.3 Description of events . 115
B.3.1 Initial model . 115
B.3.2 First refinement . 116
B.3.3 Second refinement . 116
B.3.4 Third refinement . 116
B.3.5 Fourth refinement . 117

B.4 Descriptions of carrier sets, constants, and variables 117
B.5 Event-B specification . 118

B.5.1 Contexts . 118
B.5.2 Initial model . 118
B.5.3 First refinement . 119
B.5.4 Second refinement . 121
B.5.5 Third refinement . 124
B.5.6 Fourth refinement . 127

Appendix C Electrical Power Steering (EPS) system case study 131
C.1 Refinement tree diagram . 131
C.2 Descriptions of events . 138

C.2.1 Initial model . 138
C.2.2 First refinement . 138
C.2.3 Second refinement . 138
C.2.4 Third refinement . 139
C.2.5 Fourth refinement . 139
C.2.6 Fifth refinement . 140
C.2.7 Sixth refinement . 141
C.2.8 Seventh refinement . 142

C.3 Descriptions of variables . 143
C.4 Event-B specification . 144

C.4.1 Initial model . 144
C.4.2 First refinement . 145
C.4.3 Second refinement . 146
C.4.4 Third refinement . 148
C.4.5 Fourth refinement . 151
C.4.6 Fifth refinement . 156
C.4.7 Sixth refinement . 161
C.4.8 Seventh refinement . 171

Reference 185

6

List of Figures

2.1 Machine and context relationships . 18
2.2 The evolutionary framework . 21
2.3 An example of goal model . 26
2.4 Milestone-driven refinement pattern . 27
2.5 Decomposition-by-case pattern . 28
2.6 An generic refinement tree of safety goals 29

3.1 Hierarchy of safety goals and safety requirements specifications 33

4.1 An event . 47
4.2 A root node . 47
4.3 An invariant . 47
4.4 Refinements of event . 48
4.5 Copy of event . 48
4.6 Event-event relationship . 49
4.7 Event-invariant relationship . 49
4.8 Linking an invariant with concrete events refining the same event 50
4.9 An example refinement tree diagram . 51
4.10 An event . 54
4.11 An initialization event . 55
4.12 One-to-one transition . 55
4.13 One-to-many transition . 56
4.14 Transitions of parallelized event . 56
4.15 ‘Before’ relationship in a refinement tree diagram 57
4.16 ‘Parallel’ relationship in a refinement tree diagram 58
4.17 An example event transition diagram . 58
4.18 Process of using ORDER model . 60

5.1 General phase-decomposition refinement pattern: the refinement tree dia-
gram . 63

5.2 General phase-decomposition refinement pattern: the event transition dia-
gram . 63

5.3 An example refinement tree diagram of the phase-decomposition refinement
pattern . 64

7

5.4 An example event transition diagram of the phase-decomposition refine-
ment pattern . 64

5.5 General event forking refinement pattern: the refinement tree diagram . . . 65
5.6 General event forking refinement pattern: the event transition diagram . . 66
5.7 An example refinement tree diagram of event forking refinement pattern . . 67
5.8 General event forking refinement pattern: the event transition diagram . . 68
5.9 General case-decomposition refinement pattern: refinement tree diagram . 69
5.10 An example case-decomposition refinement pattern 70
5.11 Simple milestone-driven refinement pattern: the refinement tree diagram . 71
5.12 Simple milestone-driven refinement pattern: the event transition diagram . 72
5.13 General milestone-driven refinement pattern: the refinement tree diagram . 73
5.14 An example refinement tree diagram of milestone-driven refinement pattern 74
5.15 An example event transition diagram of milestone-driven refinement pattern 75

7.1 Event refinement diagram . 89
7.2 UML-B state machine diagram . 90

8

List of Tables

2.1 Linear temporal operators . 24

6.1 Number of events according to sources of creation: the powered sliding door 83
6.2 Number of events according to sources of creation: the automatic gate

controller . 84
6.3 Number of events according to sources of creation: the automatic gate

controller . 84

9

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Associate
Professor Toshiaki Aoki for his acute guidance, encouragement, and unlimited support
throughout the duration of my master research. Without his support, this thesis could
not have been completed. In addition, I am indebted to him for giving me this invaluable
opportunity to study abroad and providing me the financial support.

I would like to thank Assistant Professor Yuki Chiba for his feedback and wise advices
on my research. The quality of this research was significantly improved because of him.

I would like to thank the Hitachi Research Laboratory, Department of Green Mobil-
ity Research members Masaharu Nishi, Masahiro Matsubara, and Fumio Narisawa for
providing this research with an appropriate industrial case study.

My last acknowledgements go to my family for their support, unconditional love and
vital encouragement throughout my study and throughout my life.

10

Chapter 1

Introduction

Software safety requirements specifications are essential parts in the development of a
computer-based safety critical system. This research intends to apply Event-B, a formal
specification language, as a central approach for modeling and verifying the correctness of
the software safety requirements specifications. However, it is not easy to apply Event-B
for such purposes because of its shortcomings. In order to overcome the shortcomings of
Event-B, we apply two frameworks proposed by others in Event-B. Those two frameworks
are: an evolutionary framework of requirements correctness, and KAOS method.

To understand the broad overview of this research, this chapter starts with the brief
explanation of the software safety requirements specifications, Event-B, the evolutionary
framework, and the KAOS method. Then, the shortcomings of Event-B, which is to be
solved by this research, are described. After describing the shortcomings, our proposed
approach for overcoming the shortcomings is shortly explained. Finally, we provide a
structure of this thesis.

1.1 Overview

1.1.1 Software safety requirements specifications

Safety-critical systems are the systems whose failures can cause significant damage to
life, property, and environment in which the systems are working on. Some examples of
safety-critical systems are automotive control systems, medical systems, aerospace control
systems, and nuclear reactor systems. This makes the costs of failure of those systems to
be potentially high, and not to mention the priceless costs from losing life. The safety-
critical systems become increasingly computer-based nowadays because computer can help
us manage the complicated behaviour of the systems. Thus, the safety-critical software
errors, becoming parts of the system failures, are unacceptable; they should be avoided
at all costs.

In software engineering, the earliest phase of software development process is to con-
struct requirements specifications. Then, the other phases of software development are
performed according to the specifications. If the requirements specifications are described

11

incorrectly, the latter phases will be eventually affected by the incorrectness leading to
the development of an incorrect system. In [Lut93], Lutz et al. have discovered that the
safety-related software errors are mostly caused by the incorrectness of the safety require-
ments. Therefore, the verification for ensuring the correctness of a safety requirements
specification is crucial for developing a “safe” safety-critical system. According to inter-
national standard for functional safety such as IEC61508 [SS10] and ISO 26262 [ISO11],
a safety requirements specification for implementing a safety-critical system is gradually
derived from safety goals of the system. Moreover, the standards recommend using formal
methods for verifying the safety requirements specification.

1.1.2 Modeling and verifying the requirements specifications in
Event-B

A famous formal approach for verifying the correctness of requirements is Event-B. Event-
B [Abr10] is a formal specification language for modeling and verifying system require-
ments. The most important feature provided by Event-B is its refinement mechanism
to stepwise transform an abstract specification into a concrete specification. By the re-
finement mechanism, a requirements specification can be gradually modeled into Event-B
until all requirements in the specification are modeled.

Along the refinement, a set of proof obligations are discharged. The purposes of the
proof obligations are to verify the consistency of a specification, and to preserve the
functionality from its abstract specification. In typical industrial cases, there might be
several thousand proof obligations to be discharged. It is difficult to manually generate
and prove the proof obligations. Thus, the Rodin platform [ROD13] has been built to
provide automated tool to generate and prove the proof obligations automatically or
interactively. Besides, The Rodin platform can also support modeling in Event-B.

Event-B, together with the Rodin platform, has been successfully applied to several
practical safety-critical systems. Some concrete examples are a train controller system
[SAHZ11], hybrid systems [SAZ12], an air traffic information system [REB07], a spacecraft
system [SFRB11], and a metro system [Sil12]. Event-B can be regarded as a method for
correct-by-construction software development.

1.1.3 An evolutionary framework of requirements correctness

In requirements engineering, the definitions of the correctness of the requirements speci-
fications can be defined from 2 points of views:

• From practical point of view, the correctness means the satisfaction of system goals.
This is trivial, since a requirements specification must reflect the intention of a
system.

• From formal point of view, the correctness usually means the combination of com-
pleteness and consistency of requirements. The completeness can be described as no
requirements are missing from a specification. While, the consistency is that there

12

is no internal contradiction among requirements in a specification. Most researches
about the formal analysis of requirements specification also focus on checking the
completeness and the consistency [HL96,Hei02,YSLS08,SP96,PMPS01].

Zowghi and Gervasi [ZG03] have proposed an evolutionary framework to demonstrate
the idea of how requirements are evolved step-by-step and the causal relationship of the
completeness and the consistency in the evolution. By the causal relationship, Zowghi
and Gervasi inductively prove that if the completeness and the consistency are maintained
throughout the evolution of requirements, then the final version of requirements is correct
and such correctness is corresponding to the correctness in the practical point of view.
This means that the correctness defined in this framework matches formal and practical
points of view.

1.1.4 KAOS method

KAOS [VL09] is a goal-oriented methodology for requirements engineering. Goal-oriented
requirements engineering (GORE) is a branch of requirements engineering focusing on
justifying why a system is needed by specifying its top-level goals. Then, the goals are
used for requirements specification process such as elicitation, evaluation, structuring,
documentation, analysis, and evolution. The KAOS method supports the main concept
of GORE through its UML-like models. The central model in KAOS approach is its goal
model.

The goal model of KAOS is in the shape of a tree. The tree is for expressing relationship
among goals of a system by showing how higher-level goals are refined into lower-level ones
and, conversely, how lower-level goals contribute to higher-level goals. In a goal model,
an AND-refinement link relates a parent goal to a set of sub-goals. It means that the
parent goals can be satisfied by satisfying all the sub-goals in the refinement. From this,
we can identify sub-goals and parent goals of a goal to construct a goal model. To prove
that a goal tree is complete and consistent, KAOS supports using linear temporal logic
to describe goals and to perform logical proofs. An efficient way to build a goal model is
by using KAOS goal refinement patterns because we can reuse proofs and models from
patterns. The goal refinement patterns is capable to reduce time and cost for constructing
a goal model.

1.2 Shortcomings of Event-B

Even though Event-B is a good formal approach which is successful in applying to sev-
eral practical case studies, there are some shortcomings of Event-B. These shortcomings
potentially obstruct the usage of Event-B to model and verify the safety requirement
specifications. The shortcomings focused in this research are as follows:

1. the correctness of requirements ensured by Event-B is based solely on the proof
obligations of Event-B. However, as stated above, the correctness in term of re-
quirements can be defined in two points of view. By considering only the proof

13

obligations of Event-B, it is difficult to relate the correctness preserved by the proof
obligations with the correctness in those two points of view. From this, it is difficult
to guarantee that a safety requirements specification is truly derived from its corre-
sponding safety goals. To apply Event-B to model safety requirements, it is better
to ensure what Event-B can exactly verify.

2. A method for analyzing and elaborating safety requirements specifications is needed
to specify essential safety properties of the safety-critical systems. Without suffi-
ciently specifying the safety properties, it is impossible to justify that a system is
safe enough to operate. The problem is that Event-B itself does not provide such
method. In facts, it is common to perform a preliminary study of a specification
before modeling it in Event-B [SAZ12,Abr07]. Thus, just modeling and verifying a
specification in Event-B is not adequate for the safety-critical systems.

3. Event-B provides a refinement mechanism to gradually refine a abstract specification
into a concrete specification. This mechanism eases the analysis and verification of
requirements specifications, especially the complex ones. The idea of refinement is
undoubtedly useful. However, there is no guideline for using the refinement mech-
anism in Event-B effectively. Given that a complicated system is being modeled in
Event-B, designers and developers of the system might have no idea how to organize
the refinement steps which is a source of difficulty in the usage of refinement [Abr06].

In order to ensure the possibility of using Event-B to verify software safety requirements,
we need an approach to cope with those shortcomings.

1.3 Proposed Approach

This research aims to overcome the shortcomings of Event-B stated in the previous section.
The purpose of this research is to encourage and assist the usage of Event-B in practical
development of software safety requirements specifications. Our proposed approach can
be divided into two parts:

1. The first part is to analyse the meaning of the properties preserved by the proof
obligations of Event-B. This part is related to the first shortcoming of Event-B,
which is about the obscure definition of the correctness in Event-B.

2. The second part is to propose a model supporting the refinement mechanism of
Event-B. This model is for elaborating and analysing the safety requirements speci-
fications before modeling them in Event-B. Furthermore, the proposed model should
be capable to provide some ideas how to refine an abstract model in Event-B. The
second part is to solve the second and the third shortcomings of Event-B.

To analyse the properties preserved by the proof obligations of Event-B, we convert the
notions of Event-B specification language into the form of the evolutionary framework
proposed by Zowghi and Gervasi. Then, we prove that the properties preserved by the

14

proof obligations conform to the completeness and the consistency of the evolutionary
framework. As results of the proofs, we can conclude that the correctness preserved by
Event-B refinement is the same with the correctness defined in the evolutionary frame-
work. This explains how Event-B preserve the correctness of the safety requirements
specifications.

In our opinion, proposing a model supporting the refinement mechanism of Event-B
from scratch is difficult and inefficient. The model should be based on another approach
which supports analysis and refinement of the requirements specifications. The goal model
of KAOS method is suitable for our needs since it provides the mechanism for requirements
analysis and a notion of refinement. However, the direct usage of the goal model in Event-
B such as translation from the temporal logic of goals into Event-B specification has some
difficulties (discussed in Chapter 4). Thus, we rather propose a new model based on the
goal model of the KAOS method. By proposing a new model, we can design it in a way
that supports the goals of this research, while we can also use the capabilities of the KAOS
method. Our proposed model is named “ORDER model”.

The ORDER model is capable to:

• treat the components of Event-B like goals of the KAOS method

• use KAOS’s goal refinement patterns

• graphically show Event-B refinement

• support direct transformation to Event-B models

Our approach ensure that the refinement mechanism of Event-B can preserve the cor-
rectness of the requirements specifications. Besides, we also propose the ORDER model
based on the KAOS method to support analysis and refinement of requirements in Event-
B. The means that our proposed approach can reduce the shortcomings of Event-B and
encourage applying Event-B in practical. The safety requirements specification modelled
through our approach is claimed to be correct. This research is a way to encourages the
usage of formal methods in the practical software development.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2 provides technical details of Event-B, the evolutionary framework, and
the KAOS method.

• Chapter 3 shows our analysis that Event-B can preserve the correctness of require-
ments specification as defined in the evolutionary framework.

• Chapter 4 thoroughly explains our proposed model: ORDER model.

• Chapter 5 describes the KAOS-based refinement patterns for assist construction of
ORDER model.

15

• Chapter 6 presents the means to evaluate our proposed approach through case
studies. The advantages of our approach are also discussed in this chapter.

• Chapter 7 discusses related work.

• Chapter 8 concludes this thesis with future directions.

16

Chapter 2

Technical Background

This research is based on the three framework: the Event-B formal method, the evolu-
tionary framework, and the KAOS method. This section sufficiently provides technical
details of each framework used throughout this thesis.

2.1 Event-B

Event-B [Abr10] is a formal specification language for modeling requirements of systems.
The language is based on first-order predicate logic and discrete transition systems. The
most important feature provided by Event-B is its refinement mechanism. The mechanism
can be used for incrementally constructing a system specification from an abstract one
and step-wise refining it into a concrete specification.

2.1.1 Machine and context

An Event-B model may contain a static part called the context, and a dynamic part called
the machine. The machine might access to one or more contexts via a SEES relationship.
A machine can be refined by another one, and a context can be extended by another one.
Machine and context relationships are illustrated in Figure 2.1.

All carrier sets, constants, and their definitions declared through axioms are described
in the context. A carrier set is a term for calling a mathematical set defined in an Event-
B model. The machine contains all of the state variables. Types and properties of the
variables are declared through invariants. The values of the variables can be changed by
the execution of events. Every machine must contain an event called INITIALISATION
for setting up the values of the variables.

An event can be represented by the following form:

evt =̂ anyp when G with W then S end

The short form
evt =̂ begin S end

17

Machine Context

Machine Context

refines

refines

sees

sees

extends

extends

Figure 2.1: Machine and context relationships

where p denotes internal parameters of the event, G is a predicate denoting guards, and
S denotes the actions that update some variables. S can be executed only when G holds.
When we refine an abstract event, some variables of that event might be disappeared in
its concrete event. W denotes witnesses that are additional elements in the concrete event
for indicating the disappeared variables and their values. Given that the variables of the
machine containing the event are denoted by v, S is composed of several assignments of
the form:

x := E(v)

x :∈ E(v)

x : | Q(v, x′)

where x are some variables, and x′ represents a state of x which their values are changed
just after assigning x to an expression E(v) or a predicate Q(v, x′). The former form is
deterministic, which x are assigned to precise values. The latter form is non-deterministic
assigning x to be elements of carrier sets. The effect of each assignments can also be
described by a before-after predicate:

BA(x := E(v)) =̂ x′ = E(v)

BA(x :∈ E(v)) =̂ x′ ∈ E(v)

BA(x : |Q(v′, x′)) =̂ Q(v, x′)

A before-after predicate describes the relationship between the state just before an
assignment has been triggered and the state just after the assignment has been triggered
(represented by x and x′ respectively).

The refinement mechanism of Event-B allows us to extend a context, i.e. adding more
components into the extending context, whereas we are allowed to refine a machine into
a concrete machine by adding new variables, rewriting events description to handle new
variables, strengthening the guards, and so on.

18

We separately define an Event-B abstract model and an Event-B concrete model to
clearly distinguish them in our analysis in the next chapter. According to [C+05], we can
define an Event-B abstract model (refined model) as follows:

Definition 1 (Event-B abstract model). An Event-B abstract model is a tuple (s, c, A, v,
I, E), where s and c are the carrier sets and constants respectively; A(s, c) is a collection
of axioms; v are the machine abstract variables; I(s, c, v) is the invariants limiting the
possible state of v; E is a set of events. Moreover, each abstract event is defined as
a tuple (G,BA), where G(s, c, v) is the event guard triggering actions when it holds;
BA(s, c, v, v′) is a before-after predicate defining a relation between the current and next
states, and representing event actions; and v′ is a next state of v.

An Event-B concrete model (refining model) can be defined with respect to an Event-B
abstract model as follows:

Definition 2 (Event-B concrete model). An Event-B concrete model is a tuple (s, c, A, v,
w, J, E2), where w are concrete variables; J(s, c, v, w) is the invariants added in the con-
crete machine; E2 is a set of concrete events. Moreover, each concrete event is defined as
a tuple (H,W,BA2), where H(s, c, w) is the concrete event guard; W (s, c, v, w, v′, w′) are
witnesses for disappearing abstract variables; BA2(s, c, w, w′) is a before-after predicate
defining a relation between the current and next states, and representing event actions;
and w′ is a next state of w.

Note that axioms, invariants, guards, witnesses and actions (before-after predicates) are
predicates, while carrier sets, constants, and variables are arguments of those predicates.
We sometimes abbreviate the predicates of Event-B by omitting their arguments. For
example, witnesses of an event may be denoted by W instead of W (s, c, v, w, v′, w′). We
also use the notion P [x′/x] for a substitution of an argument x in a predicate P by an
argument x′.

2.1.2 Proof obligations

When an Event-B model is created or refined, a set of proof obligations must be discharged
in order to guarantee certain properties of a model. In this thesis, all the proof obligations
are in the form of logical implications:

Hypotheses⇒ Goal

where Hypotheses is a conjunction of hypotheses (predicates) and Goal is a goal that
can be proved from the hypotheses.

The main purpose of the generated proof obligations is to ensure that invariants are
maintained in the model where it belongs to and in all subsequent models. Thus, for
an abstract model of Event-B, each event of the model should be checked by the proof
obligations that its actions are consistent with the invariants of the model. Furthermore,
each event of a concrete model refining the abstract model should be also checked by the
proof obligations that it indeed preserves the description of its refined event. This means

19

that the proof obligations can be divided into two types: to ensure internal consistency
of a model, and to ensure consistency of a refinement.

Ensuring internal consistency

The proof obligation for internal consistency are separately defined for abstract models
and concrete models. Firstly, the proof obligations for abstract model consistency are as
follows:

Definition 3 (Proof obligations for abstract model consistency). For ensuring abstract
model consistency, the following proof obligations must be discharged for each event of an
Event-B model:

FIS : A ∧ I ∧G⇒ ∃v′ ·BA

INV : A ∧ I ∧G ∧BA⇒ i

where i are the invariants involving the variables which appears in BA. The purpose of
FIS is to ensure that non-deterministic actions are feasible, and INV is to ensure that
invariants of a machine is preserved by each event.

The proof obligations for concrete models are as follows:

Definition 4 (Proof obligations for concrete model consistency). For ensuring concrete
model consistency, the following proof obligations must be discharged for an event j of an
Event-B model:

FISref : A ∧ I ∧ J ∧H ⇒ ∃w′ ·BA2

INVref : A ∧ I ∧ J ∧H ∧W ∧BA2⇒ j

WFIS : A ∧ I ∧ J ∧H ∧BA2⇒ ∃v′ ·W

where j are the invariants involving the variables which appears in BA2. The purpose
of FISref is the same as FIS. INVref is for the preservation of invariants of the concrete
model. WFIS is for ensuring that each witness for an abstract variable of a concrete
event indeed exists.

Ensuring refinement consistency

Given that there is a concrete model refining an abstract model, a set of proof obliga-
tions must be discharged to maintain the invariants from the abstract model. The proof
obligations for ensuring the consistency of a refinement are as follows:

20

B

D

S

1

R

D

1

2

R

D

2

3

Figure 2.2: The evolutionary framework

Definition 5 (Proof obligations for refinement consistency). For ensuring the consistency
of a refinement, the following proof obligations must be discharged when a concrete event
refines an abstract event:

GRD : A ∧ I ∧ J ∧H ∧W ⇒ G

SIM : A ∧ I ∧ J ∧H ∧W ∧BA2⇒ BA

The purpose of GRD is to make sure that the concrete guards of a concrete event are
stronger than the abstract ones of the abstract event. This ensures that when a concrete
event is enabled, so is the corresponding abstract one. SIM is to ensure that when a
concrete event is executed what it does is not contradictory with what the corresponding
abstract event does.

There is another proof obligation EQL for ensuring refinement consistency. This proof
obligation focuses on a set of variables which belongs to both a concrete machine and
its abstract machine. If a concrete event of the concrete machine assign values to some
variable in the set but the abstract event does not, it must be proved that the variables’
values does not change. This is because In order to preserve refinement consistency, any
event of a refinement that modifies the state of the machine being refined must itself be
a refinement of one or more events of the machine being refined.

2.2 The evolutionary framework

Zowghi and Gervasi in [ZG03] describe that the creation of requirements documents usu-
ally starts from the business needs of customers and then they are progressively evolved
step-by-step in term of requirements until a specification is created. They believe that
there are causal relationships among consistency, completeness, and correctness (3Cs) of
requirements at each step. As a consequence, they investigate and conclude the rela-
tionships in their evolutionary framework, as in Figure 2.2, based on Jackson’s Problem
Frames [?].

The framework consists of three components: domain, requirements, and specification.
Domain (D) is a set of properties (or rules) of the environment in which a software
system is going to be implemented on. Requirements (R) are properties which are desired

21

to hold among elements in D. Lastly, Specification (S) is the instruction of a machine
implemented on D in order to keep the properties in R hold.

In Figure 2.2, the initial version of requirements is denoted as B instead of R0 to
emphasize that requirements are from the business needs of the customers, and the final
version is denoted as S for the specification instead of Rn+1 for the evolution with n + 1
steps. Note that D0 is null because the domain properties can be only described after the
study of business needs. Arrows between two consecutive versions of R and D indicate
the direction of evolution. Zowghi and Gervasi assume that domain can be evolved by
only adding more properties into the next version, whereas requirements can be added,
changed, and removed. Such an assumption is called a monotonic domain refinement.
The evolution of requirements reflects an increased understanding of the business needs.

In facts, there are two aspects to define the correctness of requirements:

• From a practical point of view, the correctness of requirements can be defined as
satisfaction of the business needs of customers.

• From a formal point of view, the correctness is usually meant to be the combination
of completeness and consistency.

Zowghi and Gervasi aim to use the evolutionary framework to provide the formal re-
lationship among 3Cs. Hence, the definition of the correctness in the framework follows
the latter point of view. The consistency is that there is no conflict in combining require-
ments and domain properties. The completeness is defined as relative completeness, which
means that we determine the completeness of requirements with respect to an external
reference that is the previous version of requirements for this framework. At every step of
the evolution, we have to show the consistency and the relative completeness of require-
ments to conclude the correctness. In addition, for the case of the monotonic domain
refinement, the domain evolution needs to be shown as well. A lemma can be concluded
from the definitions above.

Lemma 1 (Monotonic domain refinement). Let us assume that we are performing an
evolution step, from Ri and Di to the subsequent versions Ri+1 and Di+1, and that we
are only adding new information about the domain, i.e. Di+1 |= Di (domain evolution).
Then, if we can prove (Ri+1 ∪Di+1) 6|= ⊥ (consistency) and (Ri+1 ∪Di+1) |= Ri (relative
completeness), then (Ri+1 ∪Di+1) |= Ri ∪Di (correctness) holds.

A relevant result from Lemma 1 is expressed by the following theorem.

Theorem 1 (Inductive correctness). Let (R0, D0), . . . , (Rn+1,
Dn+1) be a chain of evolution steps in the development of a specification. If at each step
the consistency, the relative completeness, and the domain evolution hold according to
Lemma 1, then

∀i ∈ [0..n], (Ri+1 ∪Di+1) |= (Ri ∪Di)

It follows by induction that

(Rn+1 ∪Dn+1) |= (R0 ∪D0)

22

But Rn+1 is S, R0 is B, and D0 is empty, so we have

(S ∪Dn+1) |= B

Theorem 1 concludes that this process can guarantee that all versions of requirements
and domains are correct with respect to the initial one which is the business needs. In
other words, we construct a specification, which satisfies the business needs. Thus, the
formal definition of the correctness in this framework corresponds to the correctness in
the practical point of view.

To prove the entailment operator (|=) used in Lemma 1, Zowghi and Gervasi originally
represent each component of the framework with a set of predicates, and simply use the
inference rules of first-order logic.

2.3 The KAOS method

In software engineering, requirements specifications are documents which are supposed to
reflect what stakeholders need from a new software system. In other words, a requirements
specification describes what a software system has to perform to accomplish the system’s
goals.

Goal is a prescriptive statement of intent that the system should satisfy through the
cooperation of its agents such as human, devices, or software. Goal-oriented requirements
engineering (GORE) refers to the use of goals for requirements elicitation, evaluation,
negotiation, elaboration, structuring, documentation, analysis, and evolution. In the
context of GORE, a requirement is a goal under the responsibility of a single software
agent.

KAOS (‘Knowledge Acquisition in autOmated Specification’ or ‘Keep All Objects Sat-
isfied’) [VL09] is a GORE method with a rich set of formal analysis techniques. The
KAOS method contains 5 UML-like core models which are goal model, object model,
agent model, behaviour model, and operation model for modeling and structuring re-
quirements. This research focuses only on the goal model, which is the central model of
the KAOS method. The goal model has a two-level structure: the outer graphical se-
mantic layer and the inner formal layer. The outer layer shows semi-formal relationships
among goals. While, the inner layer formally defines goals and their relationships. The
formal layer of KAOS is based on linear temporal logic. The details of the linear temporal
logic and the goal model of KAOS are described in the following sections.

2.3.1 Linear Temporal Logic

In order to formally describe goals, we may express them in term of state assertions. A
state assertion is a predicate to express that some descriptive or prescriptive property
holds in some arbitrarily chosen current state. However, goals can be refer to not only the
current state of a system, but also the future or past states. In the case that the future

23

Table 2.1: Linear temporal operators

Operator Description Formal semantics
�P eventually (H, i) |= �P iff for some j ≥ i: (H, j) |= P
�P always (H, i) |= �P iff for all j ≥ i: (H, j) |= P
◦P next (H, i) |= ◦P iff (H, i + 1) |= P

P ⇒ Q entails equivalent to: �(P → Q)
P ⇔ Q congruent equivalent to: �(P ↔ Q)

and the past are involved, state assertions need to be prefixed by temporal operators,
they are called temporal assertions. The temporal assertions in the context of the KAOS
method is based on linear temporal logic.

Linear temporal logic (LTL) is an addition of the usual first order logic, which uses
logical connectives (∧ ∨ ¬ → ←), and quantifiers (∀ ∃) to express an assertion (for
the current state), with a set of temporal operators. The temporal operators are for
expressing both the past and the future. However, in the scope of this thesis, we do not
consider past LTL.

For this section, we define an entailment operator for linear temporal logic according
to [VL09] as follows:

Definition 6 (Temporal entailment). Let H be history, i be a time position, and P be a
temporal assertion, then (H, i) |= P iff P is satisfied by H at the time position i.

From the definition above, (H, 0) |= P means the assertion P is satisfied by the entire
history H.

The temporal operators used in the scope of this thesis are described in the Table 2.1.
Each operator is described based on the temporal entailment and the logical connectives.

2.3.2 Goal, domain property, and their formal definitions

Goals can be categorized into two types: behavioral goals and soft goals. Behavioural
goals prescribe intended system behaviours. While, soft goals prescribe preferences among
alternative behaviours. In the scope of this thesis, we focus on the behavioral goals. Be-
havioural goals can be further specialized into Achieve goals and Maintain goals [DVLF93].

Aside from goals which are prescriptive statements satisfied by agents, a domain prop-
erty is a descriptive statement about the environment, expected to hold regardless of how
the system behaves. A domain property describes a physical law, organization policy, and
so on. A domain property is not directly satisfied by any agents of a system.

Formal definitions of goals and domain properties based on LTL can be defined accord-
ing to the characteristic of each type of goals and domain properties.

24

Achieve goals

Achieve goals prescribe system behaviours where some target properties must be eventu-
ally satisfied in the future. In KAOS, achieve goals are described in the following pattern:

Achieve[TargetCondition] : [If CurrentCondition then] eventually TargetCondition

This generic pattern of achieve goals means that when the current condition is satisfied,
then the target condition must be eventually satisfied in some future states. The pattern
can be formally described in term of linear temporal logic in two ways:

CurrentCondition ⇒ � TargetCondition
CurrentCondition ⇒ ◦ TargetCondition

The previous way does not specific when the target condition is achieved, while the
latter way restricts that the target condition must be satisfied immediately in the next
state.

Another form of achieve goals is to cease a target condition:

Cease[TargetCondition] : [If CurrentCondition then] eventually not TargetCondition

Its possible formal forms are:

CurrentCondition ⇒ �¬ TargetCondition
CurrentCondition ⇒ ◦¬ TargetCondition

Maintain goals

Maintain goals prescribe behaviours where some target properties must be permanently
satisfied in every future state. In KAOS, maintain goals are described in the following
pattern:

Maintain[GoodCondition] : [If CurrentCondition then] always GoodCondition

This pattern means all the state in which the current condition is satisfied, this implies
that the good condition must also be satisfied. This pattern can be formally described in
term of linear temporal logic in the following way:

CurrentCondition ⇒ GoodCondition

Another form of maintain goals is to avoid a bad condition:

Avoid[BadCondition] : [If CurrentCondition then] always not BadCondition

Its formal form is:

CurrentCondition ⇒ ¬ BadCondition

25

Achieve
[TargetCondition2]

Achieve [TargetCondition1]

If TargetCondition2
then TargetCondition

AND refinement

Goal

Domain property

Maintain
[GoodCondition]

...

Figure 2.3: An example of goal model

Domain properties

Domain properties refer to laws on environment phenomena. This means that a domain
property is an invariant property holding in any state. Unlike goals, there is no pattern for
describing a domain property in KAOS. However, the formal forms of domain properties
can be specified as follows:

Condition1 ⇒ Condition2
Condition1 ⇔ Condition2

This formal forms show the relations between two conditions which must always hold
in the environment of a system.

2.3.3 Goal model

The goal model of KAOS is in the shape of a tree. The tree consists of a refinement graph
expressing how higher-level goals are refined into lower-level ones and, conversely, how
lower-level goals contribute to higher-level goals. In a refinement graph, a node represents
a goal which is either an achieve goal or a maintain goal, and an AND-refinement link
relates a parent goal to a set of sub-goals. A parent goal must be satisfied when all
of its sub-goals are satisfied. The relationship between a parent goal and the set of its
sub-goals is called goal refinement. An example of goal model is shown in Figure 2.3.
A parallelogram denotes a goal, while a trapezoid denotes a domain property. an AND
refinement links a parent goal to its sub-goals.

An AND-refinement of a goal into its sub-goals should ideally be complete and consis-
tent. The formal definitions of a complete and consistent AND-refinement can be defined
as follows:

Definition 7 (Complete refinement). An AND-refinement from a goal G into sub-goals
G1, G2, . . . , Gn is complete iff {G1, G2, . . . , Gn} |= G.

26

Achieve[MilestoneCondition
If CurrentCondition]

Achieve[TargetCondition If
MilestoneCondition]

Achieve[TargetCondition If
CurrentCondition]

Figure 2.4: Milestone-driven refinement pattern

Definition 8 (Consistent refinement). An AND-refinement from a goal G into sub-goals
G1, G2, . . . , Gn is consistent iff {G1, G2, . . . , Gn} 6|= ⊥.

Complete refinement means that in any circumstance where all sub-goals are satisfied,
their parent goal is always satisfied. In other words, no sub-goals are missing for the
parent goal to be satisfied. Consistent refinement means that it is possible for all the
sub-goals to be satisfied altogether. In logical entailment, if a set of predicates can entail
false (⊥), this set of predicates can entail anything, even their parent goal. However, it
is more preferable to have a parent goal to be satisfied when all of its sub-goals can be
satisfied. Thus, a refinement should also be consistent.

2.3.4 Goal refinement patterns

An effective way to construct a goal model is by reusing goal refinement patterns [DVL96].
This is because “correct goal refinements are often hard to find; goal decompositions made
by hand are usually incomplete and sometimes inconsistent” [VLDM95]. The goal refine-
ment patterns are frequently used patterns for refining a goal into sub-goals. Each pattern
suggests specific refinements/abstractions for instantiation to the specifics of the modelled
system. Parameters are used in each pattern for representing conditions. Ones can in-
stantiate a pattern by replacing each parameter with a corresponding condition from the
modelled system. The patterns are proved to be complete and consistent already. Hence,
user of the patterns can use the pattern without the necessity of proving their completeness
and consistency again. This thesis focuses the usage of two patterns: milestone-driven
refinement pattern and decomposition-by-case pattern.

The milestone-driven refinement pattern

This refinement pattern is for establishing an necessary intermediate step (a milestone
condition) for reaching a target condition from a current condition. Figure 2.4 shows the
generic AND-refinement tree of this pattern.

Let c be a current condition, m be a milestone condition, and t be a target condition.
The following formal representation of this pattern shows that this pattern is complete
and consistent.

{c⇒ �m,m⇒ �t} |= c⇒ �t

27

Achieve[TargetCondition1
If Case1]

Achieve[TargetCondition2
If Case2]

Achieve[TargetCondition]

If TargetCondition1
or TargetCondition2

then TargetCondition

Case1 XOR Case2

Figure 2.5: Decomposition-by-case pattern

{c⇒ �m,m⇒ �t} 6|= ⊥

Decomposition-by-case pattern

This refinement pattern introduces different cases for reaching a target condition. The
cases must be disjoint and cover all possible cases. Figure 2.5 shows the generic AND-
refinement tree of this pattern.

Let t, t1, and t2 be target conditions, c1 and c2 be cases. The following formal repre-
sentation of this pattern shows that this pattern is complete and consistent.

{c1⇒ �t1, c2⇒ �t2, t1 ∨ t2⇒ t, c1 xor c2} |= t
{c1⇒ �t1, c2⇒ �t2, t1 ∨ t2⇒ t, c1 xor c2} 6|= ⊥

2.3.5 Generic refinement tree for safety goals

There is also a generic tree which is created especially for refining safety goals as in
Figure 2.6. Forbidden states are avoided in this tree by anticipating dangerous states. If
a dangerous state is anticipated, an alarm is raised. Then, some response must be provided
for the alarm by an appointed guard to clear the potentially dangerous situation. This
generic refinement tree is related to the objective of this research.

2.4 Motivated examples

This section discusses about the shortcomings of Event-B, which this research aims to
overcome. The shortcomings are presented through the use of example from existing
Event-B specifications in a practical context. The approach to deal with the shortcomings
based on the evolutionary approach and the KAOS method is also shortly explained.

2.4.1 Ambiguity of the correctness in Event-B

Event-B is a good formal approach for modeling requirements specifications, since its
refinement mechanism along with its proof obligations can efficiently help stakeholders

28

Maintain[DangerousStates
Anticipated]

Avoid [ForbiddenStates]

Achieve[Response
Provided]

Achieve[AlarmIssuedWhen
DangerAnticipated]

Achieve[AlarmHandled
WhenIssued]

Achieve[Response
ClearsAlarm]

Achieve[GuardAppointed]
Achieve[Response

ByGuard]
Maintain[GuardAppointed]

Figure 2.6: An generic refinement tree of safety goals

progressively analyse the specifications, especially the complex ones. Developing a com-
plex specification containing all details of a system at once requires a lot of effort to
comprehend and difficult to reason about. One common strategy using Event-B refine-
ment for dealing with the difficulties is to start constructing an initial model by describing
only the main purpose of a system. Then, other details can be gradually introduced into
subsequent concrete models. This strategy eases the proof of the correctness of require-
ments, because only a small number of proof obligations are generated at each step.

One successful example of using Event-B refinement to gradually model the specification
of an industrial case study is the work of Rezazadeh et al. in [REB07]. They developed the
CCF Display and Information System (CDIS), a system providing important airport and
flight data for the duties of air traffic controllers, by using Event-B. CDIS is large-scale
system,which is difficult to comprehend, seeing that there are 1200 pages of the origi-
nal specification documents. Even though, to demonstrate their approach using Event-B
refinement, they focused only on core specification of CDIS, the specification is still com-
plex. They began with modeling a specification for a generic system which describes the
overview of CDIS. Through subsequent refinements, more specific details were introduced.
This resulted in six refinement steps which comprehend all details from the core specifi-
cation. At each step, approximately less than 20 proof obligations are generated, which is
relatively small. Because all proof obligations are successfully discharged, they conclude
that their models were reasonably correct. Furthermore, Event-B refinement can help
them overcome the difficulty of comprehending the original specification.

The main purpose of the generated proof obligations is to ensure that invariants is
maintained in the model where it belongs to and in all subsequent models. Hence, even
if the correctness of CDIS specification is ensured by Event-B proof obligations along the
refinements, the meaning of this correctness is unclear in term of requirements engineer-
ing. Practically, a correct requirements specification means that the specification satisfies
certain business goals. In this case, there is no direct link between the business goals and

29

what the proof obligations are generated for. On the other hand, the correctness formally
means to be the combination of completeness and consistency. The consistency is that
there is no contradiction among requirements. The completeness is that there is no in-
formation left unstated in a requirements specification with respect to a reference point.
It is reasonable to say that the proof obligations is capable to guarantee the consistency,
but not the completeness. This is because a relation between the proof obligations and
the reference point of the completeness is unclear.

The evolutionary framework has the semantics of the correctness of requirements spec-
ification, and describes the process of specifying requirements in a step-wise way. The
step-wise specification of the requirements is similar to Event-B. If we regard one step of
refinement in Event-B as a step of evolution in the evolutionary framework, it is possi-
ble to show whether Event-B can preserve the correctness as defined in the evolutionary
framework.

2.4.2 Lacks of the requirements analysis and guideline for the
refinement

In [ASZ12], the formalization of hybrid systems in Event-B is described. [ACH+94] ex-
plains that “A hybrid system consists of a discrete program with an analog environment.
We assume that a run of a hybrid system is a sequence of steps. Within each step the
system state evolves continuously according to a dynamical law until a transition occurs.
Transitions are instantaneous state changes that separate continuous state evolutions.”.
The hybrid systems are very important in the development of embedded systems where
a piece of software, the controller, is supposed to manage an external situation, the en-
vironment. It is usual to find that most safety-critical systems are related to the hybrid
systems.

One example of [ASZ12] is about a system controlling trains to provide safe moves
of the trains. An preliminary study about the system had been performed before the
system was modeled in Event-B. From the preliminary study, some necessary invariants
of the system was found, and the information needed for deciding the current acceleration
of a train was specified. Without the preliminary study, those necessary information
about the system cannot be specified. If the preliminary study is skipped, some necessary
information might be missing. The missing information potentially causes the system to
be unsafe. The preliminary study is undoubtedly crucial, but no systematical way for the
preliminary study has been proposed for Event-B.

Another notice from [ASZ12] is that even though the work focused on the hybrid sys-
tems, all of its examples have distinct refinement plans from each other. Here, the refine-
ment plan means the consideration of what models are constructed in each abstraction
level of Event-B. The advantage of the refinement mechanism of Event-B is that it pro-
vide a lot of (but limited) ways to refine an Event-B model. This is for widely supporting
various kinds of systems. Unfortunately, the refinement mechanism is usually poorly used
because it is not easy to decide how to organize the construction steps [Abr06]. Non-
experts of Event-B often have no idea how to use the refinement mechanism efficiently.

30

The resulted models from the non-experts might be too rough and the rough refinement
does not mitigate the complexity of the Event-B models well.

The preliminary study can be considered as the requirements analysis and elaboration.
The analysis and elaboration of requirements are the capabilities of the goal-oriented re-
quirements engineering like the KAOS method. Now that the KAOS method contains the
notions of refinement, which is called the goal refinement, for the analysis and elaboration,
we plan to apply the goal refinement to fulfil what Event-B lacks, that is, the systematical
preliminary study and the guideline for using Event-B refinement.

31

Chapter 3

Preservation of correctness of safety
requirements in Event-B

3.1 Rationale

As we discussed in Chapter 2, the semantics of the correctness of requirements are unclear
in Event-B. Thus, we aim to analyse the conformance between the properties preserved
by Event-B and the correctness defined in the evolutionary framework. The reason for us
to select the evolutionary approach is because we think that the evolutionary framework
is compatible with Event-B and the process of specifying safety requirements. The latter
parts of this section explains the reason in more details.

In facts, the strategy for gradually constructing specifications in Event-B is similar to
the explanation of how a requirements specification are constructed in the evolutionary
framework. Both approaches start from capturing the overview (or business needs) of a
system in their initial step. Then, more details for the system are gradually included into
the subsequents steps. the properties maintained by POs and the properties described
in Lemma 1 (monotonic domain refinement) from Section 2.2 are also similar. POs are
generated at each step for ensuring that the invariants of the current refinement are
not violated by any events, which is similar to showing the consistency. Some POs are
generated for verified that the current refinement preserve invariants from the all the
former refinement steps, which is similar to the relative completeness. The definition of
the relative completeness provides a link between requirements and the corresponding
business goals (which can be regarded as a reference point for the formal completeness).
Because of these similarities, we think that it is possible to use Event-B to model a
requirements specification and preserve the correctness of the requirements conforming to
the evolutionary framework.

The step-wise way to evolve requirements of a system as described in the evolutionary
framework is similar to how software safety requirements are created. According to an
international standard for safety-critical system like ISO26262 [ISO11], the creation of
the software safety requirements requirements starts from specifying safety goals of a
safety-critical system. Then, a functional safety requirements specification is derived

32

Safety goals

Functional safety
requirements
specification

Technical safety
requirements
specification

Software safety
requirements
specification

Figure 3.1: Hierarchy of safety goals and safety requirements specifications

from the safety goals, following by a technical safety requirements specification derived
from the functional specification. Lastly, a software safety requirements specification is
derived from the technical specification. Figure 3.1 illustrates the hierarchy of safety
goals and the steps of derivation of safety specifications. The development of each level of
specification can be iterated to improve the specification. This means that the software
safety requirements specifications are created by starting from safety goals and step-
wise evolving until completing a software safety requirements specification. Hence, the
evolutionary framework is appropriate for explaining how to preserve the correctness of
the software safety requirements specification.

As a result, if the correctness preserved by Event-B refinement mechanism conforms to
the correctness defined in the evolutionary framework, it means that Event-B can ensure
the correctness of safety requirements from both practical and formal points of view (from
Theorem 1).

3.2 Converting Event-B into Evolutionary Framework

We aim to analyze whether Event-B has capabilities to preserve the correctness of re-
quirements explained in Lemma 1. In other words, Event-B can preserve the correctness
of requirements or not. To perform the analysis, firstly, we need to convert Event-B’s
mathematical notions into the evolutionary framework’s notions in order to prove Lemma
1 by the generated POs of Event-B.

We believe that the conversion is possible because D is similar to Event-B contexts

33

and R is similar to Event-B machines. D can be evolved by including more properties
into the next version of D. It works the same way with the context extension in Event-B.
Changing requirements is also similar to refining a machine, since we can add, change, and
remove requirements by adding variables, rewriting event description, and replacing some
parameters respectively. Furthermore, The evolutionary framework follows Lemma 1 to
preserve the correctness of requirements at every step of the evolution.

Because of the similarity explained above, we are able to convert Event-B into the
evolutionary framework by transforming the context of Event-B to the domain (D), and
the machine of Event-B to the requirements (R). In the framework, Zowghi and Gervasi
choose to represent each element by a set of predicates based on first-order logic. Thus,
just putting the predicates of Event-B into each set is sufficient for the conversion. Starting
from the most simplest one, we define the context of Event-B as a set in the following
definition:

Definition 9. A context of Event-B is a set in the form of:

{A(s, c)}

where s and c are carrier sets and constants respectively; and A are axioms.

Then, we define the abstract model of Event-B once again as a set based on Definition 1
defined in Section 2.1 as follows:

Definition 10. An Event-B abstract model is a set in the form of:

{A(s, c)} ∪ {Isi(s, c, v′i), I(s, c, vi) ∧Gi(s, c, vi) ∧BAi(s, c, v, v
′
i) | i ∈ [0..n]}

where n is the amount of events; i enumerates event in an abstract model; si is a set of
indexes of invariants relevant to the before-after predicate BAi; vi is a state of abstract
variables; I is a conjunction of all invariants; Isi is a conjunction of invariants whose
indexes appearing in si; Gi is an guard corresponding to BAi, and v′i is the next state of
vi.

The rationale behind the definition above is that invariants must be true at every state
of v, so we introduce invariants pairing with every before-after predicate which changes
the state of v. We replace v with vi because each event can function at an arbitrary state
of v as long as the guard holds and we want to explicitly separate the symbol denoting
the state. The conjunction of invariants, guards and before-after predicate means that,
in a state of v allowed by the invariants, when the guard holds, the before-after predicate
is triggered. Another note is that this definition is the conversion of R ∪ D rather than
converting R and D separately. This is more preferable because R always pairs with D
in Lemma 1 of the evolutionary framework.

Similarly, we define the concrete model of Event-B as a set based on Definition 2 and
Definition 10 from Section 2.1 as follows:

34

Definition 11. An Event-B concrete model is a set in the form of:

{A(s, c)} ∪ {Jrj(s, c, v′j, w′
j), I(s, c, vj) ∧ J(s, c, vj, wj) ∧Hj(s, c, wj)

∧Wj(s, c, vj, wj, v
′
j, w

′
j) ∧BA2j(s, c, wi, w

′
i) | j ∈ [0..m]}

where m is the amount of events; j enumerates event in a concrete model; rj is a set of
indexes of invariants relevant to the before-after predicate BA2j; wj is a state of concrete
variables; J is a conjunction of all concrete invariants; Jrj is a conjunction of concrete
whose indexes appearing in rj; Hj is an event guard corresponding to BA2j, Wj are
witnesses for disappearing abstract variables, and w′

j is the next state of wj.

3.3 Preservation of Correctness in Event-B Refine-

ment

This section aims to demonstrate an attempt to prove the consistency, the relative com-
pleteness, and the domain evolution described in Lemma 1 by discharging Event-B proof
obligations. If Lemma 1 can be shown by discharging the proof obligations on Event-
B models defined by Definition 10 and Definition 11, we can imply the preservation of
correctness of requirements through Event-B refinement.

3.3.1 Consistency

The definitions of consistency are defined independently by the evolutionary framework
and Event-B. The consistency of the evolutionary framework can be shown by proving
R ∪ D 6|= ⊥. This consistency means an internal consistency in the sense that R and
D must be at he same step of the evolution. Event-B also generates a set of proof
obligations to ensure Event-B’s consistency inside a machine description seeing one or
more contexts [Abr10]. Proof obligation generation rules for Event-B’s consistency are
separately defined for abstract models and concrete models (Definition 3 and Definition 4)
as mentioned in Section 2.1.

From the proof obligations for abstract model consistency (Definition 3), we conclude
the following theorem:

Theorem 2 (Consistent Abstract Model). Let R and D be sets representing an Event-B
abstract machine and a context respectively. By assuming that axioms, invariants and
guards are consistent, if proof obligations generated according to Definition 3 can be dis-
charged, then R ∪D 6|= ⊥ holds.

Proof. Since each event is free from each other, let the set:

{A, Ii, I ∧Gi ∧BAi}

be a subset of R ∪D representing an event of an Event-B abstract model.
We assume that A ∧ I ∧ Gi holds. If FIS is successfully discharged, then there exists

35

a state v′i in which BAi holds. Consequently, if INV is discharged, then Ii holds. This
implies that

{A, Ii, I ∧Gi ∧BAi}
is consistent, which also means every event described in R ∪D is consistent.
Therefore, R ∪D 6|= ⊥ holds.

According to the above theorem, we need to assume that axioms, invariants and guards
are consistent to conduct the proof. In facts, there is no proof obligation directly ensures
that A ∧ I ∧ Gi holds. We have to write axioms, invariants and guards correctly by
ourselves in Event-B.

In the case of the concrete model, the following theorem can be concluded from Defini-
tion 4 from Section 2.1.

Theorem 3 (Consistent Concrete Model). Let R and D be sets representing Event-
B a concrete machine and a context respectively. By assuming that axioms, invariants
and guards are consistent, if proof obligations generated according to Definition 4 can be
discharged, then R ∪D 6|= ⊥ holds.

Proof. Since each event is free from each other, let the set:

{A, Jj, I ∧ J ∧Hj ∧Wj ∧BA2j}

be a subset of R ∪ D representing an event of an Event-B concrete model. We assume
that A ∧ I ∧ J ∧Hj holds. If FISref is successfully discharged, then there exists a state
w′

j in which BA2j holds. Consequently, if WFIS is discharged, then there is a state v′j
in which Wj holds. Then, by discharging INVref , Jj holds. Finally, this implies that

{A, Jj, I ∧ J ∧Hj ∧Wj ∧BA2j}

is consistent, which also means every event described in R ∪D is consistent. Therefore,
R ∪D 6|= ⊥ holds.

This theorem also needs the assumption representing that axioms, invariants, and
guards are consistent.

From Theorem 2 and 3, we finally proved R∪D 6|= ⊥ in the conversion of Event-B into
evolutionary framework.

3.3.2 Relative Completeness

In the Event-B refinement, Event-B generates a set of proof obligations to ensure that a
concrete model preserves the original properties and behavior of an abstract model [Abr10].
In other words, invariants of the abstract model must also hold in the concrete model,
and when a concrete event is triggered, the abstract event must be triggered as well.
Here, we try to prove Ri+1 ∪Di+1 |= Ri that is the relative completeness of evolutionary
framework, by discharging the proof obligations of the model refinement. Definition 5
from Section 2.1 defines the proof obligation generation rules for the model refinement

A result from Definition 5 can be expressed in the following theorem:

36

Theorem 4 (Relative Completeness). Let Ri ∪ Di and Ri+1 ∪ Di+1 be consecutive evo-
lution steps representing an abstract model and a concrete model of Event-B respectively.
By assuming that both models are consistent, if proof obligations generated according to
Definition 5 can be discharged, then Ri+1 ∪Di+1 |= Ri holds.

Proof. Let a subset
{I ∧Gi ∧BAi}

be an abstract event of Ri and a subset:

{A, I ∧ J ∧Hj ∧Wj ∧BA2j}

be a concrete event of Ri+1 ∪Di+1 which refines the abstract event. Assuming that each
subset is consistent, this implies that A∧I∧J∧Hj∧Wj∧BA2j holds, so I holds trivially.
If GRD holds, then Gi holds. If SIM holds, then BAi holds.
Because I, Gi, and BAi hold, this implies that the subset

{A, I ∧ J ∧Hj ∧Wj ∧BA2j}

can conclude the subset
{I ∧Gi ∧BAi}

Therefore, Ri+1 ∪Di+1 |= Ri holds.

Theorem 4 shows that the relative completeness of the evolutionary framework can be
proved in term of the Event-B refinement.

3.3.3 Domain Evolution

The last proof needed to be shown is the domain evolution which can be expressed by the
following theorem:

Theorem 5 (Context Evolution). Let Di and Di+1 be a consecutive evolution steps of
domains representing
Event-B contexts. If we assume that axioms of each context are consistent, then Di+1 |= Di

holds.

Since we assume that axioms are consistent and we can only extend the context, the
proof of this theorem is straightforward: the extending context can directly infer to the
extended context.

3.3.4 Extension and results

Although we already showed the proof of Lemma 1 of the evolutionary framework on
Event-B model, we omitted some Event-B components and some proof obligations for
simplifying the proofs. In this section, we only show an idea to demonstrate that the
omitted parts can be supported by the conversion as well.

37

Proof obligations in Event-B are always of the following form:

Hypos⇒ Goal

where Hypos is the set of hypotheses (predicates) and Goal is a goal that can be proved
from the hypotheses. In order to support the omitted parts, we change the Event-B model
by adding the Goal parts of the proof obligation directly into the model. For example,
consider the proof obligation:

V AR : A ∧ I ∧Gi ∧BAi ⇒ ni(s, c, v
′
i) < ni(s, c, vi)

where ni(s, c, vi) is a variant, which means a mathematical expressions to guarantee that
the execution of a corresponding event can be terminated. The termination can be shown
by V AR to ensure that it is always decreased by the event. We may express an event
related to a variant by a subset:

{A, I ∧Gi ∧BAi, ni(s, c, v
′
i) < ni(s, c, vi)}

Then, V AR can be discharged in this subset because the goals of these proof obligations
are added into it.

We can see from Theorem 2, 3, 4, and 5 that the conversion of Event-B into the
evolutionary framework results in the fact that Event-B preserves the correctness of re-
quirements in the evolution by discharging proof obligations under the assumption that
axioms, invariants, and guards are consistent.

3.4 Example

This section provides an example to illustrate the conversion from specifications written in
Event-B into the form of the evolutionary framework. This example is about an automatic
gate, which is for regulating access to the building in which the gate is installed. The
gate must be able to allow authorized persons to enter the building, and prevent and
non-authorized ones. An authorized person for this system means a person who possesses
an authorized ID card. One way to check the possession of the authorized ID card is by
asking a person to swipe his/her ID card through a card reader and check whether the ID
card is an authorized one. We can extract a business need (B) regarding this system as
“the gate is opened only for authorized persons”. In this example, we call each machine
and context for each step of refinement as Mi and Ci respectively, where i is the i-th step
of the refinement. Then, a set of predicates, which is Ri ∪Di, is formed by converting Mi

and Ci into the form of a set of predicates.

First step

Starting from the business need, we ‘refine’ the need into the initial Event-B model M1 and
C1. M1 and C1 is to describe the requirements that if the a person, which is checked by
an authority-checking process, is authorized to enter the building, then the gate must be

38

opened. Conversely, the gate must be locked when the process does not find an authorized
person. Here, C1 contains a carrier set G STAT composing of two constants for the status
of the gate, namely, opened and locked. In M1, there are two variables: g stat and auth
represent the current status of the gate and the current result from authority-checking
process, respectively. The invariants of M1 are g stat ∈ G STAT and auth ∈ BOOL to
show that the type of g stat is the carrier set G STAT and the type of auth is Boolean.
auth = TRUE means that the checking process detects an authorized person. The events
of M1 are as follows:

Open =̂ when auth = TRUE then g stat′ = opened end

Lock =̂ when auth = FALSE then g stat′ = locked end

Auth =̂ begin auth′ ∈ BOOL end

The events Open and Lock are respectively for opening and locking the gate according to
the result from the authority-checking process. The event Auth represents the authority-
checking process. Since, at this step, we want to abstract the process, so Auth contains
no guard, and its action is non-deterministic. Then, we convert M1 and C1 into a set of
predicates named R1 ∪D1 as follows:

{G STAT = {opened, locked},
g stat′1 ∈ G STAT, g stat1 ∈ G STAT ∧ auth1 ∈ BOOL

∧ auth1 = TRUE ∧ g stat′1 = opened,

g stat′2 ∈ G STAT, g stat2 ∈ G STAT ∧ auth2 ∈ BOOL

∧ auth2 = FALSE ∧ g stat′2 = locked,

auth′
3 ∈ BOOL, g stat3 ∈ G STAT ∧ auth3 ∈ BOOL

∧ auth′
3 ∈ BOOL}

where the states of variables in R1 ∪ D1 are subscribed with 1, 2, and 3 to denote the
states of variables belonging to the events Open, Lock, and Auth respectively. We can
systematically conclude that the set of predicates from R1∪D1 is consistent by discharging
FIS and INV . In the case of Open, INV is discharged as follows:

INV : G STAT = {opened, locked} ∧ g stat1 ∈ G STAT

∧ auth1 ∈ BOOL ∧ auth1 = TRUE ∧ g stat′1 = opened

⇒ g stat′1 ∈ G STAT

which holds, because g stat′1 is assigned to opened which is a member of G STAT . We do
not need to discharge FIS, since the action of Open is deterministic. INV also holds for
Lock by the same reason. In the case of Auth, FIS and INV are discharged as follows:

39

FIS : G STAT = {opened, locked} ∧ g stat3 ∈ G STAT

∧ auth3 ∈ BOOL⇒ ∃auth′
3 · auth′

3 ∈ BOOL

INV : G STAT = {opened, locked} ∧ g stat3 ∈ G STAT

∧ auth3 ∈ BOOL ∧ auth′
3 ∈ BOOL⇒ auth′

3 ∈ BOOL

FIS holds because auth′
3 becomes a member of BOOL which is a non-empty set.

While, INV trivially holds. Note that, at this step, we construct M1 and C1 from B.
Thus, we assume that R1 ∪D1 is complete with respect to B.

Second step

At the first step, the process to distinguish authorized from non-authorized persons is too
conceptual by just returning the result without any specific conditions. Next, for M2, the
process needs to be refined to be more concrete. As described before, we can check the
authority of a person through the possession of an ID card. Thus, we introduce a new
variable auth card into M2 as a Boolean variable for representing whether the authority-
checking process detects an authorized card. Since the variables auth and auth card
represent two similar concepts, we replace auth with auth card by using an invariant
auth = TRUE ⇔ auth card = TRUE. The event Open and Lock is simply refined
into M2 by replacing auth with auth card. Then, the event Auth is refined into two new
events with witnesses for the replacement of auth as follows:

NonAuthCard =̂ with auth′ = FALSE

then auth card′ = FALSE end

Auth =̂ with auth′ = TRUE

then auth card′ = TRUE end

The event AuthCard represents the detection of an authorized card, while the event
NonAuthCard is the opposite. Here, Open is similar to Lock, and AuthCard is similar to
NonAuthCard. For simplicity, we thus show the conversion of M2 and C2 by focusing only
on Open and AuthCard. The result of the conversion focusing on Open and AuthCard
into the subset of the set of predicates R2 ∪D2 is as follows:

{G STAT = {opened, locked},
g stat′1 ∈ G STAT, g stat1 ∈ G STAT ∧ auth1 ∈ BOOL

∧ auth card1 ∈ BOOL ∧ (auth1 = TRUE ⇔ auth card1 = TRUE)

∧ auth card1 = TRUE ∧ g stat′1 = opened,

auth card′3 ∈ BOOL, g stat3 ∈ G STAT ∧ auth3 ∈ BOOL

∧ auth card3 ∈ BOOL ∧ (auth3 = TRUE ⇔ auth card3 = TRUE)

∧ auth′
3 = TRUE ∧ auth card′3 = TRUE}

40

where the variables of R2andD2 are subscribed with 1 and 3 to denote the variables of the
event Open and AuthCard respectively. Again, by FISref and INVref , we can ensure the
consistency of R2 ∪D2. To ensure the relative completeness, we have to discharge GRD
and SIM for each event with respect to its refined event. GRD and SIM are discharged
for Open with respect to Open from R1 ∪D1 as follows:

GRD : G STAT = {opened, locked} ∧ g stat1 ∈ G STAT

∧ auth1 ∈ BOOL ∧ auth card1 ∈ BOOL

∧ (auth card1 = TRUE ⇔ auth1 = TRUE)

∧ auth card1 = TRUE ⇒ auth card1 = TRUE

SIM : G STAT = {opened, locked} ∧ g stat1 ∈ G STAT

∧ auth1 ∈ BOOL ∧ auth card1 ∈ BOOL

∧ (auth card1 = TRUE ⇔ auth1 = TRUE)

∧ auth card1 = TRUE ∧ auth card1 = TRUE

∧ g stat′1 = opened⇒ g stat′1 = opened

In this case, GRD holds because the replacement of auth1 to auth card1 is valid through
the invariant auth card1 = TRUE ⇔ auth1 = TRUE, and SIM trivially holds. The
successfully discharged GRD and SIM mean that Open of R1 ∪ D1 can be logically
derived from Open of R2 ∪D2. It is also true for Lock.

Seeing that the event AuthCard contains no guard, we only need to discharge SIM as
follows:

SIM : G STAT = {opened, locked} ∧ g stat3 ∈ G STAT

∧ auth3 ∈ BOOL ∧ auth card3 ∈ BOOL

∧ (auth3 = TRUE ⇔ auth card3 = TRUE)

∧ auth′
3 = TRUE ∧ auth card′3 = TRUE

⇒ auth′
3 = TRUE

SIM holds in this case because of the existence of the witness auth′
3 = TRUE. Conse-

quently, AuthCard of R2 ∪D2 is a valid refinement of Auth from R1 ∪D1. It is the same
with NonAuthCard. From all the successfully discharged proof obligations, we conclude
that R2 ∪D2 is relatively complete with respect to R1 ∪D1.

Third step

In this step, we need to more specific about the authority checking process. To check
the authority of a person, the system has to ask him/her to swipe his/her card, then the
system checks its ID whether the ID is an authorized one. We can introduce such concepts
by adding two variables card swiped and auth ID representing the detection of swiping

41

a card and the result from checking whether the swiped card is an authorized one, respec-
tively. These two variables become guards of the event AuthCard and NonAuthCard in
the previous model in order to map the new concepts with the events of detecting and
not detecting an authorized card. Since, we only add new guards to two existing events,
GRD is the only proof obligation to be discharged and it is easy to discharge it. We can
conclude that R3 ∪ D3 derived from M3 and C3 of this step is consistent and relatively
complete with respect to R2 ∪D2.

The third step captures all the requirements about the automatic gate for the moment.
The model may still contain description that are too generic for implementation, but it is
sufficient for illustrating the conversion. This conversion shows that the generated proof
obligations for Event-B refinement provide systematical way to verify the correctness of
requirements as defined in the evolutionary framework.

3.5 Discussion

From the proofs shown in Section 3.3, we can see the compatibility of the properties
preserved by the refinement mechanism and the correctness defined in the evolutionary
framework. This means that all requirements specified in Event-B in which the generated
POs are successfully discharged automatically follow the correctness of the framework
with some additional cautions such as the lacks of the verification of axioms. Thus, in
principle, Event-B can verify and preserve the correctness of requirements throughout
the requirements evolution in both practical and formal aspects (Theorem 1). Besides,
since the evolution of requirements in the evolutionary framework is similar to how safety
requirements specifications are constructed, Event-B is also capable to preserve correctness
of safety requirements specifications.

Our analysis and example also support the idea of beginning a refinement chain in
Event-B by constructing a model capturing the overview (or main goals) of a system. After
that, all specific details for the system are included later at the subsequent refinement
steps. This idea is a development strategy commonly used for constructing Event-B
models. The purpose of this strategy is to make the constructed Event-B model becomes
more understandable, since stakeholders can quickly grasp the essence of the system by
looking at the initial model. Another aspect provided by our analysis is that this strategy
is an approach to keep the relative completeness of requirements in consideration. That
means, given that the initial model is complete with respect to the goals of the system,
all the requirements described in later refinement steps are also complete with respect to
the goals.

One may wonder why the concept of the refinement of Event-B is compatible with
the requirements evolution of the evolutionary framework since their objectives are dif-
ferent. The refinement is a technique to model a complicated requirements specification
by describing it from abstract ones to concrete ones step-by-step. While, the require-
ments evolution is a common idea in constructing requirements specifications. Abstract
requirements of the refinement can represent the broad understanding of the system by
stakeholders. Moreover, through the refinement steps, the requirements become more con-

42

crete. Evolving the requirements also makes them more suitable to implement the system
since the evolution reflects the better understanding of the system from stakeholders.
Therefore, the refinement is compatible with the requirement evolution.

The reasons behind the lacks of verifying consistency of axioms, invariants, and guards
of each event can be explained as follows: Axioms are designed to be definitions of car-
rier sets. If the definitions are inconsistent, it is possible to logically prove everything.
Invariants are properties that must hold at every state of execution including the state of
initialization. We may indirectly detect the inconsistency at such initialization. Lastly,
the events with inconsistent guards are events that cannot be triggered at all. Those
events cannot cause any changes to the corresponding model, so they are acceptable for
Event-B.

3.6 Summary

In this chapter, we analyzed that Event-B refinement mechanism can almost preserve the
correctness of requirements in the requirements evolution with respect to the evolutionary
framework. This results in the possibility of using Event-B to maintain and verify the
correctness of safety requirements specifications. Besides, this analysis also encourages
the development strategy to use the overview of a system to construct an initial model in
Event-B, and include more details later.

43

Chapter 4

ORDER model: a KAOS-based
graphical approach to Event-B
modeling

4.1 Rationale

As stated in Chapter 2, Event-B lacks of mechanism for analyzing and elaborating safety
requirements, and also lacks of guidelines for using refinement mechanism. Thus, just
modeling and verifying a safety requirements specification through Event-B is not suffi-
cient to guarantee safety of a safety-critical system. Our choice is to propose an approach
to use the KAOS method to cope with these shortcomings of Event-B. The rationale be-
hind our choice is that the KAOS method provides a graphical approach for requirements
analysis and elaboration through the goal model. The goal model contains the mechanism
of the goal refinement for specifying requirement. This mechanism is close to how human
think of a system and is easy to understand and reason with by all stakeholders. The goal
model in the form of tree is also useful for understanding and reasoning about the goals.
Furthermore, there are some similarities in KAOS and Event-B as follows:

• Both KAOS and Event-B have the notions of refinement. Besides, the purpose of
both notions of refinement is to gradually realize a set of goals/specifications.

• An achieve goal is a prescriptive statement showing that when a current condition
is satisfied, then a target condition will eventually be satisfied. An event in Event-B
describes a behavior that when a guard (pre-condition) holds, then a set of action
will be executed to make a set of post-conditions holds. Both the achieve goal and
the event involve a condition that is satisfied before satisfying the next condition.

• A maintain goal and a domain property in KAOS describes some properties satisfied
in all states of a system. An Event-B model also contains invariants, which are
properties that must always hold in all states of a system.

44

Thus, we believe that KAOS is the right choice for overcome the shortcomings of Event-
B.

However, direct translation from the KAOS goal model into the Event-B specification
is inappropriate and ineffective due to the differences between KAOS and Event-B. Some
differences are:

• In KAOS, every goal (except the root goal) must refine from a parent goal. Whereas,
in Event-B, an event can be newly introduced into a concrete machine without
explicitly refining from an abstract event.

• An achieve goal is usually formalized into the form of a temporal implication, e.g.
C ⇒ �T . While, an event in Event-B is formalized into the form of a conjunction,
e.g. G ∧BA.

• The semantics of refinement are different in both approaches. Goal refinement means
when all sub-goals are satisfied, then their parent goal is satisfied. Refinement of
event means a concrete event preserves the behavior described in its corresponding
abstract event.

These differences lead to difficulties to directly translate the KAOS goal model into
Event-B specification. Therefore, rather than the direct translation of KAOS to Event-
B, our proposed approach is to use KAOS together with Event-B is by introducing a
new graphical approach based on the KAOS method to support Event-B modeling. By
this approach, we can design the model such that it can support both the characteristic
of KAOS goal refinement and Event-B refinement. The model we introduce is named
“ORDER model”.

4.2 ORDER model

‘ORDER’ stands for ’Organized Requirements Dedicated to Event-B Refinement’. Since
the main objective we propose the ORDER model is to assist Event-B modeling with
the support of the KAOS method, we design the ORDER model to focus on graphical
expression of Event-B model in a goal-model-like diagram. Then, KAOS is for assisting
the creation of such diagram. Thoroughly, the ORDER model must have capabilities to:

• Show refinements of events in a form of tree

• Clearly separate steps of refinement

• Treat an event similar to an achieve goal of KAOS

• Treat an invariant similar to a maintain goal or a domain property of KAOS

• Apply the characteristic of KAOS goal refinement

• Support transformation to Event-B models

45

• Aid understandability and justifying Event-B model

To realize all the capabilities, we present two diagrams for expressing Event-B model:
refinement tree diagram, and event transition diagram. The detailed explanations of each
diagram are provided by the following sections.

4.3 Refinement tree diagram

Refinement tree diagram is a diagram showing refinements of event from a chain of refine-
ments of Event-B machines in the form of tree. This diagram can demonstrate relationship
among events and invariants in a machine as well. One level of the tree is regarded as
one Event-B machine. We use arrows denoting refinements of events to separate levels of
the refinement tree diagram. More details about the arrows can be found in the following
subsection.

4.3.1 Components and links

We extend the same set of figures denoting components of KAOS goal model to denote
Event-B components in the refinement tree diagram and relationship among them. In the
refinement tree diagram, a parallelogram denotes an Event-B event, a trapezoid denotes
an Event-B invariant, and an arrow denotes a refinement from an abstract event to a
concrete event. The extension parts are a bold line denoting a relationship between two
events, and a dashed line denoting a relationship between an event and an invariant.

Each figure representing either an event or an invariant is described with natural lan-
guage corresponds to the description of the Event-B component. The natural language
acts as identifiers for formal descriptions in Event-B specifications. Even if it acts only as
the identifiers, the meaning of the natural language should conform to the semantic of the
corresponding predicate. Therefore, the natural language that can be used in the diagram
is limited to what the first-order predicate logic of Event-B can describe. For examples, if
a predicate in Event-B is written as (P = TRUE ∧Q = TRUE) => R = FALSE where
P , Q, R are Boolean variables, one possible identifier of this predicate in the natural
language is “If P and Q become true then R becomes false”. This is up to what P , Q, R
represent in the specification.

The latter parts of this subsection describe these components and links.

Event

An event of Event-B is denoted by a parallelogram with the written description of the
event. Figure 4.1 shows the general form denoting event in the refinement tree diagram.
The description of an event is written in the same way the event is described when
modeling an Event-B model:

evt =̂ anyp when G with W then S end

46

Event_name
Any parameter
When guards
With witnesses
Then actions

Figure 4.1: An event

This means that the description is composed of name, parameters, guards, witnesses,
and actions of the event. The parts, which do not present in the description of an event,
can be omitted. We allow using natural language as identifiers for the Event-B description
of each event.

Because the refinement tree diagram is in the form of tree, we need to define a root
node of the tree. According to semantics of Event-B specification, all events refine from
an event named ’skip’. Thus, we define skip as the root node of every tree. Figure 4.2
shows the appearance of a root node.

skip

Figure 4.2: A root node

Invariant

Invariant_name:
predicate

Figure 4.3: An invariant

An invariant in Event-B is denoted by a trapezoid with the predicate form of the
invariant. Optionally, one may also include the name of the invariant into the figure. We
also allow using natural language instead of formal predicate to describe an invariant.
Figure 4.3 shows the general appearance of an invariant.

In all Event-B models, there are invariants which are for variable typing. These kind
of invariants can be omitted when drawing a refinement tree diagram.

Refinement of event

A refinement of event is represented by an arrow with a small circle for linking all concrete
events refine the same abstract event through lines. Here, we specify that ‘refinement of

47

Abstract_event
When guards
Then actions

Concrete_event_1
When guards’
Then actions’

Concrete_event_2
When guards’’
Then actions’’

Figure 4.4: Refinements of event

event’ means there is some changes in the description of a concrete event comparing to
its abstract event. The appearance of refinements of event in a refinement tree diagram is
shown in Figure 4.4. Because abstract events belong to an abstract machine and concrete
events belong to a concrete machine, this means that the arrow can separate level of the
refinement tree diagram. For a refinement, if the proof obligations GRD and FIS as
defined in Section 2.1 are successfully discharged, the refinement is valid.

Event
When guards
Then actions

Event
When guards
Then actions

Figure 4.5: Copy of event

If the description of a concrete event is the same with its abstract event, we regard the
event as a ‘copy’ of the abstract event. In this case, we use a plain arrow to show the
copy as in Figure 4.5.

Both the refinement and the copy of event can be written into Event-B specification as
‘REFINES’ relationships between abstract events and concrete events.

Event-event relationship

There might be some relationships among two or more events in the same machine which
we want to explicitly describe. These relationships are needed because they can help
stakeholders understand how events interact with each other. The relationships can be
shown through lines among events. We allow writing type and name of the relationship

48

Event_1
When guards_1
Then actions_1

Event_2
When guards_2
Then actions_2

[Relation_type]
Relation_name

Figure 4.6: Event-event relationship

on the line. Figure 4.6 shows the general appearance of the relationship between events.
For the scope of this thesis, we define only two types of relationships: parallel and be-
fore. The detailed explanations about these two types of relationships are provided in
Section 4.4. Even though these relationships are explicit in our diagram, they are implicit
when written in Event-B specification. In facts, Event-B does not provide notations for
explicitly denoting these relationships.

Event-invariant relationship

Event
When guards
Then actions

Invariant:
predicate

Figure 4.7: Event-invariant relationship

Invariants are needed for restricting possible values of variables. They can show rela-
tionship among variables in a system. Thus, invariants also restrict the possible results of
events. Conversely, events might provide us some idea about important invariants needed
to be include in a specification. These relationships between events and invariants can
be shown in a refinement tree diagram through dashed lines between them. Figure 4.7
shows how to link an invariant to an event. We encourage linking an invariant to all
events which it is related to. However, this might reduce increase the complexity of a
refinement tree diagram. For convention, if an invariant is related to a lot of events of
an Event-B machine, we allow omitting all dashed lines for linking them, or showing only
some necessary links. Another way to link an invariants to a set of concrete events which
refines the same abstract event is to link the invariant to the small circle representing
refinement as in Figure 4.8.

4.3.2 Construction rules

A refinement tree diagram can be constructed through the combinations of components
and links presented in the previous subsection. Some constraint was already explained
for each component and link. This subsection aims to gather and extend those constraint
for defining construction rules of the refinement tree diagrams.

The construction rules of the refinement tree diagrams are as follows:

49

Evt1
When guard1
Then action1

Evt2
When guard2
Then action2

invariant

...

Figure 4.8: Linking an invariant with concrete events refining the same event

1. All arrows, denoting refinements and copies of events, separate two consecutive levels
of a refinement tree. If there are arrows from a group of events to another group of
events, the former group belongs to upper level and the latter group belongs to the
lower (next) level.

2. The root node which is always a node representing skip event belongs to the zeroth
level of the tree. Even though all events refines from the skip event according to
the semantics of Event-B specification, there is no need to explicitly copy the skip
event to all levels of a tree.

3. All events in the next level from the zeroth level (the ‘first’ level) of a tree refine the
skip event, except the events whose origins can be explained through relationships
with other events.

4. If a level of a tree has its next level, all events in the former level must have at least
one copying or refining event in the next level.

5. All bold lines and dashed lines, denoting relationships among events and invariants,
must be defined only on events and invariants withing the same level of a tree.

6. It is general to introduce some new event, i.e. they do not refine any event from
the upper level, to a level of a refinement tree. In this case, each newly introduced
events must link at least with one event refining an event in the upper level. This
is for showing the rationale behind the newly introduced events.

Figure 4.9 shows an example of a refinement tree diagram which follows the construction
rules. In the example, the zeroth level of the tree contains only the skip event, the first
level contains two events: Evt1 and Evt2, and the second level contains four events, one
is a copy of Evt1, one is a copy of Evt2, and Evt1 1 and Evt1 2 refines Evt1. The
event Evt2 of the first level does not explicitly refine the skip event, since it has ‘before’
relationship with Evt1. In the second level, there is one invariant links with the event
Evt1 2, because guards and actions of Evt1 2 appear in the invariant.

50

Ev
t1

W
h

e
n

 Q
=T

R
U

E
Th

e
n

 R
:=

TR
U

E

Ev
t1

_1
W

h
e

n
 Q

=T
R

U
E

an
d

P

=T
R

U
E

Th
e

n
 R

=T
R

U
E

Ev
t1

_2
W

h
e

n
 Q

=T
R

U
E

Th
e

n
 R

:=
TR

U
E

an
d

 P
:=

FA
LS

E

If
 R

=T
R

U
E

an
d

 P
=F

A
LS

E
th

e
n

 Q
=T

R
U

E

Ev
t1

W
h

e
n

 Q
=T

R
U

E
Th

e
n

 R
:=

TR
U

E

Ev
t2

W
h

e
n

 P
=T

R
U

E
Th

e
n

 Q
:=

TR
U

E

[B
ef

o
re

 >
]

Ev
t2

Th
en

Ev
t1

Ev
t2

W
h

e
n

 P
=T

R
U

E
Th

e
n

 Q
:=

TR
U

E

sk
ip

F
ig

u
re

4.
9:

A
n

ex
am

p
le

re
fi
n
em

en
t

tr
ee

d
ia

gr
am

51

4.3.3 Transformation to Event-B model

Since we allow using natural language to be identifiers of the Event-B descriptions for
events and invariants and the descriptions always contain variables, carrier sets, or con-
stants, at least, we need to know all variables and data structure which can represent data
and artifacts of a modelled system. In this research, we assume that all needed variables
have been specified before using our approach. Some approaches that can be used for
specifying the variables are the class diagram of KAOS [VL09] and the UML-B [SBS09].
Both approaches are based on UML [SH01].

Regardless of how variables and data structures are specified, the transformation from
a refinement tree diagram into Event-B specifications can be done through the following
principles:

• All events and invariants within the same level of a tree must be written in the
description of the same Event-B machine.

• Two consecutive levels of a refinement tree diagram means that the lower level is a
concrete machine refines the abstract machine from the upper level. This refinement
relationship must be written in the concrete machine as the clause refines followed
by the abstract machine’s name.

• An event in a refinement tree diagram contains the clauses any, when, with, and
then. Since these clauses are derived from how an event is described in Event-B.
Each clause from the tree can be directly map to the corresponding clause in the
Event-B specification.

• Each arrow from an abstract event to a concrete event can be represented in Event-B
specification through the clause refines followed by the name of the abstract event.
The clause refines must be written in the description of the concrete machine.

Note again that the bold lines and dashed lines are implicit in Event-B specification.
From the refinement tree diagram in Figure 4.9, two Event-b machines can be created.

We assume that the variables P , Q, and R are Boolean variables, which their types can
be declared through invariants in the form of P ∈ BOOL. The followings are parts of
the machines which can be derived from the refinement tree diagram.

Initial model (First level of the tree)

Evt2 =̂when P = TRUEthen Q := TRUE end

Evt1 =̂when Q = TRUEthen R := TRUE end

52

First refinement (Second level of the tree)

Evt2 =̂ refines Evt2

when P = TRUE then Q := TRUE end

Evt1 =̂ refines Evt1

when Q = TRUE then R := TRUE end

Evt1 1 =̂ refines Evt1

when Q = TRUE ∧ P = TRUE then R := TRUE end

Evt1 2 =̂ refines Evt1

when Q = TRUE then R := TRUE ∧ P := FALSE end

The following invariant must be included in this machine:

R = TRUE ∧ P = FALSE ⇒ Q = TRUE

4.3.4 Correctness of the refinement tree

After the transformation from a refinement tree diagram to an Event-B specification, we
can let the Rodin platform generates the proof obligations to verify the specification.
Thus, all the refinement relationships appeared in the refinement tree diagram must obey
the proof obligations. As we analyzed in the previous chapter, the proof obligations of
Event-B can ensure the completeness and consistency of requirements in each step of
evolution of the evolutionary framework. This associates the refinement tree diagram
with the evolutionary framework through the proof obligations.

We regard a refinement which follows the proof obligations as a valid one. From this,
we define a valid level of a refinement tree diagram as follows:

Definition 12 (A valid level of a refinement tree). a level of a refinement tree is valid
if and only if all the generated proof obligations for an Event-B model conforming to the
level are successfully discharged.

By the above definition, we can also define a valid refinement tree as follows:

Definition 13 (A valid refinement tree). A refinement tree is valid if and only if all levels
of the refinement tree are valid.

From our analysis in Chapter 3 that the proof obligations of Event-B can preserve
the correctness according to Lemma 1, we can trivially conclude another lemma from
Definition 12 as follows:

Lemma 2 (Correctness of a valid level of a refinement tree). A valid level of a refinement
tree conforms to a correct step of evolution in the evolutionary framework.

53

Because of the above lemma, we can finally conclude a theorem:

Theorem 6 (Correctness of a valid tree). A valid refinement tree represents a correct
chain of evolution in the evolutionary framework.

Theorem 6 means that if we construct a valid refinement tree, it is the same with having
a correct chain of evolution of requirements.

4.4 Event transition diagram

While a refinement tree diagram shows how a chain of refinement of Event-B machines,
an event transition diagram focuses more on how events in a machine interact with each
other. The main purpose of this diagram is to help stakeholders understand how a system
behaves through a flow of events. The information appeared in this diagram is from the
refinement tree diagram. Hence, the event transition diagram is always used with the
refinement tree diagram.

For the event transition diagram, we define that after an event is executed, the actions
of the event might trigger some other events. Then, the system make a transition from
the former event to the execution of the next event. This causes a chain of execution of
events (a flow of events).

The following subsections explained components and links of the event transition dia-
gram and its association with the refinement tree diagram.

4.4.1 Components and links

The transitions of events are similar to transitions of states of a system. There are various
diagrams for demonstrating transitions of states such as UML state diagram [SB06], and
finite state machine diagram [Gil70]. Usually, a state is denoted by a circle and a transition
is denoted by an arrow from one state to another. We also apply this concept to define
our event transition diagram.

Event

An event is denoted by a circle with the name of the event is written inside. Figure 4.10
shows the appearance of an event in the event transition diagram.

Event

Figure 4.10: An event

54

Note that the name written in the circle must conform to the name of the event in a
refinement tree diagram. This is for cross-reference between two diagrams.

Since every Event-B machine must contain an initialization event for initiating variables,
the notation of the initialization is also defined in our diagram. The initialization event
is denoted a black circle as in Figure 4.11.

Event

Figure 4.11: An initialization event

Event transition

After an event is executed, the state of variables of a system is changed. This might cause
another event to be executed. We represent the transition from one event to another by
using an arrow from the former event to the next event. This arrow might be tagged with
‘before’ relationship to show that one event is executed before another. We can name the
relation and write the name after the ‘before’ relation. If we name the relation, the name
must also appear in the refinement tree diagram in the level which corresponds with the
event transition diagram. Figure 4.12 shows a one-to-one transition from one event to
another.

Event1 Event2
[Before]

Transition_name

Figure 4.12: One-to-one transition

Some event might be able to trigger more than one event. In this case, two or more
arrows which has the same event as their origin are allowed. This can be regarded as
one-to-many transitions. Figure 4.13 shows an example of the one-to-many transitions.
Note that the one-to-many transitions defined here mean that after the former event is
executes, there is only one event to be executed at a time, depending on the results of the
former event.

Parallelized event

The one-to-many transitions mean that one event is triggered at a time. In the case of
more than one event can be triggered and they can be executed in parallel, the parallelized
events are grouped into one rectangle. If there is a transition from an event to a group
of parallelized events, an arrow can be pointed directly to the rectangle representing the

55

Event1

Event2

Event3

Event4

Figure 4.13: One-to-many transition

group of events. The parallelized events might have distinct destination of transitions, so
each event can have its own transition arrows to trigger some other events. Figure 4.14
shows an example of a transition from an event to a group of parallelized event and then
each parallelized event has a distinct transition to some other events.

Event2 Event3

Event1

Event5Event4

Figure 4.14: Transitions of parallelized event

Note that, according to the semantics of Event-B specification, the execution of paral-
lelized events does not overlap, but it means that the order of execution is arbitrary.

56

4.4.2 Association with the refinement tree diagram

As mentioned before, the information appeared in the event transition diagram must
be traceable to the corresponding level of a refinement tree diagram. The associations
between elements of the refinement tree diagram and the event transition diagram are
thoroughly described in this subsection.

Event

All events appeared in a level of a refinement tree must also be in the corresponding event
transition diagram. The name of events appeared in both diagrams must be the same.

‘Before’ relationship

When there is a ‘before’ relation from one event to another, the relation must appeared
in both the event transition diagram. The direction of a relation in an event transition
diagram can be specified through the direction of an arrow. However, the direction of
the relation in the corresponding refinement tree diagram is vague, because the the bold
line itself has no direction. In facts, the direction can be shown in both left-to-right and
right-to-left ways. Figure 4.15 respectively shows the left-to-right and right-to-left ways
to represent the ‘before’ relationship from Figure 4.12 in a refinement tree diagram.

Event2
When G_2
Then Act_2

Event1
When G_1
Then Act_1

[Before >]
Transition_name

(a) Left-to-right ‘before’ relationship

Event1
When G_1
Then Act_1

Event2
When G_2
Then Act_2

[< Before]
Transition_name

(b) Right-to-left ‘before’ relationship

Figure 4.15: ‘Before’ relationship in a refinement tree diagram

Parallelized events

Events in the same group of parallelized events can be shown in the refinement tree
diagram through the ‘parallel’ relationship. Figure 4.16 shows how to represent the events
Event2 and Event3 from Figure 4.14 in a refinement tree diagram.

4.4.3 Example

Figure 4.17 shows an example of a event transition diagram. In this example, after the
initialization, Event1 will be executed. The results of execution of both Event1 and
Event2 can trigger the same group of parallelized events Event3 and Event4. Event4

57

Event1
When G_1
Then Act_1

Event2
When G_2
Then Act_2

[Parallel]

Figure 4.16: ‘Parallel’ relationship in a refinement tree diagram

Event3

Event1

Event4

[Before]
transition1

Event2

[Before]
transition2

Figure 4.17: An example event transition diagram

does not trigger any event after its execution. Lastly, Event3 can trigger both Event1
and Event2, but just one event at a time.

4.5 Refinement patterns

The refinement tree diagram and the event transition diagram we define in the previous
sections can only assist structuring and understanding an Event-B specification. Another
objective is to use these diagrams for analysis and elaboration of safety requirements
specification in a similar way as the goal model of KAOS. Applying the mechanism of goal
refinement directly to refinement of event is difficult, since their purposes and semantics
of refinement are different. Our solution is to apply the goal refinement patterns of KAOS
to refine Event-B event.

The goal refinement patterns of KAOS as mentioned in Chapter 2 are the frequently
used refinement tactics [DVL96]. This entails that the patterns can provide the capabil-
ities of the requirements analysis and elaboration of KAOS. Our intention is to create a
set of refinement patterns for Event-B based on the goal refinement patterns. We aims
to keep the shape of a sub-tree representing a step of refinement from an event in a re-
finement tree diagram looking almost the same as the applied goal refinement pattern.
By this way, we can analyze and elaborate safety requirements specification through the

58

usage of the goal-based patterns. Furthermore, the refinements of event can inherit the
capabilities of KAOS.

Not all the temporal operators and goal refinement mechanism can be supported by
Event-B. Some pattern contains the unsupported operators. Some pattern is for refining
a maintain goals into sub-goals, while Event-B does not provide mechanism for refining an
invariant. Therefore, only some pattern can be applied to Event-B. This research focuses
on deriving refinement patterns from two KAOS patterns: the milestone-driven refinement
pattern, and the decomposition-by-case pattern. The description of each pattern can be
found in Section 2.3.4. Aside from the goal refinement patterns, we also create a few new
patterns for supporting more possible ways of refining events.

Considering the generic refinement tree for safety goals in Section 2.3.5, this tree is
for describing generic goals of safety-related systems. The tree described that, to avoid
a dangerous state, the dangerous state must be anticipated, and when it is detected, an
alarm must be issued and finally handled. We can roughly separate the tree into two
parts: anticipation part and alarm handling part. We regard the anticipation part as an
input monitoring phase, and the alarm handling part as a decision phase of a system.
From this, we think that behavior of many safety-critical systems can be divided into
phases. Thus, we define the refinement patterns in the phase-based way. The patterns
can be regarded as phases-based patterns. A certain number of variables are needed to be
included to Event-B specifications for representing phases, in addition from the identified
variables before using the ORDER model.

Our phase-based patterns are as follows:

• Phase-decomposition refinement pattern. This pattern is for decompose the behavior
of a system into phases.

• Event-forking refinement pattern. This pattern is for refining an event into one or
more parallelized event(s).

• Case-decomposition refinement pattern. This pattern is based on the decomposition-
by-case refinement pattern of KAOS. Its purpose is for refining an event with dif-
ferent cases.

• Milestone-driven refinement pattern. This pattern is from the milestone-driven re-
finement pattern of KAOS. Its purpose is for decomposing an event into two or more
events which will be executed consecutively.

The detailed explanation of each pattern is provided in the next chapter in the form of
pattern document. In the pattern document, some constraint for each pattern is reported.
The purpose of the constraints is to make the parts of the refinement tree diagram fol-
lowing the patterns can be proved to be correct by the proof obligations of Event-B. This
reduces the effort for making the refinement tree diagram valid.

59

Start

Create the next
level of the tree

Create an event

transition diagram from
the deepest level

Create a root node
of a tree

POs can be
discharged

automatically?

No more
requirements?

Stop

POs can be
discharged
manually?

Fix the tree and the
Event-B machine

No
Yes

Yes

No No

Yes

patterns

Create an Event-B
machine conforming

with the current
deepest level of the tree

Figure 4.18: Process of using ORDER model

4.6 Guideline for using ORDER model

We propose a guideline for using our ORDER model as in Figure 4.18. The explanation
of each step is as follows:

1. Construct a refinement tree diagram by starting with constructing a root node.

2. Refine and copy event from the previous level to construct the next level of the tree.
Refinement patterns can be used in this step.

3. Construct an event transition diagram corresponding to the current deepest level of
the tree.

4. Transform the current deepest level of the tree to an Event-B machine.

5. Check the result of discharging the proof obligations by the automated prover of
the Rodin platform. If they are successfully discharged, go to step 8, otherwise, go
to next step.

6. Use the interactive prover of the Rodin platform to try interactively proving. If the
interactive prover can discharge the proof obligations, go to step 8, otherwise, go to
next step.

60

7. Fix the tree, the undischarged proof obligations discover some errors in the Event-B
machine. Then, go back to step 5.

8. Check that the current Event-B model covers all requirements or not. If all require-
ments are already modelled, stop the process, otherwise, go back to step 2.

Note that, at each time performing Step 2 of the guideline, only a small number of new
variables and new features of the system should be introduced. This is for mitigating the
complexity of a specification throughout various levels of the tree.

4.7 Summary

In this chapter, we propose the ORDER model which is composed of two diagrams: the
refinement tree diagram and the event transition diagram. The refinement tree diagram
is for demonstrating how events are refined from one level into the next level of the tree.
Here, one level of the tree corresponds to one Event-B machine. The rationale of some
invariant can also be demonstrated through the relationships with some event. While,
the event transition diagram is for demonstrating how events in a level of the tree (an
Event-B machine) interact to each other. The interaction between events are shown in the
form of transitions of events. We define some association between two diagram to make
them consistent to each other. These two diagrams can help stakeholders to understand
and justify an Event-B model. The transformation from both diagrams into an Event-B
model is possible.

Because we define that a refinement tree diagram is valid only if the proof obligations
generated after modeling the tree in Event-B can be successfully discharged. As a result,
a valid refinement tree diagram conforms to a correct chain of evolution of requirements
as analyzed in Chapter 3. The evolutionary framework of requirements correctness is
indirectly related to the ORDER model via the proof obligations of Event-B.

Our ultimate goal is to use the goal refinement mechanism from the KAOS method to
assist analysis and elaboration of safety requirements specification. It is not appropriate
to apply the goal refinement mechanism directly to Event-B because it is different from
Event-B refinement. Therefore, we indirectly apply the mechanism through the usage of
goal refinement patterns. We create a set of refinement patterns based on the patterns
of KAOS for construct the refinement tree diagram. In this way, the Event-B refinement
can inherit the nature of goal refinement mechanism.

The next chapter explains our refinement patterns in the form of pattern document.

61

Chapter 5

ORDER model: refinement patterns

In the previous chapter, we explain our intention to create a set of refinement patterns
based on the goal refinement patterns of KAOS, and briefly describe each pattern. This
chapter aims to thoroughly present all of our refinement patterns in a form of a pattern
document that could be useful for a developer who is interested in using the ORDER
model and the patterns.

5.1 Format of pattern document

The format of the pattern document we used in this chapter is adapted from the format of
the catalog of goal refinement patterns [VL09] and the Event-B pattern description [Für09]
as follows:

• Description and applicability: Short description of what the pattern is about
and when it should be applied.

• Illustration: The general form of the refinement tree diagram and the event tran-
sition diagram representing the pattern.

• Transformation to Event-B model: Explanation of how to model this pattern
in Event-B.

• Constraint: The rules to be followed when applying the pattern.

• Example: Some examples demonstrating the application of the pattern.

• Notes: Additional notes for developer.

5.2 Phase-decomposition refinement pattern

5.2.1 Description and applicability

The phase-decomposition refinement pattern divides abstract behavior of a system into
two or more phases. One phase is represented by one event. Only the transition from

62

one phase to another is described in each event. The flow of transitions is in the form
of a cycle for iterative behavior of the system. Then, each concrete event of the system
in all subsequent levels (refinements) will belong to one of the phases. This pattern is
applicable for modeling an initial model of Event-B (the second level of the refinement
tree diagram). The possible phases used for dividing behavior of a system are: input
phase, decision phase, idle phase, and reset phase. The input phase is for monitoring
inputs of the system. The decision phase is for taking a decision based on the inputs. The
idle phase is for representing the idle state of the system. The reset phase is for resetting
some variable of the system before going the next phase.

5.2.2 Illustration

skip

PHASE_1
When guards of PHASE_1
Then go to PHASE_2

PHASE_2
When guards of PHASE_2
Then go to PHASE_3

PHASE_N
When guards of PHASE_N
Then go to PHASE_1

...

Figure 5.1: General phase-decomposition refinement pattern: the refinement tree diagram

In the phase-decomposition pattern, a finite number of phases can be defined and used
for dividing behavior of a system. In Figure 5.1, there are N phases of the system. The
system is running in a repeated cycle of these N phases as shown in Figure 5.2.

PHASE_1 PHASE_2

PHASE_N ...

Figure 5.2: General phase-decomposition refinement pattern: the event transition diagram

5.2.3 Transformation to Event-B model

The phases of a system can be represented by Boolean variables. Because each Boolean
variable can be either true or false, dlog2Ne Boolean variables are needed for representing
N phases. One event is for one phase. When guards of an event hold, the system enters the

63

phase representing by the event. After actions of an event change the state of variables,
the system transits to the next phase. The name of each event should correspond to the
name of the represented phase.

5.2.4 Constraint

To ensure that a system does not obstruct at one of its phases, there are some constraint
when using this pattern. Developers need to guarantee that each phase can be passed
through and has a unique transition to another phase. Furthermore, to keep the simplicity
of abstract behavior of a system, this pattern does not allow branching.

5.2.5 Example

skip

IDLE
When in=FALSE and
out=FALSE
Then in:=TRUE

INPUT
When in=TRUE and
out=FALSE
Then out:=TRUE

DECISION
When in=TRUE and
out=TRUE
Then in:=FALSE

RESET
When in=FALSE and
out=TRUE
Then out:=TRUE

Figure 5.3: An example refinement tree diagram of the phase-decomposition refinement
pattern

This example divides a system into 4 phases: idle, input, decision, and reset. Two
Boolean variables, in and out, are declared for representing these 4 phases. Figure 5.3
shows the refinement tree diagram of the example. The flow of transitions is in a repeated
cycle as in Figure 5.4.

IDLE

INPUTDECISION

RESET

Figure 5.4: An example event transition diagram of the phase-decomposition refinement
pattern

This example can be transformed into 4 Event-B events as follows:

64

IDLE =̂when in = FALSE ∧ out = FALSE then in := TRUE end

INPUT =̂when in = TRUE ∧ out = FALSE then out := TRUE end

DECISION =̂when in = TRUE ∧ out = TRUE then in := FALSE end

RESET =̂when in = FALSE ∧ out = TRUE then out := FALSE end

5.3 Event-forking refinement pattern

5.3.1 Description and applicability

This pattern is for describing environmental behavior which is usually non-deterministic
and can interleave with other environmental behavior. Inputs of a system can be regarded
as this kind of behavior. Thus, this pattern is applicable to describe the input phase of
the system. A group of parallelized event can be used for representing the interleaving
behaviors. The creation of a group of parallelized events is called event forking. One
event can be denoting one input and uses a non-deterministic action for representing all
possible values of the input. One input can also be represented by two or more events
where each event represents different values of the input.

5.3.2 Illustration

Event_2
When guard
Then action_2

Event_2
When guard
Then action_2_1

Event_2
When guard
Then action_2_2

Event_1
When guard
Then action_1

[parallel]

Event
When guard
Then action_2

Event_1_1
When guard
Then action_1_1

Event_1_2
When guard
Then action_1_2

Event
When guard
Then action_1

Figure 5.5: General event forking refinement pattern: the refinement tree diagram

The event forking can be performed both in a single level and in consecutive levels.
The event forking in a single level is by introducing events with the same set of guards.
The event forking in consecutive levels is by refining an abstract event into two or more
events with the same set of guards. In Figure 5.5, the event forking is done by introducing
two events Event 1 and Event 2 with the same set of guard. In the subsequent level,
the event forking is done by copying and refining Event 1 and Event 2 into 6 concrete
events with the same set of guards. If the system has a lot of interleaving behavior, the
copy of Event 1 and Event 2 can be used for gradually performing the event forking by
introducing more parallelized events in later subsequent levels. The corresponding event
transition diagrams of the refinement diagram above are shown in Figure 5.6.

65

Event_1

...

Event_2

......

(a) Upper level

Event_1

...

Event_2

......

Event_1_1

...

Event_1_2

...

Event_2_1

...

Event_2_2

...

(b) Next level

Figure 5.6: General event forking refinement pattern: the event transition diagram

5.3.3 Transformation to Event-B model

For the event forking in a single level, one may start from considering a concrete event
refining an abstract event as a base, then create a new event with the exactly same guard
as the based event. The new event should have distinct actions from the based event in
order to differentiate them form each other.

In case of the event forking in the subsequent level, ones may copy and refine an abstract
event into two or more events whose actions are differentiated without changing its guards.

Names of the parallelized events are up to developers.

5.3.4 Constraint

For the event forking in a single level, the proof obligation EQL should be considered. If
new events modify the same set of variables with the based events, it means that the new
events should not be new, but they should refine from the abstract events of the based
events.

In case of the event forking in the subsequent level, the modifications of actions should
follow the proof obligation SIM , which means that the concrete actions should simulate
the abstract actions. Besides, all the modifications should focus on new variables of the
subsequent level to avoid violating EQL.

66

INPUT
When in=TRUE
Then in:=FALSE

Open_button
When in=TRUE
Then in:=FALSE
 and open
 button is
 pressed or not

Intrusion_detection
When in=TRUE
Then in:=FALSE
 and there is an
 intrusion or not

INPUT_2
When in=TRUE
Then skip

[parallel]

Lock_mode
When in=TRUE
Then Lock mode
 is on or off

INPUT_2
When in=TRUE
Then skip

...

Figure 5.7: An example refinement tree diagram of event forking refinement pattern

5.3.5 Example

This example is about an electrical gate controller, which the inputs of the system are lock
mode, open button, and intrusion detector. The lock mode is an input which does not
immediately changes the status of the gate. While, if there is the change of status of the
open button or the intrusion detector, the system must have some immediate response.
The immediate response can be represented by the change of the phase of the system
from input phase to another. The changes of the state of each input can be represented
by non-deterministic actions. The monitoring of these inputs follows the event-forking
refinement pattern by firstly introducing two events, INPUT and INPUT 2. INPUT
represents the concept that the phase of the system is changed immediately. On the other
hand, INPUT 2 does not change the phase. Both events have the same guard, so they
can be executed in parallel.

In the subsequent refinement, The event Lockmode refines INPUT 2, since it changes
only the lock mode, not the phase. While, the events Openbutton and intrustiondetection
refine INPUT , because they can change the phase. INPUT 2 is also copied into this
refinement for supporting possible new inputs introduced in some further refinement. All
of the events have the same guard.

Figure 5.7 and Figure 5.8 show the refinement tree diagram and the event transition
diagram of the above modelled system respectively.

The Event-B specification of the above system can be written as follows:
The abstract machine

INPUT 2 =̂when in = TRUE end

INPUT =̂when in = TRUE then in := FALSE end

67

INPUT_2

...

INPUT

......

(a) Upper level

INPUT_2

...

Intrusion_
detection

...

Lock_mode Open_button

......

(b) Next level

Figure 5.8: General event forking refinement pattern: the event transition diagram

The concrete machine

INPUT 2 =̂refines INPUT 2 when in = TRUE end

Lock mode =̂refines INPUT 2 when in = TRUE

then lock mode : ∈BOOL end

Open button =̂refines INPUT when in = TRUE

then in := FALSE ∧ open button : ∈BOOL end

Intrusion detection =̂refines INPUT refines INPUT when in = TRUE

then in := FALSE ∧ intrusion : ∈BOOL end

5.3.6 Notes

In some case, there might be usage of parameters when performing the event-forking.
Most of the time, the possible values of parameters are declared through the guards of
events. This might cause the guards to be different in the parallelized events. However, the
parameters cannot change the state of variables before executing the parameter-involved
events. Thus, the parallelized events can still be executed in arbitrary manners. In
conclusion, this pattern allows the guards of parallelized events to be different in the case
that the differences come only from the parameters.

5.4 Case-decomposition refinement pattern

5.4.1 Description and applicability

This pattern is for refining an abstract into two or more concrete events for dealing with
all possible cases of states of variables. One concrete event is supposed to deal with one
case. This is to determine that which actions should be executed for each of the cases.
Thus, this pattern is usually used in the decision phase or the output phase of a system.
It can also be used in the input phase, if there are some restriction on inputs which needs
to be determine case-by-case.

68

5.4.2 Illustration

Event
When guard
Then action

Event_C1
When guard and
 case1
Then action1

Event_C2
When guard and
 case2
Then action2

Event
When guard
Then action

Event_CN
When guard and
 caseN
Then actionN

...

If guard then (case1 xor
case2 xor … xor caseN)

Figure 5.9: General case-decomposition refinement pattern: refinement tree diagram

Figure 5.9 shows the general refinement tree of the case-decomposition refinement pat-
tern. In this tree, an abstract event is copied once and refined by N concrete events.
All the concrete events have distinct guards, since each event’s guard is in the form of
conjunction of the guard from the abstract event and its distinct case. Their actions are
also distinct for each case. There is an invariant linking to all the concrete events. This
invariant is to ensure that the entire state space of cases are covered and the cases are
disjoint. The disjointness is crucial if only deterministic actions are allowed for all cases.
The copy of the abstract event is useful when too many cases are introduced in one level.
The cases can be gradually introduced in two or more steps of refinements by gradually
introducing cases to the copy.

5.4.3 Transformation to Event-B model

The transformation from this pattern into Event-B model is straightforward. The concrete
events must explicitly refine the abstract event. The guard from the abstract event should
be preserved, while each abstract event must be introduced with new guard representing
each case. The actions of each event should also be modified to reflect the responses for
each case.

Event-B specification does not have XOR operator. Since AxorB = (A∨B)∧ 6 (A∧B),
the latter form can be used for writing the invariant.

Names of the parallelized events are up to developers.

5.4.4 Constraint

The guard of each concrete should not be contradict with the guard of the abstract event,
even though the proof obligation GRD can be discharged due to the inconsistency. The
concrete actions must simulate the abstract actions due to the proof obligation SIM .

Because of the proof obligation EQL, ones should carefully apply this pattern, especially
when the decomposition is done in more than one step of refinement. The state of variables
appearing in the abstract machine must only be changed by the concrete events refining

69

the abstract event which changes the state of the variables. The cases should be well-
decomposed to get adequate responses (actions) for modifying the new variables of each
refinement step.

5.4.5 Example

DECISION
When decision=TRUE
Then decision:=FALSE

Pump_on
When decision=TRUE
 and water_level>H
 and manual=FALSE
Then decision:=FALSE
 and pump_on:=TRUE

Pump_off
When decision=TRUE
 and water_level<H
 and manual=FALSE
Then decision:=FALSE
 and pump_on:=FALSE

Do_nothing
When decision=TRUE
 and manual=TRUE
Then decision:=FALSE

If decision=TRUE then ((water_level>H
and manual=FALSE) xor (water_level<H
and manual=FALSE) xor manual=TRUE)

Figure 5.10: An example case-decomposition refinement pattern

Figure 5.10 illustrates the application of the case-decomposition refinement pattern in
a water tank system. This system has two inputs: water level and manual mode. If the
system is in manual mode, the system will do nothing to let all the decisions are made by
its users. If the system is not in the manual mode, when the water level is higher than H
(a constant), the system must turn on the pump to decrease the water. Otherwise, the
pump must be turned off.

The upper level of the refinement tree only shows abstract behavior that the system
is in the decision phase. In the lower level, all cases are modelled by applying case-
decomposition pattern. The event Pumpon and Pumpoff turn on and turn off the pump
respectively according to the water level when the system is not in the manual mode. The
event Donothing just transit to next phase to reflect that the system do nothing when it
is in the manual mode. An invariant is written to ensure that all the cases are considered.

The lower level of the refinement tree can be transform into the following Event-B
model:

Events

Pump on =̂refines DECISION

when decision = TRUE ∧ water level > H ∧ manual = TRUE

then decision := FALSE ∧ pump on := TRUE end

Pump off =̂refines DECISION

when decision = TRUE ∧ water level ≤ H ∧ manual = TRUE

then decision := FALSE ∧ pump on := FALSE end

Do nothing =̂refines DECISION

when decision = TRUE ∧ manual = FALSE

then decision := FALSE end

70

Invariant

decision = TRUE ⇒ (((water level > H ∧manual = FALSE)∨
(water level ≤ H ∧manual = FALSE) ∨manual = TRUE)∧

¬((water level > H ∧manual = FALSE)∧
(water level ≤ H ∧manual = FALSE) ∧manual = TRUE))

5.4.6 Notes

When using more than one refinements to cover all the cases, if it is necessary to refine
some concrete events’ guard, the invariant as shown in the pattern might not be sufficient
for checking the coverage and the disjointness of cases. In this case, the invariant should
cover not only where the pattern is applied, but also every modified concrete event.

5.5 Milestone-driven refinement pattern

5.5.1 Description and applicability

This pattern is for decomposing an abstract event into two or more concrete events by
introducing intermediate steps (milestones) between the guard and action of the abstract
event. More precisely, this pattern transform an abstract event which executes its action
directly after its guard holds to a sequence of events. In the sequence of events, after the
abstract guard hold, an intermediate action is executed and triggers the next event which
its action trigger another event until the abstract action is executed.

5.5.2 Illustration

EVT
When guard
Then action

EVT
When guard_M and
subphase_M=TRUE
Then action

If guard_M and
subphase_M=TRUE then

guard

EVT_M
When guard
Then action_M and
Subphase_M:=TRUE

[Before>]
T

Figure 5.11: Simple milestone-driven refinement pattern: the refinement tree diagram

Figure 5.11 shows a simple form of the milestone-driven refinement pattern. In this
simple form, the abstract event is decomposed into two concrete events. In the upper

71

EVT... ...

(a) Upper level

EVT... ...EVT_M [Before]
T

(b) Lower level

Figure 5.12: Simple milestone-driven refinement pattern: the event transition diagram

level, after the guard of the abstract event holds, the action is executed. On the other
hand, after the same guard holds, an intermediate actions are executed in the event
EV T M of the lower level. Then, the actions trigger the event EV T which executes the
same actions with the abstract event. Figure 5.12 illustrates the event transition diagram
of the simple form of this pattern. The event EV T refines from the abstract event EV T
with the modification of its guards to correspond with the results of the intermediate
actions. An invariant is written in the lower level to make the modification of the guard
possible in Event-B. The intermediate actions contains actions from the system, and an
action representing a transition of sub-phase. This sub-phase is needed for the invariant.
Finally, the last-step event must reset the sub-phase.

If there are an arbitrary number n of intermediate steps to be introduced, the general
form of this pattern as in Figure 5.13 should be used instead. n sub-phases must be
declared, and n invariants must be written. Note that only the event representing the
last step refines from the abstract event. The last-step event resets all the sub-phases.

5.5.3 Transformation to Event-B model

For n intermediate steps to be introduced, an abstract machine must be decomposed into
n+ 1 concrete events. n events are newly created, and only one event refines the abstract
event. The newly created event representing the first step must have the same guard
with the abstract event. While, the refining event must have the same action with the
abstract event. The n sub-phases can be represented by n Boolean variables. After each
sub-phase is passed, the variable of the sub-phase becomes true. The last-step event resets
all the sub-phases by assigning false to all variables representing the sub-phases. Lastly,
n invariants must be written in the concrete machine.

5.5.4 Constraint

When introducing an intermediate step, it means that new actions and new guards cor-
responding to the actions are introduced in between a pair of guards and actions. The
invariant in the form appearing in this pattern is to ensure the correspondence between
the new actions and guards. When using this pattern such correspondence must be taken
in account. For examples, if a new action is x := TRUE which assigns the truth value
TRUE to a Boolean variable x, the guard corresponding to this action is x = TRUE. If
a action y := y+1 which increments the value of y by 1 is introduced into an event whose
guard is y = 0, the new guard corresponding to the action is y = 1 or y > 0.

72

EV
T

W
h

e
n

 g
u

ar
d

Th
e

n
 a

ct
io

n

EV
T

W
h

e
n

 g
u

ar
d

_M
n

 a
n

d

su
b

p
h

as
e_

M
n

=T
R

U
E

Th
e

n
 a

ct
io

n
 a

n
d

su
b

p
h

as
e_

M
1

:=
FA

LS
E

an
d

su
b

p
h

as
e_

M
2

:=
FA

LS
E

an
d

…
 s

u
b

p
h

as
e_

M
n

:=
FA

LS
E

If
 g

u
ar

d
_M

1
 a

n
d

su

b
p

h
as

e_
M

1
=T

R
U

E
th

e
n

 g
u

ar
d

EV
T_

M
1

W
h

e
n

 g
u

ar
d

Th
e

n
 a

ct
io

n
_M

1
 a

n
d

su
b

p
h

as
e_

M
1

:=
TR

U
E

EV
T_

M
2

W
h

e
n

 g
u

ar
d

_M
1

 a
n

d

su
b

p
h

as
e_

M
1

=T
R

U
E

Th
e

n
 a

ct
io

n
_M

2
 a

n
d

su
b

p
h

as
e_

M
2

:=
TR

U
E

[B
ef

o
re

>]
T1

EV
T_

M
3

W
h

e
n

 g
u

ar
d

_M
2

 a
n

d

su
b

p
h

as
e_

M
2

=T
R

U
E

Th
e

n
 a

ct
io

n
_M

3
 a

n
d

su
b

p
h

as
e_

M
3

:=
TR

U
E

If
 g

u
ar

d
_M

2
 a

n
d

su

b
p

h
as

e_
M

2
=T

R
U

E
th

e
n

 g
u

ar
d

_M
1

 a
n

d

su
b

p
h

as
e_

M
1

=T
R

U
E

[B
ef

o
re

>]
T2

EV
T_

M
n

W
h

e
n

 g
u

ar
d

_M
(n

-1
)

an
d

su

b
p

h
as

e_
M

(n
-1

)=
TR

U
E

Th
e

n
 a

ct
io

n
_M

n
 a

n
d

su
b

p
h

as
e_

M
n

:=
TR

U
E

[B
ef

o
re

>]
Tn

..
.

If
 g

u
ar

d
_M

n
 a

n
d

su

b
p

h
as

e_
M

n
=T

R
U

E
th

e
n

 g
u

ar
d

_M
(n

-1
)

an
d

su

b
p

h
as

e_
M

(n
-1

)=
TR

U
E

F
ig

u
re

5.
13

:
G

en
er

al
m

il
es

to
n
e-

d
ri

ve
n

re
fi
n
em

en
t

p
at

te
rn

:
th

e
re

fi
n
em

en
t

tr
ee

d
ia

gr
am

73

Open_valve
When temp>H
Then open valve

Open_valve
When actuator is turned on
and subphase=TRUE
Then open valve and
subphase:=FALSE

If actuator is turned on
and subphase=TRUE then

temp>H

Turn_actuator_on
When temp>H
Then turn actuator on and
subphase:=TRUE

[Before>]
T

Figure 5.14: An example refinement tree diagram of milestone-driven refinement pattern

5.5.5 Example

Figure 5.14 demonstrates an example refinement tree diagram of this pattern. The ex-
ample is about a temperature control valve. The valve will open, if the temperature is
higher than a limit (H). The only abstract event in the tree represents such behavior.
However, it is not possible to open the valve directly through the temperature. The tem-
perature should turn an actuator on, and then, this actuator opens the valve. Thus, the
abstract event is decomposed into two concrete events with one intermediate steps about
the actuator is introduced. The event transition diagram of this example is shown in
Figure 5.15.

This example can be modelled into Event-B as follows:
Abstract machine

Open valve =̂ when temp > H

then valve open := TRUE end

Concrete machine

Pump on =̂ when temp > H

then actuator on := TRUE ∧ subphase := TRUE end

Open valve =̂refines Open valve

when actuator on = TRUE ∧ subphase = TRUE

then valve open := TRUE end

Invariant of the concrete machine

actuator on = TRUE ∧ subphase = TRUE ⇒ temp > H

74

Open_
valve

... ...

(a) Upper level

Open_
valve

... ...

Turn_
actuator
_on

[Before]
actuator

(b) Lower level

Figure 5.15: An example event transition diagram of milestone-driven refinement pattern

75

Chapter 6

Case study and evaluation

In Chapter 1, we stated that Event-B lacks of the requirements analysis and elaboration
mechanism, and the guideline for using its refinement mechanism. Thus, we proposed
an approach using the ORDER model along with the refinement patterns derived from
KAOS for overcome these shortcomings of Event-B. This chapter presents the means to
evaluate the proposed approach is capable to reduce the shortcomings and encourage the
usage of Event-B in practical development of safety-critical software systems.

Since our objective of this research is about the practical usage of Event-B, the eval-
uation was done mainly through case studies. We applied our model in action on three
examples derived from a real-world context. The examples varied on their size and types
of systems in order to increase confidence in the utility of our approach. Then, some fact
about our approach were discussed based on the results of the applications.

Our approach were applied on three case studies: a powered sliding door, an automatic
gate controller, and Electrical Power Steering (EPS) system.

6.1 Powered sliding door

6.1.1 Overview

The first case study, the powered sliding door, was derived from part 10 of ISO 26262
[ISO11]. This case study was originally described in the standard as an example of
decomposition of safety requirements for allocating them to corresponding architectural
elements of a safety-critical system. This system is considerably a small example. Even
after the decomposition, this system consisted of only 7 functional safety requirements.
We applied our approach to this case study in order to ensure that it was feasible to use
our approach to analyse, elaborate and model safety requirements.

The powered sliding door is a sliding door of a vehicle which a user can request the
door to be opened or closed. The safety goal of the powered sliding door is “not to open
the door while the vehicle speed is higher than 15 km/h”. Thus, this system operates
based on inputs which are the vehicle speed and the user request. When the user requests
the door to be opened, a Power Sliding Door Module (PSDM) drives the power to the

76

door actuator to move the door. PSDM will allow the powering of the actuator only if
the vehicle speed is below 15 km/h. Furthermore, there is a switch is on the power line
between the PSDM and the door actuator. When the switch is off, the power line can
drive the door actuator. However, the switch will be off only if the vehicle speed is below
15 km/h. Both the PSDM and the switch are the mechanisms for preventing the door to
be opened while the vehicle speed is higher than 15 km/h.

After applying the ORDER model and the refinement patterns, it resulted in 4 Event-
B machines (an initial model and 3 refinement steps). The refinement tree diagrams,
the event transition diagrams, and the Event-B specifications of this system from our
approach can be found in Appendix A. The explanations for each level of the tree are the
followings.

6.1.2 The first level

Firstly, we separated the system into two phases, input phase and decision phase, and
used a variable input to represent the transition between two phases. The input phase
contains two parallelized events: one can transit to the next phase, another cannot.

6.1.3 The second level

At this step, the speed of the vehicle was introduced. The speed must be below 15 km/h,
if the door is opened. Otherwise, the speed can be changed freely within the speed limit of
the vehicle. Because there are two cases here, the case-decomposition refinement pattern
was applied. The only input at this step is the speed, so we assumed that the system
arbitrarily transits to the decision phase. For the decision phase, there were two cases of
input: the speed is higher than 15 km/h and the speed is below or equalled to 15 km/h.
One necessary invariant of this system is that the door can be opened only when the
speed is below 15 km/h. If the speed is higher than 15 km/h, the door must be closed
immediately. The other case does not decide exactly the door must be opened or closed,
because the input is not sufficient for the moment.

6.1.4 The third level

Thirdly, the switch was added. The switch is for realize the process of controlling the door
in the decision phase. Both cases of the decision phase were applied by the milestone-
driven refinement pattern for the switch. If the speed is higher than 15 km/h, the switch
will be off, and then, the door is closed. Otherwise, the switch is on, but the input is
still insufficient to determine the status of the door. The change of the speed was more
concrete in this step by dividing each case of the change into increasing and decreasing
the speed by applying the event-forking refinement pattern.

77

6.1.5 The fourth level

Finally, the request from the user was added to be another input of the system. This input
is capable to trigger the decision phase of the system. The case-decomposition refinement
pattern was applied to the decision phase where the switch is on. If there is no request,
the door stays in the same phase. Otherwise, the door will be closed, if it is opened. The
door will be opened, if it is closed. Note that we assumed that the request is for toggling
the status of the door.

6.2 Automatic gate controller

6.2.1 Overview

The automatic gate controller was derived from the complete example of the evolutionary
framework [ZG03]. The goal of this system was to allow only authorized persons to enter a
building through the automatic gate. The goal was evolved by applying the evolutionary
framework. During the evolution, the completeness and the consistency of each step were
logically proved. Finally, the final version which was a specification for implementing the
system was correctly constructed. We proved in Chapter 3 that, in principle, Event-B
refinement can preserve the correctness as defined in the evolutionary framework. We
tried to apply the ORDER model to this case study by closely following the evolution
steps presented in the example of the evolutionary framework. This was for showing that
this proved fact is also valid in application. Furthermore, it showed the coherence of the
evolutionary framework and the ORDER model.

This example is about an automatic gate, which is for regulating access to the building
in which the gate is installed. The gate must be able to allow authorized persons to enter
the building, and prevent and non-authorized ones. An authorized person for this system
means a person who possesses an authorized ID card. One way to check the possession
of the authorized ID card is by asking a person to swipe his/her ID card through a card
reader and check whether the ID card is an authorized one. After the door is opened
for 5 seconds, the system sends a “lock command” to the gate. If after 10 more seconds,
the gate sensor still reports “gate open”, the system sounds the warning alarm, until the
sensor reports “gate closed”.

The resulted refinement tree diagram of this case study had 5 levels, which leaded to 5
Event-B machines (presented in Appendix B). The explanations for each level of the tree
are the followings.

6.2.2 The first level

For the first level, we applied the phase-decomposition pattern to this system and divided
the system into two phases, input phase and decision phase. The variable input was used
for representing the input phase. The input phase contains two parallelized events: one
can transit to the next phase, another cannot.

78

6.2.3 The second level

Secondly, the concept of allowing only the persons who have an authorized card to enter
the gate was introduced. The inputs were the possession of a card and the id of the card
(uid). The possession of the card does not change the phase right away. If a person has a
card, the uid will be retrieved from the card, before transiting to the decision phase. On
the other hand, if a person does not have a card, the system will transit to the decision
phase right away. The event forking pattern can be applied for checking the possession
of a card. Then, the case-decomposition pattern was applied based on the two cases,
possessing a card or not, before transiting to the next phase.

The decision phase was applied by the case-decomposition pattern to consider each case
of the inputs. The first case is that a person has an authorized card. In this case, the
system allows the person to enter. The second case is that a person does not have a card,
or the person has an unauthorized card. The system does not allow the person in the
latter case to enter.

There were inputs that were not introduced yet. Therefore, there are two copies of
events for the input phase and the decision phase for supporting further variables and
cases.

6.2.4 The third level

Thirdly, the possession of a card can be checked through the use of a card reader. If a
person swipes a card through this card reader, it means that the person has the card.
The retrieving of the uid can be realized by introducing a buffer for temporarily storing
the uid obtained from the card reader. The concepts of allowing and preventing a person
from entering the building can be realized by sending command to ‘open’ and ‘lock’ a gate
respectively. This step just replaced the abstract concepts with the concrete concepts.
No pattern was applied.

6.2.5 The fourth level

At this step, two new inputs were added: time and sensor. The time is for representing
how long the gate has been opened. The sensor is for checking the current status of the
gate. The sensor is needed because after sending the command, there are many possibility
that the status of the gate does not correspond to the command. Thus, the sensor was
introduced as a new input acting independently.

The decision phase had to be refined for corresponding the new inputs. If the status of
the gate is ‘opened’ and an authorized card is swiped, then the system sends an ‘open’
command to the gate and starts the timer. If the ‘open’ command has been sent for 5
seconds and no authorized card is swiped, then the system sends ‘lock’ command to the
gate. If no authorized card is swiped and the ‘open’ command has been sent for less than
5 seconds, the system just transits back to the input phase. Lastly, if no authorized card
is swiped and the gate is already locked, the system just restarts the timer.

79

6.2.6 The fifth level

In the last step, we focused on the concept of the alarm. Previously, we defined that if the
‘open’ command has been sent for 5 seconds and no authorized card is swiped, then the
system sends ‘lock’ command to the gate. However, this time, one more case was added:
if the command is sent for 15 seconds and no authorized card is swiped, then the system
sends ‘lock’ command to the gate and the alarm must be turned on. The alarm will be
turned off, when an authorized card is swiped or the gate is already locked.

6.3 Electrical Power Steering (EPS) system

6.3.1 Overview

This third case study was developed in collaboration with the Department of Green Mo-
bility Research of Hitachi, Ltd., Hitachi Research Laboratory. The EPS system is a
safety-critical system controlling the electric steering of cars. The main motivation was
to model the safety requirements of the EPS system by using the KAOS goal model. The
goal model was truly effective in elaborating the safety requirements, since we discovered
that there were a lot of missing requirements and assumptions in the original requirements
through the usage of the model. Our idea in applying the ORDER model to this case
study was that it might be easy to create the ORDER model following the created goal
model. This is potential possible from the facts that the ORDER model was derived from
the goal model. The case study offered evidence for the capability to use our approach
in the practical development of safety-critical systems. We focused on just a part of the
while safety requirements of the EPS system. the focused part contained 48 functional
requirements.

The part of the EPS system which was used in this case study is the part regarding
the transition to a manual steering mode. This mode is to stops the EPS system when
a failure of the system is detected, and then, let the driver manually control the steering
of the car. This system is operated through various components, such as a diagnostic
function module and a Current Control Unit (CCU). The diagnostic function module
monitors the voltage supplied to the CCU. The CCU is composed of a pre-driver and an
inverter. If the failure of the voltage applied to the pre-driver or the inverter is detected,
it also means that the voltage applied to the CCU is failed. After the detection of the
failures, the fact is notified to Fail-Safe Action Function module. Then, the Fail-Safe
Action Function module cuts the power supply to the motor. In order to cut the power
supply, the pre-driver, the motor relay, and the fail-safe relay of the system must be
stopped. This state is the manual steering mode of the system.

Since the EPS system is comparatively large with respect to other case studies, the
resulted refinement tree was considerably large. It had 8 levels to be modelled in 8 Event-
B machines. The refinement tree diagram and the Event-B specification of this case study
is presented in Appendix C. The explanations for each level of the tree are the followings.

80

6.3.2 The first level

Firstly, we separated the system into two phases, input phase and decision phase, and
used a variable input to represent the transition between two phases.

6.3.3 The second level

Secondly, the failure of voltage supplied to CCU was added as the input of the system.
There are two possible cases from this input: the failure is detected or not. In the decision
phase, if the failure is detected, the system will make a transition to the ‘Manual Steering’
mode. Otherwise, the system will stay in the normal mode. To support these two cases,
the case-decomposition refinement pattern was applied to the decision phase.

6.3.4 The third level

Thirdly, this step introduced the concept of the pre-driver and the inverter which are the
parts of the CCU. If the failure of the voltage applied to one of the two components is
detected, it equals to the detection of the failure of the voltage applied to CCU. If no
failure of the voltage applied to both components is detected, then there is no failure
at all. Because the detection of both failures can be done in parallel, the event-forking
refinement pattern was applied to the model. The decision phase was slightly changed
from using the failure of the voltage applied to CCU for making a decision to using the
failure of the voltage applied to one of the two components for making a decision.

6.3.5 The fourth level

The behavior of directly making a transition to the ‘Manual Steering’ mode after detecting
a failure was too abstract for the practical system. In facts, after the detection of a failure,
a demand for transition to ‘Manual Steering’ mode must be sent and it must be sent
without failure. Then, when the demand is received, the system will make the transition
to ‘Manual Steering’ mode. This means the abstract behavior have to be decomposed into
three steps, so the milestone-driven refinement pattern was applied here. On the other
hand, if there is no failure, the demand will not be sent. Thus, the demand is not received.
This finally leads to the system stays in the normal mode. Here, the milestone-driven
refinement pattern was also applied.

6.3.6 The fifth level

At this step, we focused on the concrete behavior of the transition to ‘Manual Steering’
mode. The ’Manual Steering’ mode means that the motors of the EPS system stops
working. In order to stop the motor, the power supply which actuates the motor must be
cut off. The normal mode is still the negation of the ‘Manual Steering’ mode. If the power
supply actuates the motor, the motor will work, and the EPS system will be in the normal

81

mode. Both of the sequence of behavior can be realized through the use of the milestone-
driven refinement pattern. Considering only the transition to ‘Manual Steering’ mode,
after the demand for transition to the ‘Manual Steering’ mode is received, the system will
cut off the power supply. This causes the motor to stop. Finally, the system is in the
‘Manual Steering’ mode.

6.3.7 The sixth level

To stop the power supply, the system have to stop the pre-driver, or the motor relay, or
the fail-safe relay. Stopping just one component can stop the power supply. However,
this system is supposed to stop all the three components in order to guarantee that the
power supply will stop working. Such ideas can be introduce into Event-B by creating 3
parallelized events, in which each event is for stopping each component after receiving the
demand for transition to the ‘Manual Steering’ mode. Here, all of them can trigger the
event representing stopping the power supply. This is a special case where two patterns,
the milestone-driven pattern and the event-forking pattern, were applied together.

Again, to let the power supply continue working, all the three components must also
continue working. This can be described in Event-B by applying the milestone-driven
refinement pattern to create an event for describing that all of the three component work
when the demand is not received. Then, this makes the power supply continues working.

6.3.8 The seventh level

This step added the concepts of sending a stop signal to stop the pre-driver, an open circuit
demand to stop the motor relay, and an open circuit demand to stop the fail-safe relay.
Since these concepts are similar, considering only one concept is sufficient. Considering
the pre-driver, after the demand for transition to the ‘Manual Steering’ mode is received,
the stop demand will be sent without failure. Because the stop demand is sent without
failure, the demand will be eventually received. Finally, the pre-driver stops working
due to the stop demand. The milestone-driven refinement pattern was applied again for
describing this concept. The pattern was also applied in a similar way for sending the
open circuit demands to stop the motor relay and the fail-safe relay.

For the case of letting the three components continue working, considering only the
pre-driver again, the stop demand will not be sent, when the demand for transition to
the ‘Manual Steering’ mode is not received. Consequently, the stop demand will not
be received. This causes the pre-driver to continue working. The similar concepts can
be applied to the motor relay and the fail-safe relay. However, this time, all of them
must continue working to make the power supply to continue working. Therefore, these
concepts were described together in a sequence of events from the application of the
milestone-driven refinement pattern.

82

Table 6.1: Number of events according to sources of creation: the powered sliding door

Source of Initial First Second Third
event model refinement refinement refinement Total

Manual 0 0 0 0 0 (0 %)
Patterns 3 4 8 4 19 (100 %)

Total 3 4 8 4 19

6.3.9 The eighth level

The idea of this step is that the sending of the stop demand and open circuit demand to
stop the pre-driver, the motor relay, and the fail-safe relay is not suitable in implementa-
tion. Actually, it is more appropriate to send enable signals to the three components for
commanding them to work. When the system has to stop the three components, the sys-
tem stops sending the enable signals. This step is not presented in Appendix C, because
the ideas presented in this step are only the replacements of variables.

6.4 Result

Table 6.1 6.3 show the number of events in the Event-B specification of the powered
sliding door case study, the automatic gate controller case study, and the EPS system
case study respectively. These numbers are categorized according to the source of events
and the step of refinements. Actually, there are three sources of event: patterns, copy,
and manual. ‘Patterns’ means that the events were derived from the refinement patterns
of the ORDER model. ‘Copy’ means that the events just copy events from the abstract
Event-B model. Lastly, ‘manual’ means all the other possible ways to come up with
events. The tables do not present the copying events due to the irrelevance of them with
respect to our discussion in the next section.

Here, we assume that the relative size of the three case studies can be roughly measured
by comparing the number of events of those case study. According to the tables, we can
infer that the size of the powered sliding door case study and the automatic gate controller
case study are almost the same. While, the EPS system case study is a lot larger than
the first two case studies.

Another fact worth mentioning here is the number of events derived from the refinement
patterns. In the case of the powered sliding door, Table 6.1 indicates that all the created
events in all steps of refinement are derived from the refinement patterns. On the other
hand, around 70 % of the total number of events are derived from the patterns for the
automatic gate controller case study and the EPS system case study.

83

Table 6.2: Number of events according to sources of creation: the automatic gate controller

Source of Initial First Second Third Fourth
event model refinement refinement refinement refinement Total

Manual 0 0 5 1 2 8 (34.8 %)
Patterns 3 5 0 5 2 15 (65.2 %)

Total 3 5 5 5 4 23

Table 6.3: Number of events according to sources of creation: the automatic gate controller

S
ou

rc
e

of
ev

en
t

In
it

ia
l

m
o
d
el

F
ir

st
re

fi
n
em

en
t

S
ec

on
d

re
fi
n
em

en
t

T
h
ir

d
re

fi
n
em

en
t

F
ou

rt
h

re
fi
n
em

en
t

F
if

th
re

fi
n
em

en
t

S
ix

th
re

fi
n
em

en
t

S
ev

en
th

re
fi
n
em

en
t

Total

Manual 0 0 5 0 0 1 0 12 18 (32.7 %)
Patterns 2 3 0 6 6 6 14 0 37 (67.3 %)

Total 2 3 5 6 6 7 14 12 55

6.5 Discussion

As we presented the results from applying our approach to modelling three case studies.
Considering the applications and the results, we can discuss and infer some valuable fact
regarding our approach as the following.

6.5.1 Coverage of the patterns

From the three case studies, around 70 % and more of the events in the Event-B specifica-
tions were easily derived from our proposed refinement patterns. This can imply that the
coverage of the refinement patterns for modelling the safety requirements specifications is
high. If we exclude all the events derived from the patterns from the Event-B model of the
case studies, most of the manually refining events refines the abstract events by replacing
certain abstract variables with concrete variables. The replacements are possible through
the usage of the gluing invariants [C+05]. This kind of refinement are regarded as vertical
or structural refinement for enriching the structure of a model to bring it closer to an
implementation structure [DB09]. The vertical refinement is a part of design issues of
a system. The design issues are beyond the scope of this thesis, therefore, we can con-
clude that the patterns are sufficient for modeling the safety requirements specifications
in Event-B.

84

6.5.2 Scalability of the patterns

Here, scalability means whether the refinement patterns decrease the applicability when
the requirements specification is larger. As stated before, the size of the powered sliding
door case study and the automatic gate controller case study are almost the same. How-
ever, the percentage of the events derived from the patterns decreases a lot for the case
of the automatic gate controller. Furthermore, even though the EPS system case study’s
size is around two times larger than the automatic gate controller case study’s, the per-
centage of the patterns-related events are nearly equalled to each other. As previously
discussed, the patterns do not support the vertical refinements. Thus, the applicability of
the patterns depends more on the type of the refinement, not the size of the specifications.
We conclude that the patterns are scalable.

6.5.3 Preservation of the correctness

We modelled the automatic gate controller in Event-B in a way that followed how the
requirements of this system were evolved in the evolutionary framework. One error of
the requirements found by the framework was that the lacks of the statement stating
that “a person is presumed not to have a card unless he or she swipes it in the card
reader” caused the requirements to be incomplete. This error can also be found by the
proof obligations of Event-B. This was an encouraging evident aside from our analysis
in Chapter 3 that Event-B and its refinement mechanism can preserve the correctness as
defined in the evolutionary framework.

6.5.4 Avoidance of Event-B deadlock

Establishing the absence of deadlocks is important in many applications of formal methods
[HL11], including the safety-critical systems. One common way to deal with the deadlock
in Event-B is by explicitly writing a deadlock-freeness theorem in an Event-B machine.
The deadlock-freeness theorem states that one the guards G1, G2, . . . , Gn of the events,
exception INITIALISATION , is always true [YJ+11]. The theorem can be written in
the form of an theorem in Event-B as follows:

G1 ∨G2 ∨ . . . ∨Gn

Our refinement patterns can also avoid the deadlock of Event-B. This is because the
constraints and rules of each pattern which are capable to avoid the deadlock are already
described. To illustrate, the initial model of the powered sliding door case study con-
tains two phases. These phases can be passed through and they can trigger each other.
Therefore, the initial model is deadlock-freeness. In the first refinement, there are two
events for dealing with two ranges of the vehicle speed. The invariant generated from the
case-decomposition pattern can ensure that the two cases cover all possible inputs. Then,
in the second refinement, the milestone-driven refinement pattern was applied twice to
add the intermediate steps regarding the switch. Two invariants were generated from
the pattern can ensure that the replacements of the guards are valid. This preserve the

85

coverage of the cases from the abstract machine. Thus, we can conclude that the second
and the third refinement are also deadlock-freeness.

6.5.5 Benefits of the phase-based approach

One of the benefit of the phase-based patterns is to avoid the deadlock in Event-B as
stated before. Another related benefit is that the phase-based approach allows grouping
and sequencing the operations of a system, which is similar to the way human thinks of
the behavior of the system. Consequently, an Event-B specifications, which are modelled
in the phase-based way, tend to be easier to analyse and understand. It is also easy to
trace the origin of each event because they are grouped according to their phase. By this
way, it is easier to analyse and check the safety of a safety requirements specification in
Event-B. To illustrate, in the case study of the automatic gate controller, we can easily
understand and trace from the phase-based refinement tree diagram that the inputs of
the system are the possession of a card, the uid of the card, time, and sensor. Then,
the command sending to the gate, the timer and the alarm are operated based on the
combinations of the inputs.

6.5.6 Overcoming the shortcomings of Event-B

The refinement patterns were created for the ORDER model. Certainly, the refinement
tree diagram and the event transition diagram of the ORDER model fully support the
patterns. In our experience applying the patterns to the case studies especially the EPS
system, we found that it is possible and easy to analyse and elaborate safety requirements
through the refinement patterns in the KAOS-like way in the form of the refinement tree.
The concept of how to structurally refine an Event-B model was also provided by the
patterns. Thus, in our point of view, the approach using the ORDER model together
with the KAOS-based patterns is pertinent to what this research try to achieve, which is
to overcome the shortcomings of Event-B.

6.6 Summary

In this chapter, we presented three safety-related case studies which we applied the OR-
DER model to analyse and model them. From the results of the case studies, we discussed
that our approach to use the ORDER model and the KAOS-based patterns are effective
and sufficient for overcoming the shortcomings of Event-B which is the goal of this re-
search. We also discussed that some other property relevant to the safety, such as the
deadlock-freeness and the traceability of a model, can be dealt with by our approach.
This confirms that the formal model gained from our approach using KAOS and Event-B
represents a correct safety requirements specification.

86

Chapter 7

Related work

To discuss the novelty of our approach, this chapter will discuss and compare the proposed
approach with respect to the existing works related to our research. The related works
are grouped and discussed according to the relevant aspects of our research.

7.1 Correctness, completeness and consistency of re-

quirements specification

Because specifying requirements is one of the most critical activities in any software devel-
opment effort. There are many approaches that aim to verifying correctness, completeness
and consistency of the requirement specification. One popular formal method for the ver-
ification is the model checking method [CGP99]. Another popular formal method is the
theorem proving method [Bib87]. Event-B, the core of our approach, is regarded as a
theorem proving one. The discussion of pros and cons of each approach can be found
in [OL07].

The examples of the works applying the model checking method for the verification of
the completeness and consistency are [PMPS01] and [HL96]. The former is the work of
Pap et al. to use the model checking for verifying the completeness and consistency of
requirements on UML statechart specifications. The latter is the work of Heimdahl et al.
for verifying state-based requirements. The definitions of the completeness in both ap-
proaches are defined as a response is specified for every possible input sequence. Another
work related to the model checking method is the SCR method [HBGL95]. However, the
SCR also support applying the theorem proving technique. The SCR presents require-
ments in a tabular form for specifying outputs based on the inputs of the system. The
completeness of SCR is that all combinations of the inputs can be mapped to one of the
outputs. The definitions of the consistency from all the three approaches are similar to the
consistency of the evolutionary framework. Even though our approach uses the relative
kind of completeness, our approach can cope with the completeness defined in these three
approaches by using the case-decomposition refinement pattern.

Aside from the model checking method and the theorem proving method, another
popular approach for checking the correctness is the knowledge-based approach. The

87

knowledge-based approach checks the correctness by given a set of knowledge about the
completeness and consistency of a system to a verifier. Then, users can input a re-
quirements specification to the verifier, and interactively checks the completeness and
consistency based on the knowledge of the verifier. [SP96] and [KKK95] are the works
applying the knowledge-based to for checking the correctness. The correctness of the
knowledge-based approach is defined depending on the knowledge given to the verifier.
Thus, the approach can be applied only to the specification compatible to the knowledge.
Our approach checks the correctness in a more general way.

Note that none of the approaches discussed in this section takes the evolution and
refinement of requirements in account.

7.2 Verification of requirements in requirements evo-

lution

A formal approach supporting verification of the requirements evolution is proposed
in [GDPALN+09]. Their approach aims to use analysis-revision cycle, in which the anal-
ysis phase verifies the correctness of requirements, and the revision phrase modifies the
requirements according to the problems detected by the analysis, in the requirements evo-
lution. The purpose of the cycle is to support evolution of requirements while preserving
the main requirements goals and properties, and reasoning about the evolution. Their
approach is similar to ours. However, their approach applies a model checking approach
for the analysis phase. Besides, their approach is proposed for requirements specification
in general, so it might lack of the consideration of safety-related properties, which are
considered in our approach.

7.3 Event-B patterns

We defined the refinement patterns of the ORDER model in Chapter 5 for assist the
Event-B modeling. In [Für09], Furst et al. proposed that it is possible to create design
patterns of Event-B. They proved this fact by defining some pattern for the specifications
of a communication protocols. These patterns were proved to be correct already by the
proof obligations. Then, they defined the process for matching pattern with a problem,
and replacing the patterns’ variables with the problem’s variables. Since the patterns
were already correct, this means that the parts of the problem which are derived from
the patterns are also correct. This work shows that it is possible to define patterns for
Event-B modeling. Hence, this work supports the creation of our refinement patterns.

7.4 Diagrams supporting Event-B modeling

The proposed ORDER model consists of two diagrams for graphically supporting Event-B
modeling: the refinement tree diagram and the event transition diagram. However, our

88

Figure 7.1: Event refinement diagram

approach is not the first graphical approach for Event-B. There is a diagram named ‘event
refinement diagram’ proposed in [But09], which is similar to our refinement tree diagram.
This diagram is based on the JSD structure diagram by Jackson [Jon90]. Figure 7.1
illustrates an example of the event refinement diagram. The root of the diagram represents
an abstract event. The diagram shows how the root is decomposed into sequential events
which are read from left to right. The oval with the keyword par represents a quantifier
that replicates the tree below it. The solid line indicates the refines relationship, and
the dashed line indicates that the events are newly introduced. The transformation into
Event-B specification is not yet defined for the event refinement diagram. This diagram
only roughly shows the way to decompose an abstract event into two or more sequential
steps similar to the milestone-driven refinement pattern of the ORDER model.

The UML-B state machine diagram in Figure 7.2 indicates the transition of the state of
an Event-B machine similar the event transition diagram of the ORDER model. Nonethe-
less, nodes and links of the state machine diagram represent the components of Event-B
in an opposite way with respect to the event transition diagram. A node in the state
machine diagram represents a state of variables in the machine, while an arrow represents
an event causing the variables to change their state. But, the state machine diagram lacks
of the notation of parallelized events using in the ORDER model, and it is more difficult
to define that in the form of the state machine diagram. Therefore, the event transition
diagram is more suitable to use with the ORDER model.

7.5 Guideline for using Event-B refinement

In 2012, Kobayashi and Honiden [KH12] proposed an approach to plan what models
are constructed in each abstraction level of Event-B. The advantage of this approach is
that it can calculate how well a plan can mitigate the complexity of a specification by
considering the semantics constraints of Event-B and the relationships between elements
in a system. This calculations is useful for selecting a relatively good plan from a set

89

Figure 7.2: UML-B state machine diagram

of plans. One of our concern is that their approach can be used only after all details
of a system, such as behavior, are already identified. Although, our approach lacks of
such calculation, it integrates the requirements analysis and elaboration which are able
to identify the necessary details, and it provides the guideline for Event-B refinement.

7.6 Phase-based approach for Event-B modeling

To the best of our knowledge, there is no work that explicitly propose the phase-based
approach for requirements analysis. However, the Event-B specifications, which are
written with the assistance of variables representing phases of a system, can be found
in [SAHZ11,ASZ12,SAZ12], especially the latter two works which explicitly mentioned in
one of their example that a variable is used for representing phases. This infers that the
phase-based approach is usual for Event-B.

7.7 KAOS and Event-B

There are many works trying to use the capabilities of requirements analysis and elabo-
ration of the KAOS method before modeling the requirements in Event-B. In [AAB+09,
PD11], the goal model of KAOS is used for analysis and elaboration of requirements.
From the goal model, an Event-B model is generated only from the leaf goals. This is
because [AAB+09] aims to use Event-B to represent the operation model of KAOS, which
can be derived only from the leaf goals. While, [PD11] focuses on the modularization of
the Event-B specification through the use of agents, which can identified from the leaf
goals.

The work which is the closest to our work is [MGL11]. This work defines a way to
represent and prove the KAOS goal refinement patterns in Event-B. The difference to our
approach is that they directly transform the KAOS goal model into Event-B specifications.
To support the linear temporal logic of KAOS, they proposed a set of proof obligations

90

that are necessary to ensure the completeness of the goal model. We discussed in Chapter 4
that, in our opinion, it is not appropriate to directly translate the goal model into Event-B
specifications. We rather proposed the ORDER model based on the Event-B and use the
KAOS goal refinement patterns for assisting the construction of the ORDER model.

7.8 Semantics of Event-B refinement

Our analysis in Chapter 3 gave the definition of the property preserved by the Event-B
refinement, which is the correctness of requirement specification. The analysis can be
regarded as giving the axiomatic semantics to the Event-B refinement. In contrast to our
axiomatic semantics, Schneider et al. in [?] discuss about the behavioural semantics of
Event-B through CSP semantics [?]. The behavioural semantics explain a relationship
among events in a refinement chain. The main difference between their work and ours
is that their work focuses on the meaning of the refinement chains of events, while our
work focuses on properties that are preserved through the refinement chain of Event-B
machines (which contain not only events).

91

Chapter 8

Conclusions and future work

8.1 Conclusion

The correctness of the safety requirements specification is crucial for the development
of safety-critical systems. This is because the incorrectness of the specifications is the
major causes of failures in the safety-critical systems. Event-B, a formal specification
language, has a high potential in dealing with the correctness due to its well-known
refinement mechanism, well-defined proof obligations, and the Rodin platform. However,
Event-B lacks the definition of the correctness of requirements specification, mechanism
for requirements analysis and elaboration, and the guideline for planning and using the
refinement mechanism. These shortcomings of Event-B are hindrances for the usage of
Event-B in the practical system development.

This thesis aims to overcome the shortcomings in order to encourage using formal meth-
ods like Event-B in the practical development of the safety-critical systems. To achieve
this goal, our proposed approach applied the definition of the correctness defined in the
evolutionary framework by Zowghi and Gervasi, and the capabilities to requirements anal-
ysis and elaboration of the KAOS method to Event-B. We first analysed that, in principle,
the refinement mechanism of Event-B can preserve the correctness as defined in the evolu-
tionary framework proposed by Zowghi and Gervasi. This explained the semantics of the
properties preserved through the generated proof obligations. Then, we proposed the OR-
DER model based on the KAOS method to assist structuring and understanding Event-B
models. The ORDER model is composed of two diagrams, the refinement tree diagram
and the event transition diagram. These diagrams can be transformed into Event-B spec-
ifications by following our defined rules. The ORDER model inherits the capabilities of
KAOS through the refinement patterns adapted from the KAOS goal refinement patterns.
The correctness of the evolutionary can also be explained in the ORDER model through
Theorem 6 from Section 4.3.4.

We evaluated our approach through the three case studies from a real-world context.
These case studies showed us that the patterns we created can cover around 70 % of the
refinement in the case studies, and they are scalable. Some essential property for the
safety requirements specifications, such as deadlock freeness and traceability can be dealt

92

with by our approach as well. Seeing that the ORDER model fully supported the patterns
and can be dealt with the safety-related properties, we concluded that our approach using
the ORDER model along with its patterns is pertinent to the research goal, which is to
overcome the shortcomings of Event-B in the field of the development of the safety-critical
systems.

In conclusions, we have proposed an approach to use the KAOS method for analysing
and elaborating a safety requirement specification, and providing the guideline for Event-B
refinement. Then, Event-B is used for modeling and verifying the specification. Through
the usage of KAOS and Event-B, we can get a formal model representing correct safety
requirements specification.

8.2 Future works

8.2.1 Automated tool for transforming the ORDER model to
Event-B

At the current state of this research, after all the diagrams of the ORDER model are
drawn, we have to manually transform the diagrams to Event-B. This process is simple in
the case of small systems. But, this process becomes more tedious and needs more effort,
if the systems become larger. This is trivial that it is better to have an automated tool
to transform the diagrams to Event-B.

This idea is possible, since the Rodin platform is constructed on top of Eclipse [Ecl07],
an open development platform. The Rodin platform allows creating plug-ins to support
the Event-B modeling. UML-B [SBS09] is one of the plug-ins in Event-B supporting
graphical approach. One direction might to create a plug-in for the ORDER model in
Rodin platform from scratch. Another better direction is by extending the existing plug-
ins which are related to graphical modeling.

8.2.2 Extension of the ORDER model

Even though the ORDER model is defined in a way that follows the Event-B specifications,
not all the components of the Event-B can be supported by the ORDER model. One
example is that Event-B has three kinds of events: ordinary, convergent, and anticipated.
The events used throughout this thesis are ordinary ones. The convergent and anticipated
events are the events that are needed to take the termination of events in account. This
is to ensure the events cannot keep control of a machine forever. To ensure that, the
machine must have variants which are mathematical expressions for guaranteeing that
the events can be terminated through the proof obligation named V AR. These kinds
of event and the variants are also crucial for the safety requirements specification. The
ORDER model should support these notations of Event-B as well.

As discussed in Chapter 4, we assumed that before using the ORDER model, all the
variables, carrier sets, and constants are already identified. The current ORDER model
does not support the identification of these components. We suggested that it is possible to

93

use other approaches which contain the notions of class diagram to help the identification.
Thus, one possible further work is to extend the ORDER model with the class-diagram-
like diagram.

8.2.3 Modularization

If a model becomes too large, it is difficult to manage and comprehend. This is also true
for the ORDER model. Usually, most models with the problems should be able to be
modularized. For examples, UML [SB06] has the notions of packages to group the classes
in a class diagram and communicate with other packages through some interface. Event-B
also contains the notions of ‘Event-B decomposition’ to decompose a single machine into
several sub-machines that can be still be seen as one machine. To modularize the ORDER
model, the Event-B decomposition is one candidate to be applied in the ORDER model.

8.2.4 Formalization of the ORDER model

We presented the refinement tree diagram and the event transition diagram along with
their construction rules in a semi-formal way. This might be sufficient in the short-term of
this research. While, in the long-term, the formal semantics of the ORDER model must
be defined. The formal semantics are important for analysis and improving the precision
of the model. The precision is needed for avoiding ambiguity and inconsistency of the
model. Such concepts can support the implementation of the automated tool and the
extension of the model.

94

Appendix A

Powered sliding door case study

A.1 Refinement tree diagram

T

INPUT
When input=TRUE and
Then input:=FALSE

RESULT
Wheninput = FALSE
Then input:=TRUE

INPUT_2
When input=TRUE and
Then skip

[Parallel]

INPUT
When input=TRUE and
Then input:=FALSE

INPUT_speed_changed_door_closing
Any d
When input=TRUE and
 door is closed and
 d is a possible value of speed
Then speed := d

INPUT_speed_changed_door_opening
Any d
When input=TRUE and
 door is opened and
 d is less than 15
Then speed := d

If input=TRUE then
Door is either opened or

closed

RESULT_close
When input = FALSE and
 speed>15
Then input:=TRUE and
 close the door

RESULT
When input = FALSE and
 speed≤15
Then input:=TRUE and
 door is either closed or opened

If input=FALSE then
Speed is either more

than 15 or less than or
equal to 15

If door is opened then
Speed is below 15

A
B

C
D E

95

INPUT
When input=TRUE and
Then input:=FALSEINPUT_speed_changed_door_closing

Any d
When input=TRUE and
 door is closed and
 d is a possible speed in case of
 speeding up and
 speed_checked=FALSE
Then speed := d

INPUT_speed_changed_door_closing
Any d
When input=TRUE and
 door is closed and
 d is a possible speed in case of
 slowing up and
 speed_checked=FALSE
Then speed := d

INPUT_speed_changed_door_opening
Any d
When input=TRUE and
 door is opened and
 d is more than or equal to the
 current speed but less than 15
 and speed_checked=FALSE
Then speed := d

INPUT_speed_changed_door_opening
Any d
When input=TRUE and
 door is opened and
 d is less than or equal to the
 current speed but more than 0
 and speed_checked=FALSE
Then speed := d

Request
When input=TRUE and
Then input:=FALSE and
 request is sent or not

INPUT_speed_changed_door_closing
Any d
When input=TRUE and
 door is closed and
 d is a possible speed in case of
 speeding up and
 speed_checked=FALSE
Then speed := d

INPUT_speed_changed_door_closing
Any d
When input=TRUE and
 door is closed and
 d is a possible speed in case of
 speeding up and
 speed_checked=FALSE
Then speed := d

INPUT_speed_changed_door_opening
Any d
When input=TRUE and
 door is opened and
 d is more than or equal to the
 current speed but less than 15
 and speed_checked=FALSE
Then speed := d

INPUT_speed_changed_door_opening
Any d
When input=TRUE and
 door is opened and
 d is less than or equal to the
 current speed but more than 0
 and speed_checked=FALSE
Then speed := d

A B C

RESULT_close
When speed_checked=TRUE
 and switch is off
Then input:=TRUE and
 close the door and
 speed_checked=FALSE

RESULT
When speed_checked=TRUE
 and switch is on
Then input:=TRUE and
 door is either closed or opened
 and speed_checked=FALSE

switch_off
When input = FALSE and
 speed>15 and
 speed_checked=FALSE
Then speed_checked:=TRUE
 and switch is off

<<before>>
Switch_off

<<before>>
Switch_on

switch_on
When input = FALSE and
 speed≤15 and
 speed_checked=FALSE
Then speed_checked:=TRUE
 and switch is on

If speed_checked=TRUE
and switch is off then
Speed is more than 15

If speed_checked=TRUE
and switch is on then
Speed is less than or

equal to 15

switch_off
When input = FALSE and
 speed>15 and
 speed_checked=FALSE
Then speed_checked:=TRUE
 and switch is off

RESULT_close
When speed_checked=TRUE
 and switch is off
Then input:=TRUE and
 close the door and
 speed_checked=FALSE

switch_off
When input = FALSE and
 speed≤15 and
 speed_checked=FALSE
Then speed_checked:=TRUE
 and switch is on

RESULT_no_request
When speed_checked=TRUE
 and switch is on
 and no request
Then input:=TRUE and
 door’s status is not changed
 and speed_checked=FALSE

RESULT_request_open
When speed_checked=TRUE
 and switch is on and
 request is received and
 door is closed
Then input:=TRUE and
 door is opened
 and speed_checked=FALSE

RESULT_request_close
When speed_checked=TRUE
 and switch is on and
 request is received and
 door is opened
Then input:=TRUE and
 door is closed
 and speed_checked=FALSE

If speed_checked=TRUE and switch is on then
Either no request or request and door is

opened or request and door is closed

D E

96

A.2 Refinement tree diagram

A.2.1 Initial model

INPUT

RESULT

INPUT_2

INPUT

A.2.2 First refinement

INPUT_speed_changed
_door_closing

RESULT

INPUT

RESULT_close

INPUT_speed_changed
_door_opening

INPUT

INPUT

97

A.2.3 Second refinement

INPUT_speed_up_door
_closing

switch_on

INPUT

switch_off
INPUT_speed_up_door

_opening

INPUT

INPUT_speed_down
_door_closing

INPUT_speed_down
_door_opening

RESULT_close RESULT

Switch_on Switch_off

INPUT

A.2.4 Third refinement

INPUT_speed_up_door
_closing

switch_on

INPUT_request

switch_offINPUT_speed_up_door
_opening

INPUT_request

INPUT_speed_down
_door_closing

INPUT_speed_down
_door_opening

RESULT_close
RESULT_no_
request

RESULT_request
_close

RESULT_request
_open

INPUT

98

A.3 Description of events

The descriptions of the copying events of each level of the tree are omitted here.

A.3.1 Initial model

Event name Description
INPUT the input phase which can transit to the decision

phase
INPUT 2 the input phase which cannot transit to the decision

phase
RESULT the decision phase

A.3.2 First refinement

Event name Description
INPUT speed changed
door closing

the change of speed when the door is closed

INPUT speed changed
door opening

the change of speed when the door is opened

RESULT close the decision to close the door because the speed is
higher than 15 km/h

RESULT the decision when the speed is lower or equalled to 15
km/h

A.3.3 Second refinement

Event name Description
INPUT speed up
door closing

increasing the speed when the door is closed

INPUT speed down
door closing

increasing the speed when the door is opened

INPUT speed up
door opening

decreasing the speed when the door is closed

INPUT speed down
door opening

decreasing the speed when the door is opened

switch off turning the switch off when the speed is higher than
15 km/h

RESULT close the decision to close the door because the switch is off
switch on turning the switch on when the speed is lower or

equalled to 15 km/h
RESULT the decision when the switch is on

99

A.3.4 Third refinement

Event name Description
Request the request from users
RESULT no request keeping the same status of the door because there is

no request
RESULT request open opening the door when receiving a request
RESULT request close closing the door when receiving a request

A.4 Description of carrier sets, constants, and vari-

ables

Component name Description
D STATUS the carrier set of the door statuses
open the ‘open’ status of the door
close the ‘close’ status of the door
max speed the upper bound value of the vehicle speed
max speed up the max acceleration value of the vehicle
max speed down the max deceleration of value the vehicle
speed the vehicle speed
door status the status of the door
switch the status of the switch
request the request from users

The variables representing phases:
input
speed checked

A.5 Event-B specification

A.5.1 Contexts

CONTEXT door

SETS

D STATUS

CONSTANTS

open

close

AXIOMS

axm1 : partition(D STATUS , {open}, {close})
axm2 : ¬open = close

END

100

CONTEXT speed

CONSTANTS

max speed

AXIOMS

axm1 : max speed > 15

END

CONTEXT speed2

EXTENDS speed

CONSTANTS

max speed up

max speed down

AXIOMS

axm1 : max speed up > 0

axm2 : max speed down > 0

END

A.5.2 Initial model

MACHINE Machine 1

VARIABLES

input

INVARIANTS

inv1 : input ∈ BOOL

EVENTS

Initialisation

begin
act1 : input := TRUE

end

Event INPUT =̂

when
grd1 : input = TRUE

then
act1 : input := FALSE

end

Event RESULT =̂

when
grd2 : input = FALSE

then

101

act2 : input := TRUE
end

Event INPUT 2 =̂

when
grd1 : input = TRUE

then
skip

end

END

A.5.3 First refinement

MACHINE Machine 2

REFINES Machine 1

SEES door, speed

VARIABLES

input

speed

door status

INVARIANTS

inv1 : speed ≥ 0 ∧ speed ≤ max speed

inv2 : door status ∈ D STATUS

inv3 : door status = open⇒ speed ≤ 15

inv4 : input = TRUE⇒((door status = open∨door status = close)∧¬(door status =
open ∧ door status = close))

inv5 : input = FALSE⇒((speed ≤ 15 ∨speed > 15)∧¬(speed ≤ 15 ∧speed > 15))

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act5 : speed := 0
act7 : door status := close

end

Event INPUT speed changed door closing =̂

extends INPUT 2

any
d

where

102

grd1 : input = TRUE

grd4 : door status = close
grd5 : d ≥ 0 ∧ d ≤ max speed

then
act3 : speed := d

end

Event INPUT speed changed door opening =̂

extends INPUT 2

any
d

where
grd1 : input = TRUE

grd5 : d ≥ 0 ∧ d ≤ 15
grd6 : door status = open

then
act3 : speed := d

end

Event RESULT close =̂

extends RESULT

when
grd2 : input = FALSE

grd4 : speed > 15
then

act2 : input := TRUE

act3 : door status := close
end

Event RESULT =̂

extends RESULT

when
grd2 : input = FALSE

grd4 : speed ≤ 15
then

act2 : input := TRUE

act3 : door status :∈ D STATUS
end

Event INPUT =̂

extends INPUT

when
grd1 : input = TRUE

then
act1 : input := FALSE

103

end

END

A.5.4 Second refinement

MACHINE Machine 3

REFINES Machine 2

SEES door, speed2

VARIABLES

input

speed

door status

switch

speed checked

INVARIANTS

inv1 : switch ∈ BOOL

inv2 : speed checked = TRUE ∧ switch = TRUE ⇒ speed ≤ 15 ∧ input = FALSE

inv3 : speed checked = TRUE ∧ switch = FALSE ⇒ speed > 15 ∧ input = FALSE

inv4 : speed checked ∈ BOOL

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act5 : speed := 0

act7 : door status := close

act8 : switch := TRUE
act9 : speed checked := FALSE

end

Event INPUT speed up door closing =̂

refines INPUT speed changed door closing

any
d

where
grd1 : input = TRUE
grd4 : door status = close
grd5 : d ≥ 0 ∧ d ≤ max speed
grd2 : d ≥ speed ∧ d ≤ speed + max speed up ∧ d ≤ max speed
grd6 : speed checked = FALSE

then

104

act3 : speed := d
end

Event INPUT speed down door closing =̂

refines INPUT speed changed door closing

any
d

where
grd1 : input = TRUE
grd4 : door status = close
grd5 : d ≥ speed −max speed down ∧ d ≤ speed ∧ d ≥ 0
grd6 : speed checked = FALSE

then
act3 : speed := d

end

Event INPUT speed up door opening =̂

refines INPUT speed changed door opening

any
d

where
grd1 : input = TRUE
grd5 : d ≥ speed ∧ d ≤ speed + max speed up ∧ d ≤ 15
grd6 : door status = open
grd7 : speed checked = FALSE

then
act3 : speed := d

end

Event INPUT speed down door opening =̂

refines INPUT speed changed door opening

any
d

where
grd1 : input = TRUE
grd5 : d ≥ speed −max speed down ∧ d ≤ speed ∧ d ≥ 0
grd6 : door status = open
grd7 : speed checked = FALSE

then
act3 : speed := d

end

Event switch off =̂

when
grd2 : input = FALSE

105

grd3 : speed > 15
grd4 : speed checked = FALSE

then
act1 : switch := FALSE
act2 : speed checked := TRUE

end

Event RESULT close =̂

refines RESULT close

when
grd1 : switch = FALSE
grd2 : speed checked = TRUE

then
act2 : input := TRUE
act3 : door status := close
act4 : speed checked := FALSE

end

Event switch on =̂

when
grd2 : input = FALSE
grd3 : speed ≤ 15
grd4 : speed checked = FALSE

then
act1 : switch := TRUE
act2 : speed checked := TRUE

end

Event RESULT =̂

refines RESULT

when
grd1 : switch = TRUE
grd2 : speed checked = TRUE

then
act2 : input := TRUE
act3 : door status :∈ D STATUS
act4 : speed checked := FALSE

end

Event INPUT =̂

extends INPUT

when
grd1 : input = TRUE

then
act1 : input := FALSE

106

end

END

A.5.5 Third refinement

MACHINE Machine 4

REFINES Machine 3

SEES door, speed2

VARIABLES

input

speed

door status

switch

speed checked

request

INVARIANTS

inv1 : request ∈ BOOL

inv3 : switch = TRUE ∧ speed checked = TRUE⇒ (request = FALSE ∨ (request =
TRUE ∧ door status = open) ∨ (request = TRUE ∧ door status = close))

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act5 : speed := 0

act7 : door status := close

act8 : switch := TRUE

act9 : speed checked := FALSE

act10 : request := FALSE
end

Event INPUT speed up door closing =̂

extends INPUT speed up door closing

any
d

where
grd1 : input = TRUE

grd4 : door status = close

grd5 : d ≥ 0 ∧ d ≤ max speed

grd2 : d ≥ speed ∧ d ≤ speed + max speed up ∧ d ≤ max speed

grd6 : speed checked = FALSE

107

then
act3 : speed := d

end

Event INPUT speed down door closing =̂

extends INPUT speed down door closing

any
d

where
grd1 : input = TRUE

grd4 : door status = close

grd5 : d ≥ speed− max speed down ∧ d ≤ speed ∧ d ≥ 0

grd6 : speed checked = FALSE

then
act3 : speed := d

end

Event INPUT speed up door opening =̂

extends INPUT speed up door opening

any
d

where
grd1 : input = TRUE

grd5 : d ≥ speed ∧ d ≤ speed + max speed up ∧ d ≤ 15

grd6 : door status = open

grd7 : speed checked = FALSE

then
act3 : speed := d

end

Event INPUT speed down door opening =̂

extends INPUT speed down door opening

any
d

where
grd1 : input = TRUE

grd5 : d ≥ speed− max speed down ∧ d ≤ speed ∧ d ≥ 0

grd6 : door status = open

grd7 : speed checked = FALSE

then
act3 : speed := d

end

Event switch off =̂

extends switch off

108

when
grd2 : input = FALSE

grd3 : speed > 15

grd4 : speed checked = FALSE

then
act1 : switch := FALSE

act2 : speed checked := TRUE

end

Event RESULT close =̂

extends RESULT close

when
grd1 : switch = FALSE

grd2 : speed checked = TRUE

then
act2 : input := TRUE

act3 : door status := close

act4 : speed checked := FALSE

end

Event switch on =̂

extends switch on

when
grd2 : input = FALSE

grd3 : speed ≤ 15

grd4 : speed checked = FALSE

then
act1 : switch := TRUE

act2 : speed checked := TRUE

end

Event RESULT no request =̂

refines RESULT

when
grd1 : switch = TRUE
grd2 : speed checked = TRUE
grd3 : request = FALSE

then
act2 : input := TRUE
act3 : door status := door status
act4 : speed checked := FALSE

end

Event RESULT request open =̂

refines RESULT

109

when
grd1 : switch = TRUE
grd2 : speed checked = TRUE
grd3 : request = TRUE
grd4 : door status = close

then
act2 : input := TRUE
act3 : door status := open
act4 : speed checked := FALSE

end

Event RESULT request close =̂

refines RESULT

when
grd1 : switch = TRUE
grd2 : speed checked = TRUE
grd3 : request = TRUE
grd4 : door status = open

then
act2 : input := TRUE
act3 : door status := close
act4 : speed checked := FALSE

end

Event Request =̂

extends INPUT

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : request :∈ BOOL
end

END

110

Appendix B

Automatic gate controller case study

B.1 Refinement tree diagram

skip

INPUT
When input=TRUE
Then input:=FALSE

DECISION
When input=FALSE
Then input:=TRUEINPUT_2

When input=TRUE
Then skip

<<parallel>>

INPUT_2
When input=TRUE
Then skip

If input=TRUE then
Either has card or not

INPUT_hasCard
When input=TRUE
Then has card or not

INPUT_uid
When input=TRUE and
 hasCard=TRUE
Then get uid from the
 card
 and input:=FALSE

INPUT_notHasCard
When input=TRUE and
 hasCard=FALSE
Then input:=FALSE

If input=FALSE then
Has authorized card xor

not has card xor has
unauthorized card

DECISION_can_enter
When input=FALSE and
 hasCard and uid of
 the card is authorized
Then can enter
 and input:=TRUE

DECISION_cannot_enter
When input=TRUE and
 (not hasCard or uid of the
 card is not authorized)
Then cannot enter and
 input:=TRUE

DECISION
When input=FALSE
Then input:=TRUE

A

B
C D

E F

G

111

INPUT_swipe
When input=TRUE
Then card is swiped or not

INPUT_uid
When input=TRUE and
 card is swiped
Then put uid of the card
 to buffer and
 input:=FALSE

INPUT_not_swipe
When input=TRUE and
 card is not swiped
Then input:=FALSE

Card is swiped = has card
Card is not swiped = not

has card

Put uid of the card to
buffer = get uid from the

card

INPUT_2
When input=TRUE
Then skip

A B
C

D

INPUT_sensor
When input=TRUE
Then sensor checks
the status of the gate

INPUT_swipe
When input=TRUE
Then card is swiped or not

INPUT_uid
When input=TRUE and
 card is swiped
Then put uid of the card
 to buffer and
 input:=FALSE

INPUT_not_swipe
When input=TRUE and
 card is not swiped
Then input:=FALSE

INPUT_time
When input=TRUE
Then checks time

INPUT_sensor
When input=TRUE
Then sensor checks
the status of the gate

INPUT_swipe
When input=TRUE
Then card is swiped or not

INPUT_time
When input=TRUE
Then checks time

INPUT_uid
When input=TRUE and
 card is swiped
Then put uid of the card
 to buffer and
 input:=FALSE

INPUT_not_swipe
When input=TRUE and
 card is not swiped
Then input:=FALSE

112

DECISION
When input=FALSE
Then input:=TRUE

DECISION_open
When input=FALSE and
 card is swiped and uid
 in the buffer is in AuthDB
Then send “open” command to
 gate
 and input:=TRUE

DECISION_lock
When input=FALSE and
 (card is not swiped or uid
 in the buffer is not in AuthDB)
Then send “lock” command to gate
 and input:=TRUE

If sending “open”
command to gate then

Can enter

If sending “lock”
command to gate then

Cannot enter

E
F

G

DECISION_open
When input=FALSE and
 card is swiped and uid
 in the buffer is in AuthDB
Then send “open” command to
 gate and input:=TRUE
 and restart timer

DECISION_lock
When input=FALSE and
 (card is not swiped or uid
 in the buffer is not in AuthDB)
 and the ‘open’ command has
 been sent for more than 5
 seconds
Then send “lock” command to gate
 and input:=TRUE

DECISION_do_nothing
When input=FALSE and
 (card is not swiped or uid
 in the buffer is not in AuthDB)
 and the ‘open’ command has
 been sent for less than 5
 seconds
Then input:=TRUE

DECISION_reset_time
When input=FALSE and
 (card is not swiped or uid
 in the buffer is not in AuthDB)
 and gate is locked
Then input:=TRUEand
 restart timer

If input=FALSE then
All combination of inputs

are considered

DECISION_open
When input=FALSE and
 card is swiped and uid
 in the buffer is in AuthDB
Then send “open” command to
 gate and input:=TRUE
 and restart timer
 and alarm is off

DECISION_lock
When input=FALSE and
 (card is not swiped or uid
 in the buffer is not in AuthDB)
 and the ‘open’ command has
 been sent for more than 5
 seconds but less than 15
 seconds
Then send “lock” command to gate
 and input:=TRUE

DECISION_do_nothing
When input=FALSE and
 (card is not swiped or uid
 in the buffer is not in AuthDB)
 and the ‘open’ command has
 been sent for less than 5
 seconds
Then input:=TRUE
 and alarm is off

DECISION_reset_time
When input=FALSE and
 (card is not swiped or uid
 in the buffer is not in AuthDB)
 and gate is locked
Then input:=TRUEand
 restart timer and alarm is off

DECISION_alarm_on
When input=FALSE and
 (card is not swiped or uid
 in the buffer is not in AuthDB)
 and the ‘open’ command has
 been sent for more than 15
 seconds
Then send “lock” command to gate
 and input:=TRUE
 and alarm is on

If input=FALSE and (card is not
swiped or uid

 in the buffer is not in
AuthDB) and gate is opened then

gate is opened more than 5
seconds but less than 15 seconds

or more than 15 seconds

113

B.2 Event transition diagram

B.2.1 Initial model

INPUT

DECISION

INPUT_2

INPUT

B.2.2 First refinement

INPUT_
uid

DECISION

INPUT_2
INPUT_hasCard

INPUT_
notHasCard

DECISION_
Cannot_Enter

DECISION_
canEnter

INPUT

B.2.3 Second refinement

INPUT_
uid

DECISION

INPUT_2
INPUT_swipe

INPUT_
Not_swipe

DECISION_
lock

DECISION_
open

INPUT

114

B.2.4 Third refinement

INPUT_
uid

DECISION_do_
nothing

INPUT_sensor
INPUT_swipe

INPUT_
Not_swipe

DECISION_
lock

DECISION_
open

INPUT

INPUT_time

DECISION_open_
exceeds_5_seco
nds_then_lock

DECISION_open_
exceeds_5_
seconds

B.2.5 Fourth refinement

INPUT_
uid

DECISION_do_
nothing

INPUT_sensor
INPUT_swipe

INPUT_
Not_swipe

DECISION_
lock

DECISION_
open

INPUT

INPUT_time

DECISION_open_
exceeds_5_seco
nds_then_lock

DECISION_do_no
thing_open_exce
eds_5_seconds

DECISION_open_
exceeds_5_seco

nds

B.3 Description of events

The descriptions of the copying events of each level of the tree are omitted here.

B.3.1 Initial model

Event name Description
INPUT the input phase which can transit to the decision

phase
INPUT 2 the input phase which cannot transit to the decision

phase
DECISION the decision phase

115

B.3.2 First refinement

Event name Description
INPUT hasCard checking the possession of a card
INPUT uid retrieving the uid of a card when the possession is

detected
INPUT notHasCard directly transiting to the next phase when detecting

no card
DECISION can enter allowing a person to enter when the person has an

authorized card
DECISION cannot enter preventing a person from entering when the person

does not have an authorized card

B.3.3 Second refinement

Event name Description
INPUT swipe checking whether a card is swiped
INPUT uid retrieving the uid from a card and storing it in a buffer

when the card is swiped
INPUT notSwipe directly transiting to the next phase when no card is

swiped
DECISION open sending an ‘open’ command to the gate when an au-

thorized card is swiped
DECISION lock sending an ‘lock’ command to the gate when no au-

thorized card is swiped

B.3.4 Third refinement

Event name Description
INPUT time checking the current time
INPUT sensor checking the current status of the gate
DECISION open sending an ‘open’ command to the gate and restating

timer when an authorized card is swiped
DECISION lock sending an ‘lock’ command to the gate when no au-

thorized card is swiped and the ‘open’ command is
sent for more than 5 seconds

DECISION do nothing doing nothing when no authorized card is swiped and
the ‘open’ command is sent for lower than 5 seconds

DECISION reset time restarting the timer when no authorized card is swiped
and the gate is locked

116

B.3.5 Fourth refinement

Event name Description
DECISION open sending an ‘open’ command to the gate and restating

timer and turning alarm off when an authorized card
is swiped

DECISION lock sending an ‘lock’ command to the gate when no au-
thorized card is swiped and the ‘open’ command is
sent for more than 5 seconds but less than 15 seconds

DECISION alarm on sending an ‘lock’ command to the gate and turning
alarm on when no authorized card is swiped and the
‘open’ command is sent for more than 15 seconds

DECISION reset time restarting the timer and turning alarm off when no
authorized card is swiped and the gate is locked

B.4 Descriptions of carrier sets, constants, and vari-

ables

Component name Description
UID a set of uid of cards
GATE COMMAND a set of command to change the status of the gate
AuthID a set of authorized uid
opened the ‘open’ command to open the gate
locked the ‘lock’ command to lock the gate
AuthDB a database of authorized uid
out of AuthDB a database of unauthorized uid
canEnter whether the system allows a person to enter that gate
hasCard whether the possession of a card is detected
card uid the uid of a detected card
gate command the command from the system to the gate
swipe whether a card is swiped
read uid buffer the buffer for storing the uid of the swiped card
gate sensor the sensor for sensing the current status of the gate
last lock time the latest time when the gate is locked
time current time
alarm on whether the alarm is turned on

The variables representing phases:
input

117

B.5 Event-B specification

B.5.1 Contexts

CONTEXT Context

SETS

UID

CONSTANTS

AuthID

AXIOMS

axm1 : AuthID ∈ UID → BOOL

END

CONTEXT Context1

EXTENDS Context

SETS

GATE COMMAND

CONSTANTS

opened

locked

AuthDB

out of AuthDB

AXIOMS

axm1 : partition(GATE COMMAND , {opened}, {locked})
axm2 : AuthDB = dom(AuthID B {TRUE})
axm3 : out of AuthDB = dom(AuthID B {FALSE})

END

B.5.2 Initial model

MACHINE Machine 1

VARIABLES

input

INVARIANTS

inv1 : input ∈ BOOL

EVENTS

Initialisation

begin
act1 : input := TRUE

118

end

Event INPUT =̂

when
grd1 : input = TRUE

then
act1 : input := FALSE

end

Event INPUT 2 =̂

when
grd1 : input = TRUE

then
skip

end

Event DECISION =̂

when
grd1 : input = FALSE

then
act1 : input := TRUE

end

END

B.5.3 First refinement

MACHINE Machine 2

REFINES Machine 1

SEES Context

VARIABLES

input

canEnter

hasCard

card uid

INVARIANTS

inv2 : canEnter ∈ BOOL

inv4 : hasCard ∈ BOOL

inv5 : card uid ∈ UID

inv6 : input = FALSE ⇒ (((hasCard = TRUE ∧ AuthID(card uid) = TRUE) ∨
hasCard = FALSE ∨ AuthID(card uid) = FALSE) ∧ ¬((hasCard = TRUE ∧
AuthID(card uid) = TRUE) ∧ hasCard = FALSE ∧ AuthID(card uid) =
FALSE))

119

inv7 : input = TRUE⇒ ((hasCard = TRUE ∨hasCard = FALSE)∧¬(hasCard =
TRUE ∧ hasCard = FALSE))

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act3 : canEnter := FALSE
act4 : hasCard := FALSE
act5 : card uid :∈ UID

end

Event INPUT hasCard =̂

extends INPUT 2

when
grd1 : input = TRUE

then
act2 : hasCard :∈ BOOL

end

Event INPUT uid =̂

extends INPUT

when
grd1 : input = TRUE

grd2 : hasCard = TRUE
then

act1 : input := FALSE

act2 : card uid :∈ UID
end

Event INPUT notHasCard =̂

extends INPUT

when
grd1 : input = TRUE

grd2 : hasCard = FALSE
then

act1 : input := FALSE

end

Event DECISION can enter =̂

extends DECISION

when
grd1 : input = FALSE

grd2 : hasCard = TRUE ∧ AuthID(card uid) = TRUE

120

then
act1 : input := TRUE

act2 : canEnter := TRUE
end

Event DECISION cannot enter =̂

extends DECISION

when
grd1 : input = FALSE

grd2 : hasCard = FALSE ∨ AuthID(card uid) = FALSE
then

act1 : input := TRUE

act2 : canEnter := FALSE
end

Event INPUT 2 =̂

extends INPUT 2

when
grd1 : input = TRUE

then
skip

end

Event DECISION =̂

extends DECISION

when
grd1 : input = FALSE

then
act1 : input := TRUE

end

END

B.5.4 Second refinement

MACHINE Machine 3

REFINES Machine 2

SEES Context1

VARIABLES

input

gate command

swipe

read uid buffer

INVARIANTS

121

inv1 : gate command ∈ GATE COMMAND

inv2 : swipe ∈ BOOL

inv4 : swipe = hasCard

inv6 : read uid buffer = card uid

inv7 : gate command = opened ⇒ canEnter = TRUE

inv8 : gate command = locked ⇒ canEnter = FALSE

EVENTS

Initialisation

begin
with

card uid′ : card uid′ = read uid buffer′

act1 : input := TRUE
act6 : gate command := locked
act7 : swipe := FALSE
act8 : read uid buffer :∈ UID

end

Event INPUT swipe =̂

refines INPUT hasCard

when
grd1 : input = TRUE

with
hasCard′ : hasCard′ = swipe′

then
act2 : swipe :∈ BOOL

end

Event INPUT uid =̂

refines INPUT uid

when
grd1 : input = TRUE
grd2 : swipe = TRUE

with
card uid′ : card uid′ = read uid buffer′

then
act1 : input := FALSE
act2 : read uid buffer :∈ UID

end

Event INPUT not swipe =̂

refines INPUT notHasCard

when
grd1 : input = TRUE

122

grd2 : swipe = FALSE
then

act1 : input := FALSE
end

Event DECISION open =̂

refines DECISION can enter

when
grd1 : input = FALSE
grd2 : swipe = TRUE ∧ read uid buffer ∈ AuthDB

then
act1 : input := TRUE
act2 : gate command := opened

end

Event DECISION lock =̂

refines DECISION cannot enter

when
grd1 : input = FALSE
grd2 : swipe = FALSE ∨ read uid buffer ∈ out of AuthDB

then
act1 : input := TRUE
act2 : gate command := locked

end

Event INPUT 2 =̂

extends INPUT 2

when
grd1 : input = TRUE

then
skip

end

Event DECISION =̂

extends DECISION

when
grd1 : input = FALSE

then
act1 : input := TRUE

end

END

123

B.5.5 Third refinement

MACHINE Machine 4

REFINES Machine 3

SEES Context1

VARIABLES

input

gate command

swipe

read uid buffer

gate sensor

last lock time

time

INVARIANTS

inv1 : gate sensor ∈ GATE COMMAND

inv2 : last lock time ∈ 0 .. time

inv3 : time ∈ N
inv4 : input = FALSE ⇒ (((swipe = TRUE ∧ read uid buffer ∈ AuthDB) ∨

((swipe = FALSE∨read uid buffer ∈ out of AuthDB)∧time−last lock time ≥
5∧gate sensor = locked)∨((swipe = FALSE∨read uid buffer ∈ out of AuthDB)∧
time − last lock time < 5 ∧ gate sensor = locked) ∨ ((swipe = FALSE ∨
read uid buffer ∈ out of AuthDB) ∧ gate sensor = opened)) ∧ ¬((swipe =
TRUE ∧ read uid buffer ∈ AuthDB) ∧ ((swipe = FALSE ∨ read uid buffer ∈
out of AuthDB)∧time−last lock time ≥ 5∧gate sensor = locked)∧((swipe =
FALSE ∨ read uid buffer ∈ out of AuthDB) ∧ time − last lock time < 5 ∧
gate sensor = locked)∧((swipe = FALSE∨read uid buffer ∈ out of AuthDB)∧
gate sensor = opened)))

inv5 : ∀uid ·(uid ∈ UID ∧ (uid ∈ AuthDB ⇔ uid /∈ out of AuthDB))

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act6 : gate command := locked

act7 : swipe := FALSE

act8 : read uid buffer :∈ UID

act9 : gate sensor := locked
act10 : last lock time := 0
act11 : time := 0

end

124

Event INPUT swipe =̂

extends INPUT swipe

when
grd1 : input = TRUE

then
act2 : swipe :∈ BOOL

end

Event INPUT uid =̂

extends INPUT uid

when
grd1 : input = TRUE

grd2 : swipe = TRUE

then
act1 : input := FALSE

act2 : read uid buffer :∈ UID

end

Event INPUT time =̂

extends INPUT 2

any
n

where
grd1 : input = TRUE

grd2 : n > time
then

act1 : time :∈ time .. n
end

Event INPUT sensor =̂

extends INPUT 2

when
grd1 : input = TRUE

then
act1 : gate sensor :∈ GATE COMMAND

end

Event INPUT not swipe =̂

extends INPUT not swipe

when
grd1 : input = TRUE

grd2 : swipe = FALSE

then
act1 : input := FALSE

125

end

Event DECISION open =̂

extends DECISION open

when
grd1 : input = FALSE

grd2 : swipe = TRUE ∧ read uid buffer ∈ AuthDB

then
act1 : input := TRUE

act2 : gate command := opened

act3 : last lock time := time
end

Event DECISION lock =̂

extends DECISION lock

when
grd1 : input = FALSE

grd2 : swipe = FALSE ∨ read uid buffer ∈ out of AuthDB

grd3 : gate sensor = opened
grd4 : time − last lock time ≥ 5

then
act1 : input := TRUE

act2 : gate command := locked

end

Event DECISION do nothing =̂

extends DECISION

when
grd1 : input = FALSE

grd2 : swipe = FALSE ∨ read uid buffer ∈ out of AuthDB
grd4 : gate sensor = opened
grd3 : time − last lock time < 5

then
act1 : input := TRUE

end

Event DECISION reset time =̂

extends DECISION

when
grd1 : input = FALSE

grd2 : swipe = FALSE ∨ read uid buffer ∈ out of AuthDB
grd3 : gate sensor = locked

then
act1 : input := TRUE

act2 : last lock time := time

126

end

END

B.5.6 Fourth refinement

MACHINE Machine 5

REFINES Machine 4

SEES Context1

VARIABLES

input

gate command

swipe

read uid buffer

gate sensor

last lock time

time

alarm on

INVARIANTS

inv1 : alarm on ∈ BOOL

inv2 : (input = FALSE ∧ (swipe = FALSE ∨ read uid buffer ∈ out of AuthDB) ∧
gate sensor = opened)⇒ ((time− last lock time ≥ 5 ∧ time− last lock time <
15) ∨ time − last lock time ≥ 15)

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act6 : gate command := locked

act7 : swipe := FALSE

act8 : read uid buffer :∈ UID

act9 : gate sensor := locked

act10 : last lock time := 0

act11 : time := 0

act12 : alarm on := FALSE
end

Event INPUT swipe =̂

extends INPUT swipe

when
grd1 : input = TRUE

then

127

act2 : swipe :∈ BOOL

end

Event INPUT uid =̂

extends INPUT uid

when
grd1 : input = TRUE

grd2 : swipe = TRUE

then
act1 : input := FALSE

act2 : read uid buffer :∈ UID

end

Event INPUT time =̂

extends INPUT time

any
n

where
grd1 : input = TRUE

grd2 : n > time

then
act1 : time :∈ time .. n

end

Event INPUT sensor =̂

extends INPUT sensor

when
grd1 : input = TRUE

then
act1 : gate sensor :∈ GATE COMMAND

end

Event INPUT not swipe =̂

extends INPUT not swipe

when
grd1 : input = TRUE

grd2 : swipe = FALSE

then
act1 : input := FALSE

end

Event DECISION open =̂

extends DECISION open

when
grd1 : input = FALSE

128

grd2 : swipe = TRUE ∧ read uid buffer ∈ AuthDB

then
act1 : input := TRUE

act2 : gate command := opened

act3 : last lock time := time

act4 : alarm on := FALSE
end

Event DECISION lock =̂

refines DECISION lock

when
grd1 : input = FALSE
grd2 : swipe = FALSE ∨ read uid buffer ∈ out of AuthDB
grd3 : gate sensor = opened
grd4 : time − last lock time ≥ 5
grd5 : time − last lock time < 15

then
act1 : input := TRUE
act2 : gate command := locked

end

Event DECISION alarm on =̂

refines DECISION lock

when
grd1 : input = FALSE
grd2 : swipe = FALSE ∨ read uid buffer ∈ out of AuthDB
grd3 : gate sensor = opened
grd4 : time − last lock time ≥ 15

then
act1 : input := TRUE
act2 : gate command := locked
act3 : alarm on := TRUE

end

Event DECISION do nothing =̂

extends DECISION do nothing

when
grd1 : input = FALSE

grd2 : swipe = FALSE ∨ read uid buffer ∈ out of AuthDB

grd4 : gate sensor = opened

grd3 : time− last lock time < 5

then
act1 : input := TRUE

end

129

Event DECISION reset time =̂

extends DECISION reset time

when
grd1 : input = FALSE

grd2 : swipe = FALSE ∨ read uid buffer ∈ out of AuthDB

grd3 : gate sensor = locked

then
act1 : input := TRUE

act2 : last lock time := time

act3 : alarm on := FALSE
end

END

130

Appendix C

Electrical Power Steering (EPS) system case study

C.1 Refinement tree diagram

skip

INPUT
When input=TRUE
Then input:=FALSE

RESULT
When input=FALSE
Then input:=TRUE If input=FALSE then

Either failure of voltage
supplied to CCU is

detected or not

INPUT
When input=TRUE
Then input:=FALSE and
checking failure of voltage
supplied to CCU

RESULT_transition_to_manual
_steering_mode
When input=FALSE and
failure of voltage supplied to
CCU is detected
Then input:=TRUE and
Manual steering mode

RESULT_normal_mode
When input=FALSE and
Failure of voltage
supplied to CCU is not
detected
Then input:=TRUE and
Normal mode

INPUT_predriver_failure
When input=TRUE
Then input:=FALSE and
Failure of voltage supplied
to Pre-driver is detected

INPUT_inverter_failure
When input=TRUE
Then input:=FALSE and
failure of voltage supplied
to inverter is detected

INPUT_no_failure
When input=TRUE
Then input:=FALSE and
No failure of voltage is
detected

RESULT_transition_to_manual
_steering_mode
When input=FALSE and
failure of voltage supplied to
Pre-driver or inverter is
detected
Then input:=TRUE and
Manual steering mode

RESULT_normal_mode
When input=FALSE and
 No failure of voltage is
detected
Then input:=TRUE and
Normal mode

Failure of voltage supplied to CCU
is detected iff failure of voltage

supplied to Pre-driver or inverter
is detected

A
B

C

D

E

131

RESULT_transition_to_manu
al_steering_mode
When Demand for transition
to manual steering is received
and demand_phase_2=TRUE
Then input:=TRUE and
Manual steering mode and
demand_phase_1:=FALSE and
demand_phase_2:=FALSE

RESULT_receiving_demand_to_manual
_steering
When Demand for transition to manual
steering is sent and it is sent without
failure and demand_phase_1=TRUE
Then Demand for transition to manual
steering is received and
demand_phase_2:=TRUE

RESULT_sending_demand_to_manual_
steering
When input=FALSE and
failure of voltage supplied to Pre-driver
or inverter is detected
Then Demand for transition to manual
steering is sent and it is sent without
failure and demand_phase_1:=TRUE

[Before>][Before>]INPUT_predriver_failure
When input=TRUE
Then input:=FALSE and
Failure of voltage supplied
to Pre-driver is detected

INPUT_inverter_failure
When input=TRUE
Then input:=FALSE and
failure of voltage supplied
to inverter is detected

INPUT_no_failure
When input=TRUE
Then input:=FALSE and
No failure of voltage is
detected

If Demand for transition to
manual steering is sent and it is

sent without failure and
demand_phase_1=TRUE then

input=FALSE and failure of
voltage supplied to Pre-driver or

inverter is detected

If Demand for transition to
manual steering is received and
demand_phase_2=TRUE then

Demand for transition to manual
steering is sent and it is sent

without failure and
demand_phase_1=TRUE

RESULT_sending_demand_to_manual_
steering
When input=FALSE and
failure of voltage supplied to Pre-driver
or inverter is detected
Then Demand for transition to manual
steering is sent and it is sent without
failure and demand_phase_1:=TRUE

INPUT_predriver_failure
When input=TRUE
Then input:=FALSE and
Failure of voltage supplied
to Pre-driver is detected

INPUT_inverter_failure
When input=TRUE
Then input:=FALSE and
failure of voltage supplied
to inverter is detected

INPUT_no_failure
When input=TRUE
Then input:=FALSE and
No failure of voltage is
detected

RESULT_receiving_demand_to_manual_
steering
When Demand for transition to manual
steering is sent and it is sent without
failure and demand_phase_1=TRUE
Then Demand for transition to manual
steering is received and
demand_phase_2:=TRUE

If Demand for transition to
manual steering is sent then

Demand for transition to manual
steering is sent without failure

A B C

D

INPUT_predriver_failure
When input=TRUE
Then input:=FALSE and
Failure of voltage supplied
to Pre-driver is detected

INPUT_inverter_failure
When input=TRUE
Then input:=FALSE and
failure of voltage supplied
to inverter is detected

INPUT_no_failure
When input=TRUE
Then input:=FALSE and
No failure of voltage is
detected

RESULT_sending_demand_to_manual_
steering
When input=FALSE and
failure of voltage supplied to Pre-driver
or inverter is detected
Then Demand for transition to manual
steering is sent and it is sent without
failure and demand_phase_1:=TRUE

RESULT_receiving_demand_to_manual
_steering
When Demand for transition to manual
steering is sent and it is sent without
failure and demand_phase_1=TRUE
Then Demand for transition to manual
steering is received and
demand_phase_2:=TRUE

INPUT_predriver_failure
When input=TRUE
Then input:=FALSE and
Failure of voltage supplied
to Pre-driver is detected

INPUT_inverter_failure
When input=TRUE
Then input:=FALSE and
failure of voltage supplied
to inverter is detected

INPUT_no_failure
When input=TRUE
Then input:=FALSE and
No failure of voltage is
detected

RESULT_sending_demand_to_manual_
steering
When input=FALSE and
failure of voltage supplied to Pre-driver
or inverter is detected
Then Demand for transition to manual
steering is sent and it is sent without
failure and demand_phase_1:=TRUE

RESULT_receiving_demand_to_manual
_steering
When Demand for transition to manual
steering is sent and it is sent without
failure and demand_phase_1=TRUE
Then Demand for transition to manual
steering is received and
demand_phase_2:=TRUE

F

132

RESULT_normal_mode
When Demand for transition to manual
steering is not received and
demand_phase_2=TRUE
Then input:=TRUE and
Normal mode and
demand_phase_1:=TRUE and
demand_phase_2:=TRUE

RESULT_not_receiving_demand_to_
manual_steering
When Demand for transition to
manual steering is not sent and
demand_phase_1=TRUE
Then Demand for transition to manual
steering is not received and
demand_phase_2:=TRUE

RESULT_not_sending_demand_to_manual
_steering
When input=FALSE and
 No failure of voltage is detected
Then Demand for transition to manual
steering is not sent and
demand_phase_1:=TRUE

[Before>][Before>]

If Demand for transition to
manual steering is not sent and
demand_phase_1=TRUE then
input=FALSE and No failure of
voltage is detected

If Demand for transition to
manual steering is not received
and demand_phase_2=TRUE
then Demand for transition to
manual steering is not sent and
demand_phase_1=TRUE

RESULT_not_receiving_demand_to_
manual_steering
When Demand for transition to
manual steering is not sent and
demand_phase_1=TRUE
Then Demand for transition to
manual steering is not received and
demand_phase_2:=TRUE

RESULT_not_sending_demand_to_manual
_steering
When input=FALSE and
 No failure of voltage is detected
Then Demand for transition to manual
steering is not sent and
demand_phase_1:=TRUE

RESULT_normal_mode
When motor works and
motor_phase=TRUE
Then input:=TRUE and
Manual steering mode and
demand_phase_1:=FALSE and
demand_phase_2:=FALSE and
power_supply_phase:=FALSE
and motor_phase:=FALSE

RESULT_power_supply_works
When Demand for transition
to manual steering is not
received and
demand_phase_2=TRUE
Then power supply works and
power_supply_phase:=TRUE

RESULT_motor_works
When power supply works
and
power_supply_phase=TRUE
Then motor works and
motor_phase:=TRUE

[Before>] [Before>]

If power supply works and
power_supply_phase=TRUE then
Demand for transition to manual

steering is not received and
demand_phase_2=TRUE

If motor works and
motor_phase=TRUE then power

supply works and
power_supply_phase=TRUE

RESULT_not_receiving_demand_to_
manual_steering
When Demand for transition to
manual steering is not sent and
demand_phase_1=TRUE
Then Demand for transition to
manual steering is not received and
demand_phase_2:=TRUE

RESULT_not_sending_demand_to_manual
_steeringWhen input=FALSE and
 No failure of voltage is detected
Then Demand for transition to manual
steering is not sent and
demand_phase_1:=TRUE

RESULT_not_receiving_demand_to_manual
_steering
When Demand for transition to manual
steering is not sent and
demand_phase_1=TRUE
Then Demand for transition to manual
steering is not received and
demand_phase_2:=TRUE

RESULT_not_sending_demand_to_manual
_steering
When input=FALSE and
 No failure of voltage is detected
Then Demand for transition to manual
steering is not sent and
demand_phase_1:=TRUE

RESULT_motor_works
When power supply works
and
power_supply_phase=TRUE
Then motor works and
motor_phase:=TRUE

RESULT_motor_works
When power supply works
and
power_supply_phase=TRUE
Then motor works and
motor_phase:=TRUE

RESULT_normal_mode
When motor works and
motor_phase=TRUE
Then input:=TRUE and
Manual steering mode and
demand_phase_1:=FALSE and
demand_phase_2:=FALSE and
power_supply_phase:=FALSE and
motor_phase:=FALSE

RESULT_normal_mode
When motor works and
motor_phase=TRUE
Then input:=TRUE and
Manual steering mode and
demand_phase_1:=FALSE and
demand_phase_2:=FALSE and
power_supply_phase:=FALSE and
motor_phase:=FALSE

E

G

133

RESULT_transition_to_manual_
steering_mode
When motor stops working and
motor_phase=TRUE
Then input:=TRUE and
Manual steering mode and
demand_phase_1:=FALSE and
demand_phase_2:=FALSE and
power_supply_phase:=FALSE
and motor_phase:=FALSE

RESULT_power_supply_stops
When Demand for transition
to manual steering is received
and demand_phase_2=TRUE
Then power supply stops
working and
power_supply_phase:=TRUE

RESULT_motor_stops
When power supply stops
working and
power_supply_phase=TRUE
Then motor stops working
and motor_phase:=TRUE

[Before>] [Before>]

If power supply stops working
and power_supply_phase=TRUE
then Demand for transition to

manual steering is received and
demand_phase_2=TRUE

If motor stops working and
motor_phase=TRUE then power

supply stops working and
power_supply_phase=TRUE

RESULT_motor_stops
When power supply stops
working and
power_supply_phase=TRUE
Then motor stops working
and motor_phase:=TRUE

RESULT_transition_to_manual_steering
_mode
When motor stops working and
motor_phase=TRUE
Then input:=TRUE and
Manual steering mode and
demand_phase_1:=FALSE and
demand_phase_2:=FALSE and
power_supply_phase:=FALSE and
motor_phase:=FALSE

RESULT_motor_stops
When power supply stops
working and
power_supply_phase=TRUE
Then motor stops working
and motor_phase:=TRUE

RESULT_transition_to_manual_steering
_mode
When motor stops working and
motor_phase=TRUE
Then input:=TRUE and
Manual steering mode and
demand_phase_1:=FALSE and
demand_phase_2:=FALSE and
power_supply_phase:=FALSE and
motor_phase:=FALSE

F

H

134

RESULT_power_supply_works
When predriver works and
predriver_phase=TRUE and
motor relay works and
motor_relay_phase=TRUE
and fail safe relay works and
fail_safe_relay_phase=TRUE
Then power supply works and
power_supply_phase:=TRUE and
predriver_phase:=FALSE and
motor_relay_phase:=FALSE and
fail_safe_relay_phase:=FALSE

RESULT_predriver_motor_relay_fail
_safe_relay_work
When Demand for transition to
manual steering is not received and
demand_phase_2=TRUE
Then predriver works and
predriver_phase:=TRUE and motor
relay works and
motor_relay_phase:=TRUE and fail
safe relay works and
fail_safe_relay_phase:=TRUE

[Before>]

If predriver works and
predriver_phase=TRUE and motor relay

works and motor_relay_phase=TRUE
and fail safe relay works and

fail_safe_relay_phase=TRUE then
Demand for transition to manual steering

is not received and
demand_phase_2=TRUE

RESULT_power_supply_works
When predriver works and
predriver_phase=TRUE and
motor relay works and
motor_relay_phase=TRUE and
fail safe relay works and
fail_safe_relay_phase=TRUE
Then power supply works and
power_supply_phase:=TRUE and
predriver_phase:=FALSE and
motor_relay_phase:=FALSE and
fail_safe_relay_phase:=FALSE

RESULT_predriver_motor_relay_fail_safe_relay_work
When no stop signal or open circuit demand is received and
predriver_subphase_2=TRUE and
motor_relay_subphase_2=TRUE and
fail_safe_relay_subphase_2=TRUE
Then predriver works and
predriver_phase:=TRUE and
motor relay works and
motor_relay_phase:=TRUE and
fail safe relay works and
 fail_safe_relay_phase:=TRUE and
predriver_subphase_1:=FALSE and
motor_relay_subphase_1:=FALSE and
fail_safe_relay_subphase_1:=FALSE and
predriver_subphase_2:=FALSE and
motor_relay_subphase_2:=FALSE and
fail_safe_relay_subphase_2:=FALSE

RESULT_not_receiving_any_stop_signals
When no stop signal or open circuit demand
is sent and predriver_subphase_1=TRUE and
motor_relay_subphase_1=TRUE and
fail_safe_relay_subphase_1=TRUE
Then no stop signal or open circuit demand
is received and
predriver_subphase_2:=TRUE and
motor_relay_subphase_2:=TRUE and
fail_safe_relay_subphase_2:=TRUE

RESULT_not_sending_any_stop_signals
When Demand for transition to manual
steering is not received and
demand_phase_2=TRUE
Then no stop signal or open circuit demand is
sent and predriver_subphase_1:=TRUE and
motor_relay_subphase_1:=TRUE and
fail_safe_relay_subphase_1:=TRUE

[Before>][Before>]

If no stop signal or open circuit
demand is received and

predriver_subphase_2=TRUE and
motor_relay_subphase_2=TRUE and

fail_safe_relay_subphase_2=TRUE
then no stop signal or open circuit

demand is sent and
predriver_subphase_1=TRUE and

motor_relay_subphase_1=TRUE and
fail_safe_relay_subphase_1=

TRUE

If no stop signal or open circuit demand
is sent and

predriver_subphase_1=TRUE and
motor_relay_subphase_1=TRUE and

fail_safe_relay_subphase_1=TRUE then
Demand for transition to manual

steering is not received and
demand_phase_2=TRUE

G

135

RESULT_power_supply_stops
When (predriver stops working
and predriver_phase=TRUE) or
(motor relay stops working and
motor_relay_phase=TRUE) or
(Fail safe relay stops working and
fail_safe_relay_phase=TRUE)
Then power supply stops working
and power_supply_phase:=TRUE
and predriver_phase:=FALSE and
motor_relay_phase:=FALSE and
fail_safe_relay_phase:=FALSE

RESULT_predriver_stops
When Demand for transition
to manual steering is received
and demand_phase_2=TRUE
Then predriver stops working
and predriver_phase:=TRUE

RESULT_motor_relay_stops
When Demand for transition
to manual steering is received
and demand_phase_2=TRUE
Then motor relay stops
working and
motor_relay_phase:=TRUE

RESULT_fail_safe_relay_stops
When Demand for transition to
manual steering is received and
demand_phase_2=TRUE
Then fail safe relay stops
working and
fail_safe_relay_phase:=TRUE

[Before>]

[Before>]

[Before>]

If (predriver stops working and
predriver_phase=TRUE) or (motor relay

stops working and
motor_relay_phase=TRUE) or (Fail safe relay

stops working and
fail_safe_relay_phase=TRUE) then Demand

for transition to manual steering is not
received and demand_phase_2=TRUE

RESULT_power_supply_stops
When (predriver stops working
and predriver_phase=TRUE) or
(motor relay stops working and
motor_relay_phase=TRUE) or
(Fail safe relay stops working and
fail_safe_relay_phase=TRUE)
Then power supply stops working
and power_supply_phase:=TRUE
and predriver_phase:=FALSE and
motor_relay_phase:=FALSE and
fail_safe_relay_phase:=FALSE

RESULT_predriver_stops
When stop signal for predriver is
received and
predriver_subphase_2=TRUEThen
predriver stops working and
predriver_phase:=TRUE and
predriver_subphase_1:=FALSE and
predriver_subphase_2:=FALSE

RESULT_predriver_stop_signal_
received
When stop signal for predriver is
sent and it is sent without
failure and
predriver_subphase_1=TRUE
Then stop signal for predriver is
received and
predriver_subphase_2:=TRUE

RESULT_predriver_stop_signal_s
ent
When Demand for transition to
manual steering is received and
demand_phase_2=TRUE
Then stop signal for predriver is
sent and it is sent without failure
and
predriver_subphase_1:=TRUE

[Before>][Before>]

If stop signal for predriver is received and
predriver_subphase_2=TRUE then stop
signal for predriver is sent and it is sent

without failure and
predriver_subphase_1=TRUE

If stop signal for predriver is sent and it is
sent without failure and

predriver_subphase_1=TRUE then Demand
for transition to manual steering is received

and demand_phase_2=TRUE

H

I

J

136

RESULT_fail_safe_relay_stops
When open circuit demand for fail safe
relay is received and
fail_safe_relay_subphase_2=TRUE
Then fail safe relay stops working and
fail_safe_relay_phase:=TRUE and
fail_safe_relay_subphase_1:= FALSE and
fail_safe_relay_subphase_2:= FALSE

RESULT_fail_safe_relay_open_cir
cuit_demand_received
When open circuit demand for fail
safe relay is sent and it is sent
without failure and
fail_safe_relay_subphase_1=TRUE
Then open circuit demand for fail
safe relay is received and
fail_safe_relay_subphase_2:=TRUE

RESULT_fail_safe_relay_open_circ
uit_demand_sent
When Demand for transition to
manual steering is received and
demand_phase_2=TRUE
Then open circuit demand for fail
safe relay is sent and it is sent
without failure and
fail_safe_relay_subphase_1:=TRUE

RESULT_motor_relay_stops
When open circuit demand for motor
relay is received and
motor_relay_subphase_2=TRUE
Then motor relay stops working and
motor_relay_phase:=TRUE and
motor_relay_subphase_1:=FALSE and
motor_relay_subphase_2:=FALSE

RESULT_motor_relay_open_circuit
_demand_received
When open circuit demand for
motor relay is sent and it is sent
without failure and
motor_relay_subphase_1=TRUE
Then open circuit demand for
motor relay is received and
motor_relay_subphase_2:=TRUE

RESULT_motor_relay_open_circuit
_demand_sent
When Demand for transition to
manual steering is received and
demand_phase_2=TRUE
Then open circuit demand for motor
relay is sent and it is sent without
failure and
motor_relay_subphase_1:=TRUE

[Before>] [Before>]

[Before>][Before>]

If open circuit demand for fail safe relay is
received and

fail_safe_relay_subphase_2=TRUE then
open circuit demand for fail safe relay is

sent and it is sent without failure and
fail_safe_relay_subphase_1=TRUE

If open circuit demand for fail safe relay is
sent and it is sent without failure and

fail_safe_relay_subphase_1=TRUE then
Demand for transition to manual steering is

received and demand_phase_2=TRUE

If open circuit demand for motor relay is
received and

motor_relay_subphase_2=TRUE then open
circuit demand for motor relay is sent and it

is sent without failure and
motor_relay_subphase_1=TRUE

If open circuit demand for motor relay is
sent and it is sent without failure and
motor_relay_subphase_1=TRUE then

Demand for transition to manual steering is
received and demand_phase_2=TRUE

I

J

137

C.2 Descriptions of events

The descriptions of the copying events of each level of the tree are omitted here.

C.2.1 Initial model

Event name Description
INPUT the input phase
RESULT the decision phase

C.2.2 First refinement

Event name Description
INPUT checking the failure of the voltage supplied to CCU
RESULT transition to
manual steering mode

transition to the ‘Manual Steering’ mode when the
failure is detected

RESULT normal mode keeping in the normal mode when no failure is de-
tected

C.2.3 Second refinement

Event name Description
INPUT inverter failure detecting the failure of the voltage supplied to the

inverter
INPUT predriver failure checking the failure of the voltage supplied to the pre-

driver
INPUT no failure detecting no failure
RESULT transition to
manual steering mode

transition to the ‘Manual Steering’ mode when one of
the failure is detected

RESULT normal mode keeping in the normal mode when no failure is de-
tected

138

C.2.4 Third refinement

Event name Description
RESULT sending demand
to manual steering

sending demand for transition to the ‘Manual Steer-
ing’ mode without failure when one of the failure is
detected

RESULT receiving demand
to manual steering

receiving the demand when it is sent without failure

RESULT transition to
manual steering mode

transition to the ‘Manual Steering’ mode when the
demand is received

RESULT not sending
demand to manual steering

not sending the demand for transition to the ‘Manual
Steering’ mode when no failure is detected

RESULT not receiving
demand to manual
steering

not receiving the demand for transition to the ‘Manual
Steering’ mode when it is not sent

RESULT normal mode keeping in the normal mode when no demand for tran-
sition to the ‘Manual Steering’ mode is received

C.2.5 Fourth refinement

Event name Description
RESULT power supply
stops

stopping the power supply when the demand for tran-
sition to the ‘Manual Steering’ mode is received

RESULT motor stops stopping the motor when the power supply stops
RESULT transition to
manual steering mode

transition to the ‘Manual Steering’ mode when the
motor stops

RESULT power supply
works

turning the power supply on when the demand for
transition to the ‘Manual Steering’ mode is not re-
ceived

RESULT motor works actuating the motor when the power supply works
RESULT normal mode keeping in the normal mode when the motor works

139

C.2.6 Fifth refinement

Event name Description
RESULT predriver stops stopping the pre-driver when the demand for transi-

tion to the ‘Manual Steering’ mode is received
RESULT motor relay stops stopping the motor relay when the demand for tran-

sition to the ‘Manual Steering’ mode is received
RESULT fail safe relay
stops

stopping the fail-safe relay when the demand for tran-
sition to the ‘Manual Steering’ mode is received

RESULT power supply
stops

stopping the power supply when one of the compo-
nents stops

RESULT predriver motor
relay fail safe relay work

keeping all the three components working when the
demand for transition to the ‘Manual Steering’ mode
is not received

RESULT power supply
works

turning the power supply on all the three components
work

140

C.2.7 Sixth refinement

Event name Description
RESULT predriver stop
signal sent

sending the stop signal to the pre-driver without fail-
ure when the demand for transition to the ‘Manual
Steering’ mode is received

RESULT predriver stop
signal received

receiving the stop demand when it is sent without
failure

RESULT predriver stops stopping the pre-driver when the stop demand is re-
ceived

RESULT motor relay
open circuit demand
sent

sending the open circuit demand to the motor relay
without failure when the demand for transition to the
‘Manual Steering’ mode is received

RESULT motor relay
open circuit demand
received

receiving the open cicuit demand when the demand is
sent without failure

RESULT motor relay
stops

stopping the motor relay when open circuit demand
is received

RESULT fail safe relay
open circuit demand
sent

sending the open circuit demand to the fail-safe relay
without failure when the demand for transition to the
‘Manual Steering’ mode is received

RESULT fail safe relay
open circuit demand
received

receiving the open circuit demand when the demand
is sent without failure

RESULT fail safe relay
stops

stopping the fail-safe relay when the open circuit de-
mand is received

RESULT not sending any
stop signals

not sending any stop demand and open circuit de-
mand when the demand for transition to the ‘Manual
Steering’ mode is not received

RESULT not receiving
any stop signals

not receiving any stop demand and open circuit de-
mand when none of them is sent

RESULT predriver motor
relay fail safe relay work

keeping all the three components working when no
stop signal and open circuit demand is received

141

C.2.8 Seventh refinement

Event name Description
RESULT predriver enable
signal not sent

not sending the enable signal to the pre-driver when
the demand for transition to the ‘Manual Steering’
mode is received

RESULT predriver enable
signal not received

not receiving the enable signal when it is not sent

RESULT predriver stops stopping the pre-driver when the enable signal is not
received

RESULT motor relay
enable signal not sent

not sending the enable signal to the motor relay when
the demand for transition to the ‘Manual Steering’
mode is received

RESULT motor relay
enable signal not received

not receiving the enable when the demand is not sent

RESULT motor relay
stops

stopping the motor relay when the enable signal is not
received

RESULT fail safe relay
enable signal not sent

not sending the enable to the fail-safe relay when the
demand for transition to the ‘Manual Steering’ mode
is received

RESULT fail safe relay
enable signal not received

not receiving the enable signal when the demand is
not sent

RESULT fail safe relay
stops

stopping the fail-safe relay when the enable signal is
not received

RESULT sending all
enable signals

sending all enable signals to all the three components
without failure when the demand for transition to the
‘Manual Steering’ mode is not received

RESULT receiving all
enable signals

receiving all enable signals when all of them are sent
without failure

RESULT predriver motor
relay fail safe relay work

keeping all the three components working when all
enable signals are received

142

C.3 Descriptions of variables

Component name Description
CCU failure whether the failure of the voltage applied to CCU is

detected
manual steering mode whether the system is in the ‘Manual Steering’ mode
inverter failure whether the failure of the voltage applied to the in-

verter is detected
predriver failure whether the failure of the voltage applied to pre-driver

is detected
demand to manual
steering sent

whether the demand for transition to the ‘Manual
Steering’ mode is sent

demand to manual
steering sent
without failure

whether the demand for transition to the ‘Manual
Steering’ mode is sent without failure

demand to manual
steering received

whether the demand for transition to the ‘Manual
Steering’ mode is received

power supply working whether the power supply is working
motor working whether the motor is working
predriver working whether the pre-driver is working
motor relay working whether the motor relay is working
fail safe relay working whether the fail-safe relay is working
predriver stop signal sent whether the stop signal for pre-driver is sent
motor relay open circuit
demand sent

whether the open circuit demand for the motor relay
is sent

fail safe relay open circuit
demand sent

whether the open circuit demand for the fail-safe relay
is sent

predriver stop signal sent
without failure

whether the stop signal for the pre-driver is sent with-
out failure

motor relay open circuit
demand sent
without failure

whether the open circuit demand for the motor relay
is sent without failure

fail safe relay open circuit
demand sent
without failure

whether the open circuit demand for the fail-safe relay
is sent without failure

predriver stop
signal received

whether the stop signal for pre-driver is received

motor relay open circuit
demand received

whether the open circuit demand for the motor relay
is received

fail safe relay open circuit
demand received

whether the open circuit demand for the fail-safe relay
is received

predriver enable signal sent whether the enable signal for the pre-driver is sent

143

Component name Description
predriver enable signal
received

whether the enable signal for the pre-driver relay is
received

predriver enable signal sent
without failure

whether the enable signal for the pre-driver is sent
without failure

motor relay enable
signal sent

whether the enable signal for the motor relay is sent

motor relay enable
signal sent
without failure

whether the enable signal for the motor relay is sent
without failure

motor relay enable
signal received

whether the enable signal for the motor relay is re-
ceived

fail safe relay enable
signal sent

whether the enable signal for the fail-safe relay is sent

fail safe relay enable
signal sent
without failure

whether the enable signal for the fail-safe relay is sent
without failure

fail safe relay enable
signal received

whether the enable signal for the fail-safe relay is re-
ceived

The variables representing phases:
input
demand phase 1
demand phase 2
power supply phase
motor phase
predriver phase
motor relay phase
fail safe relay phase
predriver subphase 1
predriver subphase 2
motor relay subphase 1
motor relay subphase 2
fail safe relay subphase 1
fail safe relay subphase 2

C.4 Event-B specification

C.4.1 Initial model

MACHINE Machine 1

VARIABLES

input

144

INVARIANTS

inv1 : input ∈ BOOL

EVENTS

Initialisation

begin
act1 : input := TRUE

end

Event INPUT =̂

when
grd1 : input = TRUE

then
act1 : input := FALSE

end

Event RESULT =̂

when
grd1 : input = FALSE

then
act1 : input := TRUE

end

END

C.4.2 First refinement

MACHINE Machine 2

REFINES Machine 1

VARIABLES

input

CCU failure

manual steering mode

INVARIANTS

inv1 : CCU failure ∈ BOOL

inv2 : manual steering mode ∈ BOOL

inv3 : input = FALSE ⇒ ((CCU failure = TRUE ∨ CCU failure = FALSE) ∧
¬(CCU failure = TRUE ∧ CCU failure = FALSE))

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

145

act2 : CCU failure := FALSE
act3 : manual steering mode := FALSE

end

Event INPUT failure =̂

extends INPUT

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : CCU failure :∈ BOOL
end

Event RESULT transition to manual steering mode =̂

extends RESULT

when
grd1 : input = FALSE

grd2 : CCU failure = TRUE
then

act1 : input := TRUE

act2 : manual steering mode := TRUE
end

Event RESULT normal mode =̂

extends RESULT

when
grd1 : input = FALSE

grd2 : CCU failure = FALSE
then

act1 : input := TRUE

act2 : manual steering mode := FALSE
end

END

C.4.3 Second refinement

MACHINE Machine 3

REFINES Machine 2

VARIABLES

input

manual steering mode

inverter failure

predriver failure

146

INVARIANTS

inv1 : inverter failure ∈ BOOL

inv2 : predriver failure ∈ BOOL

inv3 : (inverter failure = TRUE ∨ predriver failure = TRUE)⇔ CCU failure =
TRUE

EVENTS

Initialisation

begin
act1 : input := TRUE
act3 : manual steering mode := FALSE
act4 : inverter failure := FALSE
act5 : predriver failure := FALSE

end

Event INPUT inverter failure =̂

refines INPUT failure

when
grd1 : input = TRUE

with
CCU failure′ : CCU failure′ = TRUE

then
act1 : input := FALSE
act2 : inverter failure := TRUE

end

Event INPUT predriver failure =̂

refines INPUT failure

when
grd1 : input = TRUE

with
CCU failure′ : CCU failure′ = TRUE

then
act1 : input := FALSE
act2 : predriver failure := TRUE

end

Event INPUT no failure =̂

refines INPUT failure

when
grd1 : input = TRUE

with
CCU failure′ : CCU failure′ = FALSE

then

147

act1 : input := FALSE
act2 : inverter failure := FALSE
act3 : predriver failure := FALSE

end

Event RESULT transition to manual steering mode =̂

refines RESULT transition to manual steering mode

when
grd1 : input = FALSE
grd2 : inverter failure = TRUE ∨ predriver failure = TRUE

then
act1 : input := TRUE
act2 : manual steering mode := TRUE

end

Event RESULT normal mode =̂

refines RESULT normal mode

when
grd1 : input = FALSE
grd2 : inverter failure = FALSE ∧ predriver failure = FALSE

then
act1 : input := TRUE
act2 : manual steering mode := FALSE

end

END

C.4.4 Third refinement

MACHINE Machine 4

REFINES Machine 3

VARIABLES

input

manual steering mode

inverter failure

predriver failure

demand to manual steering sent

demand to manual steering sent without failure

demand to manual steering received

demand phase 1

demand phase 2

INVARIANTS

inv1 : demand to manual steering sent ∈ BOOL

148

inv2 : demand to manual steering sent without failure ∈ BOOL

inv3 : demand to manual steering received ∈ BOOL

inv4 : demand to manual steering sent = TRUE ⇒
demand to manual steering sent without failure = TRUE

inv5 : demand phase 1 ∈ BOOL

inv6 : demand phase 2 ∈ BOOL

inv8 : demand phase 2 = TRUE∧demand to manual steering received = TRUE⇒
demand phase 1 = TRUE ∧ demand to manual steering sent = TRUE ∧
demand phase 1 = TRUE

inv9 : demand phase 1 = TRUE ∧ demand to manual steering sent = TRUE ∧
demand to manual steering sent without failure = TRUE⇒input = FALSE∧
(inverter failure = TRUE ∨ predriver failure = TRUE)

inv10 : demand phase 2 = TRUE∧demand to manual steering received = FALSE⇒
demand phase 1 = TRUE ∧ demand to manual steering sent = FALSE

inv11 : demand phase 1 = TRUE∧demand to manual steering sent = FALSE⇒
input = FALSE ∧ inverter failure = FALSE ∧ predriver failure = FALSE

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act3 : manual steering mode := FALSE

act4 : inverter failure := FALSE

act5 : predriver failure := FALSE

act6 : demand to manual steering sent := FALSE
act7 : demand to manual steering sent without failure := FALSE
act8 : demand to manual steering received := FALSE
act9 : demand phase 1 := FALSE
act10 : demand phase 2 := FALSE

end

Event INPUT inverter failure =̂

extends INPUT inverter failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := TRUE

end

Event INPUT predriver failure =̂

extends INPUT predriver failure

149

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : predriver failure := TRUE

end

Event INPUT no failure =̂

extends INPUT no failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := FALSE

act3 : predriver failure := FALSE

end

Event RESULT sending demand to manual steering =̂

when
grd1 : input = FALSE
grd2 : inverter failure = TRUE ∨ predriver failure = TRUE

then
act1 : demand to manual steering sent := TRUE
act2 : demand to manual steering sent without failure := TRUE
act3 : demand phase 1 := TRUE

end

Event RESULT receiving demand to manual steering =̂

when
grd3 : demand to manual steering sent = TRUE
grd4 : demand to manual steering sent without failure = TRUE
grd5 : demand phase 1 = TRUE

then
act1 : demand to manual steering received := TRUE
act2 : demand phase 2 := TRUE

end

Event RESULT transition to manual steering mode =̂

refines RESULT transition to manual steering mode

when
grd4 : demand phase 2 = TRUE
grd3 : demand to manual steering received = TRUE

then
act1 : input := TRUE
act2 : manual steering mode := TRUE

150

act3 : demand phase 1 := FALSE
act4 : demand phase 2 := FALSE

end

Event RESULT not sending demand to manual steering =̂

when
grd1 : input = FALSE
grd2 : inverter failure = FALSE ∧ predriver failure = FALSE

then
act1 : demand to manual steering sent := FALSE
act2 : demand phase 1 := TRUE

end

Event RESULT not receiving demand to manual steering =̂

when
grd2 : demand phase 1 = TRUE
grd3 : demand to manual steering sent = FALSE

then
act1 : demand to manual steering received := FALSE
act2 : demand phase 2 := TRUE

end

Event RESULT normal mode =̂

refines RESULT normal mode

when
grd3 : demand to manual steering received = FALSE
grd4 : demand phase 2 = TRUE

then
act1 : input := TRUE
act2 : manual steering mode := FALSE
act3 : demand phase 1 := FALSE
act4 : demand phase 2 := FALSE

end

END

C.4.5 Fourth refinement

MACHINE Machine 5

REFINES Machine 4

VARIABLES

input

manual steering mode

inverter failure

predriver failure

151

demand to manual steering sent

demand to manual steering sent without failure

demand to manual steering received

demand phase 1

demand phase 2

power supply working

motor working

power supply phase

motor phase

INVARIANTS

inv1 : power supply working ∈ BOOL

inv2 : motor working ∈ BOOL

inv3 : power supply phase ∈ BOOL

inv4 : motor phase ∈ BOOL

inv5 : motor phase = TRUE ∧motor working = FALSE⇒ power supply phase =
TRUE ∧ power supply working = FALSE

inv6 : power supply phase = TRUE∧power supply working = FALSE⇒demand phase 2 =
TRUE ∧ demand to manual steering received = TRUE

inv7 : motor phase = TRUE ∧motor working = TRUE ⇒ power supply phase =
TRUE ∧ power supply working = TRUE

inv8 : power supply phase = TRUE∧power supply working = TRUE⇒demand phase 2 =
TRUE ∧ demand to manual steering received = FALSE

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act3 : manual steering mode := FALSE

act4 : inverter failure := FALSE

act5 : predriver failure := FALSE

act6 : demand to manual steering sent := FALSE

act7 : demand to manual steering sent without failure := FALSE

act8 : demand to manual steering received := FALSE

act9 : demand phase 1 := FALSE

act10 : demand phase 2 := FALSE

act11 : power supply working := TRUE
act12 : motor working := TRUE
act13 : power supply phase := FALSE
act14 : motor phase := FALSE

end

152

Event INPUT inverter failure =̂

extends INPUT inverter failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := TRUE

end

Event INPUT predriver failure =̂

extends INPUT predriver failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : predriver failure := TRUE

end

Event INPUT no failure =̂

extends INPUT no failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := FALSE

act3 : predriver failure := FALSE

end

Event RESULT sending demand to manual steering =̂

extends RESULT sending demand to manual steering

when
grd1 : input = FALSE

grd2 : inverter failure = TRUE ∨ predriver failure = TRUE

then
act1 : demand to manual steering sent := TRUE

act2 : demand to manual steering sent without failure := TRUE

act3 : demand phase 1 := TRUE

end

Event RESULT receiving demand to manual steering =̂

extends RESULT receiving demand to manual steering

when
grd3 : demand to manual steering sent = TRUE

grd4 : demand to manual steering sent without failure = TRUE

153

grd5 : demand phase 1 = TRUE

then
act1 : demand to manual steering received := TRUE

act2 : demand phase 2 := TRUE

end

Event RESULT power supply stops =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then
act1 : power supply phase := TRUE
act2 : power supply working := FALSE

end

Event RESULT motor stops =̂

when
grd1 : power supply phase = TRUE
grd2 : power supply working = FALSE

then
act1 : motor phase := TRUE
act2 : motor working := FALSE

end

Event RESULT transition to manual steering mode =̂

refines RESULT transition to manual steering mode

when
grd4 : motor phase = TRUE
grd3 : motor working = FALSE

then
act1 : input := TRUE
act2 : manual steering mode := TRUE
act3 : demand phase 1 := FALSE
act4 : demand phase 2 := FALSE
act5 : motor phase := FALSE
act6 : power supply phase := FALSE

end

Event RESULT not sending demand to manual steering =̂

extends RESULT not sending demand to manual steering

when
grd1 : input = FALSE

grd2 : inverter failure = FALSE ∧ predriver failure = FALSE

then
act1 : demand to manual steering sent := FALSE

154

act2 : demand phase 1 := TRUE

end

Event RESULT not receiving demand to manual steering =̂

extends RESULT not receiving demand to manual steering

when
grd2 : demand phase 1 = TRUE

grd3 : demand to manual steering sent = FALSE

then
act1 : demand to manual steering received := FALSE

act2 : demand phase 2 := TRUE

end

Event RESULT power supply works =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = FALSE

then
act1 : power supply phase := TRUE
act2 : power supply working := TRUE

end

Event RESULT motor works =̂

when
grd1 : power supply phase = TRUE
grd2 : power supply working = TRUE

then
act1 : motor phase := TRUE
act2 : motor working := TRUE

end

Event RESULT normal mode =̂

refines RESULT normal mode

when
grd3 : motor phase = TRUE
grd4 : motor working = TRUE

then
act1 : input := TRUE
act2 : manual steering mode := FALSE
act3 : demand phase 1 := FALSE
act4 : demand phase 2 := FALSE
act5 : power supply phase := FALSE
act6 : motor phase := FALSE

end

END

155

C.4.6 Fifth refinement

MACHINE Machine 6

REFINES Machine 5

VARIABLES

input

manual steering mode

inverter failure

predriver failure

demand to manual steering sent

demand to manual steering sent without failure

demand to manual steering received

demand phase 1

demand phase 2

power supply working

motor working

power supply phase

motor phase

predriver working

motor relay working

fail safe relay working

predriver phase

motor relay phase

fail safe relay phase

INVARIANTS

inv1 : predriver working ∈ BOOL

inv2 : motor relay working ∈ BOOL

inv3 : fail safe relay working ∈ BOOL

inv4 : ((predriver phase = TRUE∧predriver working = FALSE)∨(motor relay phase =
TRUE ∧motor relay working = FALSE) ∨ (fail safe relay phase = TRUE ∧
fail safe relay working = FALSE))⇒ (demand phase 2 = TRUE ∧
demand to manual steering received = TRUE)

inv5 : predriver phase ∈ BOOL

inv6 : motor relay phase ∈ BOOL

inv7 : fail safe relay phase ∈ BOOL

inv8 : motor relay working = TRUE∧motor relay phase = TRUE∧predriver phase =
TRUE ∧ predriver working = TRUE ∧ fail safe relay phase = TRUE ∧
fail safe relay working = TRUE ⇒ demand phase 2 = TRUE ∧
demand to manual steering received = FALSE

156

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act3 : manual steering mode := FALSE

act4 : inverter failure := FALSE

act5 : predriver failure := FALSE

act6 : demand to manual steering sent := FALSE

act7 : demand to manual steering sent without failure := FALSE

act8 : demand to manual steering received := FALSE

act9 : demand phase 1 := FALSE

act10 : demand phase 2 := FALSE

act11 : power supply working := TRUE

act12 : motor working := TRUE

act13 : power supply phase := FALSE

act14 : motor phase := FALSE

act15 : predriver working := TRUE
act16 : motor relay working := TRUE
act17 : fail safe relay working := TRUE
act18 : predriver phase := FALSE
act19 : motor relay phase := FALSE
act20 : fail safe relay phase := FALSE

end

Event INPUT inverter failure =̂

extends INPUT inverter failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := TRUE

end

Event INPUT predriver failure =̂

extends INPUT predriver failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : predriver failure := TRUE

end

Event INPUT no failure =̂

157

extends INPUT no failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := FALSE

act3 : predriver failure := FALSE

end

Event RESULT sending demand to manual steering =̂

extends RESULT sending demand to manual steering

when
grd1 : input = FALSE

grd2 : inverter failure = TRUE ∨ predriver failure = TRUE

then
act1 : demand to manual steering sent := TRUE

act2 : demand to manual steering sent without failure := TRUE

act3 : demand phase 1 := TRUE

end

Event RESULT receiving demand to manual steering =̂

extends RESULT receiving demand to manual steering

when
grd3 : demand to manual steering sent = TRUE

grd4 : demand to manual steering sent without failure = TRUE

grd5 : demand phase 1 = TRUE

then
act1 : demand to manual steering received := TRUE

act2 : demand phase 2 := TRUE

end

Event RESULT predriver stops =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then
act1 : predriver working := FALSE
act2 : predriver phase := TRUE

end

Event RESULT motor relay stops =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then

158

act1 : motor relay working := FALSE
act2 : motor relay phase := TRUE

end

Event RESULT fail safe relay stops =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then
act1 : fail safe relay working := FALSE
act2 : fail safe relay phase := TRUE

end

Event RESULT power supply stops =̂

refines RESULT power supply stops

when
grd1 : (predriver phase = TRUE∧predriver working = FALSE)∨(motor relay phase =

TRUE∧motor relay working = FALSE)∨(fail safe relay phase = TRUE∧
fail safe relay working = FALSE)

then
act1 : power supply phase := TRUE
act2 : power supply working := FALSE
act3 : predriver phase := FALSE
act4 : motor relay phase := FALSE
act5 : fail safe relay phase := FALSE

end

Event RESULT motor stops =̂

extends RESULT motor stops

when
grd1 : power supply phase = TRUE

grd2 : power supply working = FALSE

then
act1 : motor phase := TRUE

act2 : motor working := FALSE

end

Event RESULT transition to manual steering mode =̂

extends RESULT transition to manual steering mode

when
grd4 : motor phase = TRUE

grd3 : motor working = FALSE

then
act1 : input := TRUE

act2 : manual steering mode := TRUE

159

act3 : demand phase 1 := FALSE

act4 : demand phase 2 := FALSE

act5 : motor phase := FALSE

act6 : power supply phase := FALSE

end

Event RESULT not sending demand to manual steering =̂

extends RESULT not sending demand to manual steering

when
grd1 : input = FALSE

grd2 : inverter failure = FALSE ∧ predriver failure = FALSE

then
act1 : demand to manual steering sent := FALSE

act2 : demand phase 1 := TRUE

end

Event RESULT not receiving demand to manual steering =̂

extends RESULT not receiving demand to manual steering

when
grd2 : demand phase 1 = TRUE

grd3 : demand to manual steering sent = FALSE

then
act1 : demand to manual steering received := FALSE

act2 : demand phase 2 := TRUE

end

Event RESULT predriver motor relay fail safe relay work =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = FALSE

then
act1 : motor relay working := TRUE
act2 : predriver working := TRUE
act3 : fail safe relay working := TRUE
act4 : motor relay phase := TRUE
act5 : predriver phase := TRUE
act6 : fail safe relay phase := TRUE

end

Event RESULT power supply works =̂

refines RESULT power supply works

when
grd1 : motor relay working = TRUE
grd2 : motor relay phase = TRUE
grd3 : predriver working = TRUE

160

grd4 : predriver phase = TRUE
grd5 : fail safe relay working = TRUE
grd6 : fail safe relay phase = TRUE

then
act1 : power supply phase := TRUE
act2 : power supply working := TRUE
act3 : predriver phase := FALSE
act4 : motor relay phase := FALSE
act5 : fail safe relay phase := FALSE

end

Event RESULT motor works =̂

extends RESULT motor works

when
grd1 : power supply phase = TRUE

grd2 : power supply working = TRUE

then
act1 : motor phase := TRUE

act2 : motor working := TRUE

end

Event RESULT normal mode =̂

extends RESULT normal mode

when
grd3 : motor phase = TRUE

grd4 : motor working = TRUE

then
act1 : input := TRUE

act2 : manual steering mode := FALSE

act3 : demand phase 1 := FALSE

act4 : demand phase 2 := FALSE

act5 : power supply phase := FALSE

act6 : motor phase := FALSE

end

END

C.4.7 Sixth refinement

MACHINE Machine 7

REFINES Machine 6

VARIABLES

input

manual steering mode

161

inverter failure

predriver failure

demand to manual steering sent

demand to manual steering sent without failure

demand to manual steering received

demand phase 1

demand phase 2

power supply working

motor working

power supply phase

motor phase

predriver working

motor relay working

fail safe relay working

predriver phase

motor relay phase

fail safe relay phase

predriver stop signal sent

motor relay open circuit demand sent

fail safe relay open circuit demand sent

predriver subphase 1

predriver subphase 2

motor relay subphase 1

motor relay subphase 2

fail safe relay subphase 1

fail safe relay subphase 2

predriver stop signal sent without failure

motor relay open circuit demand sent without failure

fail safe relay open circuit demand sent without failure

predriver stop signal received

motor relay open circuit demand received

fail safe relay open circuit demand received

INVARIANTS

inv1 : predriver stop signal sent ∈ BOOL

inv2 : motor relay open circuit demand sent ∈ BOOL

inv3 : fail safe relay open circuit demand sent ∈ BOOL

inv4 : predriver subphase 1 ∈ BOOL

inv5 : predriver subphase 2 ∈ BOOL

162

inv6 : motor relay subphase 1 ∈ BOOL

inv7 : motor relay subphase 2 ∈ BOOL

inv8 : fail safe relay subphase 1 ∈ BOOL

inv9 : fail safe relay subphase 2 ∈ BOOL

inv10 : predriver stop signal sent without failure ∈ BOOL

inv11 : motor relay open circuit demand sent without failure ∈ BOOL

inv12 : fail safe relay open circuit demand sent without failure ∈ BOOL

inv13 : predriver stop signal received ∈ BOOL

inv14 : motor relay open circuit demand received ∈ BOOL

inv15 : fail safe relay open circuit demand received ∈ BOOL

inv16 : predriver subphase 2 = TRUE∧predriver stop signal received = TRUE⇒
predriver subphase 1 = TRUE ∧ predriver stop signal sent = TRUE ∧
predriver stop signal sent without failure = TRUE

inv17 : predriver stop signal sent = TRUE∧predriver stop signal sent without failure =
TRUE ∧ predriver subphase 1 = TRUE ⇒ demand phase 2 = TRUE ∧
demand to manual steering received = TRUE

inv18 : predriver stop signal sent = TRUE⇒predriver stop signal sent without failure =
TRUE

inv19 : motor relay open circuit demand received = TRUE∧motor relay subphase 2 =
TRUE ⇒motor relay open circuit demand sent = TRUE ∧
motor relay open circuit demand sent without failure = TRUE ∧
motor relay subphase 1 = TRUE

inv20 : motor relay open circuit demand sent = TRUE ∧
motor relay open circuit demand sent without failure = TRUE ∧
motor relay subphase 1 = TRUE ⇒ demand phase 2 = TRUE ∧
demand to manual steering received = TRUE

inv21 : motor relay open circuit demand sent = TRUE ⇒
motor relay open circuit demand sent without failure = TRUE

inv22 : fail safe relay subphase 2 = TRUE∧fail safe relay open circuit demand received =
TRUE ⇒ fail safe relay open circuit demand sent = TRUE ∧
fail safe relay open circuit demand sent without failure = TRUE ∧
fail safe relay subphase 1 = TRUE

inv23 : fail safe relay open circuit demand sent = TRUE ∧
fail safe relay open circuit demand sent without failure = TRUE ∧
fail safe relay subphase 1 = TRUE ⇒
demand phase 2 = TRUE ∧ demand to manual steering received = TRUE

inv24 : fail safe relay open circuit demand sent = TRUE ⇒
demand to manual steering sent without failure = TRUE

inv25 : motor relay open circuit demand received = FALSE∧predriver stop signal received =
FALSE ∧ fail safe relay open circuit demand received = FALSE ∧
motor relay subphase 2 = TRUE ∧ predriver subphase 2 = TRUE ∧

163

fail safe relay subphase 2 = TRUE⇒motor relay open circuit demand sent =
FALSE∧predriver stop signal sent = FALSE∧fail safe relay open circuit demand sent =
FALSE∧motor relay subphase 1 = TRUE∧predriver subphase 1 = TRUE∧
fail safe relay subphase 1 = TRUE

inv26 : motor relay open circuit demand sent = FALSE∧predriver stop signal sent =
FALSE∧fail safe relay open circuit demand sent = FALSE∧motor relay subphase 1 =
TRUE∧predriver subphase 1 = TRUE∧fail safe relay subphase 1 = TRUE⇒
demand phase 2 = TRUE ∧ demand to manual steering received = FALSE

EVENTS

Initialisation
extended

begin
act1 : input := TRUE

act3 : manual steering mode := FALSE

act4 : inverter failure := FALSE

act5 : predriver failure := FALSE

act6 : demand to manual steering sent := FALSE

act7 : demand to manual steering sent without failure := FALSE

act8 : demand to manual steering received := FALSE

act9 : demand phase 1 := FALSE

act10 : demand phase 2 := FALSE

act11 : power supply working := TRUE

act12 : motor working := TRUE

act13 : power supply phase := FALSE

act14 : motor phase := FALSE

act15 : predriver working := TRUE

act16 : motor relay working := TRUE

act17 : fail safe relay working := TRUE

act18 : predriver phase := FALSE

act19 : motor relay phase := FALSE

act20 : fail safe relay phase := FALSE

act21 : predriver stop signal sent := FALSE
act22 : motor relay open circuit demand sent := FALSE
act23 : fail safe relay open circuit demand sent := FALSE
act24 : predriver subphase 1 := FALSE
act25 : predriver subphase 2 := FALSE
act26 : motor relay subphase 1 := FALSE
act27 : motor relay subphase 2 := FALSE
act28 : fail safe relay subphase 1 := FALSE
act29 : fail safe relay subphase 2 := FALSE
act30 : predriver stop signal sent without failure := TRUE
act31 : motor relay open circuit demand sent without failure := TRUE
act32 : fail safe relay open circuit demand sent without failure := TRUE

164

act33 : predriver stop signal received := FALSE
act34 : motor relay open circuit demand received := FALSE
act35 : fail safe relay open circuit demand received := FALSE

end

Event INPUT inverter failure =̂

extends INPUT inverter failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := TRUE

end

Event INPUT predriver failure =̂

extends INPUT predriver failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : predriver failure := TRUE

end

Event INPUT no failure =̂

extends INPUT no failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := FALSE

act3 : predriver failure := FALSE

end

Event RESULT sending demand to manual steering =̂

extends RESULT sending demand to manual steering

when
grd1 : input = FALSE

grd2 : inverter failure = TRUE ∨ predriver failure = TRUE

then
act1 : demand to manual steering sent := TRUE

act2 : demand to manual steering sent without failure := TRUE

act3 : demand phase 1 := TRUE

end

Event RESULT receiving demand to manual steering =̂

165

extends RESULT receiving demand to manual steering

when
grd3 : demand to manual steering sent = TRUE

grd4 : demand to manual steering sent without failure = TRUE

grd5 : demand phase 1 = TRUE

then
act1 : demand to manual steering received := TRUE

act2 : demand phase 2 := TRUE

end

Event RESULT predriver stop signal sent =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then
act1 : predriver stop signal sent := TRUE
act2 : predriver stop signal sent without failure := TRUE
act3 : predriver subphase 1 := TRUE

end

Event RESULT predriver stop signal received =̂

when
grd1 : predriver stop signal sent = TRUE
grd2 : predriver stop signal sent without failure = TRUE
grd3 : predriver subphase 1 = TRUE

then
act1 : predriver stop signal received := TRUE
act2 : predriver subphase 2 := TRUE

end

Event RESULT predriver stops =̂

refines RESULT predriver stops

when
grd1 : predriver subphase 2 = TRUE
grd2 : predriver stop signal received = TRUE

then
act1 : predriver working := FALSE
act2 : predriver phase := TRUE
act3 : predriver subphase 1 := FALSE
act4 : predriver subphase 2 := FALSE

end

Event RESULT motor relay open circuit demand sent =̂

when
grd1 : demand phase 2 = TRUE

166

grd2 : demand to manual steering received = TRUE
then

act1 : motor relay open circuit demand sent := TRUE
act2 : motor relay open circuit demand sent without failure := TRUE
act3 : motor relay subphase 1 := TRUE

end

Event RESULT motor relay open circuit demand received =̂

when
grd1 : motor relay open circuit demand sent = TRUE
grd2 : motor relay open circuit demand sent without failure = TRUE
grd3 : motor relay subphase 1 = TRUE

then
act1 : motor relay open circuit demand received := TRUE
act2 : motor relay subphase 2 := TRUE

end

Event RESULT motor relay stops =̂

refines RESULT motor relay stops

when
grd1 : motor relay subphase 2 = TRUE
grd2 : motor relay open circuit demand received = TRUE

then
act1 : motor relay working := FALSE
act2 : motor relay phase := TRUE
act3 : motor relay subphase 1 := FALSE
act4 : motor relay subphase 2 := FALSE

end

Event RESULT fail safe relay open circuit demand sent =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then
act1 : fail safe relay open circuit demand sent := TRUE
act2 : fail safe relay open circuit demand sent without failure := TRUE
act3 : fail safe relay subphase 1 := TRUE

end

Event RESULT fail safe relay open circuit demand received =̂

when
grd1 : fail safe relay open circuit demand sent = TRUE
grd2 : fail safe relay open circuit demand sent without failure = TRUE
grd3 : fail safe relay subphase 1 = TRUE

then

167

act1 : fail safe relay open circuit demand received := TRUE
act2 : fail safe relay subphase 2 := TRUE

end

Event RESULT fail safe relay stops =̂

refines RESULT fail safe relay stops

when
grd1 : fail safe relay subphase 2 = TRUE
grd2 : fail safe relay open circuit demand received = TRUE

then
act1 : fail safe relay working := FALSE
act2 : fail safe relay phase := TRUE
act3 : fail safe relay subphase 2 := FALSE
act4 : fail safe relay subphase 1 := FALSE

end

Event RESULT power supply stops =̂

extends RESULT power supply stops

when
grd1 : (predriver phase = TRUE ∧ predriver working = FALSE) ∨

(motor relay phase = TRUE ∧ motor relay working = FALSE) ∨
(fail safe relay phase = TRUE ∧ fail safe relay working = FALSE)

then
act1 : power supply phase := TRUE

act2 : power supply working := FALSE

act3 : predriver phase := FALSE

act4 : motor relay phase := FALSE

act5 : fail safe relay phase := FALSE

end

Event RESULT motor stops =̂

extends RESULT motor stops

when
grd1 : power supply phase = TRUE

grd2 : power supply working = FALSE

then
act1 : motor phase := TRUE

act2 : motor working := FALSE

end

Event RESULT transition to manual steering mode =̂

extends RESULT transition to manual steering mode

when
grd4 : motor phase = TRUE

grd3 : motor working = FALSE

168

then
act1 : input := TRUE

act2 : manual steering mode := TRUE

act3 : demand phase 1 := FALSE

act4 : demand phase 2 := FALSE

act5 : motor phase := FALSE

act6 : power supply phase := FALSE

end

Event RESULT not sending demand to manual steering =̂

extends RESULT not sending demand to manual steering

when
grd1 : input = FALSE

grd2 : inverter failure = FALSE ∧ predriver failure = FALSE

then
act1 : demand to manual steering sent := FALSE

act2 : demand phase 1 := TRUE

end

Event RESULT not receiving demand to manual steering =̂

extends RESULT not receiving demand to manual steering

when
grd2 : demand phase 1 = TRUE

grd3 : demand to manual steering sent = FALSE

then
act1 : demand to manual steering received := FALSE

act2 : demand phase 2 := TRUE

end

Event RESULT not sending any stop signals =̂

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = FALSE

then
act1 : motor relay open circuit demand sent := FALSE
act2 : predriver stop signal sent := FALSE
act3 : fail safe relay open circuit demand sent := FALSE
act4 : motor relay subphase 1 := TRUE
act5 : predriver subphase 1 := TRUE
act6 : fail safe relay subphase 1 := TRUE

end

Event RESULT not receiving any stop signals =̂

when
grd1 : motor relay open circuit demand sent = FALSE

169

grd2 : predriver stop signal sent = FALSE
grd3 : fail safe relay open circuit demand sent = FALSE
grd4 : motor relay subphase 1 = TRUE
grd5 : predriver subphase 1 = TRUE
grd6 : fail safe relay subphase 1 = TRUE

then
act1 : motor relay open circuit demand received := FALSE
act2 : predriver stop signal received := FALSE
act3 : fail safe relay open circuit demand received := FALSE
act4 : motor relay subphase 2 := TRUE
act5 : predriver subphase 2 := TRUE
act6 : fail safe relay subphase 2 := TRUE

end

Event RESULT predriver motor relay fail safe relay work =̂

refines RESULT predriver motor relay fail safe relay work

when
grd1 : motor relay subphase 2 = TRUE
grd2 : motor relay open circuit demand received = FALSE
grd3 : predriver subphase 2 = TRUE
grd4 : predriver stop signal received = FALSE
grd5 : fail safe relay open circuit demand received = FALSE
grd6 : fail safe relay subphase 2 = TRUE

then
act1 : motor relay working := TRUE
act2 : predriver working := TRUE
act3 : fail safe relay working := TRUE
act4 : motor relay phase := TRUE
act5 : predriver phase := TRUE
act6 : fail safe relay phase := TRUE
act7 : predriver subphase 1 := FALSE
act8 : predriver subphase 2 := FALSE
act9 : motor relay subphase 1 := FALSE
act10 : motor relay subphase 2 := FALSE
act11 : fail safe relay subphase 1 := FALSE
act12 : fail safe relay subphase 2 := FALSE

end

Event RESULT power supply works =̂

extends RESULT power supply works

when
grd1 : motor relay working = TRUE

grd2 : motor relay phase = TRUE

grd3 : predriver working = TRUE

170

grd4 : predriver phase = TRUE

grd5 : fail safe relay working = TRUE

grd6 : fail safe relay phase = TRUE

then
act1 : power supply phase := TRUE

act2 : power supply working := TRUE

act3 : predriver phase := FALSE

act4 : motor relay phase := FALSE

act5 : fail safe relay phase := FALSE

end

Event RESULT motor works =̂

extends RESULT motor works

when
grd1 : power supply phase = TRUE

grd2 : power supply working = TRUE

then
act1 : motor phase := TRUE

act2 : motor working := TRUE

end

Event RESULT normal mode =̂

extends RESULT normal mode

when
grd3 : motor phase = TRUE

grd4 : motor working = TRUE

then
act1 : input := TRUE

act2 : manual steering mode := FALSE

act3 : demand phase 1 := FALSE

act4 : demand phase 2 := FALSE

act5 : power supply phase := FALSE

act6 : motor phase := FALSE

end

END

C.4.8 Seventh refinement

MACHINE Machine 8

REFINES Machine 7

VARIABLES

input

manual steering mode

171

inverter failure

predriver failure

demand to manual steering sent

demand to manual steering sent without failure

demand to manual steering received

demand phase 1

demand phase 2

power supply working

motor working

power supply phase

motor phase

predriver working

motor relay working

fail safe relay working

predriver phase

motor relay phase

fail safe relay phase

predriver subphase 1

predriver subphase 2

motor relay subphase 1

motor relay subphase 2

fail safe relay subphase 1

fail safe relay subphase 2

predriver enable signal sent

predriver enable signal received

predriver enable signal sent without failure

motor relay enable signal sent

motor relay enable signal sent without failure

motor relay enable signal received

fail safe relay enable signal sent

fail safe relay enable signal sent without failure

fail safe relay enable signal received

INVARIANTS

inv1 : predriver enable signal sent ∈ BOOL

inv2 : predriver enable signal received ∈ BOOL

inv3 : predriver enable signal sent without failure ∈ BOOL

inv4 : motor relay enable signal sent ∈ BOOL

inv5 : motor relay enable signal sent without failure ∈ BOOL

172

inv6 : motor relay enable signal received ∈ BOOL

inv7 : fail safe relay enable signal sent ∈ BOOL

inv8 : fail safe relay enable signal sent without failure ∈ BOOL

inv9 : fail safe relay enable signal received ∈ BOOL

inv10 : predriver enable signal sent = TRUE ∧
predriver enable signal sent without failure = TRUE ⇒
predriver stop signal sent = FALSE

inv11 : predriver enable signal sent = FALSE⇒predriver stop signal sent = TRUE∧
predriver stop signal sent without failure = TRUE

inv12 : predriver enable signal received = TRUE⇔predriver stop signal received =
FALSE

inv13 : motor relay enable signal sent = TRUE ∧
motor relay enable signal sent without failure = TRUE ⇒
motor relay open circuit demand sent = FALSE

inv14 : motor relay enable signal sent = FALSE⇒motor relay open circuit demand sent =
TRUE ∧motor relay open circuit demand sent without failure = TRUE

inv15 : motor relay enable signal received = TRUE ⇔
motor relay open circuit demand received = FALSE

inv16 : fail safe relay enable signal sent = TRUE ∧
fail safe relay enable signal sent without failure = TRUE ⇒
fail safe relay open circuit demand sent = FALSE

inv17 : fail safe relay enable signal sent = FALSE ⇒
fail safe relay open circuit demand sent = TRUE ∧
fail safe relay open circuit demand sent without failure = TRUE

inv18 : fail safe relay enable signal received = TRUE ⇔
fail safe relay open circuit demand received = FALSE

EVENTS

Initialisation

begin
act1 : input := TRUE
act3 : manual steering mode := FALSE
act4 : inverter failure := FALSE
act5 : predriver failure := FALSE
act6 : demand to manual steering sent := FALSE
act7 : demand to manual steering sent without failure := FALSE
act8 : demand to manual steering received := FALSE
act9 : demand phase 1 := FALSE
act10 : demand phase 2 := FALSE
act11 : power supply working := TRUE
act12 : motor working := TRUE
act13 : power supply phase := FALSE

173

act14 : motor phase := FALSE
act15 : predriver working := TRUE
act16 : motor relay working := TRUE
act17 : fail safe relay working := TRUE
act18 : predriver phase := FALSE
act19 : motor relay phase := FALSE
act20 : fail safe relay phase := FALSE
act24 : predriver subphase 1 := FALSE
act25 : predriver subphase 2 := FALSE
act26 : motor relay subphase 1 := FALSE
act27 : motor relay subphase 2 := FALSE
act28 : fail safe relay subphase 1 := FALSE
act29 : fail safe relay subphase 2 := FALSE
act36 : predriver enable signal sent := TRUE
act37 : predriver enable signal received := TRUE
act38 : predriver enable signal sent without failure := TRUE
act39 : motor relay enable signal sent := TRUE
act40 : motor relay enable signal sent without failure := TRUE
act41 : motor relay enable signal received := TRUE
act42 : fail safe relay enable signal sent := TRUE
act43 : fail safe relay enable signal sent without failure := TRUE
act44 : fail safe relay enable signal received := TRUE

end

Event INPUT inverter failure =̂

extends INPUT inverter failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := TRUE

end

Event INPUT predriver failure =̂

extends INPUT predriver failure

when
grd1 : input = TRUE

then
act1 : input := FALSE

act2 : predriver failure := TRUE

end

Event INPUT no failure =̂

extends INPUT no failure

when

174

grd1 : input = TRUE

then
act1 : input := FALSE

act2 : inverter failure := FALSE

act3 : predriver failure := FALSE

end

Event RESULT sending demand to manual steering =̂

extends RESULT sending demand to manual steering

when
grd1 : input = FALSE

grd2 : inverter failure = TRUE ∨ predriver failure = TRUE

then
act1 : demand to manual steering sent := TRUE

act2 : demand to manual steering sent without failure := TRUE

act3 : demand phase 1 := TRUE

end

Event RESULT receiving demand to manual steering =̂

extends RESULT receiving demand to manual steering

when
grd3 : demand to manual steering sent = TRUE

grd4 : demand to manual steering sent without failure = TRUE

grd5 : demand phase 1 = TRUE

then
act1 : demand to manual steering received := TRUE

act2 : demand phase 2 := TRUE

end

Event RESULT predriver enable signal not sent =̂

refines RESULT predriver stop signal sent

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then
act1 : predriver enable signal sent := FALSE
act3 : predriver subphase 1 := TRUE

end

Event RESULT predriver enable signal not received =̂

refines RESULT predriver stop signal received

when
grd1 : predriver enable signal sent = FALSE
grd3 : predriver subphase 1 = TRUE

then

175

act1 : predriver enable signal received := FALSE
act2 : predriver subphase 2 := TRUE

end

Event RESULT predriver stops =̂

refines RESULT predriver stops

when
grd1 : predriver subphase 2 = TRUE
grd2 : predriver enable signal received = FALSE

then
act1 : predriver working := FALSE
act2 : predriver phase := TRUE
act3 : predriver subphase 1 := FALSE
act4 : predriver subphase 2 := FALSE

end

Event RESULT motor relay enable signal not sent =̂

refines RESULT motor relay open circuit demand sent

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then
act1 : motor relay enable signal sent := FALSE
act3 : motor relay subphase 1 := TRUE

end

Event RESULT motor relay enable signal not received =̂

refines RESULT motor relay open circuit demand received

when
grd1 : motor relay enable signal sent = FALSE
grd3 : motor relay subphase 1 = TRUE

then
act1 : motor relay enable signal received := FALSE
act2 : motor relay subphase 2 := TRUE

end

Event RESULT motor relay stops =̂

refines RESULT motor relay stops

when
grd1 : motor relay subphase 2 = TRUE
grd2 : motor relay enable signal received = FALSE

then
act1 : motor relay working := FALSE
act2 : motor relay phase := TRUE
act3 : motor relay subphase 1 := FALSE

176

act4 : motor relay subphase 2 := FALSE
end

Event RESULT fail safe relay enable signal not sent =̂

refines RESULT fail safe relay open circuit demand sent

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = TRUE

then
act1 : fail safe relay enable signal sent := FALSE
act3 : fail safe relay subphase 1 := TRUE

end

Event RESULT fail safe relay enable signal not received =̂

refines RESULT fail safe relay open circuit demand received

when
grd1 : fail safe relay enable signal sent = FALSE
grd3 : fail safe relay subphase 1 = TRUE

then
act1 : fail safe relay enable signal received := FALSE
act2 : fail safe relay subphase 2 := TRUE

end

Event RESULT fail safe relay stops =̂

refines RESULT fail safe relay stops

when
grd1 : fail safe relay subphase 2 = TRUE
grd2 : fail safe relay enable signal received = FALSE

then
act1 : fail safe relay working := FALSE
act2 : fail safe relay phase := TRUE
act3 : fail safe relay subphase 1 := FALSE
act4 : fail safe relay subphase 2 := FALSE

end

Event RESULT power supply stops =̂

extends RESULT power supply stops

when
grd1 : (predriver phase = TRUE∧predriver working = FALSE)∨(motor relay phase =

TRUE∧motor relay working = FALSE)∨(fail safe relay phase = TRUE∧
fail safe relay working = FALSE)

then
act1 : power supply phase := TRUE

act2 : power supply working := FALSE

act3 : predriver phase := FALSE

177

act4 : motor relay phase := FALSE

act5 : fail safe relay phase := FALSE

end

Event RESULT motor stops =̂

extends RESULT motor stops

when
grd1 : power supply phase = TRUE

grd2 : power supply working = FALSE

then
act1 : motor phase := TRUE

act2 : motor working := FALSE

end

Event RESULT transition to manual steering mode =̂

extends RESULT transition to manual steering mode

when
grd4 : motor phase = TRUE

grd3 : motor working = FALSE

then
act1 : input := TRUE

act2 : manual steering mode := TRUE

act3 : demand phase 1 := FALSE

act4 : demand phase 2 := FALSE

act5 : motor phase := FALSE

act6 : power supply phase := FALSE

end

Event RESULT not sending demand to manual steering =̂

extends RESULT not sending demand to manual steering

when
grd1 : input = FALSE

grd2 : inverter failure = FALSE ∧ predriver failure = FALSE

then
act1 : demand to manual steering sent := FALSE

act2 : demand phase 1 := TRUE

end

Event RESULT not receiving demand to manual steering =̂

extends RESULT not receiving demand to manual steering

when
grd2 : demand phase 1 = TRUE

grd3 : demand to manual steering sent = FALSE

then
act1 : demand to manual steering received := FALSE

178

act2 : demand phase 2 := TRUE

end

Event RESULT sending all enable signals =̂

refines RESULT not sending any stop signals

when
grd1 : demand phase 2 = TRUE
grd2 : demand to manual steering received = FALSE

then
act1 : motor relay enable signal sent := TRUE
act2 : predriver enable signal sent := TRUE
act3 : fail safe relay enable signal sent := TRUE
act4 : motor relay subphase 1 := TRUE
act5 : predriver subphase 1 := TRUE
act6 : fail safe relay subphase 1 := TRUE
act7 : predriver enable signal sent without failure := TRUE
act8 : motor relay enable signal sent without failure := TRUE
act9 : fail safe relay enable signal sent without failure := TRUE

end

Event RESULT receiving all enable signals =̂

refines RESULT not receiving any stop signals

when
grd1 : motor relay enable signal sent = TRUE
grd2 : predriver enable signal sent = TRUE
grd3 : fail safe relay enable signal sent = TRUE
grd4 : motor relay subphase 1 = TRUE
grd5 : predriver subphase 1 = TRUE
grd6 : fail safe relay subphase 1 = TRUE
grd7 : predriver enable signal sent without failure = TRUE
grd8 : motor relay enable signal sent without failure = TRUE
grd9 : fail safe relay enable signal sent without failure = TRUE

then
act1 : motor relay enable signal received := TRUE
act2 : predriver enable signal received := TRUE
act3 : fail safe relay enable signal received := TRUE
act4 : motor relay subphase 2 := TRUE
act5 : predriver subphase 2 := TRUE
act6 : fail safe relay subphase 2 := TRUE

end

Event RESULT predriver motor relay fail safe relay work =̂

refines RESULT predriver motor relay fail safe relay work

when
grd1 : motor relay subphase 2 = TRUE

179

grd2 : motor relay enable signal received = TRUE
grd3 : predriver subphase 2 = TRUE
grd4 : predriver enable signal received = TRUE
grd5 : fail safe relay enable signal received = TRUE
grd6 : fail safe relay subphase 2 = TRUE

then
act1 : motor relay working := TRUE
act2 : predriver working := TRUE
act3 : fail safe relay working := TRUE
act4 : motor relay phase := TRUE
act5 : predriver phase := TRUE
act6 : fail safe relay phase := TRUE
act7 : predriver subphase 1 := FALSE
act8 : predriver subphase 2 := FALSE
act9 : motor relay subphase 1 := FALSE
act10 : motor relay subphase 2 := FALSE
act11 : fail safe relay subphase 1 := FALSE
act12 : fail safe relay subphase 2 := FALSE

end

Event RESULT power supply works =̂

extends RESULT power supply works

when
grd1 : motor relay working = TRUE

grd2 : motor relay phase = TRUE

grd3 : predriver working = TRUE

grd4 : predriver phase = TRUE

grd5 : fail safe relay working = TRUE

grd6 : fail safe relay phase = TRUE

then
act1 : power supply phase := TRUE

act2 : power supply working := TRUE

act3 : predriver phase := FALSE

act4 : motor relay phase := FALSE

act5 : fail safe relay phase := FALSE

end

Event RESULT motor works =̂

extends RESULT motor works

when
grd1 : power supply phase = TRUE

grd2 : power supply working = TRUE

then
act1 : motor phase := TRUE

180

act2 : motor working := TRUE

end

Event RESULT normal mode =̂

extends RESULT normal mode

when
grd3 : motor phase = TRUE

grd4 : motor working = TRUE

then
act1 : input := TRUE

act2 : manual steering mode := FALSE

act3 : demand phase 1 := FALSE

act4 : demand phase 2 := FALSE

act5 : power supply phase := FALSE

act6 : motor phase := FALSE

end

END

181

Bibliography

[AAB+09] Benjamin Aziz, Alvaro Arenas, Juan Bicarregui, Christophe Ponsard, and
Philippe Massonet. From goal-oriented requirements to event-b specifica-
tions. 2009.

[Abr06] Jean-Raymond Abrial. Formal methods in industry: achievements, prob-
lems, future. In Proceedings of the 28th international conference on Soft-
ware engineering, pages 761–768. ACM, 2006.

[Abr07] J-R Abrial. A system development process with event-b and the rodin
platform. In Formal Methods and Software Engineering, pages 1–3.
Springer, 2007.

[Abr10] J.R. Abrial. Modeling in Event-B: system and software engineering. Cam-
bridge University Press, 2010.

[ACH+94] Rajeev Alur, Costas Courcoubetis, T Henzinger, P Ho, Xavier Nicollin,
Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic anal-
ysis of hybrid systems. In 11th International Conference on Analysis
and Optimization of Systems Discrete Event Systems, pages 329–351.
Springer, 1994.

[ASZ12] Jean-Raymond Abrial, Wen Su, and Huibiao Zhu. Formalizing hybrid
systems with event-b. In Abstract State Machines, Alloy, B, VDM, and
Z, pages 178–193. Springer, 2012.

[Bib87] Wolfgang Bibel. Automated theorem proving. 1987.

[But09] Michael Butler. Decomposition structures for event-b. In Integrated For-
mal Methods, pages 20–38. Springer, 2009.

[C+05] RODIN Consortium et al. Rodin deliverable D7-
Event B language. Technical report, Available at
http://rodin.cs.ncl.ac.uk/deliverables/rodinD7.pdf, 2005.

[CGP99] Edmund M Clarke, Orna Grumberg, and Doron A Peled. Model checking.
MIT press, 1999.

182

[DB09] Kriangsak Damchoom and Michael Butler. Applying event and machine
decomposition to a flash-based filestore in event-b. In Formal Methods:
Foundations and Applications, pages 134–152. Springer, 2009.

[DVL96] Robert Darimont and Axel Van Lamsweerde. Formal refinement patterns
for goal-driven requirements elaboration. ACM SIGSOFT Software En-
gineering Notes, 21(6):179–190, 1996.

[DVLF93] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Science of computer programming,
20(1):3–50, 1993.

[Ecl07] IDE Eclipse. The eclipse foundation, 2007.

[Für09] Andreas Fürst. Design patterns in event-b and their tool support. Mas-
ter’s thesis, Department of Computer Science, ETH Zurich, 2009.

[GDPALN+09] Jorge Garćıa-Duque, José J Pazos-Arias, Mart́ın López-Nores, Yolanda
Blanco-Fernández, Ana Fernández-Vilas, Rebeca P Dı́az-Redondo,
Manuel Ramos-Cabrer, and Alberto Gil-Solla. Methodologies to evolve
formal specifications through refinement and retrenchment in an analysis–
revision cycle. Requirements engineering, 14(3):129–153, 2009.

[Gil70] Arthur Gill. Finite-state machines. IEEE TRANSACTIONS ON COM-
PUTERS, 19(11), 1970.

[HBGL95] Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw.
Scr: A toolset for specifying and analyzing requirements. In Computer
Assurance, 1995. COMPASS’95. Systems Integrity, Software Safety and
Process Security. Proceedings of the Tenth Annual Conference on, pages
109–122. IEEE, 1995.

[Hei02] Constance L Heitmeyer. Software cost reduction. Wiley Online Library,
2002.

[HL96] Mats Per Erik Heimdahl and Nancy G Leveson. Completeness and con-
sistency in hierarchical state-based requirements. Software Engineering,
IEEE Transactions on, 22(6):363–377, 1996.

[HL11] Stefan Hallerstede and Michael Leuschel. Finding deadlocks of event-b
models by constraint solving. Electronic Notes in Theoretical Computer
Science, 280, 2011.

[ISO11] CD ISO. 26262, road vehicles–functional safety, 2011.

[Jon90] Cliff B Jones. Systematic software development using VDM, volume 2.
Prentice Hall Englewood Cliffs, 1990.

183

[KH12] T. Kobayashi and S. Honiden. Towards refinement strategy planning for
Event-B. arXiv preprint arXiv:1210.7036, 2012.

[KKK95] Eun Mi Kim, Shinji Kusumoto, and Tohru Kikuno. An approach to
safety and correctness verification of software design specification. In
Software Reliability Engineering, 1995. Proceedings., Sixth International
Symposium on, pages 78–83. IEEE, 1995.

[Lut93] R.R. Lutz. Analyzing software requirements errors in safety-critical, em-
bedded systems. In Requirements Engineering, 1993., Proceedings of
IEEE International Symposium on, pages 126–133. IEEE, 1993.

[MGL11] Abderrahman Matoussi, Frédéŕıc Gervais, and Régine Laleau. A goal-
based approach to guide the design of an abstract event-b specification. In
Engineering of Complex Computer Systems (ICECCS), 2011 16th IEEE
International Conference on, pages 139–148. IEEE, 2011.

[OL07] Martin Ouimet and Kristina Lundqvist. Formal software verification:
Model checking and theorem proving. Technical report, Embeded Systems
Laboratory, Massachusetts Institute of Technology, 2007.

[PD11] Christophe Ponsard and Xavier Devroey. Generating high-level event-b
system models from kaos requirements models. 2011.

[PMPS01] Zs Pap, I Majzik, A Pataricza, and A Szegi. Completeness and consistency
analysis of uml statechart specifications. In Proc. of IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop, pages 83–90,
2001.

[REB07] A. Rezazadeh, N. Evans, and M. Butler. Redevelopment of an industrial
case study using Event-B and Rodin. BCS-FACS Christmas 2007 Meeting
- Formal Methods In Industry, London, 2007.

[ROD13] RODIN - Rigorous Open Development Environment for Complex Sys-
tems, 2013.

[SAHZ11] W. Su, J.R. Abrial, R. Huang, and H. Zhu. From requirements to de-
velopment: methodology and example. Formal Methods and Software
Engineering, pages 437–455, 2011.

[SAZ12] W. Su, J.R. Abrial, and H. Zhu. Complementary methodologies for de-
veloping hybrid systems with Event-B. Formal Methods and Software
Engineering, pages 230–248, 2012.

[SB06] Colin Snook and Michael Butler. Uml-b: Formal modeling and design
aided by uml. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 15(1):92–122, 2006.

184

[SBS09] Mar Yah Said, Michael Butler, and Colin Snook. Language and tool
support for class and state machine refinement in uml-b. In FM 2009:
Formal Methods, pages 579–595. Springer, 2009.

[SFRB11] A. Salehi Fathabadi, A. Rezazadeh, and M. Butler. Applying atomicity
and model decomposition to a space craft system in Event-B. NASA
Formal Methods, pages 328–342, 2011.

[SH01] Keng Siau and Terence Aidan Halpin. Unified modeling language. IGI
Global, 2001.

[Sil12] R. Silva. Lessons learned/sharing the experience of developing a metro
system case study. arXiv preprint arXiv:1210.7030, 2012.

[SP96] Atish P Sinha and Doug Popken. Completeness and consistency checking
of system requirements: An expert agent approach. Expert Systems with
Applications, 11(3):263–276, 1996.

[SS10] D.J. Smith and KG Simpson. Safety critical systems handbook, 2010.

[VL09] A. Van Lamsweerde. Requirements engineering: from system goals to
UML models to software specifications, volume 3. Wiley, 2009.

[VLDM95] Axel Van Lamsweerde, Robert Darimont, and Philippe Massonet. Goal-
directed elaboration of requirements for a meeting scheduler: problems
and lessons learnt. In Requirements Engineering, 1995., Proceedings of the
Second IEEE International Symposium on, pages 194–203. IEEE, 1995.

[YJ+11] Faqing Yang, Jean-Pierre Jacquot, et al. An event-b plug-in for creat-
ing deadlock-freeness theorems. In 14th Brazilian Symposium on Formal
Methods, 2011.

[YSLS08] Lian Yu, Shuang Su, Shan Luo, and Yu Su. Completeness and consistency
analysis on requirements of distributed event-driven systems. In Theoret-
ical Aspects of Software Engineering, 2008. TASE’08. 2nd IFIP/IEEE
International Symposium on, pages 241–244. IEEE, 2008.

[ZG03] D. Zowghi and V. Gervasi. On the interplay between consistency, com-
pleteness, and correctness in requirements evolution. Information and
Software Technology, 45(14):993–1009, 2003.

185

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Overview
	Software safety requirements specifications
	Modeling and verifying the requirements specifications in Event-B
	An evolutionary framework of requirements correctness
	KAOS method

	Shortcomings of Event-B
	Proposed Approach
	Thesis Structure

	Technical Background
	Event-B
	Machine and context
	Proof obligations

	The evolutionary framework
	The KAOS method
	Linear Temporal Logic
	Goal, domain property, and their formal definitions
	Goal model
	Goal refinement patterns
	Generic refinement tree for safety goals

	Motivated examples
	Ambiguity of the correctness in Event-B
	Lacks of the requirements analysis and guideline for the refinement

	Preservation of correctness of safety requirements in Event-B
	Rationale
	Converting Event-B into Evolutionary Framework
	Preservation of Correctness in Event-B Refinement
	Consistency
	Relative Completeness
	Domain Evolution
	Extension and results

	Example
	Discussion
	Summary

	ORDER model: a KAOS-based graphical approach to Event-B modeling
	Rationale
	ORDER model
	Refinement tree diagram
	Components and links
	Construction rules
	Transformation to Event-B model
	Correctness of the refinement tree

	Event transition diagram
	Components and links
	Association with the refinement tree diagram
	Example

	Refinement patterns
	Guideline for using ORDER model
	Summary

	ORDER model: refinement patterns
	Format of pattern document
	Phase-decomposition refinement pattern
	Description and applicability
	Illustration
	Transformation to Event-B model
	Constraint
	Example

	Event-forking refinement pattern
	Description and applicability
	Illustration
	Transformation to Event-B model
	Constraint
	Example
	Notes

	Case-decomposition refinement pattern
	Description and applicability
	Illustration
	Transformation to Event-B model
	Constraint
	Example
	Notes

	Milestone-driven refinement pattern
	Description and applicability
	Illustration
	Transformation to Event-B model
	Constraint
	Example

	Case study and evaluation
	Powered sliding door
	Overview
	The first level
	The second level
	The third level
	The fourth level

	Automatic gate controller
	Overview
	The first level
	The second level
	The third level
	The fourth level
	The fifth level

	Electrical Power Steering (EPS) system
	Overview
	The first level
	The second level
	The third level
	The fourth level
	The fifth level
	The sixth level
	The seventh level
	The eighth level

	Result
	Discussion
	Coverage of the patterns
	Scalability of the patterns
	Preservation of the correctness
	Avoidance of Event-B deadlock
	Benefits of the phase-based approach
	Overcoming the shortcomings of Event-B

	Summary

	Related work
	Correctness, completeness and consistency of requirements specification
	Verification of requirements in requirements evolution
	Event-B patterns
	Diagrams supporting Event-B modeling
	Guideline for using Event-B refinement
	Phase-based approach for Event-B modeling
	KAOS and Event-B
	Semantics of Event-B refinement

	Conclusions and future work
	Conclusion
	Future works
	Automated tool for transforming the ORDER model to Event-B
	Extension of the ORDER model
	Modularization
	Formalization of the ORDER model

	Appendix Powered sliding door case study
	Refinement tree diagram
	Refinement tree diagram
	Initial model
	First refinement
	Second refinement
	Third refinement

	Description of events
	Initial model
	First refinement
	Second refinement
	Third refinement

	Description of carrier sets, constants, and variables
	Event-B specification
	Contexts
	Initial model
	First refinement
	Second refinement
	Third refinement

	Appendix Automatic gate controller case study
	Refinement tree diagram
	Event transition diagram
	Initial model
	First refinement
	Second refinement
	Third refinement
	Fourth refinement

	Description of events
	Initial model
	First refinement
	Second refinement
	Third refinement
	Fourth refinement

	Descriptions of carrier sets, constants, and variables
	Event-B specification
	Contexts
	Initial model
	First refinement
	Second refinement
	Third refinement
	Fourth refinement

	Appendix Electrical Power Steering (EPS) system case study
	Refinement tree diagram
	Descriptions of events
	Initial model
	First refinement
	Second refinement
	Third refinement
	Fourth refinement
	Fifth refinement
	Sixth refinement
	Seventh refinement

	Descriptions of variables
	Event-B specification
	Initial model
	First refinement
	Second refinement
	Third refinement
	Fourth refinement
	Fifth refinement
	Sixth refinement
	Seventh refinement

	Reference

