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Abstract—Quality of unit-based concatenative speech synthesis
is low while that of corpus-based concatenative speech synthesis
with unit selection is great natural. However, unit selection
requires a huge data for concatenation that reduces the range
of its applications. In this paper, by using temporal decompo-
sition for modeling contextual effects intra-syllable and inter-
syllables, we propose a context-fitting unit modification method
and a context-matching unit selection method. The two proposed
context-specific methods are used in our proposed syllable-
based concatenative speech synthesis applied for monosyllabic
languages. The experimental results with a Vietnamese speech
synthesis using a small corpus support that the proposed methods
are efficient. As a consequence, the naturalness and intelligibility
of the proposed speech synthesis is high even when we have only
limited data for concatenation.

I. INTRODUCTION

The two most successful speech syntheses up to now are
concatenative speech synthesis (CSS)[1], [2], [3], [4], [5] and
Hidden-Markov-Model-based speech synthesis (HMMSS)[6],
[7].

CSS is based on the concatenation of segments of recorded
speech. Early raw CSS is unit-based, in which isolated sub-
syllable units are stored to be reused for synthesizing different
utterances without modification tasks [1], [2]. The quality of
early unit-based raw CSS is usually low due to the mismatch-
context problem [2]. An example of raw CSS is shown
in Figs. 1a, b, c. Corpus-based unit selection CSS is the
most natural-quality speech synthesis up to now, solving the
mismatch-context problem by using a huge database covering
all possible contexts and selecting the most matched unit for
concatenation [3]. However, the use of huge database results
conventional unit selection impossible to be used in limited
storage devices or limited data conditions [4], [5].

HMMSS represents speech in statistical model-based do-
main instead of original waveform and spectral domain [6],
[7]. The sizes of trained statistical parameters are small,
therefore the footprint of HMMSS is very small, and it is easy
to distribute HMMSS in different platforms. Context model-
ing, related to coarticulation modeling, is well represented
in HMMSS , resulting smooth synthetic speech. However,
in HMMSS , the spectral parameters are generated from
statistical HMM models with errors compared with original
parameters. It degrades naturalness of synthetic speech. More-
over, to estimate accurate statistical HMM models usually
requires a huge training data. Recent researches in [4], [5] still

insist that quality of CSS outperforms HMMSS and drawbacks
of CSS still can be overcome.

Mismatch-context problem is the main problem degrading
quality of CSS with limited data as shown in Fig. 1c. In
the literature, there are some methods attempting to solve
this problem by modifying spectral dynamics at concatenation
points [8], [9].

Mizuno et al. [8] proposed a spectral smoothing method
by modifying formant frequencies and formant bandwidths to
reproduce the desired formant structure at the concatenation
points. Kain et al. [9] proposed a method of controlling
spectral dynamics to smooth out the trajectory of formant
frequencies.

The general of the frame-based methods in [8], [9] is
to smooth out the discontinuity at a concatenation point.
None of them solves the mismatch-context problem efficiently,
especially with limited data for concatenation, due to the lack
of modeling the contextual effects in CSS. Averagely frame-
based smoothing out the discontinuity at a concatenation point
is described in Fig. 1d. We can observe that the frame-based
smoothing approach could not efficiently solve the mismatch-
context problem. The ideal of solving the mismatch-context
problem by modeling contextual effects in CSS is described
in Fig. 1e, in which the joint-transition of two concatenated
units is modified to smooth out the mismatches.

Mismatch-context problem is caused by contextual effects,
or coarticulation in general. Coarticulation is a phonological
phenomenon, always occurring in all languages for all se-
quences of sounds not separated by pauses, referred to as
the overlapping of articulatory gestures. In the most basic
model of coarticulatory, Locus [10], each phoneme has a
single ideal articulatory target for each contrastive articulator
independent of the neighboring phonemes. Under effects of
coarticulation, the transition between two phonemes is de-
scribed as the movement between the two ideal targets of the
two phonemes. This transition shares both the articulatory and
acoustic characteristics of the two targets of both phonemes
and gradually changes from being predominantly like the first
phoneme target to predominantly like the second phoneme
target. Ideal coarticulation in a Vowel-Vowel (VV) syllable
represented by Locus theory is illustrated in Fig. 1a and b.

Although coarticulation causes transitions in speech, it has
been shown in [11] that there is still a stationary nuclei
interval inside monophthong (vowel), fricative and semi-
vowel. In this kind of phonemes, the nuclei are stationary



Fig. 1: Simulation of the mismatch-context problem in CSS:
(a) Original syllable with vowels V1 and V2 (V1V2), (b)
Original syllable V3V4, (c) Raw synthetic syllable V3V2, (d)
Synthetic syllable V3V2 with average frame-based smoothing,
(e) Our proposed method attempt to recover the smooth
transition of original syllable V3V2.

and the formant transitions between these phonemes, actually
occurring between the targets at boundaries of the stationary
intervals, are smooth. It is also shown that in other vowel-like
phonemes such as liquid approximant, the nuclei interval is
quasi-stationary or half-stationary [11], [12]. Both of the sta-
tionary and quasi-stationary intervals are considered context-
less-sensitive. On the contrary, the rest parts inside a phoneme
known as transition parts are considered context-sensitive. The
existence of the stationary, quasi-stationary and transition parts
inside phonemes are further confirmed and investigated in [13].
However there is still a lack of methods to estimate the position
and the duration of each part inside phonemes and syllables.

Temporal decomposition (TD) is an interpolation method
that can decompose speech into mutual independent compo-
nents static event targets and dynamic event functions [14],
[15], [16], [17], [18]. The temporal dynamics of TD event
functions are close with transition movements caused by
coarticulation of speech. If static TD event targets are located
closely with articulatory event targets, TD can be efficiently
used to model coarticulation of speech in acoustical domain.
In addition, by independently modifying TD event targets and
(or) TD event functions, we can modify speech at specific
events in time. In the literature, TD has been efficiently used
in speech coding [17] and voice transformation [18]. In this
paper, TD is also the core of the proposed methods for
modeling coarticulation of speech and for speech modification
to solve the mismatch-context problem of CSS.

The motivation of this research is to overcome the
mismatch-context problem of CSS when using limited data for
concatenation, in order to build a high-quality speech synthesis
with limited data. To archive this goal, we firstly propose a
method to approximately estimate the positions and durations
of the nuclei and transition intervals inside each phoneme.
We then propose an acoustical coarticulation model repre-
senting contextual effects intra-syllable and inter-syllables in
mono-syllabic languages. Using the proposed coarticulation
model, we propose a context-fitting unit modification method
and a context-matching unit selection method. Finally, these
two context-specific methods are integrated in our proposed
syllable-based Vietnamese CSS but can be developed for other
monosyllabic languages.

The HMMSS [7] is the state-of-the-art Vietnamese speech
synthesis. The unit-based CSS [2] can be considered as
the state-of-the-art Vietnamese speech synthesis for limited
data conditions. Therefore, we evaluated our proposed CSS
compared with them to compare the efficiency of each speech
synthesis in different kinds of data conditions.

The structure of this paper is presented as follows: section
II describes our proposed coarticulation model representing
contextual effects intra-syllable and inter-syllables in mono-
syllabic languages; section III presents the proposed general
syllable-based CSS for monosyllabic languages; section IV
describes the implementation of the proposed syllable-based
CSS with a Vietnamese corpus using a small corpus and
evaluation results; section V discusses related issues on the
experimental results and section VI draws conclusions.



II. COARTICULATION MODEL REPRESENTING
CONTEXTUAL EFFECTS INTRA-SYLLABLE AND

INTER-SYLLABLES

A. Intra-syllable coarticulation model

The first basic of the proposed model is shown in Fig. 1e,
in which each phoneme can be divided into one nuclei interval
and two transition intervals at two sides. Our proposed model
attempts to determine the positions and the durations of the
nuclei and transition intervals inside a syllable.

The existence of the stationary and quasi-stationary intervals
inside vowels, semi-vowels and vowel-like consonants are
confirmed in [11], [12]. The stability of the stationary and
quasi-stationary intervals under effects of coarticulation results
these parts are context-less-sensitive, and these parts can be
preserved to be concatenated different synthetic utterances.

The general Locus theory [10] suggests that there is also a
nuclei interval inside a non-vowel-like (or non-stationary) con-
sonant, referred to as the region around articulatory target of
the consonant. We call this nuclei interval is pseudo-stationary
interval because of the similarity between its behavior and
that of stationary and quasi-stationary intervals under effects
of coarticulation. In our proposed model, all of the stationary,
quasi-stationary and pseudo-stationary intervals of phonemes,
called the nuclei intervals for short, are supposed to be context-
less-sensitive and can be preserved to be concatenated different
synthetic utterances.

The second basic of the proposed model is the supposition
that the outside transition interval(s) of a phoneme can be
interpolated from its outermost event target(s). This basic is
also supported by the results in [12].

To determine the positions and the durations of the nuclei
and transition intervals of phonemes inside a syllable, we
use spectral transition measure (STM) [13] and folded STM
(FSTM). To interpolate speech and to modify the joint transi-
tion intervals, we use the modified restricted second order TD
(MRTD) [17].

In our proposed model, the context-sensitive transition be-
tween adjacent phonemes inside a syllable is described by TD
event targets and overlapped TD event functions restricted by
the event targets located at the onset and offset of transition
region as shown in Fig. 2. By adding two pseudo-events at
the boundary of the two phonemes, we will show that these
pseudo targets can be used to represent the transition regions
as in sub-section II-E. Therefore, we can use these pseudo-
targets to select the unit with best fit transition region, as well
as to modify the transition regions to fit with a new context.

Background of the STM, FSTM, MRTD and their roles in
the proposed coarticulation model are presented in sub-section
II-B, II-C, and II-D.

B. Spectral Transition Measure

STM was proposed [13] to measure the changing rate, or the
variation of spectral parameters in time domain as described in
Fig. 3. In the literature, STM has been used to detect the stable
points (less changed), as center points of vowel nucleus, and
the dynamic points (much changed), as the boundary points
between adjacent phonemes in speech [13], [16], [17].

The STM at the time t, STM(t), time t here referred to as
location of frame in time domain, has been defined as in ( 1)

Fig. 2: Modeling contextual effects using MRTD [17], STM
[13] and FSTM: PBs are phoneme boundary points, Nus are
nuclei points, Trs are onsets of transitions, Tls are offsets of
transitions

Fig. 3: STM and FSTM.

and ( 2) [13].

STM(t) = (

p∑
i=1

a2i )/p (1)

where

ai = (

n0∑
n=−n0

Ci(n).n)/(

n0∑
n=−n0

n2) (2)

Here Ci(n) is the ith order spectral coefficient (1 ≤ i ≤ p) at
the nth frame inside a window whose center is the time t, and
−n0 ≤ n ≤ n0. The regression coefficient ai, corresponds to
the linear variation of the spectral envelope pattern in a unit
time. Consequently, STM(t), which is the mean-square value
of ai, i = 1..p, corresponds to the variation of the smoothed
spectral envelope. As the name STM itself, STM(t) present
a measure of spectral transition on continuous speech.

In [16], [17], TD was used as a interpolation method, in
which the discrete interpolation points were chosen based on
a maximum spectral stability criterion and approximately with
the local minima of STM. These results confirmed that the
interpolation error is minimum when the static event targets



Fig. 4: TD event functions and targets.

for interpolating located at local minima of STM. The STM
and its maxima, minima are shown in Fig. 3. In this work, by
iteratively adjusting the window size n0, the global minimum
of STM is determined and chosen as the central event of each
phoneme.

C. Folded Spectral Transition Measure

Although STM has been used to detect both dynamic
and stable points of speech, it is still hard to determine
the positions and durations of transition and nuclei intervals.
Therefore, the FSTM, extended from STM, is proposed to
estimate the positions and durations of dynamic transition and
static nuclei intervals of speech. The FSTM is described in
Figs. 2 and 3.

Denote the central speech event of phoneme (global min-
imum of STM) k is Nuk, the boundary point of phoneme
k − 1th and kth is PBk, and so on. The phoneme kth is
therefore estimated in the interval from PBk to PBk+1 as in
Fig. 2.

The FSTM is geometrically defined as a relatively changing
rate of STM as given in (3) and (4).

FSTM =

{
∆t+1/∆t,
∆t/∆t+1,

if
if

Nuk−1 < t < PBk

PBk < t < Nuk
(3)

where

∆t = STM(t)− STM(t− 1) (4)

For each phoneme kth, there are two folded transition points
at the two sides of the center point Nuk: Trk at the right
side and T lk at the left side. Trk and T lk are defined as the
maxima of FSTM as shown in Figs. 2 and 3. The coarticulated
transition interval between phoneme (k − 1)th and kth is
estimated as the interval between Trk−1 and T lk, while the
nuclei interval of phoneme kth is estimated as the interval
between the T lk and Trk, shown in Figs. 2 and 3. The
proposed estimation is based on the supposition that when
changing from stable to dynamic interval (and in inverse case),
the relatively changing rate is suddenly increased (decreased)
at the onset (offset) of the dynamic interval.

In this paper, maxima of FSTM are used to determine the
positions and durations of nuclei and transition intervals inside
a phoneme.

D. Temporal Decomposition
TD yields a linear interpolation of a time sequence of

spectral parameters in terms of a series of event functions and
event target vectors [14]. TD decomposes speech into dynamic
speech event functions and static speech event targets as given
in (5) and (6) . The event functions are the interpolation
functions representing the transition movements between the
event targets.

ŶPxN = APxKΦKxN (5)

ŷ(n) =

K∑
k=1

akϕk(n), 1 ≤ n ≤ N (6)

where ak and ϕk are the kth event target and event function,
respectively. ŷ(n) is the approximation of the nth spectral
parameter vector y(n). Here, Ŷ , A and Φ are matrix repre-
sentation of ŷ, a and ϕ, P,N and K are the order of spectral
parameters, the number of frames, and number of event targets,
respectively.

To reduce the computational complexity, the restricted sec-
ond order TD (RTD) [15] is restricted with only two adjacent
event functions overlapping, all event functions at any time
sum up to one. RTD is given in (7).

ŷ(n) = akϕk(n) + ak+1(1− ϕk(n)), nk ≤ n ≤ nk+1 (7)

where nk and nk+1 are the locations of event kth and event
k + 1th, respectively.

After estimating event functions, event targets are estimated
as in (8).

A = Y ΦT (ΦΦT )−1 (8)

A modification of RTD called MRTD, with some further im-
provements for event function estimation and for optimization
of the line spectral frequency (LSF) event target, was proposed
[17]. One of excellent properties of MRTD is that event
functions have only one peak, resulting directly approaching
and leaving the target. MRTD, shown in Fig. 4, has been
considered compact, easy to control, but the interpolation error
is still small [17], [18]. MRTD can also be used with source
features as fundamental frequency (F0) by keeping the method
for event function estimation and removing the method for
optimizing LSF event target.

MRTD has been used in speech coding [17], and voice
transformation [18]. In [4], [5], interpolation methods similar
to MRTD are used for unit selection synthesis with interesting
results. In this paper, MRTD is used as an interpolation method
to model contextual effects of speech as shown in Fig. 2.
MRTD is also used as the framework for speech modification
at the coarticulated transition regions in CSS.

E. Representing transition regions by pseudo event targets
In the proposed coarticulation model presented in sub-

section II-A, we show the estimation of transition regions. In
this sub-section, we present a method to represent a transition
region by a pseudo event target. This method is used for
the proposed context-fitting modification and context-matching
selection methods presented in the next sections. The pseudo
event targets are added into first and last positions of transition
intervals as described in Fig.5. Following general equation (5),
spectral parameters of transition regions of two units L (left)



Fig. 5: Representing transition regions

and R (right) for concatenation are represented as in (9) and
(10), and described in Fig.5. Here, the pseudo events are event
Kth of the left unit L and event 1th of the right unit R,
therefore, the pseudo event targets of the left unit L and right
unit R are aL(K) and aR(1), respectively.

yL(nL(K − 1) : nL(K)) = aL(K − 1,K)

×ϕL(K − 1 : K,nL(K − 1) : nL(K))
(9)

yR(nR(1) : nR(2)) = aR(1, 2)× ϕR(1 : 2, nR(1) : nR(2))
(10)

where nL(i), nR(j) return the frame indexes of the targets
ith, jth of the left and right unit, respectively.

Following the (9) and (10), the two pseudo event targets
can be re-computed from acoustical parameters of transition
regions as in (11) and (12).

aL(K) = yL(nL(K − 1) : nL(K))/

ϕL(K − 1 : K,nL(K − 1) : nL(K))×
[
0
1

] (11)

aR(1) = yR(nR(1) : nR(2))/ϕR(1 : 2, nR(1) : nR(2))×
[
0
1

]
(12)

It reveals that yL(nL(K − 1) : nL(K))×
[
0
1

]
and yR(nR(1) :

nR(2)) ×
[
0
1

]
represent the fully-space of the weighted static

frame-based features of the transition regions, while ϕL(K −
1 : K,nL(K − 1) : nL(K)) and ϕR(1 : 2, nR(1) : nR(2))
represent the temporal dynamics of the transition regions.
Therefore, the two pseudo event targets aL(K) and aR(1)
can be used as parameters to represent the transition regions
of the two units L and R as described in (9), (10), (11) and
(12).

F. Adapting the proposed intra-syllable coarticulation model
to inter-syllables coarticulation

The proposed intra-syllable coarticulation model can be
extended to inter-syllables cases. In this paper, we adapt
the proposed model to represent contextual effects between
syllables in monosyllabic languages. In speech of monosyl-
labic languages, coarticulation occurs most inside syllable
rather than across syllables, especially in slow speaking rate.
Therefore, syllables are highly isolating. Therefore, it usually
exists a silence interval between syllables. The duration of
silence interval reachs to zero in high speaking rates.

The adaption method here is simply to add a short silence
unit between neighboring syllables. This silence unit is treated
as normal units in concatenation, in which it is used for

both of the proposed context-matching unit selection and unit-
fitting modification methods. Then, we can directly apply the
proposed coarticulation model for intra-syllable coarticulation
to inter-syllables coarticulation.

III. PROPOSED SYLLABLE-BASED CSS FOR
MONOSYLLABIC LANGUAGES

A. Proposed Syllable-based CSS
The proposed speech synthesis algorithm is represented in

Fig. 6.
In general, to translate a random testing utterances into

phonetic unit sequence, it requires a text normalization tech-
nique [19]. In this paper, we suppose that the input of the
speech synthesis is the translated phonetic unit sequence. On
implementation, we only used the utterances in which the text
transcript produced with Vietnamese legal characters, and the
phonetic unit sequences are easily taken from label data.

We use variable-length unit set for the synthesis. When
synthesizing a syllable, the text of the phonetic unit sequence
of the syllable is searched in the whole text data of the
corpus to find the matched unit sequence with the order
syllables, initial/final (I/F) units, and phones. After that, the
context-matching unit (or phone) selection is used to find the
most matched unit (phone) from candidates previously found
from text searching. If the two adjacent units are taken from
different contexts, the summed cost is larger than a threshold,
then we use the context-fitting unit modification to modify the
transition of the two units to fit with a new context.

STRAIGHT [20] is a high quality speech coder that can
analyze into and synthesize from mutually independent com-
ponents, i.e. F0, spectral envelope (SE), aperiodicity index
(AP). STRAIGHT is also a very efficient and flexible speech
morphing tool, in which each component can be modified and
controlled independently. Therefore, in this work, the input
parameters for TD analysis F0, LSF, and power envelope (PL),
extracted from STRAIGHT analysis [20], are used for context-
matching unit selection and context-fitting unit modification.
After modification, TD synthesis and STRAIGHT synthesis
are used to synthesize output utterances.

The proposed context-matching unit selection is described
in sub-section III-A1, the proposed context-fitting unit modi-
fication is presented in sub-section III-A2.

1) Proposed context-matching unit selection method: The
proposed context-matching unit (and phone) selection is a
unit searching with a proposed concatenation cost. The most
matched unit sequence is chosen to minimize the summed



Fig. 6: Synthesis algorithm.

cost. The concatenation cost is defined based on the distance
between the two weighted static frame-based features of the
two units and the distance between the two temporal dynamic
functions of two transition regions of the two units (or phones).
In sub-section II-E, we show that each transition region can
be represented by a pseudo event target. Then, we use the
distance between two pseudo targets of two neighboring units
to compute the concatenation cost between them.

In general, the concatenation cost between two unit L
and R can be defined as (13). Equation. (14) describes the
concatenation cost with a set of acoustical parameters.

C = distance(aL(K), aR(1)) (13)

where aL(K) and aR(1) are the two pseudo event targets of
the two units L and R as described in (9), (10), (11) and (12).

C =

q∑
j=1

ωjcj (14)

In this paper, we use spectral envelope feature LSF, source
feature F0, and power envelope PL, thus q = 3. The compo-
nent costs are computed as in (15), (16), and (17). ωj are
the weighted factors, 0 < ωj < 1, ωj can be chosen by
experiments.

cLSF =
|aL LSF (K)− aR LSF (1)|

π
(15)

cF0 =
|log(aL F0(K))− log(aR F0(1))|

max(log(aF0))
(16)

cPL =
|aL PL(K)− aR PL(1)|

max(aPL)
(17)

According to the (14), (15), (16) and (17), it reveals that 0 6
δ 6 3.

2) Proposed context-fitting unit modification: In each con-
catenated unit pair, if the cost is larger than a threshold
determined by experiments, the two units will be modified to
fit with the new context. The context-fitting unit modification
is the task to modify the transition regions determined as in
the proposed coarticulation model, presented in section II. In
sub-section II-E, we show that the two pseudo event targets
aL(K) and aR(1) can be used as parameters to represent the
transition regions of the two units L and R.Therefore, the
context-fitting unit modification here is the task of averagely
modifying the two pseudo event targets of acoustical features
as given in (18), (19), and (20). Notice that we use LSF, F0
and PL in this work.

∆LSF =
aR LSF (1)− aL LSF (K)

2
aL LSF (K) = aL LSF (K) +∆LSF /2

aR LSF (1) = aR LSF (1) −∆LSF /2

(18)

∆F0 =
aR F0(1)− aL F0(K)

2
aL F0(K) = aL F0(K) +∆F0/2

aR F0(1) = aR F0(1) −∆F0/2

(19)

∆PL =
aR PL(1)− aL PL(K)

2
aL PL(K) = aL PL(K) +∆PL/2

aR PL(1) = aR PL(1) −∆PL/2

(20)
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Fig. 7: Intelligibility mean scores and 95% confidence intervals of speech syntheses

IV. EXPERIMENTS AND EVALUATIONS

A. Vietnamese Language

TABLE I: Structure of a Vietnamese syllable

Tone

Initial
Final

Onset Nucleus Coda

Vietnamese is a typical monosyllabic language; it is also
a tonal language [21]. Structure of a Vietnamese syllable is
described in Table. I. There are about 7000 distinct Vietnamese
tonal syllables. Continuous utterances in Vietnamese can be
concatenated from isolated tonal syllables [2]. Storing all tonal
syllables however requires a large data. With the recording
parameters same as in Vietnamese corpus DEMEN567 [22],
we estimated and found that the capacity to store all 7000
syllables is about 160-200 MBs. Thus, sub-syllable phonetic
units such as tonal phonemes or tonal I/F have been used
instead of tonal syllable in CSS for Vietnamese [2]. There
are totally 21 initial and 900 tonal I/F units in Vietnamese.
Besides, there are totally 20 consonants and 250 tonal vowels
in Vietnamese [2].

The use of sub-syllable units reduces a lot of data for
concatenation. However, without solving the mismatch-context
problem related to coarticulation modeling, naturalness and
intelligibility of synthetic speech is low [2]. In this paper, by
using the proposed coarticulation model representing contex-
tual effects intra-syllable and inter-syllables presented in the

section II, we propose a syllable-based CSS using a variable-
length unit set mixed from both tonal syllables, tonal I/F units
and tonal phonemes.

The general concepts of the proposed speech synthesis
might be applied for all monosyllabic languages. However,
we just complete a syllable-based speech synthesis for Viet-
namese, one typical monosyllabic language.

B. Vietnamese datasets for evaluation
In this research, we used the small Vietnamese corpus

DEMEN567 [2], also named speech TTSCorpus in [22],
including 567 utterances. The total time interval of this dataset
is about one hour. The text script of DEMEN567 was designed
by a phonetic expert group and the speech corpus was built
by an acoustical engineer group in the Institute of Information
Technology of Vietnam (IOIT). The text script of DEMEN567
was carefully selected to maximize the Vietnamese phoneme
coverage. Nearly all Vietnamese phonemes and I/F units exist
in DEMEN567 utterances. The total capacity of DEMEN567
corpus in WAV format is about 70 MB, the sampling rate is
11025 Hz and the resolution is 16 bits per sample. DEMEN567
corpus was labeled at tonal phoneme and tonal syllable levels.

In our investigation, DEMEN567 could be divided into two
parts. The first part includes 500 utterances, covering nearly
all of Vietnamese tonal phonemes, with capacity about 55
MB. We called this part of corpus as DEMEN1. Then we
used DEMEN1 corpus for training with the HMMSS and for
concatenating with the proposed CSS. The rest 67 utterances,
including the tonal phonemes already existed in DEMEN1,
were called DEMEN2, and is used for evaluating.
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Fig. 8: Naturalness mean scores and 95% confidence intervals of speech syntheses

Another dataset was used is a isolated I/F unit-based dataset
extracted automatically from DEMEM567 that covers all
Vietnamese I/F units. This dataset, called DEMEN-UNIT, has
capacity about 7 MB, and was used for the unit-based raw
CSS with the method similar to as in [2].

To evaluate the dependence of the two corpus-based speech
syntheses, HMMSS and our proposed CSS, on the sizes
of the datasets, we scaled the corpus DEMEN1 into sub-
datasets from the lower limit to upper limit sizes with a fixed
step, as depicted in Table. II. Our investigation results show
that a dataset of 150 utterances in DEMEM1, with capacity
about 15 MB, covers about 90% of popular Vietnamese tonal
phonemes. Therefore, this 150 utterances can be considered as
the smallest dataset that is able to be used for concatenation,
and the size of this dataset was chosen as the lower limits for
the scaled datasets. The upper limit was chosen as the size of
DEMEN1 about 55 MB.

TABLE II: Sub-datasets for evaluating

Scaled Dataset No. of Size
Index Utterances (MBs)

1 150 15.3
2 200 19.1
3 250 23.7
4 300 31.3
5 350 35.8
6 400 42.9
7 450 48.8
8 500 55.7

C. Phonetic unit sets for concatenation

The selection of speech units for CSS is an important
issue. Longer units mean higher quality of synthesized speech.
However, the longer unit, the larger the dataset is necessary.
There are three popular phonetic unit types used for CSS of
monosyllabic languages, which are syllable, phoneme, and I/F
unit [2], [7], [22]. In this paper, we used a variable-length
unit set mixed from tonal syllables, tonal I/F units, and tonal
phonemes. As presented in sub-section III-A and described in
Fig. 6, for each syllable of testing utterances, the order of unit
chosen for concatenation is syllable, I/F unit, and phoneme,
with the lengths from longest to shortest.

In our proposed coarticulation model presented in section II,
we based on a supposition that there is a context-less-sensitive
pseudo-stationary interval inside a non-stationary consonant.
This supposition is not always true in Vietnamese language.
In many consonants, the pseudo-stationary intervals are very
short, sharp and even context-sensitive, resulting inaccurate
modeling the contextual effects. To avoid the bad effects
of pseudo-stationary intervals, we investigated and defined
some experimental rules for some special cases. The first rule
was applied for all short consonants, in which we duplicated
number of frames to extend their durations. After expanding
the short intervals, the nuclei and transition intervals are re-
estimated. The second rule was applied for plosive consonants.
A plosive consonant contains actually a closure and a plosive
noise burst, was considered as a unique consonant with a
unique pseudo-stationary interval. The third rule was applied
for final stop aspirated consonants (k, p, t). The pseudo-



stationary intervals of the final stop aspirated consonants were
hard to estimated, therefore, the final stop aspirated consonants
were not separated from syllable as a single unit. For example,
the syllable [b + ∧ + k] (north in English) was separated into
two I/F units [b] and [∧ + k] instead of the three phonemes.

D. Experimental Parameters

Three kinds of speech synthesis were used for comparative
evaluation; those are the unit-based raw CSS similar to as in
[2]; the HMMSS in [7]; and the proposed CSS. The proposed
CSS was concatenated from DEMEN1. HMMSS was trained
also with DEMEN1. The raw unit-based CSS used DEMEN-
UNIT.

In HMMSS [7], the 24th order MFCC coefficients and
their delta coefficients were used. The excitation parameters
are composed of logarithmic fundamental frequencies (logFO)
and their corresponding delta coefficients. The frame length
and update interval were 20 ms and 5 ms respectively. Other
parameters can be referred in [7].

In the proposed CSS, the frame length was 20 ms, the update
interval was from 1 ms. The frame update interval was chosen
small enough to take full advantages of STRAIGHT coder. The
order of LSF analysis was 32. The window size for STM n0

was initial chosen as 2 frames, then the regression coefficients
of STM were computed for a interval of 2 frames in both
sides. After that, we iteratively increase the window size of
STM until one global minimum of STM is found. Therefore, in
each phoneme, there are five speech events located at positions
of the global minimum of STM, the two maxima of FSTM,
and the two pseudo events at two boundary sides.

The weighted factors ω1, ω2, and ω3 in (14) were experi-
mentally chosen as 0.3, 0.6, and 0.1, respectively, based on
our supposition that when estimating the concatenation cost,
the differences of PL targets is the most important, follows by
those of LSF targets and F0 targets. The duration of silence
unit for inter-syllables modification is set to 40 ms.

E. Evaluations

The HMMSS [7] is the state-of-the-art Vietnamese speech
synthesis, while the unit-based raw CSS [2] can be considered
as the state-of-the-art Vietnamese speech synthesis for limited
data conditions. Therefore, we evaluated our proposed CSS
compared with them to compare the efficiency of each speech
synthesis in different kinds of data conditions.

To evaluate the efficiency of the two proposed methods,
context-matching unit selection and contexts-fitting unit mod-
ification, we used two versions of the proposed CSS in
our evaluations. We used the proposed context-matching unit
selection in both of versions. One version used the unit-fitting
modification that we call the TD modification CSS, while the
rest one did not use the unit-fitting modification that we call
the TD unit selection CSS. In the general algorithm is Fig.
6, we set the threshold δ to the lower limit of the summed
cost C (equals 0) when we producing the version with unit-
fitting modification and set the threshold to the upper limit
of the summed cost C (equals 3) when producing the version
without unit-fitting modification. In practical, the threshold δ
should be chosen depending on the specific dataset following
the rule 0 6 δ 6 3.

For evaluating, we extracted 20 utterances from 67 utter-
ances of DEMEN2. The lengths of testing utterances were
from 5 syllables to 17 syllables. The original utterances and
synthetic ones synthesized by the comparative methods were
evaluated by intelligibility and naturalness.

There are 20 testing utterances, 8 scaled datasets. The
original utterances and utterances synthesized with the unit-
based raw TTS are independent with the scaled datasets,
while the proposed speech synthesis (with two versions) and
the HMMSS depend on the scaled datasets. Therefore, each
subject had to hear 20x2 + 20x3x8 = 520 utterance samples.

The testing utterances were played in random order blind
with subjects. The subjects, who were five native Vietnamese,
had not heard these syllables previously. In intelligibility
evaluation, subjects were asked to listen to each syllable three
times to cope with long utterances and write down what
they heard. The intelligibility score was computed by the
percentage of correct syllables that subject identified in all
of testing utterances. In naturalness evaluation, subjects were
asked to listen to each syllable only one time. The subjects
knew the writing characters of the utterances before and were
asked to rate the naturalness of the synthesized syllables on
a five-point MOS scale (1: bad, 2: poor, 3: fair, 4: good, 5:
excellent).

The evaluation results are presented in the two next sub-
sections. Notice that the results of original utterances and
utterances synthesized by the unit-based raw synthesis are
independent with the scaled datasets but we draw them in all
scales to easily compare with the corpus-based syntheses.

1) Evaluation results of intelligibility: The statistical results
with mean values and standard deviation with 95% confidence
intervals are shown in Fig. 7. The results show that the
proposed CSS outperformed the unit-based raw CSS in all
scaled datasets. The TD unit selection CSS was the best,
followed by HMMSS, and the TD modification CSS was
the worst. However, the differences between the intelligibility
scores of three methods are small. Then we can consider
that the three methods are equivalent in terms of speech
intelligibility.

The 95% confidence intervals of the scores with HMMSS
was smallest. Therefore, the intelligibility of HMMSS was best
balance between syllables and utterances compared with the
two proposed CSS.

The TD modification CSS had slightly lower intelligibility
compared with the TD unit selection CSS. It may cause by the
use of TD in our proposed method needs to be improved when
applying for some consonants. Notice that in our method,
consonants were treated nearly same as vowels.

2) Evaluation results of naturalness: The statistical results
with mean values and standard deviation with 95% confidence
intervals are shown in Fig. 8. It reveals that the proposed CSS
with both of two versions outperformed the unit-based raw
CSS and HMMSS with all datasets.

The results also show that the TD modification CSS is most
efficient in small-scaled datasets while the TD unit selection
CSS is most efficient in large-scaled datasets.

3) Evaluation results of discrimination between scaled
datasets: To evaluate the discrimination between scaled
datasets of three corpus-based speech syntheses, we computed
the F-test of the statistical analysis of variance between groups



(ANOVA). The results are shown in Table. III.

TABLE III: F-test on Intelligibility and Naturalness

HMM TD TD
Unit Selections Modification

F-ratio 2.943 1.129 1.259
p value 0.005 0.034 0.268

(a) F-test on Intelligibility

HMM TD TD
Unit Selections Modification

F-ratio 6.794 3.045 0.935
p value 0.001 0.004 0.479

(b) F-test on Naturalness

The results of F-testes on both intelligibility and naturalness
in Table. III show that the discrimination between scales is
largest and most reliable with HMMSS, while the results on
Fig. 7 show that the larger the dataset, the more intelligible
and natural the HMMSS.

The results of F-testes also show that the discrimination
between scales is quite significant with TD unit selection CSS,
especially in F-test on naturalness. However, the discrimina-
tion between scales is not significant with TD modification
CSS. On the other hand, the TD modification CSS is quite
independent with the size of the dataset. Therefore, it again
confirms that the TD modification CSS is best efficient in
small-scaled datasets, or in limited data conditions in general.

V. DISCUSSIONS

The experimental results show that the proposed CSS with
the proposed contextual effects modeling is superior to the
unit-based raw CSS in all scaled-datasets, in which the latter
is without contextual effects modeling. These results support
that the use of the proposed coarticulation model representing
contextual effects intra-syllable and inter-syllables, as well
as the use of the two proposed context-fitting and context-
matching unit selection methods are benefit.

The experimental results also show that the proposed CSS
outperforms the HMMSS in [7] in terms of naturalness while
the two ones are equivalent in terms of speech intelligibility.
Especially, the TD modification CSS outperformed other syn-
theses in small-scaled datasets in terms of speech naturalness.
It supports that each sub-syllable unit could be shared and
reused in different contexts for concatenation. As a conse-
quence, the proposed CSS efficiently solves the mismatch-
context problem of CSS when using limited data.

If we use further compressions, the footprint of the proposed
CSS can be much reduced. In [4], [5], TD is used for footprint
compression in CSS, therefore these methods can be directly
applied in our proposed CSS. The compressed footprint of
the proposed CSS therefore is small enough for low-storage
devices.

VI. CONCLUSIONS

In this paper, we proposed a coarticulation model rep-
resenting contextual effects intra-syllable and inter-syllables
using MRTD, STM, and FSTM. Based on the proposed
coarticulation model, we proposed a syllable-based CSS for
monosyllabic languages. We then applied the proposed CSS
for Vietnamese using a small corpus. The experimental results

show that the proposed Vietnamese CSS outperformed the
unit-based CSS [2] in both speech intelligibility and natural-
ness, while it is superior to the Vietnamese HMMSS [7] in
terms of naturalness and the two are equivalent in terms of
speech intelligibility. As a consequence, we efficiently solved
the mismatch-context problem of CSS with limited data.
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