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Abstract—This paper proposes a three-layer model for esti-
mating the expressed emotions in a speech signal based on a
dimensional approach. Most of the previous studies using the
dimensional approach mainly focused on the direct relationship
between acoustic features and emotion dimensions (valence,
activation, and dominance). However, the acoustic features that
correlate to valence dimension are less numerous, less strong,
and the valence dimension has being particularly difficult to
be predicted. The ultimate goal of this study is to improve the
dimensional approach in order to precisely predict the valence
dimension. The proposed model consists of three layers: acoustic
features, semantic primitives, and emotion dimensions. We aimed
to construct a three-layer model in imitation of the process
how human perceive and recognize emotions. In this study,
we first investigated the correlations between the elements of
the two-layered model and elements of the three-layered model.
In addition, we compared the two models by applying fuzzy
inference system (FIS) to estimate emotion dimensions. In our
model FIS was used to estimate semantic primitives from acoustic
features, then to estimate emotion dimensions from the estimated
semantic primitives. The experimental results show that the
proposed three-layered model outperforms the traditional two-
layered model.

I. INTRODUCTION

Affective computing is a new and exciting topic of research
that relates to capturing and recognizing emotions through
different modalities. It is feasible to build architectures and
techniques to facilitate computers in making affective deci-
sions and expressing certain emotional states through various
modes of human-computer interaction [1]. In other words,
it is an attempt to make a computer capable of observing,
interpreting and generating emotional states [2].

In this context, a large number of studies on emotional
speech and its classification have been conducted [3], [4].
As for automatic emotion recognition, there are several ap-
proaches exist such as those based on K-nearest neighborhood
(KNN)[1], Gaussian mixture model (GMM) [5], and hidden
Markov Model (HMM) [6]. However, most of the techniques
focus only on the classification of emotional states as discrete
categories such as happy, sad, anger, fear, surprise, and disgust
[7], [8].

In contrast, we believe it is also important to detect the
variability within a certain emotion (e.g., “a little sad” or
“very happy”) in addition to the emotion categories. This is
evidenced by the fact that we often soften or emphasize such

emotional expressions flexibly depending on the situation in
actual human speech communication. Therefore, a single label
or any small number of discrete categories may not accurately
reflect the complexity of the emotional states conveyed in
everyday interaction [9]. Hence, a number of researchers
advocate the use of dimensional description of human emotion,
where emotional states are not classified into one of the
emotion categories but estimated on a continuous-valued scale
in a multi-dimensional space (e.g., [10], [11], [12], [13], [14]).

In the categorical approach, where each affective display is
classified into a single category, a complex mental or affective
state or blended emotions perhaps too difficult to handle [15].
Contrarily, in the dimensional approach, emotional transitions
can be easily captured, the numerical representations are
more appropriate to reflect the gradient nature of emotion
expressions, in which observers can indicate their impression
of moderate (less intense) and authentic emotional expressions
on several continuous scales [16], [17].

In this work, the three-dimensional continuous model is
adopted in order to represent the emotional states using
emotion dimensions i.e. Valence (V), Activation (A) and
Dominance (D). This approach is chosen because it exhibits
great potential to model the occurrence of emotions in real
world as in a realistic scenario, emotions are not generated
in a prototypical or pure modality, but rather than in complex
emotional states, which are a mixture of emotions with varying
degrees of intensity or expressiveness [18]. Therefore, this
approach allows a more flexible interpretation of emotional
states [19].

The traditional dimensional model for emotion recognition
from speech signal allows the representation of any emotional
state or blended emotions. However, this model has the follow-
ing problems: (i) it is difficult to estimate with a high precision
the emotion dimensions based only on acoustic information
[20]; (ii) the dimensional approach is mostly based on the
statistical relationship between the acoustic features and the
emotion dimensions [21]; and (iii) the acoustic features that
correlate to the valence dimension are less numerous, less
strong and inconsistent [11]. Due to these limitations, the
valence dimension has been particularly difficult to predict
by using the acoustic features directly. The ultimate goal of
our work is to improve the traditional dimensional method in



order to precisely predict the valence dimension as well as
improve the activation and dominance.

For simplicity we called the traditional dimensional model
as a two-layered model, because this model was based on
the relationship between acoustic features layer and emotion
dimension layer. There are several studies reported based
on the two-layered model such as by Grimm et al. 2007,
which attempted to estimate the emotion dimensions valence,
activation and dominance from the acoustic features by using a
fuzzy inference system [22], [23]. However, they found that the
estimation was better for activation and dominance than for va-
lence. Furthermore, many researchers also tried to investigate a
new acoustic parameters to improve the valence estimation, as
reported by [24] Wu et al. 2011, which attempted to estimate
the emotion dimensions by combining spectral and prosodic
features. However, they found that valence was still poorly
estimated.

From the above mentioned studies, we can conclude that,
the two-layered model is insufficient to model the relationship
between the acoustic features and emotion dimension because
this model does not imitate the human perception. Humans
usually describe emotions by using semantic primitives (ad-
jectives) and each semantic primitive is conveyed by certain
acoustic features [25]. Thus, semantic primitives act as the
bridge between emotion dimensions and acoustic features.
Therefore, it is not only necessary to consider how acoustic
features of speech affect the judgement of emotion dimensions,
but also to understand how the vagueness nature of humans
affects this judgement. The acquirement of this understanding
is the key point to improve emotion dimensions estimation.

In line with these findings, a three-layered model is pro-
posed in this paper. This model consists of three layers:
emotion dimensions valence, activation and dominance con-
stitute the top layer, semantic primitives constitute the middle
layer, and acoustic features in the bottom layer. Our model
is based on the semantic primitive concept, which plays a
large role in the way we perceive emotional speech and
measure their similarity. Semantic primitives in our study
are adjectives which describe the sounds such as “Dark” or
“Slow”. To our knowledge, the only previous attempt at using
the semantic primitive concept for the purpose of modeling
human perception is reported by [25].

In this paper, the feasibility of the three-layered model to
improve emotion dimensions estimation for valence, activa-
tion, and dominance was investigated. In order to achieve this
goal we investigated the correlations between the elements
of the three-layered model i.e. (i) the correlations between
acoustic features layer and semantic primitive layer, and (ii)
the correlations between semantic primitives layer and emotion
dimension layer. Moreover, the correlations between the ele-
ments of the two-layered model i.e. the correlations between
acoustic features layer and emotion dimension layer was also
studied. Then, the correlations between the two models can
be compared in order to prove that the three-layered model is
well suited for estimating the emotion dimensions. After that,
an emotion recognition system based on the proposed three-

layer model was constructed. In this system, Fuzzy Inference
System (FIS) was applied twice, firstly, to estimate semantic
primitives from acoustic features, then, to estimate emotion
dimensions values from the estimated semantic primitives in
the first step. Finally, the proposed emotion recognition system
which based on the three-layered model was assessed by
comparing the results with the conventional system which is
based on the two-layered model.

The remainder of this paper is organized as follows. Section
II introduces the the used database, acoustic features and ex-
periment setup to evaluate semantic primitives and emotion di-
mensions. Section III explains a multi-layer emotional speech
perception model and compares the relationship between the
elements of the two-layered model and the elements of the
three-layered model in order to prove that the relation between
the elements of the three-layered model are stronger than the
relation between the elements of the two-layered model. In
Sec. IV we present the details of speech emotion recognition
system for estimating the emotion dimensions values from
speech using FIS classifier. Finally, Sec. V describes our
conclusions.

II. DATA AND EXPERIMENT SETUP

In this section, the database and acoustic features used in
this study are introduced. Moreover, the semantic primitive and
emotion dimension are evaluated by conducting two listening
test using human subjects as described in next subsections.

A. Speech Material and Subjects

For this study, we use the multi-emotion single speaker
Fujitsu database produced and recorded by Fujitsu Laboratory.
A professional actress was asked to produce utterances using
5 emotional speech categories, i.e., neutral, joy, cold anger,
sadness, and hot anger. In the database, there are 20 different
Japanese sentences. Each sentence has one utterance in neutral
and two utterances in each of the other categories. Thus, for
each sentence there are 9 utterances and for all 20 sentences
there are 180 utterances. The sampling frequency was 22050
Hz, with 16 bit resolution.

Subjects for listening tests were 11 graduate students, native
Japanese speakers (9 men and 2 women) without any hearing
troubles.

B. Acoustic Features

In this research, for constructing speech emotion recognition
system, acoustic features are very important factor needed to
be investigated. Therefore, the most relevant acoustic features
which have been successful in related works and features
used for other similar task were selected. Those acoustic cues
considered significant for prosody largely are extracted from
fundamental frequency, intensity, and duration. In addition,
voice quality is another major focus that researchers have paid
much attention to. Therefore, acoustic features which originate
from F0, power envelope, power spectrum, and voice quality
are extracted by the high quality speech analysis-synthesis sys-
tem STRAIGHT [26]. Moreover, acoustic features which are



related to duration are extracted by segmentation, eventually
extracting a set of 21 acoustic features which can be grouped
in several subgroups:
Pitch related features: f0 mean value of rising slope (F0 RS),
highest pitch (F0 HP), average pitch (F0 AP) and rising slope
of the first accentual phrase (F0 RS1).
Power envelope related features: mean value of power
range in accentual phrase (PW RAP), power range (PW R),
rising slope of the first accentual phrase (PW RS1), the ratio
between the average power in high frequency portion (over 3
kHz) and the average power (PW RHT);
Power spectrum related features: first formant frequency
(SP F1), second formant frequency (SP F2), third formant
frequency (SP F3), spectral tilt (SP TL), spectral balance
(SP SB);
Duration related features: total length (DU TL), consonant
length (DU CL), ratio between consonant length and vowel
length (DU RCV).
These above mentioned 16 acoustic feature, were selected
from the work by Huang and Akagi, where they proved
that these acoustic features have a significant correlation with
semantic primitives [25]. In addition to these 16 acoustic
features, 5 new parameters related to voice quality are added,
because voice quality is one of the most important cues for
the perception of expressive speech.
Voice quality: the mean value of the difference between the
first harmonic and the second harmonic H1-H2 for vowel
/a/,/e/,/i/,/o/, and /u/ per utterance MH A, MH E, MH I,
MH O, and MH U.

C. Semantic Primitive Evaluation

Semantic primitives (adjectives) are required as the bridge
between the acoustic features and the emotion dimensions in
our emotion recognition system. The used adjectives were
(Bright, Dark, High, Low, Strong, Weak, Calm, Unstable,
Well-modulated, Monotonous, Heavy, Clear, Noisy, Quiet,
Sharp, Fast, And Slow) they are originally from [25]. These
adjectives were selected as candidates for semantic primitives
because they reflect a balanced selection of widely used
adjectives that describe emotional speech. For the evaluation,
we used a listening test. In this test, subjects were asked to rate
the whole database according to the degree of each semantic
primitives on a 5-point scale (“1-Does not feel at all”, “2-
Seldom feels” , “3-Feels a little” , “4-feels” , “5-Feels very
much”. The individual subject ratings were averaged for each
semantic primitive per utterance. The inter-rater agreement
was measured by means of pairwise Pearson’s correlations
between two subjects’ ratings, separately for each semantic
primitive. It was found that all subjects agreed from moderate
to a very high degree.

D. Emotion Dimension Evaluation

The Fujitsu database was evaluated by 11 subjects along
a three dimensions valence, activation, and dominance by
using listening test. For each utterance, subjects were asked to
choose one out of 5 given degrees depicting the level for each

dimension. We used a 5-point scale {-2, -1, 0, 1, 2}: valence
(from -2 very negative to +2 very positive), activation (from
-2 very calm to +2 very exited), and dominance (from -2 very
weak to +2 very strong). The average of the subjects rating
for each emotion dimension was calculated per utterance. The
subjects show a high inter-rater agreement, it was found that
all subjects agreed to a high degree on the valence, activation,
and dominance the correlations were above 0.84, 0.75, and
0.80 respectively.

III. MULTI-LAYER EMOTIONAL SPEECH PERCEPTION
MODEL

In this section, we investigate the effectiveness of the thee-
layered model which imitate the human perception to improve
the relationship between acoustic features and emotion di-
mensions. To accomplish this task, the correlations between
elements of the traditional two-layer model were compared
with the correlations between elements of the proposed three-
layer model. In case of the two-layered model, we investigate
the correlations between the acoustic features and emotion
dimensions directly as described in Sec III. A. While, in
case of the proposed model, we investigate the correlations
between the acoustic features and the semantic primitives,
moreover, the correlations between the semantic primitives and
the emotion dimensions see Sec III. B.

A. Using the Two-Layered Model

In order to investigate the relationship between acoustic
features and emotion dimensions by using the traditional two-
layered model, the correlations coefficients between extracted
parameter values for each acoustic feature and evaluated scores
of each dimension are calculated. Let fm = {fm,n}(n =

TABLE I
THE CORRELATION COEFFICIENTS BETWEEN THE ACOUSTIC FEATURES
AND THE EMOTION DIMENSIONS I.E. VALENCE (V), ACTIVATION (A),

AND DOMINANCE (D). (#: IS THE NUMBER OF SIGNIFICANT
CORRELATIONS)

m Acoustic Feature V A D #
1 MH A -0.23 -0.85 -0.83 2
2 MH E -0.08 -0.45 -0.45 2
3 MH I 0.27 -0.03 -0.17 0
4 MH O -0.13 -0.76 -0.75 2
5 MH U 0.07 -0.17 -0.23 0
6 F0 RS 0.34 0.78 0.65 2
7 F0 HP 0.29 0.77 0.64 2
8 F0 AP -0.08 -0.12 -0.12 0
9 F0 RS1 -0.09 -0.16 -0.17 0
10 PW RAP 0.24 0.53 0.50 2
11 PW R -0.47 0.33 0.37 1
12 PW RS1 -0.02 -0.22 -0.23 0
13 PW RHT 0.17 0.39 0.36 0
14 SP F1 -0.21 0.14 0.13 0
15 SP F2 0.04 0.13 0.13 0
16 SP F3 0.00 0.17 0.21 0
17 SP TL 0.40 0.28 0.27 0
18 SP SB 0.05 0.40 0.36 0
19 DU TL -0.12 -0.31 -0.32 0
20 DU CL -0.27 -0.61 -0.59 2
21 DU RCV -0.29 -0.60 -0.57 2

# 1 8 8



TABLE II
THE CORRELATION COEFFICIENTS BETWEEN THE ACOUSTIC FEATURES AND SEMANTIC PRIMITIVES. (#: IS THE NUMBER OF SIGNIFICANT

CORRELATIONS)
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1 MH A -0.7 0.8 -0.7 0.7 -0.8 0.8 0.8 -0.8 -0.7 0.6 0.6 -0.4 -0.8 0.8 -0.7 -0.5 0.5 16
2 MH E -0.4 0.5 -0.4 0.4 -0.5 0.6 0.5 -0.5 -0.4 0.3 0.4 -0.2 -0.5 0.6 -0.5 -0.3 0.3 8
3 MH O -0.6 0.7 -0.6 0.6 -0.7 0.8 0.7 -0.7 -0.6 0.5 0.5 -0.3 -0.7 0.8 -0.7 -0.4 0.4 14
4 F0 RS 0.8 -0.9 1.0 -1.0 0.6 -0.7 -0.8 0.7 0.7 -0.7 -0.9 0.5 0.8 -0.9 0.6 0.5 -0.5 17
5 F0 HP 0.8 -0.8 0.9 -0.9 0.6 -0.7 -0.8 0.8 0.8 -0.7 -0.8 0.5 0.8 -0.9 0.6 0.5 -0.5 17
6 PW RAP 0.5 -0.6 0.5 -0.5 0.4 -0.5 -0.5 0.4 0.4 -0.4 -0.5 0.3 0.5 -0.5 0.4 0.3 -0.3 9
7 PW R -0.1 0.0 0.1 -0.1 0.5 -0.4 -0.5 0.5 0.4 -0.5 0.1 -0.4 0.5 -0.4 0.6 0.3 -0.3 6
8 DU TL -0.1 0.2 -0.1 0.2 -0.3 0.3 0.2 -0.2 -0.2 0.1 0.1 -0.1 -0.2 0.2 -0.2 -0.5 0.5 2
9 DU CL -0.5 0.6 -0.5 0.5 -0.5 0.6 0.5 -0.5 -0.4 0.3 0.5 -0.3 -0.5 0.5 -0.5 -0.6 0.6 14
10 DU RCV -0.6 0.7 -0.6 0.6 -0.5 0.6 0.6 -0.5 -0.4 0.3 0.6 -0.4 -0.6 0.7 -0.5 -0.3 0.3 12

# 7 8 7 7 8 8 9 8 4 5 7 2 9 8 8 5 5

TABLE III
THE CORRELATION COEFFICIENTS BETWEEN THE SEMANTIC PRIMITIVES

AND THE EMOTION DIMENSIONS I.E. VALENCE (V), ACTIVATION (A),
AND DOMINANCE (D). (#: IS THE NUMBER OF SIGNIFICANT

CORRELATIONS)

m Semantic Primitive V A D #
1 Bright 0.76 0.69 0.54 3
2 Dark -0.59 -0.86 -0.76 3
3 High 0.43 0.79 0.64 2
4 Low -0.45 -0.79 -0.65 3
5 Strong -0.15 0.91 0.96 2
6 Weak -0.04 -0.95 -0.98 2
7 Calm 0.01 -0.94 -0.91 2
8 Unstable -0.11 0.90 0.88 2
9 Well-modulated 0.01 0.84 0.78 2
10 Monotonous 0.05 -0.74 -0.67 2
11 Heavy -0.72 -0.64 -0.48 3
12 Clear 0.96 0.35 0.21 1
13 Noisy -0.17 0.89 0.88 2
14 Quiet -0.11 -0.93 -0.89 2
15 Sharp -0.23 0.89 0.92 2
16 Fast 0.04 0.76 0.75 2
17 Slow -0.11 -0.73 -0.71 2

# 5 16 16

1, 2, . . . , N) be the sequence of values of the mth acoustic
feature, m = 1, 2, . . . , M , M is the number of extracted
acoustic features in this study. Moreover, let x(i) = {x(i)

n }(n =
1, 2, . . . , N) be the sequence of values of the ith emotion di-
mension, i ∈ {V,A, D}, where N is the number of utterances
in our database. Then the correlation coefficient R

(i)
m between

the acoustic parameter fm and the emotion dimension x(i) can
be determined by the following equation:

R(i)
m =

∑N
n=1(fm,n − fm)(x(i)

n − x(i))√∑N
n=1(fm,n − fm)2

√∑N
n=1(x

(i)
n − x(i))2

(1)

where fm, and x(i) are the arithmetic mean for the acoustic
feature and emotion dimension respectively. Table I shows
the correlation coefficients for all acoustic features and all
emotion dimensions. From this table, it is evident that eight
acoustic features have high correlation with the activation and

dominance dimensions as demonstrated by the absolute value
of the correlation, which was greater than 0.45 as shown
in bold in the table. Furthermore the emotion dimension
valence shows a smaller absolute values of correlations than
the activation and dominance. This result is consistent with
many previous studies [27], [11]. The poor correlation between
the acoustic features and valence is the reason behind the very
low performance for valence estimation using the traditional
approach.

B. Using the Three-Layered Model

1) The relation between acoustic features and semantic
primitives: The correlation coefficients were calculated be-
tween extracted parameter values for each acoustic feature and
evaluated scores of each semantic primitives by using equation
similar to Eq. 1. The correlation coefficients for 10 acoustic
features which have a significant correlation with semantic
primitives are presented in Table II. Most of the semantic
primitives gave a high correlation with at least 5 acoustic
features except for “Clear” and “Well-modulated” which gave
only 2 and 4 significant correlation respectively.

2) The relation between semantic primitives and emotion
dimensions: In order to study the relationship between se-
mantic primitives layer and emotion dimensions layer, we
calculated the correlation coefficients between the semantic
primitives’ ratings and the emotion dimensions ratings as
shown in Table III by using equation similar to Eq. 1. The
most numerous and strongest correlations were found for the
activation and dominance. The most important result is that,
we found 5 semantic primitives have a significant correlation
with valence. This result indicate that the correlations between
valence and semantic primitives were better than the correla-
tions between acoustic features and valence.

C. Results and Discussion for the Statistical Analysis

In Subsection IV.A and IV.B we investigated the correlations
between the elements of the two-layered model and also
between the elements of the three-layered model. The most



(a) The perceptual model of Valence.

(b) The perceptual model of Activation.

(c) The perceptual model of Dominance.

Fig. 1. The perceptual model of Emotion Dimensions.

fundamental result is that, by using the two-layered model, it
was observed that the most numerous and strongest correla-
tions were found for the activation and dominance, while the
correlations between the acoustic features and the valence were
very weak. Although we used a new acoustic features such as
voice quality, the correlation with valence is still very weak
using the traditional two-layered model, a trend which is also
reported in other dimensional emotion recognition studies [11].
Due to this drawback, most of the previous studies achieved
a very good performance for the activation and dominance

estimation, while a lower performance was obtained for the
valence [23], [24].

On the other hand, it was found that 10 acoustic features
shows a very good correlation with the semantic primitive as
shown in Table II. The semantic primitives in general show
higher absolute values of correlation with at least 5 acoustic
features. In addition, the correlation between emotion dimen-
sion and semantic primitives are stronger than the correlation
between emotion dimension and acoustic features. The most
important result is that, it was observed that the semantic



Fig. 2. Block diagram of the proposed emotion recognition system based on the three-layered model.

primitives gave higher correlations with valence dimension
than the acoustic features. Therefore, the strong correlations
between the semantic primitives and the valence will improve
the prediction of this dimension.

Based on the results described in this section, a perceptual
model for each emotion dimension was built. Fig. 1(a),(b),
and (c) illustrate the perceptual model for valence, activation,
and dominance, respectively. In this figure, the solid lines
indicate a positive correlation, and the dashed ones, a negative
correlation. For the relationship between emotion dimensions
and semantic primitives, the highest values are shown in the
thick lines, others are shown in thin lines. For the relationship
between semantic primitives and acoustic features, the thicker
the line is, the higher the correlation. For example, the model
in Fig. 1(b) describes that an active speech utterance will sound
strong, unstable, noisy and sharp but not dark, weak, calm or
quiet. Moreover this figure shows which acoustic features are
most related to which semantic primitives of each emotion
dimension.

IV. SPEECH EMOTION RECOGNITION SYSTEM

In the previous section we proved that the correlations
between elements of the three-layered model were stronger
than the correlations between the elements of the two-layered
model. The results from the previous section reveals that the
correlation between acoustic features and emotion dimensions
become stronger by adding the semantic primitives between
them, which mean that we can improve the emotion dimension
estimation by building an emotion recognition system based
on the three-layered model. The task of emotion estimator is to
map the acoustic features to a real-valued emotion dimensions.

The novelty of this study is the use of the three-layered model
in order to estimate the emotion dimension simply by mapping
the acoustic features into a real-valued semantic primitives
followed by mapping the semantic primitives to a real-valued
emotion dimensions. We analyzed using Fuzzy Inference Sys-
tem estimator as briefly described in the following subsection.

Figure 2. shows a block diagram of the proposed recognition
system based on the three-layered model, this system consists
of two main stages. The first stage is model creation which
is employed for training the model, and the second stage is
applying emotion recognition to test the model. Our system
was constructed by using FIS to build the mathematical
relationship between the elements of the three-layered model
as follows: (1) FIS1 is used to map the acoustic features
onto semantic primitives, (2) and also FIS2 is used to map
the semantic primitives onto emotion dimensions. The desired
output is not a classification into one of a finite set of cate-
gories but an estimation of a continuous-valued for emotion
dimensions: Valence, Activation, and Dominance.

A. Fuzzy Inference System

A FIS implements a nonlinear mapping from an input
space to an output space by a number of fuzzy if-then rules
constructed from human knowledge. The success of a FIS
depends on the identification of the fuzzy rules and member-
ship functions tuned to a particular application. It is usually
difficult in terms of time and cost, and sometimes impossible,
however, to transform human knowledge into a rule base [28].
Even if a rule base is provided, there remains a need to tune
the membership functions to enhance the performance of the
mapping. Neuro-fuzzy systems overcome these limitations by
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Fig. 3. The distribution of the speech utterances in the Valence-Activation space.
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Fig. 4. The distribution of the speech utterances in the Valence-Dominance space.

−2 −1 0 1 2

−2

−1

0

1

2

Activation

D
om

in
an

ce

 

 

Neutral
Joy
Cold Anger
Sad
Hot Anger

(a) Manually labeled by Human.

−2 −1 0 1 2

−2

−1

0

1

2

Activation

D
om

in
an

ce

 

 

Neutral
Joy
Cold Anger
Sad
Hot Anger

(b) Estimated by the Two-Layer system.

−2 −1 0 1 2

−2

−1

0

1

2

Activation

D
om

in
an

ce

 

 

Neutral
Joy
Cold Anger
Sad
Hot Anger

(c) Estimated by the Three-Layer system.

Fig. 5. The distribution of the speech utterances in the Activation-Dominance space.

using artificial neural networks to identify fuzzy rules and tune
the parameters of membership functions in FIS automatically.
In this way, the need for the expert knowledge usually required
to design a standard FIS is eliminated. A specific approach in
neuro-fuzzy systems is ANFIS, which is a Sugeno type FIS
implemented in the framework of adaptive neural networks
[29].

We use ANFIS to construct FIS models which connect
the elements of our recognition system. Each FIS has the
structure of multiple inputs and one output. Therefore, in order
to construct our recognition system 20 FIS are needed. For
semantic primitives estimation, 17 FIS are needed to map
the acoustic features to semantic primitives, one for each
semantic primitives. Moreover, 3 FIS also needed to map
the semantic primitives to emotion dimensions, one for each
emotion dimension.

B. Results and Discussion

In order to explicitly demonstrate the emotion recognition
improvement, we firstly, constructed two different automatic
emotion recognition systems:the first system was based on

the traditional two-layer model, in this system FIS was used
to map the acoustic features to emotion dimensions directly.
While the second system was based on the proposed three-
layer model as described in Sec. IV. A. Then, we compared
the rated emotions by human subjects and the estimated emo-
tions using the two-layer system and the three-layer system
respectively. Fig. 3 shows emotion category distribution in the
Valence-Activation space. Where Fig. 3(a) shows the results of
experimental evaluation by human subjects for all utterances
in our database. Fig. 3(b) and (c) show that by imitating the
human perception using the three-layer model as shown in
Fig. 3 (c), the system develops its capability to understand
human emotion more accurately. As we can see, the the two-
layer system in Fig 3. (b) is not able to accurately estimate
the valence dimension, while using the three-layer system
the valence estimation is improved and become very close to
human ratings. Similar results were obtained for the Valence-
Dominance space as shown in Fig. 4(a)-(c), and also for the
Activation-Dominance space as seen from Fig. 5.

In order to assess the performance of our system, the
output of the proposed system is compared with the output
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Fig. 6. Comparison between the two-layered model and the three-layered
model using FIS.

of the traditional one. For each emotion dimension, and for
each system, we calculated the mean linear error between the
estimated output using the system, and the evaluated scores
by listeners. The mean linear error is calculated according to
the following equation

E(i) =
∑n

i=1(x̂
(i)
n − x

(i)
n )

N
(2)

where i ∈ {V, A,D}, x̂
(i)
n is output of the emotion recognition

system, and x
(i)
n is the evaluated scores by using human

subjects as described in section II.
All results were achieved using 5-fold cross-validation.

These results are presented in Fig. 6, we compared between
the two-layer model and the three-layered model using FIS
estimator. Form this figure, it is clear that the valence pre-
diction is improved by using the proposed model. It is easy
to see that the dimensional approach for emotion dimension
estimation based on three-layered model was improved than
the traditional dimensional approach.

V. CONCLUSION

In this paper, we proposed a three-layered model for emo-
tion speech recognition based on the dimensional approach,
in order to precisely predict the valence dimension from the
acoustic features. To imitate human perception, a semantic
primitive layer was added between the acoustic features and
the emotion dimension. For the estimation of the emotion
dimensions (valence, activation, and dominance) fuzzy infer-
ence system was used. We compared the estimation based
on the three-layered model and the two-layered model. Our
results demonstrate that the proposed method can be used to
accurately predict the valence dimension from the acoustic
features through semantic primitives.
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