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Abstract

A motif is an abstraction over a set of repeated patterns observed in a dataset. It

captures the essential features shared by a set of related data. Motif finding can be un-

derstood simply that given a set of sequences, one will find an unknown motif that occurs

frequently in that sequence dataset. Finding discriminative motifs has recently received

much attention in biomedicine as such motifs allow us to characterize in distinguishing

two different classes of sequences. The obvious difference between discriminative motif

finding and motif finding is that the former uses sequences of two different classes to dis-

cover motifs while the latter searches motifs in one class of sequences only. Discriminative

motif finding can be seen as the next step of motif finding problem using one more dataset

to help motif searching more effectively.

In many biomedical domains, the quantity of labeled sequences is very limited while

a large number of unlabeled sequences are usually available. Discovering discriminative

motifs in a small number of labeled data is a challenge for sequence motif finding methods

at present. These methods usually require a large amount of labeled data to search

optimal parameters for models representing motifs. Furthermore, because motifs are often

embedded in conserved sequence fragments, the labeled sequences are short in length and

tend to resemble one another. Therefore, these characters also pose serious drawbacks for

traditional motif finding methods.

In our study of hepatitis therapy by using NS5A (non structure 5A) protein, where

we are interested in discriminating two classes of SVR (sustained virologic response) and

non-SVR (non sustained virologic response) sequences, few labeled sequences are collected

from public sequence database, but thousands of unlabeled sequences are obtained. Work-

ing with ISDR (interferon sensitivity determining region), a small part of NS5A protein

consisting of 40 amino acids, we are dealing with one more difficult case of data, short

and similar sequences. Because the function of ISDR is supposed to do the replication

for HCV, the polypeptide sequence of ISDR should be preserved and has a few variants

at some positions.

It is well known that the current treatment, a combination of interferon and ribavirin

(IFN/RBV), for HCV (hepatitis C virus) is expensive, often causes side effects, and its

success rate is only a half of cases. Sequence analyzing to find characteristics of response or

resistance to HCV treatment is necessary to be able to predict failures before the treat-

ment. Several studies were conducted for explanations of the resistance to IFN/RBV

therapy of HCV to get a deeper understanding how HCV escape from the immune sys-

tem. In addition, the correlation between NS5A protein and IFN/RBV therapy has been
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reported in numerous papers in biomedicine, as well as in computational field. However,

the understanding of inhibitions of the HCV NS5A protein with IFN/RBV therapy is

still unknown deeply and no clear adaptation patterns to the antiviral treatment were

detected. And existing methods for sequence characterization work ineffectively when

input sequences do not provide enough information for searching because they are short

in length and very similar to one another, and the number of labeled sequences is small.

Therefore, our research focuses on developing computational methods to discover the

new knowledge from NS5A protein in two situations, few labeled data and short se-

quences. From this knowledge, we aim at a comprehensive understanding the relation

between NS5A protein and IFN/RBV therapy in order to answer two main questions:

what NS5A biomarkers for IFN/RBV resistance and response are and what links among

these biomarkers are. Our contributions consist of new biomedical findings that can help

to predict signals of response or resistance to IFN/RBV therapy and new computational

methods for knowledge creation.
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Chapter 1

Introduction

This chapter first introduces the research context of discriminative motif learning and

hepatitis C virus treatment. Then the research problem and objectives are presented. The

next part provides a concise view of our major contributions. And the last one shows the

organization of the dissertation.

1.1 Research context

One of the key interests of biologists is to detect short and highly conserved motifs in a col-

lection of DNA (deoxyribonucleic acid) or protein sequences. Motif finding is normally the

challenging problem in molecular biology and computer science [Das and Dai, 2007]. This

problem can be understood simply as follows: given a set of sequences, find an unknown

motif that occurs frequently. Found motifs can be used to group data into meaningful

classes, to summarize data, or to reveal unusual phenomena in sequences [Conklin et al.,

1993]. Traditionally, motif finding has been dominated by generative models using only

sequences of one class to produce descriptive motifs of the class. Recently, discriminative

motif finding using sequences of two distinct classes to discover selective motifs that can

distinguish these two different classes has attracted much attention from the research

community. Discriminative motif finding can be seen as the next step of motif finding

problem using one more dataset to help motif searching more effectively.

It is well known that labeled data are often difficult and time consuming to obtain,

because they require human annotations, knowledge from experts and special devices. In

biomedical applications, the number of existing labeled (annotated) sequences in many

domains is usually small while a large number of unlabeled sequences are available. In

addition, sequence motifs are often embedded in short sequences (known as short sequence

intervals or sequence fragments) which contain a few dozen instead of a few hundred
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residues [Jr. and Liang, 2010,Mehdi et al., 2013], and frequently have mutations in their

pattern [Narang et al., 2010]. These characteristics have brought challenges for motif

finding problem.

The research on discriminative motif learning has recently developed pattern discovery

methods using HMM (hidden Markov model) [Lin et al., 2011], PWM (position weight

matrix ) [Kim and Choi, 2011,Bailey et al., 2010,Redhead and Bailey, 2007], and associ-

ation mining with domain knowledge [Vens et al., 2011]. Due to their general purposes,

these methods have showed to be ineffective when input sequences do not provide enough

information to discover discriminative patterns. The main reason of this limitation is that

these methods try to obtain PWM and HMM from the training data, therefore it is very

difficult for them to learn the best probabilities of patterns if the training data are short

in length and small in number.

In the case of our study on hepatitis C virus, a study in 4 consecutive projects between

our laboratory and Chiba University with funding from JSPS on computational meth-

ods [Ho, 2011,Ho, 2007,Ho, 2004,Motoda, 2001], we focus on hepatitis pathogenesis and

therapy by using NS5A (non structure 5A) protein, where we are interested in discrim-

inating two classes of SVR (sustained virologic response) sequences and non-SVR (non

sustained virologic response) sequences, from the biggest resource of LANL1 database, we

can only get 134 non-SVR sequences and 93 SVR to IFN/RBV therapy, and 13 non-SVR

sequences and 12 SVR sequences from Chiba University, but from Genbank2 and HVDB3

databases, we obtain about 5000 NS5A unlabeled sequences.

The combination of IFN/RBV (interferon and ribavirin) is currently the standard

therapy for HCV (hepatitis C virus). However, this therapy is often accompanied by

side effects and only fewer than half of the HCV infected individuals achieve sustained

viral response by this therapy, especially HCV-1b (hepatitis C virus genotype 1b), see

for example [Gao et al., 2010, Hoofnagle, 1994]. Many studies have reported that the

NS5A in HCV genome is known as the protein implicated in the interferon resistance,

and thus much effort has been made to pursue uncovering such resistance mechanisms.

Furthermore, several studies have suggested biomarkers for explanations of the resistance

to IFN/RBV therapy of HCV to get a deeper understanding how HCV escape from the

immune system, such as mutations in a part of the NS5A of HCV [Enomoto et al., 1996],

the relation between gene expression and viral level [Murakami et al., 2010, Brodsky

et al., 2007], the relation of NS5A protein and TLRs (toll-like receptors) [Imran et al.,

2012], the variation of IL-28B (interleukin-28B) gene [Alestig et al., 2011] and so on.

Among these studies, the correlation between NS5A protein and IFN/RBV therapy has

1Los Alamos National Laboratory http://hcv.lanl.gov
2Genbank http://www.ncbi.nlm.nih.gov/genbank
3Hepatitis Virus Database http://s2as02.genes.nig.ac.jp
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been reported in numerous paper in biomedicine field [El-Shamy et al., 2011, Guilou-

Guillemette et al., 2007, Pascu et al., 2004, Sarrazin et al., 1999, Enomoto et al., 1996],

as well as in computational field [ElHefnawi et al., 2010, Aurora et al., 2009, Witherell

and Beineke, 2001]. However, the understanding of inhibitions of the HCV NS5A protein

with IFN/RBV therapy is still deeply unknown and no clear adaptation patterns to the

antiviral treatment were detected [Gao et al., 2010,Cuevas et al., 2009].

One more difficulty in study of NS5A and IFN/BRV therapy is that ISDR (interferon

sensitivity determining region) sequences tend to resemble one another. ISDR is a small

part of NS5A protein consisting of 40 amino acids and has been widely discussed for its

correlation with IFN resistance and response. Because two main functions of NS5A protein

are supposed to replicate for HCV and resist IFN activity, the polypeptide sequence of

NS5A protein should be preserved and has few variants at some positions. Therefore, short

and similar characteristics of sequences pose serious drawbacks for traditional methods.

In summary, how to know in advance the signals of response or resistance to IFN/RBV

therapy, also known as SVR or non-SVR before the treatment to be able to save the pain

and expense for patients is necessary and important to HCV study. We are motivated

by the four following points: (1) why is the rate of INF/RBV response low? The SVR

rate has achieved less than 50%, especially with HCV genotype 1b [Gao et al., 2010]; (2)

what are NS5A biomarkers for SVR and non-SVR outcomes? And what are links among

them?; (3) the labeled data in reality are small in number, short in length and similar

to each other; (4) the current discriminative motif finding methods are ineffective when

input data are not enough information. Therefore, our study objectives are set to develop

efficient and effective computational methods for discovering discriminative motifs in two

cases: few labeled data and short sequences; and develop a semi-supervised ensemble

learning method to exploit a large unlabeled data in order to improve the quality and

accuracy of discriminative motifs. To achieve these objectives, we propose computational

processes based on well-founded machine learning techniques, address the rational uses of

popular methods, as well as apply biomedical background to the proposed methods.

1.2 Problem formulation

Finding motifs having a descriptive ability for a set of sequences is to find common

properties and characteristics of that sequence set. And finding discriminative motifs

is not only to find descriptive properties of a sequence set but also to find discriminative

properties so that these motifs can differentiate this sequence set from other sequence sets.

This searching is the main purpose of discriminative motif finding problem. The current

discriminative motif learning typically involve building PWM or HMM from sequences
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and then using techniques such as EM (expectation maximization) or Gibbs sampling to

optimize the likelihood of PWM or HMM, and thus do not guarantee to find the global

solution. Because PWM and HMM are normally obtained from training data, previous

methods require a large number of labeled data to learn the best PWMs and HMMs.

Therefore, these methods have shown their limitations when work with the small number

of labeled data, short and similar sequences.

In studies of the relation between NS5A protein and IFN/RBV therapy, so far, many

biomarkers are proposed to explain IFN/RBV resistance or response of HCV, for example

the number of point mutations [Enomoto et al., 1996, Sarrazin et al., 1999, Pascu et al.,

2004], type and position of point mutation [Torres-Puente et al., 2008, Witherell and

Beineke, 2001] in NS5A region; and no clear patterns to IFN/RBV therapy are detected

[Cuevas et al., 2009]. After analyzing the current HCV study, we set our goal to discover

discriminative motifs such that these motifs can help to distinguish SVR and non-SVR

results of HCV treatment. Once these motifs are found, they will be suggestions or hints

for HCV treatment that should be confirmed by experimental works.

To this end, we formulate our research problem to 3 main tasks: (i) develop a discrim-

inative motif learning method for few labeled data, (ii) develop a discriminative motif

learning method for short and similar sequences and (iii) apply these methods mentioned

above in order to discover new knowledge in biomedical field.

With a small labeled dataset, it is difficult to be able to discover discriminative motifs

that have an overall representation for a class and discriminate clearly from other classes.

Therefore, in the first task, we develop an appropriate method to find effectively discrim-

inative motifs from two sequence datasets, a limited number of labeled sequences and a

large number of unlabeled sequences.

In the second task, in order to deal with the lack of information from short and similar

sequences, we first find a way to enrich the representation for sequences, then we develop

an advanced machine learning method based on topic model to characterize and predict

sequences.

In the third task, HCV treatment results are categorized into two cases: SVR (or

IFN/RBV response) and non-SVR (or IFN/RBV resistance), we therefore apply the above

two methods to find discriminative motif in a set of two-class sequences. In other words,

given a set of two-class sequences, the problem is to find discriminative motifs that help

to classify well a sequence into a certain class. These potential and promising motifs

present many patterns that were not known previously and need preliminary assessments

by physicians.

4



1.3 Major contributions

Our target is to develop new computational methods for discriminative motif discovery in

order to understand comprehensively the relation between NS5A protein and IFN/RBV

therapy. Therefore, our contributions are two-fold: biomedical findings and computational

methods summarized concretely in each following situation:

Discriminative motif learning for few labeled data. In this work, we propose

a semi-supervised ensemble method for finding discriminative motifs which is based on

a separate-and-conquer searching method. Our method firstly searches core motifs from

a small labeled dataset, then used these motifs to exploit unlabeled data, and continues

searching discriminative motifs with the enlarged labeled dataset. The experimental re-

sults show the accuracy of the proposed framework is improved by 8% and discriminative

motifs with high accuracies from 80% to 100% found by our new method are able to

discriminate better than discriminative motifs of MEME and DEME methods. These

motifs, when verified by physicians, lead to a better understanding of the resistance or

response to IFN/RBV therapy of HCV.

This work was reported at 4th Asian Conference on Intelligent Information and Database

Systems (ACIIDS 2012) and published in the Journal of Universal Computer Science, Spe-

cial Issue on Hybrid and Ensemble Methods in Machine Learning (HEMML 2012), Vol.

19, Issue 4, pp. 563-580, April 2013.

Discriminative motif learning for short sequences. In this joint work, I con-

tributed the way to represent optimally for input sequences, the comparison of experimen-

tal results with other methods, the interpretation for subsequence pattern, the connection

between subsequence patterns and HCV genotype 1b, and the experimental performance.

Our framework shows its effectiveness through the prediction quality being often higher

than the quality of the baseline method, about 30% improvement. Furthermore, charac-

teristics of HCV treatment outcomes we obtained are good discriminative motifs helping

to predict signals of response or resistance to HCV therapy. We believe these poten-

tial findings provide additional knowledge to studies of HCV treatment as well as viral

sequence variation studies. (This work is under consideration to submit).

Application to HCV study. Applying two proposed methods, we believe to con-

tribute strong discriminative motifs, the new additional knowledge, to studies of HCV

treatment as well as studies of viral sequence variation. And obviously, we need time to

verify these motifs by experimental works.

The scientific significances of our study are in the achievement of understanding of

the relation between NS5A protein and IFN/RBV therapy at a molecular biology level

and in the novel computational methods that are proposed. In a context of Knowledge
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Science, namely Knowledge Media, we address a new computational process for creating

new knowledge automatically by using computer algorithms and then using this knowl-

edge to classify the data into different categories in biomedical field. Our biomedical

findings (discriminative motifs) are patterns and regularities in data that have not been

discovered before. These findings are created in a reliable computational process, judged

by extensive experiments and on the way to be verified as new knowledge. Therefore, our

study contributes to Knowledge Science are the new knowledge for biomedical field and

computational methods for knowledge creation.

1.4 Dissertation organization

The dissertation is organized into five chapters, as follows:

Chapter 1 introduces the research problem and its formulation. This chapter also

states our main contributions in term of biomedical findings and computational methods.

Chapter 2 presents the background of the dissertation. We present studies of HCV,

NS5A protein and IFN/RBV therapy. Motif and discriminative motif finding problems

of sequence characterization are discussed.

Chapter 3 describes our computational methods for discovering discriminative motifs

in situation of few labeled data. First, we present how to find discriminative motifs in

a small training dataset. And then we show how to exploit the huge unlabeled dataset

in order to enlarge the small training dataset. Next, we present the application to HCV

treatment for this problem. Finally, the findings and their significance are discussed.

Chapter 4 presents a new method to discover discriminative motifs for short se-

quences. The method consists of four main steps. Data representation is the first step.

The second step is data transformation into a discriminative space. And the next step

is data projection onto this discriminative space. The final step performs prediction and

analysis. We also discuss our new findings and their significance in biomedical field.

Chapter 5 concludes the dissertation by summarizing the major contributions, achieve-

ments, and limitations of our work. We also talk about open problems for future research

on this topic.
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Chapter 2

Background

2.1 Fundamental of motif discovery

2.1.1 Motif definition

A sequence motif is generally understood as a subsequence of sequences that is widespread

and biologically significant [Sami and Nagatomi, 2008]. For examples, with DNA se-

quences, motifs can be TFBSs (transcription factor binding sites) in the promoter re-

gions; with protein sequences, motifs can be regions corresponding to a specific function

or structure, or it can be signals playing an important role in controlling the cellular

localization [Vens et al., 2011]. The sequence motif usually is short, from 5 to 20 bp

(base-pairse) long, and is supposed to repeat many times in a sequence [Das and Dai,

2007] (Figure 2.1).

In motif discovery, we often use a popular assumption to find motifs. This assumption

is stated that the significant regions are better preserved during the evolution because

of their importance in terms of structure and/or function of the molecule, and thus that

they appear more frequently than it is expected [Nevill-Manning et al., 1998]. Motifs can

be classified into two main types: (1) simple motif, no variable gaps are allowed in the

motif, and (2) structured motif or composite motif, variable gaps are allowed in a motif,

in other words, structured motif is a pair of simple motifs separated by a variable but

restricted distance [Sinha, 2003].

2.1.2 Motif representation

A sequence motif can be represented by either (i) a string-based model or (ii) a proba-

bilistic model. A string-based model represents a motif as a sequence of letters that may
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Figure 2.1: DNA motifs [D’haeseleer, 2006].

contain special characters to increase the variability of the motif. Among probabilistic

models, PWM (position weight matrix ) and HMM (hidden Markov model) are the most

commonly used models to represent motifs. PWM considers a motif as a matrix in which

each element has the probability of a given nucleotide or amino acid at a specified position

with an independence assumption among positions. HMM describes a motif as a Markov

process of hidden states where the probability of the current state of a character only

depends on its previous state with the assumption that these states are not necessarily

independent [Wu and Xie, 2010].

1. PWM (position weight matrix ): PWM specifies a score for each base or amino acid

at each position in the motif, assuming independence between positions in the motif.

An example of PWM is described as follows: Given a set of aligned sequence, we

can construct a profile matrix characterizing a motif having 8 bases in length for

example. Each element represents the probability of given character at a specified

position (Figure 2.2).

Another example is described more concretely: Given a sequence ‘GCCGCCCTTTC-

CTCTTTCTTTCGCGCTCTAGCCACCCGG’. PWM of a motif that has 12 bases

in length, ‘TTTCGCGCTCTA’. We can see that the first position of motif is more

likely to be a ‘T’ since the probability is 0.759, the highest probability in the first

column (Figure 2.3)

In order to know whether a subsequence is a motif or not, PWM will calculate a

likelihood of a sequence given a motif with starting position (Figure 2.4).

2. HMM (hidden Markov model): The probability of the current state only depends on
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Figure 2.2: An example of PWM [Craven, 2011].

Figure 2.3: An example of PWM [Wu and Xie, 2010].

Figure 2.4: A formula to calculate the likelihood of a sequence motif in PWM [Craven,

2011].
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its previous state (states are not necessarily independent). These states are hidden

since we only observe the letters but not theirs states. Hidden Markov Model

includes below components:

(a) The sequence of observations O = {o1, ..., oL}, ol ∈ {A,C,G, T}, l = 1..L, L is

the length of sequence.

(b) The sequence of the hidden states X = {x1, ..., xL}, xl ∈ {0, ...,M},M + 1 is

the total number of states.

(c) The transition probability matrix of the hidden state Q = {qij}, i, j = 0, ...,M ,

qij = P (x(l+1) = j|xl = i).

(d) The initial probability of the states π = π0, ..., πM , i = 0, ...,M .

(e) The probability of observing letters ol from each state i, E = P (ol|xl = i) is

known as the emission probability.

A following example is illustrated for HMM: Suppose we know that a sequence

contains a motif whose length is 12. Then we have 13 hidden states. Specifically,

one state in background is denoted by 0, and one state for each position of motif is

denoted from 1 to 12, where E represents the 12 motif states. We view the letters

in the top line as observations from the hidden path in the bottom line.

Observation: GCCGCCCTTTCCTCTTTCTTTCGCGCTCTAGCCACCCGG

Hidden state: 000000000000000000EEEEEEEEEEEE000000000

Suppose we know that the motif is likely to follow the background state with prob-

ability 0.01 and no two motifs are next to each other. Transition probability matrix

will be as Figure 2.5, where q0,1 = 0.01 (from background state to motif state),

q0,0 = 1 − q0,1 = 1 − 0.01 = 0.99 (from background state to background state),

q(i,i+1) = 1, i = 1, .., 11 (from motif state to motif state), q12,0 = 1 (from motif state

to background state), and qi,j = 0 for all other i, j, and we assume no two motifs

are next to each other.

The emission probabilities of the observations from the background state is uniform,

P (ol = A|xl = 0) = P (ol = C|xl = 0) = P (ol = G|xl = 0) = P (ol = T |xl = 0) =

0.25.

The emission probabilities for the observation from states 1-12 are given by the

PWM (Figure 2.3).

Suppose we know the first position of the given sequence is not a motif then we have

the initial probabilities π0 = 1 and π1 = π2 = π12 = 0.

Then the joint probability of an observed sequence O and a state sequence x is

P (O, x) = πx1P (o1|x1)
∏
P (ol|xl)qxl−1

xl).
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Figure 2.5: An example of transition probability matrix in HMM.

2.1.3 Motif finding algorithm

Based on motif representational models, motif finding algorithms are categorized into two

major groups [Das and Dai, 2007]: string-based methods that mostly rely on exhaustive

enumeration and probabilistic methods that parameters of the motif model are estimated

using maximum likelihood principle or Bayesian inference.

1. String-based method

In this method, motifs are found by enumerative algorithms that cover exhaustively

the space of all possible motifs, for a specific motif model description [D’haeseleer,

2006]. The key idea of enumerative methods is that frequencies of each nucleotide

or amino acid in sequences will be counted and compared to find the most overrep-

resented subsequences.

The work of [Tompa, 1999] is an example of enumerative methods. For each

length−k sequence s, the number Ns of sequences containing an occurrence of s

is recorded. This occurrence allows for a small and fixed number c of substitution

residues in s. Then, a measure of s as a motif would be based on how unlikely it

is to have Ns occurrences if the sequences were drawn at random according to the

background distribution.

The statistical significance test for motif occurrences is proposed by [Tompa, 1999] as

follows: Let X be a single random sequence of the specified length L, with residues

drawn randomly and independently from the background distribution. Supposed
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Algorithm 1 EM algorithm, where p is a matrix of probabilities of each character, Z is

a matrix of probabilities that a motif starts in a position of a sequence

Given: length parameter W , training set of sequences

1: t = 0

2: set initial values for p(0)

3: repeat

4: + + t

5: re-estimate Zt from pt−1 (E-step)

6: re-estimate pt from Zt (M-step)

7: until change in p(t) < ε

return: p(t), Z(t)

that ps is the probability that X contains at least one occurrence of the length-

k sequence s allowing for c substitutions. Under the reasonable assumption that

random sequences of X are independent, the expected number of containing at

least one occurrence of s among the N random sequences is Nps , and its standard

deviation is
√
Nps(1− ps). Therefore, the associated z-score is Ms = Ns−Nps√

Nps (1−ps)
,

where Ms is the number of standard deviations by which the observed value Ns

exceeds its expectation, and it is called the “z-score”.

2. Probabilistic method

(a) EM (Expectation Maximization). EM is a family of algorithms for learning

probabilistic models in problems that involve hidden state [Lawrence and Reilly,

1990]. In the motif finding problem, the hidden state is where the motif starts

in each training sequence. The EM algorithm iteratively computes the ex-

pectation of the missing data (E-step) and maximizes the exptected hidden

log-likelihood of the data (M-step) illustrated as in Algorithm 1.

In practice, PWM does not only represent the probabilistic of each residue, but

also represent the “background”, i.e. sequence outside the motif. An example

of motif representation in MEME (multiple EM for motif elicitation) tool has

shown in Figure 2.6.

(b) Gibbs sampling. The EM approach can get trapped in local minima because

the PWM is generated at the beginning of the EM algorithm. One approach

to alleviate this limitation is that we try different initial parameters. Gibbs

sampling is an alternative to the EM approach and it can exploit randomized

search to a much greater degree. Therefore, we can view Gibbs sampling as a

stochastic analog of the EM algorithm. In the EM approach, we maintained a

distribution Zi over the possible motif starting points for each sequence. But
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Figure 2.6: An example of length-3 motif representation in MEME [Craven, 2011].

Algorithm 2 Gibbs sampling algorithm, where p represents th probability of being in

state u at any given time in a random walk on the chain and the specific stating point a

for each sequence

Given: length parameter W , training set of sequences

1: choose random position for a

2: repeat

3: pick a sequence Xi

4: estimate p given current motif positions a

5: (using all sequences but Xi) (predictive update step)

6: sample a new motif position ai for Xi (sampling step)

7: until convergence

return: p, a

in the Gibbs sampling approach, we will maintain a specific starting point for

each sequence ai and we will keep randomly resampling these. The basic Gibbs

sampling approach is illustrated as in Algorithm 2.

We can view the motif finding in terms of a Markov Chain Monte Carlo, where

“Markov Chain” is the results from every step depends only on the results of

the preceding one (like in EM) and “Monte Carlo” is the way to select the

next step is not deterministic but rather based on random sampling [Das and

Dai, 2007]. Each state represents a configuration of the starting positions and

transitions correspond to changing selected starting positions.

2.1.4 Discriminative motif learning

Motif learning is the problem that given a set of sequences thought to contain unknown

motifs of interest, then two main tasks for inferring a model of motifs and predicting the

locations of motifs in those given sequences are performed. Finding motifs in a class of

sequences is to find motifs that share a certain characteristic, such as motifs containing
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a large number of wildcard symbols [Hsu et al., 2011], degenerate motifs [Vens et al.,

2011], conserved motifs, and so on. However, sequence motifs are usually short and can

be highly variable patterns [Redhead and Bailey, 2007], and it is difficult to distinguish

them from random patterns that are likely to occur by chance [Bailey et al., 2010]. This

has led to a new approach utilizing an additional class of sequences to guide the motif

finding process to come near to specialized motifs that we want to seek in one class

of sequences, or go far away from other motifs in the other class of sequences. Using

the second class of sequences can help to distinguish motifs from randomly occurrences,

because it provides additional information to compare and then eliminate early motifs

that are overrepresented by chance. Therefore, finding motifs with a set of two-class

sequences has opened a new view of discriminative motif finding.

Discriminative motif finding problem is to find motifs occurring more frequently in

one set of sequences and not occurring in the other set of sequences. These motifs can

help to classify effectively a sequence into a certain class or to describe the discriminative

characteristics of a class.

The probabilistic models for motif discovery can be classified as being of one of three

types by the assumption on the number of binding sites per sequence [Kim and Choi,

2011]. Then, the models of each class can be further classified into two different versions

of discriminative and non-discriminative, resulting six different models.

1. OOPS (one occurrence per sequence): Only one subsequence of each sequence is

generated from the motif model.

2. ZOOPS (zero or one occurrence per sequence): The ZOOPS model is an extension

of the OOPS model by allowing each sequence to have at most one binding site.

3. MOPS (multiple occurrence per sequence): The MOPS model is further extended

from the ZOOPS model by allowing any number of binding sites.

4. DOOPS (discriminative one occurrence per sequence): The DOOPS model is de-

rived from the OOPS model and is employed a discriminative learning.

5. DZOOPS (discriminative zero or one occurrence per sequence): The DZOOPS

model can be derived from the DOOPS model by introducing the true class label

determining whether a positive sequence contains a binding site or not.

6. DMOPS (discriminative multiple occurrence per sequence): The DMOPS model is

derived from the MOPS model and is employed a discriminative learning.
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Figure 2.7: Simplified diagram of the structure of hepatitis C virus [Colm, 2008].

2.2 Fundamental of HCV study

2.2.1 Hepatitis C Virus

HCV (hepatitis C virus) is an enveloped, approximately 9600 nucleotides, single-stranded

RNA (ribonucleic acid) virus and is classified in the family Flaviviridae [Choo et al.,

1989]. HCV is small in size, about 55 - 65 nm (nanometre) and its particle consists of a

core of genetic material (RNA), surrounded by an icosahedral protective shell of protein,

and further encased in a lipid envelope of cellular origin [Beeck and Dubuisson, 2003].

Figure 2.7 illustrates the basic structure of HCV.

A great progress has been made in the study of HCV over the past 18 years using

heterologous expression systems that enable the study of viral entry under reproducible

and conveniently measurable conditions and complete cell-culture systems [Moradpour

et al., 2007]. Selected milestones in HCV research are shown in Figure 2.8.

1. Genome: The genome consists of 5’-NTR (non-translated region), which includes an

IRES (internal ribosome entry site), a single open reading frame that is translated

to produce 10 active proteins, and a 3’-NTR. As illustrated in Figure 2.9, three

structural proteins are termed core, E1 (envelope 1 ) and E2 (envelope 2 ), and a

protein maned p7; and six NS (nonstructural) proteins are termed NS2, NS3, NS4A,

NS4B, NS5A and NS5B. The 5’ and 3’ NTR are not translated into proteins, but

are important to translation and replication of the viral RNA.

(a) Core protein: The core protein has 191 amino acids and can be divided into
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Figure 2.8: Milestones in hepatitis C virus research [Moradpour et al., 2007].

three domains on the basis of hydrophobicity,

i. Domain 1 contains mainly basic residues with two short hydrophobic re-

gions (residues 1 - 117)

ii. Domain 2 is less basic and more hydrophobic (residues 118 - 174)

iii. Domain 3 is highly hydrophobic and acts as a signal sequence for E1 en-

velope protein (residues 175 - 191)

(b) E1 and E2 proteins: Both envelope proteins are highly glycosylated and impor-

tant in cell entry. E1 serves as the fusogenic subunit and E2 acts the receptor

binding protein.

(c) p7 protein: The p7 protein consists of 63 amino acids and is a spanning mem-

brane that locates in the ER (endoplasmic reticulum). This protein is dispens-

able fro viral genome replication but plays a critical role in virus morphogenesis.

(d) NS2 protein: The NS2 protein is a 21 - 23 kDa (kiloDalton) transmembrane

protein related to protease activity.

(e) NS3 protein: The NS3 protein is a 67 kDa protein whose N-terminal has serine

protease activity and whose C-terminal has helicase activity. It is located

within the ER and forms a heterodimeric complex with NS4A.

(f) NS4A protein: The NS4A protein is a 54 amino acid membrane protein that

acts as a cofactor of the proteinase.

(g) NS4B protein: The NS4B protein is a small (27 kDa) hydrophobic integral

membrane protein that contains 4 transmembrane domains. This protein is
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Figure 2.9: Simplified diagram of the structure of hepatitis C virus [Colm, 2008].

located within the ER and plays an important role for recruitment of other

viral proteins. It induces morphological changes to the ER forming a structure

termed the membranous web.

(h) NS5A protein: The NS5A protein is a hydrophilic phosphoprotein which plays

an important role in viral replication, modulation of cell signaling pathways

and the interferon response.

(i) NS5B protein: The NS5B protein is the viral RNA-dependent RNA polymerase

(RdRp). This protein has the key function of replicating the HCV by using

the viral positive RNA strand as its template and catalyzes the polymerization

of rNTP (ribonucleoside triphosphatess) during RNA replication.

2. Genotype: A genotype is a classification of a virus based on the genetic material in

the RNA strands of the virus. HCV is divided into 6 distinct genotypes with multi-

ple subtypes in each genotypes class based on the genomic sequence heterogeneity.

Following is a list of the different genotypes of HCV summarized by [Simmonds

et al., 2005]:

(a) Genotype 1a, 1b and 1c

(b) Genotype 2a, 2b, 2c and 2k

(c) Genotype 3a, 3b, 3c, 3d, 3e and 3f
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(d) Genotype 4a

(e) Genotype 5a

(f) Genotype 6a, 6b, 6d, 6g, 6h and 6k

Genotype 1 - 3 have a worldwide distribution. Subtypes 1a and 1b are the most

common, accounting for about 60% of global infections [WHO, 2012]. They predom-

inate in Northern Europe and North America, and in Southern and Eastern Europe

and Japan. respectively. Genotype 2 is less frequently represented than genotype

1. Genotype 3 is endemic in South-East Asia and is variably distributed in different

countries. Genotype 4 is principally found in the Middle East, Egypt and central

Africa. Genotype 5 is almost exclusively found in South Africa, and genotype 6 is

distributed in Asia.

3. Replication: HCV replicates mainly in the hepatocytes of the liver, where it is

estimated that daily each infected cell produces approximately 50 virions (virus

particles) with a calculated total of one trillion virions generated. HCV probably

follows the replication strategy of other positive-strand RNA viruses. Its replication

process consists of the following steps:

(a) Virus binding and internalization

(b) Cytoplasmic release and uncoating

(c) IRES (internal ribosome entry site) mediated translation and polyprotein pro-

cessing

(d) RNA replication

(e) Packing and assembly

(f) Virion maturation and release

The life cycle of HCV is illustrated in Figure 2.10.

2.2.2 NS5A protein

NS5A is a nonstructural protein of HCV which is the protein most reported to be im-

plicated in the interferon resistance [Guilou-Guillemette et al., 2007]. NS5A protein is

chemically bonded to a substance containing phosphoric acid. This protein is predicted

to be predominantly hydrophilic and to contain no transmembrane helices [Macdoanldt

and Harris, 2004].

1. Structure: The structural features of NS5A protein have been derived experimen-

tally and four regions of interest are shown in Figure 2.11.
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Figure 2.10: Hepatitis C Virus life cycle [AIDSInfoNet, 2012].

Figure 2.11: The NS5A protein structure [Macdoanldt and Harris, 2004].

(a) N-terminal amphipathic helix: This sequence contains 30 amino acid that were

predicted to form a highly conserved amphipathic alpha helix, and were shown

to be both necessary and sufficient to mediate association of NS5A with the

ER (endoplasmic reticulum).

(b) Hyperphosphorylation cluster: In this region, 4 sites of serine were identi-

fied as sites of hyperphosphorylation, they are Ser2194, Ser2197, Ser2201, and

Ser2204.

(c) Interferon sensitivity determining region: This region was originally associated

with resistance or sensitivity of viral isolates to IFN treatment.

(d) Polyproline cluster: This region contains two closely spaced proline-rich motifs.

Two classes of these motifs have been defined: class 1 (consensus sequence

KxxPxxP) and class 2 (consensus sequence PxxPxR).

Depending on the genotype, NS5A protein varies in length [Guilou-Guillemette

et al., 2007] as in the Table 2.1 below.

2. Function: NS5A is supposed to have two main functions, virus replication and

interferon resistance.
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Table 2.1: Lengths of the NS5A protein.

Genotype Length (amino acid)

1a and 1c 448

1b 447

2a and 2b 452

3 452

4a 445

5a 540

6a 451

Figure 2.12: N-terminal amphipathic helix [Macdoanldt and Harris, 2004]. The evidence

for functions of NS5A in virus replication.

(a) Functions of NS5A in virus replication: NS5A is a part of a multi-protein,

membrane-bound replication complex. Together with other nonstructural pro-

teins, NS5A co-localized with viral RNA in a cytoplasmic membrane structure

termed the membranous web, the generation of which required the NS4B pro-

tein. Replicon cell membrane fractions isolated by differential centrifugation

contained both p56 (56-kDa) and p58 (58-kDa) forms of NS5A and were com-

petent for synthesis of HCV RNA in vitro. A critical role of NS5A came from

experiments in which the amphipathic membrane-targeting helix was mutated

in the context of he replicon. Introduction of three helix-disrupting mutations

(Figure 2.12) implies that NS5A membrane association is an indispensable

event during HCV RNA replication [Macdoanldt and Harris, 2004].

(b) Interferon resistance: The interferon resistance of NS5A is supposed in two

evidences: (i) the interaction of NS5A with cellular interferon pathway and (ii)

the variation with mutations in NS5A.

Interaction of NS5A with cellular interferon pathway : HCV resistance to IFN

could be explained by the ability of NS5A protein to bind and inhibit PKR

(protein kinase R) [Gale et al., 1997] and IL-8 (interleukin-8 ) [Polyak et al.,

2001] protein. The cellular interferon pathway (Figure 2.13) is one of the cell

signaling pathways in human in which Jak/STAT (janus kinase - signal trans-
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Figure 2.13: Interferon signaling pathway [Suhalim, 2007].

ducer and activator of transcription) signaling pathway of interferon system

is an example. In this pathway, the double-stranded RNA-activated protein

kinase R, an enzyme that are induced by IFN and has antiviral properties in

the cell, is a key regulator of the innate immune response. And the NS5A

protein has been suggested to balance the interferon cellular antiviral pathway

and to be involved in the resistance to the interferon based-therapy [Guilou-

Guillemette et al., 2007]. It has been demonstrated in vitro that NS5A induces

the expression of the pro-inflammatory chemokine interleukin 8 at both the

mRNA (messenger RNA) and protein levels [Guilou-Guillemette et al., 2007].

Note that signaling pathway is defined as a group of molecules in a cell works

together to control one or more cell functions. After the first molecule in a

pathway receives a signal, it activates another molecule. And this process is

repeated until the last molecule is activated and the cell function involved is

carried out.

Mutations in NS5A: The relationship of mutations in the NS5A protein and

the IFN resistance were reported to happen in 2 small subregions of the NS5A

protein. The first 40 amino acids of PRK binding domain (residues 2209 - 2248)

present a high level of variability. This subregion is called ISDR (interferon

sensitivity determining region). Mutations in ISDR are involved in response

and resistance to IFN [Enomoto et al., 1996,Pascu et al., 2004]. An increasing

number of mutations in ISDR is an increasing probability of SVR to IFN

therapy. The next 27 amino acids of C-terminal (carboxy-terminal ) region

(residues 2353-2379) of NS5A has a high variability level. This subregion is

called V3 domain. A accumulation of muatations around V3 within the C-
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Figure 2.14: Interferon sensitivity determining region (ISDR) [Macdoanldt and Harris,

2004]. The ability of IFN/RBV resistance can be eliminated by the mutations indicated

in bold.

terminal part of the NS5A protein correlates with treatment response in HCV.

Note that a mutation is a change in a genomic sequence, for example DNA

sequence of the genome of a cell, or DNA (deoxyribonucleic acid) or RNA

(ribonucleic acid) sequence of a virus. Mutations cause effects on the structure

and function of protein sequences.

2.2.3 ISDR of NS5A protein

ISDR (Interferon sensitivity determining region) was first identified a stretch of 40 amino

acids in the center of NS5A protein related to the total number of substitutions by

[Enomoto et al., 1996]. This sequence region is associated with either resistance or sen-

sitivity to IFN treatment or IFN plus RBV combination therapy which is collected and

reported in [Chayama and Hayes, 2011]. An example of ISDR sequence is shown in Figure

2.14.

In addition, ISDR is able to bind and inhibit PKR (protein kinase R), an IFN-induced

protein produced by human immune system during a virus genome replication [Mac-

doanldt and Harris, 2004]. Therefore, the ISDR binding site has been suggested to involve

in the resistance to IFN/BRV therapy [Guilou-Guillemette et al., 2007].

2.2.4 HCV therapy

HCV infection is a major factor leading to the progression of liver cirrhosis and the

development of hepatocellular carcinoma [Saito et al., 1990]. It is estimated that 150

million people worldwide are chronically infected with HCV and more than 350,000 people

die from HCV-related liver disease each year [WHO, 2012]. The combination therapy with

IFN/RBV (interferon and ribavirin) is currently the standard and effective treatment for

chronic HCV infection [Manns et al., 2001].
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1. Interferon: IFN is a member of the cytokine family produced by cells in response to

viral infections or other stimuli by binding to their specific receptors on the surface

of target cells. IFN comes in (i) the standard form, is administered 3 times in a week

and (ii) the pegylated form, is administered once in a week. Types of IFN conclude:

(a) Type I: IFN- α, IFN- β, and IFN- ω are secreted in response to viral infection

by various cell types.

(b) Type II: FN- γ is induced by mitogenic or antigenic stimulation of the immune

system in activated T cells and crophages.

2. Ribavirin: RBV is a guanosine analogue that was synthesized more than 35 year

and that possesses broad-spectrum antiviral activity against several RNA and DNA

viruses in vitro.

3. IFN/RBV therapy : The current standard treatment for patients with chronic hep-

atitis C consists of pegylated alpha interferon and nucleoside analogue ribavirin for

24 to 48 weeks.

4. Results of HCV treatment : The result of IFN-α/RBV treatment includes:

(a) SVR (sustained virological response): is defined as undetectable HCV RNA

by a sensitive assay at the end of a 24-week follow up period after the end of

treatment.

(b) Non-SVR (non sustained virological response): (a) may be found to be HCV

RNA negative during therapy but may relapse thereafter, (b) may be virological

non-responders showing detectable HCV RNA levels throughout the complete

treatment period.

The response rate of IFN-α/RBV therapy is influenced mainly by the HCV genotype

[Pascu et al., 2004], are shown in Table 2.2.
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Table 2.2: The response rate depends on HCV genotype. The Response rate is the

percentage of patients whose cancer shrink (a partial response) or disappear (a complete

response ) after treatment

Genotype Response rate

1 42% - 52%

2 78% - 86%

3 78% - 86%

4 55% - 69%

5 50% - 77%

6 50% - 77%
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Chapter 3

Discriminative motif learning for few

labeled data

This chapter presents a computational process of discriminative motif discovery for few

labeled data. An application to hepatitis C virus treatment brings additional knowledge

of the resistance and response to hepatitis C virus therapy. Experimental results and

biomedicine significances are discussed as well.

3.1 Introduction

3.1.1 Discriminative motif learning

Discriminative motif finding problem is to find motifs occurring more frequently in one

set of sequences and not occurring in the other set of sequences. These motifs can help

to classify effectively a sequence into a certain class or to describe the discriminative

characteristics of a class. Many methods have been developed to search discriminative

motifs so far.

MERCI (Motif EmeRging and with Classes Identification) [Vens et al., 2011] uses a

string-based model to represent motifs and adapts an Apriori algorithm, a well-known

sequential pattern finding technique, to find discriminative motifs. MERCI introduces

two parameters which are the minimal frequency threshold for one sequence set and the

maximal frequency threshold for the other sequence set to prune early motifs which are

not chosen as candidates during the search process.

MEME (Multiple EM for Motif Elicitation) [Bailey et al., 2010] represents a motif as

a PWM and assumes that each sequence has zero or one motif. Given a PWM, MEME
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calculates the likelihood of PWM by the EM (Expectation Maximization) algorithm. To

discriminate motifs, MEME calculates a “position-specific prior” (PSP) of each position

in a sequence in order to measure the likelihood that a motif starts at each position of a

sequence. PSP plays the role of additional information to assist the search by increasing

the probability of start positions containing subsequences that are commonly found in

sequences of interest, as well as decreasing the probability of start positions characterizing

for sequences that do not contain features of interest.

DEME (Discriminatively Enhanced Motif Elicitation) [Redhead and Bailey, 2007] is an

adaptation of the discriminative framework in [Segal et al., 2002]. DEME also represents a

motif as a PWM and uses conjugate gradient to find the best PWMs with the assumption

that each sequence may contain no or one motif occurrence. The difference between

DEME and Segal’s work is that DEME uses the combination of two algorithms called

“substring search” and “pattern branching” to learn the parameters of the motif model

that is used to maximize the discriminative objective function.

In the work of [Kim and Choi, 2011], a hybrid generative and discriminative model is

developed to learn discriminative motifs. The generative model plays the role to maximize

the likelihood of PWM, and the discriminative model is responsible for selecting the most

discriminative feature. These models are combined by a joint prior distribution over two

parameter sets of two models.

Discriminative HMM [Lin et al., 2011] uses profile HMM to represent a motif and

this representation is more flexible for insertion or deletion than PWM’s representation.

Under the HMM, finding motifs in sequences is equivalent to finding hidden states of

sequences. The parameters of HMM are estimated by using the MMIE (maximum mutual

information estimate) technique applied to speech recognition to train the model and get

the optimum of discriminative criterion.

In summary, the methods typically involve building PWM or HMM from sequences

and then using techniques such as EM or Gibbs sampling to optimize the likelihood of

PWM or HMM, and thus do not guarantee to find the global solution, whereas string-

based methods can yield the global solution but have to deal with drawbacks such as a

large number of input data or discovering lengthy motifs because they can lead to the high

complexity of computation. In addition, because PWM and HMM are normally obtained

from the input data, all the above mentioned methods require a large number of labeled

data to learn good PWMs and HMMs. If these methods work with small labeled datasets,

PWMs and HMMs may not return good results as expected.
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3.1.2 Semi-supervised ensemble learning

The combination between SSL (semi-supervised learning) and EL (ensemble learning) is

discussed in [Zhou, 2009] for improving generalization, where the combination of learners

can be helpful to SSL and unlabeled data can be helpful to EL. So far, many studies have

proposed hybrid methods working both in SSL and EL. It could say that semi-supervised

ensemble methods are gradually interested in and have been applied to many tasks, for

example natural language processing, image processing, document retrieval, and so on.

To improve the task of word alignment, [Huang et al., 2010] uses a semi-supervised

learning method, namely Tri-training [Zhou and Li, 2005], to iteratively train three classi-

fiers and assign labels to the unlabeled data. Then it uses some data among the unlabeled

one to expand the labeled training set of each individual classifier.

In the work of [Vajda et al., 2011], a semi-automatic labeling procedure is proposed

to recognize handwritten characters. This procedure considers a data representation as

a component of EL. A voting strategy is used to label for unlabeled data. However, the

main distinction between other SSL strategy and this method lies in the fact that the

label assignment does not based on the votes. The final classifier is built on top of the

inferred labels.

[Dong and Schafer, 2011] applies three classifiers in order to select the new labeled

data in the process of self-training for the problem of citation classification. To make the

final prediction for a given instance, an adopt majority voting is used.

The combination of label propagation and ensemble learning are applied in semi-

supervised learning [Woo and Park, 2012]. A subset of unlabeled data is randomly se-

lected, and it composes a training set together with original labeled data. For the label

prediction of the selected unlabeled data, a graph-based label propagation method is used.

Then, a classifier is trained on the composed training set.

In stream mining, as data streams are infinite, arrive continuously and there should

be online classification, labeling all of the arrived data is impossible. [Admadi and Beigy,

2012] proposed a semi-supervised ensemble learning method to label data in a window.

For each learner, a set of labeled instances is determined from unlabeled data by using

the majority vote.

Taken together, this work aims to develop a semi-supervised ensemble method for

discriminative motif finding from a limited number of labeled sequences and then apply it

to detect sequence motifs in NS5A protein that characterize SVR and non-SVR treatment

result when using IFN/RBV therapy. Our method is based on the SLUPC algorithm

[Ho et al., 2011] which is a separate-and-conquer searching method to discover motifs of

type ‘discriminative one occurrence per sequence’ (DMOPS). Concretely, the proposed
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method, named E-SLUPC (Ensemble SLUPC ), firstly searches core motifs from a small

labeled dataset, then uses these motifs to exploit unlabeled data, and continues searching

discriminative motifs with the enlarged labeled dataset.

Experiments have been performed to investigate the accuracy of E-SLUPC compared

with SLUPC, and the quality of discriminative motifs found by E-SLUPC, MEME and

DEME. The experimental results show the accuracy of the proposed framework is im-

proved about by 8% and DMOPS motifs with high accuracies from 80% to 100% found

by our new method are able to discriminate better than discriminative motifs of MEME

and DEME.

3.2 Method

Because the number of labeled sequences is small, the predictive power of learned motifs

is often low. This motivated us to develop a semi-supervised learning method using

unlabeled dataset to seek DMOPS with higher predictive power. In order to obtain a

higher degree of accuracy of label assignment, we also have develop an ensemble learning

method by combining appropriately multiple label assignment approaches. These semi-

supervised and ensemble learning methods work together to boost the ability to learn

discriminative motifs when labels are assigned more precisely.

In general, our semi-supervised ensemble learning method works under the cluster

assumption: if sequences are in the same cluster, they are likely to be of the same class

[Chapelle et al., 2006]. Concretely we use two assumptions for clusters in our label

assignment approaches, one is based on motif matching and the other is based on the

gene distance of sequences. The former uses discriminative motifs to assign unlabeled

sequences to different clusters, while the later uses the gene distance between sequences

to make clusters.

The framework of E-SLUPC in Figure 3.1 is described below with input sequences

from a small labeled dataset and a large unlabeled dataset.

1. Applying SLUPC to labeled sequences to find a set of DMOPS motifs considered

as core motifs.

2. Using the core motifs to enlarge the labeled dataset by adding to it unlabeled se-

quences that well match with the core motifs determining by the following ensemble

procedure: each unlabeled sequence that matches well the core motifs by three en-

semble components (described in Subsection 3.3) will be finally assigned a label by

the majority voting. Then, the pseudo labeled dataset is determined.
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Figure 3.1: The framework of E-SLUPC.

3. Applying SLUPC to the enlarged labeled dataset, which consists of the labeled and

pseudo labeled data, to learn the final set of DMOPS motifs.

4. The steps 1-3 are repeated until either (i) the core motif set is stable, or (ii) the

maximum number of iterations is achieved.

5. To recognize a new unlabeled sequence, applying the ensemble procedure to the

unlabeled dataset.

3.2.1 SLUPC algorithm

Discriminative multiple occurrence per sequence (DMOPS) is one of the motif types cat-

egorized by [Kim and Choi, 2011] based on counting the number of total occurrences of

motifs in sequences. It shows a structural assumption that is used to generate motifs from

the motif model. In this section, we describe the DMOPS motif discovery method that

uses the SLUPC algorithm in [Ho et al., 2011] to learn a set of descriptive subsequences for

the two-class problem. The algorithm SLUPC is an extended version of LUPC (Learning

the Unbalanced Positive Class) [Ho and Nguyen, 2002] for sequential data.

Denote S = {(S1, C1), (S2, C2) . . . , (Sn, Cn)}, where Si is a sequence of length |Si| over

the alphabet Σ = {A,U,G, T} or Σ = {amino acid} and Ci ∈ {C1, C2, ..., Cc} of the class

labels. When there are only two classes we call one as positive denoted by Pos and the

other as negative denoted by Neg, and thus the labeled set S = Pos∪Neg. The problem

is to find a minimal set of DMOPS motifs satisfying two conditions: (1) Complete: each
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sequence contains at least one found motif, (2) Consistent: motifs found for Pos do not

match any negative sequences in Neg and vice versa.

Given parameters α (0 < α < 1) and β (0 < β < 1), a subsequence P is an α-coverage

for Pos if

|coverPos(P )|
|Pos| ≥ α,

and is a β-discriminant for Pos if

|coverPos(P )|
|coverS(P )| ≥ β,

where coverPos(P ) is the set of sequences in Pos that contains P and coverS(P ) =

coverPos(P ) ∪ coverNeg(P ). If P is both α-coverage and β-discriminant for Pos, we

will say P is αβ-strong for Pos. Similar concepts can be defined for Neg. A subsequence

will be a DMOPS motif when it satisfies both α-coverage and β-discriminant thresholds.

Note that if sequence P1 is a subsequence of a sequence P2, then we have cover(P2) ⊆
cover(P1), i.e., the coverage of P1 is larger and the discrimination ability of P1 is smaller

than that of P2. Given an α-coverage pattern P , the most informative pattern related

to P in terms of coverage is the longest α-coverage pattern containing P . Alternatively,

given a β-discriminant pattern P , the most informative pattern related to P in terms of

discrimination is the shortest β-discriminant pattern contained in P .

The DMOPS motif finding of SLUPC algorithm is described in Algorithm 3. Given

two sets of positive sequences Pos and negative sequences Neg, Algorithm 3 will find

a minimal set of DMOPS motifs satisfying Complete and Consistent requirements. In

this algorithm, Motif(Pos,Neg, α, β) is an exhaustive search procedure that expands a

subsequence one position to the left or to the right, starting with the length is 1.

In the procedure finding an αβ-strong motif, the subroutine Adjacentaa searches for

letters that can be added to S(i) if making S(i + 1) satisfies α and β. The subroutine

StopCond checks if Adjacentaa is successful. If ‘not’, it returns an empty new motif. If

‘yes’, the subroutine CandMotifs ranks S(i+ 1) by the number of occurrences in Pos if

there is more than one amino acid that make S(i+ 1) satisfy both α and β.

The subroutine CandMotifs may require a lot of checks on Neg to see if a generated

motif candidate is αβ-strong. However, thanks to the property “given a threshold α, a

pattern P is not αβ-strong for any arbitrary β if coverNeg(P ) ≥ ((1−α)/α)×coverPos(P )”

[Ho et al., 2011], many motif candidates are quickly rejected if they are found to match

the condition coverNeg(P ) ≥ ((1−α)/α)× coverPos(P ) during the scan of Neg. It is easy

to count coverPos(P ) for each motif candidate P as Pos is small, and we need only to

accumulate the count of coverNeg(R) when scanning Neg until either we can reject the
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Algorithm 3 SLUPC algorithm

Given: Labeled sequences in Pos and Neg, and parameters minalpha, minbeta.

Find: αβ-strong DMOPS motifs for Pos

DMOPS Motif (Pos,Neg,minalpha,minbeta)

1: MotifSet = φ

2: α, β ← Initialize(Pos,minalpha,minbeta)

3: while Pos 6= φ & (α, β) 6= (minalpha,minbeta) do

4: NewMotif ← Motif(Pos,Neg, α, β)

5: if NewMotif 6= φ then

6: Pos← Pos \ Cover+(NewMotif)

7: MotifSet←MotifSet ∪NewMotif

8: else

9: Reduce(α, β)

10: MotifSet← PostProcess(MotifSet)

11: return(MotifSet)

motif candidate as the constraint holds or we completely go throughout Neg and find the

motif has satisfied accuracy.

3.2.2 Self-training technique for semi-supervised learning

We develop the semi-supervised method based on the idea of self-training technique to

enlarge the labeled dataset. Self-training is one of the most common techniques used in

semi-supervised learning [Zhu, 2008]. In this technique, a learner is first trained with the

small amount of available labeled data. The learner is then used to learn the unlabeled

data. Only unlabeled data with their predicted labels having the most confident score are

added to the training dataset. After that, the learner is re-trained and this procedure is

repeated until convergence is reached.

Self-training is a wrapper method that requires a predetermined learning method and

uses its results to teach itself. In our practical point of view, self-training technique is

appropriate in a case that the existing learning method is complicated and difficult to

modify for doing semi-supervised learning. Our SLUPC algorithm is an example of this

case. In addition, evidence shows that doing semi-supervised learning with the cluster

assumption, self-training is an effective approach [Rosenberg et al., 2005].
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Procedure Finding an αβ-strong motif

Motif (Pos,Neg, α, β)

1: CandMotifSet = φ

2: Adjacentaa(Pos,Neg, α, β)

3: while StopCond(Pos,Neg, α, β) do

4: CandMotifs(Pos,Neg, α, β)

5: end while

6: Motif ← FirstCandMotifinCandMotifSet

7: return(Motif)

3.2.3 Majority voting strategy for ensemble learning

In ensemble learning, strategies that combine outputs of learning methods are categorized

in three groups, linear combination, product combination and voting combination [Brown,

2010]. The linear and product combinations are used when learning methods output real-

valued numbers, while voting combination is applicable to results of class labels. The idea

of majority voting strategy is that each learning method votes for a certain class, and the

class with the most votes will be chosen as the ensemble output.

Based on majority voting strategy, we develop three ensemble components to explore

the unlabeled dataset. Each ensemble component is an approach to assign labels for

unlabeled sequences under the cluster assumption. After these three components assign

labels for an unlabeled sequence, the plurality label can be the final label for that unlabeled

sequence.

Label assignment 1. In this ensemble component, the more an unlabeled sequence

contains core motifs of a class, the more it belongs to this class. To apply this rule,

each unlabeled sequence will be matched to core motifs by counting how many times

this sequence contains core motifs of a class, and then these number of times are used to

assess how much an unlabeled sequence can be considered as a sequence of a class. In

order to decide which unlabeled sequence will belong to which class, we choose unlabeled

sequences that contain the most core motifs and just contain motifs in one class.

Label assignment 2. We use the same label assignment rule of the first component (the

more an unlabeled sequence contains core motifs of a class, the more it belongs to this

class), however we make a different decision of choosing labels for unlabeled sequences.

We choose unlabeled sequences that contain more motifs of a class than those of the

remaining class, with the ratio between two classes being larger than a threshold γ (for
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example 80%), to assign labels.

Label assignment 3. The gene distance between two sequences is used to assign labels

for unlabeled sequences. The gene distance shows the similarity or dissimilarity among

sequences and is represented by the optimal local gapped alignment score between two

sequences [Altschul et al., 1990,Smith and Waterman, 1981]. According to BLAST1, the

higher the score is, the more similar two sequences are. Therefore, the assignment is that

if two sequences have a high score, they are likely to be of the same class. To apply this

assignment rule, the score of an unlabeled sequence and a representative of each class is

calculated and we choose the larger score to decide to label for that unlabeled sequence.

We obtain the representative of a class by choosing a sequence having the minimum

deviation between scores of sequences and the average of these scores.

3.3 Application to HCV study

We are given a set of sequences of the NS5A region that are hypothesized to contain

several instances of SVR and non-SVR signals. The problem is to find SVR and non-SVR

motifs in the NS5A regions. Solving this problem provides a biomarker or additional

knowledge to the relation between NS5A region and IFN/RBV therapy. This hypothesis,

when verified, leads to a better understanding of the resistance or response to IFN/RBV

therapy of HCV.

3.3.1 The dataset

In this study, all sequences, each containing 447 amini acids, are in NS5A region of HCV

genotype 1b. We used two kinds of datasets as follows:

• Labeled dataset: including 28 sequences SVR, 49 sequences non-SVR from LANL

database, and 13 sequences SVR, 12 sequences non-SVR from Chiba University

database.

• Unlabeled dataset: including 1424 sequences from HVDB and 168 sequences from

GenBank.

1Basic Local Alignment Search Tool http://blast.ncbi.nlm.nih.gov
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3.3.2 Finding DMOPS motifs charactering SVR and non-SVR

to therapy

The experiments aim to evaluate the performance of discovered motifs in terms of discrim-

ination. A 3-fold cross validation on labeled data was done with the algorithms parameters

as follows: minalpha = 0.1,minbeta = 0.5. We obtained these values by performing the

SLUPC algorithm many times to pick out the best parameters that are suitable to the

training dataset. In this experiment, the initial value of α and β are with high values of

0.7 and 0.95, respectively and alternatively reduced them, α = α−∆α, β = β −∆β with

∆α = 0.05 and ∆β = 0.02, in order to firstly find the strongest αβ-motifs, then step by

step reduce α and β to find as strong as possible αβ-motifs that each training sequence

contains at least one motifs found.

Because of the small labeled dataset, the widespread of DMOPS motifs is not ensured

in the whole dataset and the accuracy of prediction is not stable. To get the good quality

motifs as well as the stable prediction accuracy, we perform 3-fold cross validation 5

times. Following the idea of ensemble learning, we add up DMOPS motifs of each run

time to create a set of integrated motifs, assess the widespread and effect on the prediction

accuracy of each motifs in 3 testing sets, and then eliminate motifs which are infrequent

and make prediction accuracy low. The average accuracy of the SLUPC algorithm is

represented in Table 3.2. Though the average accuracy on testing data is low (about

66%), it is very encouraging in the biomedical field.

Table 3.1 presents DMOPS motifs that are found in 15 times of experimental running

(5 times of 3-fold cross validation). Each four columns stands for DMOPS motifs found in

SVR and non-SVR sequences, together with the number of SVR sequences and non-SVR

sequences containing a motif and the number of occurrences of that motif in 15 times,

respectively. The number of SVR sequences and non-SVR sequences containing a motif

are calculated on the whole dataset. These motifs are selected from the set of integrated

motifs after filtering motifs that have the low accuracy and coverage. However, some

DMOPS motifs that have the low number of occurrences still exist in this table. That is

because if they are removed out of the integrated motif set, the prediction accuracy will

be decreased.

It can be observed from Table 3.1: the SVR motif “LAI” occurs in 7 SVR sequences

and does not occur in non-SVR sequences. Its coverage is 17% (7/41 = 0, 17) and its

accuracy is 100% (7/(7 + 0) = 1). In addition, this motif occurs 13 times in the cross

validation experiment. Another SVR motif “AI” also has the high coverage (24%) and

accuracy (100%). Similar observations can be done for non-SVR motifs “NM”, “DK”, or

“NR”. It could say that these DMOPS motifs can be viewed as the good biological signals

for charactering SVR and non-SVR to IFN/RBV therapy. The group of SVR motifs, such
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Table 3.1: DMOPS motifs characterizing SVR and non-SVR to IFN/RBV therapy

SVR SVR Non-SVR No. of Non-SVR SVR Non-SVR No. of

motifs sequences sequences occurrences motifs sequences sequences occurrences

LAI 7 0 13 NM 0 7 14

AF 4 1 12 ND 1 10 13

AI 10 0 12 DK 0 3 9

VEA 5 2 10 RS 1 5 8

FN 2 0 8 VDLIEA 1 4 7

TAA 2 0 6 AKA 1 6 6

HN 1 0 5 NR 0 4 6

VN 1 0 4 MA 0 3 3

KAA 2 0 3 PAS 0 4 3

AAC 2 0 3 WC 0 4 2

as “AF”, “VEA”, “FN”, “TAA”, “HN”, “KAA”, and “ACC”, and non-SVR motifs, such

as “ND”, “VDLIEA”, and “AKA”, have high accuracies from 80% to 100% that show

the high ability of discrimination. However, their occurrences in 15 times of conducting

the experiments are insufficiently large to conclude that they are good DMOPS motifs.

3.3.3 Evaluating the accuracy of E-SLUPC and SLUPC

In this part, we present the experiment that focuses on validating and comparing the accu-

racy assessment of SLUPC algorithm before and after enlarging labeled dataset. Therefore

we perform 3-fold cross validation 5 times with parameters minalpha, ∆α, minbeta, ∆β

are set to 0.05, 0.05, 0.4, and 0.05 respectively which are different from values of parame-

ters in SLUPC algorithm. This adjustment is essential because the number of sequences

in the training dataset will be increased, the old values of parameters are not the most

appropriate values in the case of the new training dataset. However, these parameters

are fixed during the iteration process of semi-supervised ensemble learning because the

number of sequences added to training dataset after one iteration is not significant.

In this experiment, 1424 unlabeled sequences are used and repeated for each iteration

to pick out sequence candidates. The maximum number of iterations is set to 5 and the

highest rank of a sequence is 1. Because the number of sequences in the training set

is small, we consider one match between a DMOPS motif and an unlabeled sequence is

enough for the first and second ensemble components to assign a label for that unlabeled

sequence.

Table 3.2 shows the experiment results of comparing the accuracy of SLUPC and E-

SLUPC (about 8% increase in accuracy). Accuracies in Table 3.2 are average accuracies

of folds in each time of doing 3-fold cross validation. These accuracies are computed on

our testing dataset. In 5 times of 3-fold cross validation, accuracies of E-SLUPC are
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Table 3.2: Accuracy of SLUPC adn E-SLUPC

No. of 3-fold SLUPC E-SLUPC

cross validation

The 1st 3-fold 0.83 0.85

The 2nd 3-fold 0.65 0.76

The 3rd 3-fold 0.63 0.73

The 4th 3-fold 0.58 0.68

The 5th 3-fold 0.63 0.70

The average accuracy 0.66 0.74

increased from 2% to 10%. This can be explained by the quality of DMOPS motifs found

during semi-supervised ensemble learning process. When the label assignment is more

effective and precise, DMOPS motifs are better and more qualified.

3.3.4 Comparing the output of E-SLUPC to MEME and DEME

1. MEME

We choose MEME to compare the output of E-SLUPC because MEME is currently

one of the most well-known and powerful types of software for motif finding. Using

the web version of the MEME2, we perform a 5 times 3-fold cross validation exper-

iment with the following parameters: the occurrence of a single motif among the

sequences is set to the multiple occurrence per sequence, the length of each motif is

between 2 and 6, and the maximum number of motifs is 30. The first two param-

eters, the multiple occurrence per sequence and the length of a motif, are chosen

in a similar way to our previous experiment for E-SLUPC. It allows us to do a

comparative assessment of results between E-SLUPC and MEME when setting the

same values for two sets of parameters. Because MEME yields only a motif at each

runtime, and we also want to get as many motifs as possible, we let MEME repeat

30 times. After 15 times of MEME running, we collect about 163 SVR motifs and

170 non-SVR motifs. In this result, we compare between the set of SVR motifs and

non-SVR motifs, and we find about 57 motifs appeared in both SVR and non-SVR

motif sets. Table 3.3 shows the top 12 motifs found by MEME which have the

highest frequency in a total of 15 times of MEME running.

Observing Table 3.3, we see that although MEME allows us to search discriminative

motifs with two sets of positive and negative sequences, the discriminative ability

2MEME http://meme.sdsc.edu/meme/cgi-bin/meme.cgi
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Table 3.3: The top twelve motifs found by MEME

SVR SVR Non-SVR No. of Non-SVR SVR Non-SVR No. of

motifs sequences sequences occurrences motifs sequences sequences occurrences

WRQEMG 39 60 15 TFQVGL 18 49 15

RKSRKF 21 32 14 GDFHYV 21 49 14

WKDPDY 27 47 12 WKDPDY 27 47 14

EEDERE 30 54 11 QITGHV 17 40 12

CTTHHD 11 22 10 DLIEAN 35 60 11

GDFHYV 21 49 9 RLHRYA 27 47 10

SHITAE 41 54 8 KNGSMR 25 47 8

DPSHIT 41 56 7 LLREEV 11 37 7

EPDV 40 59 6 SQLASAP 34 61 5

PVVHGC 37 57 5 TSMLTD 39 61 4

LKAT 35 59 3 PEFF 28 49 3

SPDA 32 55 2 EEYV 27 48 2

of these motifs is not high. The motifs such as “WKDPDY”, or “GDFHYV” have

the high frequency in 15 times of MEME running, but their appearances in both

SVR and non-SVR motif sets make them difficult to be reliable discriminators when

distinguishing two classes. In addition, MEME does not return motifs that have the

high accuracy such as “LAI”, “VEA”, or “VDLIEA” found by E-SLUPC. There-

fore, MEME has just worked effectively in the case of finding motifs that describe

characteristics of a sequence dataset.

2. DEME

DEME is one of the efficient discriminative motif finding methods. DEME com-

bines two times of search, global and local search, to learn the parameters of the

PWM motif model that maximize the discriminative objective function. Moreover,

DEME uses an informative Bayesian prior to incorporate the prior knowledge of

reside characteristics of protein sequences. Using the free program DEME3, we also

perform a 5 times 3-fold cross validation experiment in order to compare discrimi-

native motifs of the proposed method and DEME. Parameters are chosen as follows,

the length of each motif is from 2 to 6 amino acids, the occurrence of a single motif

is set to one occurrence per sequence and the input sequences are protein sequences.

Other parameters use default values of DEME. After 15 times of DEME running,

we obtain 248 SVR motifs and 387 non-SVR motifs, where 11 motifs appear in both

SVR and non-SVR motif sets. Table 3.4 shows the top 12 motifs found by DEME

which have the highest frequency in a total of 15 times of DEME running.

In Table 3.4, the SVR motifs “LAIKT”, “LAIK”, “LVGLNW”, “LSALSL” and

“VSLK” occur in SVR sequences and do not occur in non-SVR sequences. The sim-

ilar observation is concluded for non-SVR motifs, such as “DQPSND”, “NMWH”,

3DEME http://bioinformatics.org.au/deme/
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Table 3.4: The top twelve motifs found by DEME

SVR SVR Non-SVR No. of Non-SVR SVR Non-SVR No. of

motifs sequences sequences occurrences motifs sequences sequences occurrences

KK 15 9 13 FQ 23 56 11

RK 41 61 12 TFQ 19 50 10

LAIKT 7 0 12 DQASD 1 7 8

KSKK 6 5 11 DQDSD 12 20 7

LAIK 7 0 10 EMGGN 36 61 6

LVGLNW 10 0 9 DQPSND 0 4 6

LATKT 19 45 9 SFD 25 48 5

LSALSL 3 0 8 ASQ 41 61 4

PSLK 32 59 8 YN 40 60 4

VSLK 1 0 6 NMWH 0 5 4

RKT 10 11 6 MWHGT 0 5 3

KSRK 22 34 5 ATCTT 32 54 3

and “MWHGT”, that occur in non-SVR sequences and do not occur in SVR se-

quences. The frequency of these motifs in a total of 15 times cross validation exper-

iment are high. Two SVR motifs, “LAIKT” and “LAIK”, and the non-SVR motif

“NMWH” contain the SVR motif “LAI” and non-SVR motif “NM” respectively

that are found by E-SLUPC. This shows that the ability of searching longer length

motifs of DEME is better than the one of E-SLUPC. However, DEME cannot limit

the search to the discriminative motifs only. Besides finding discriminative motifs,

DEME finds motifs in both SVR and non-SVR sequences. For example, “KK”,

“LATKT”, “PSLK”, “RKT” and “KSRK” are SVR motifs, but they appear in sev-

eral non-SVR sequences. The same remark is also made for the group of non-SVR

motifs, the motifs “FQ”, “TFQ”, “EMGGN”, “ASQ”, “YN”, and “ATCTT” are

found in many SVR sequences. The searching results of DEME do not completely

discriminate SVR and non-SVR properties of sequences. Therefore, a step of the

comparative assessment is necessary to pick out discriminative motifs after using

DEME.

3.4 Conclusion

We have presented the algorithm for discovering discriminative motifs which can function

well when the labeled dataset is small, but the unlabeled dataset is large. Our algorithm

is applied to detect the relationship between HCV NS5A protein and IFN/RBV therapy

effect. The results are promising as they present many patterns that were not known

previously. However, the SLUPC algorithm quickly eliminates the cases that do not satisfy

two thresholds coverage and discriminant during recursively expand a subsequence. This

can lead to ignoring some potential motifs neglected one or more positions if we want to
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find gap motifs.

We have also explored the use of self-training-based semi-supervised ensemble learning

to enlarge the training set of the discriminative motif finding problem in case the number

of labeled data is small. This method works in an iterative procedure to choose the best

match sequences among the unlabeled sequences. The experiment results show that with

more data for the training dataset, the SLUPC algorithm can obtain higher accuracy.
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Chapter 4

Discriminative motif learning for

short sequences

To solve the problem of discriminative motif learning for short sequences, this chapter

presents a new method for sequence characterization and prediction. Experimental results

and biomedicine significances are discussed later on.

4.1 Introduction

Sequence characterization and prediction with a small number of short and similar se-

quences usually has low performance. It is not effective to apply directly classification

methods but preprocessing, especially some appropriate data transformation, is always

needed. The key approach to this problem is dimensionality reduction with feature extrac-

tion that is essentially based on transforming original data into a new feature space where

the original data will be represented by new latent components. In addition to traditional

linear dimensionality reduction methods such as PCA (principal component analysis), ICA

(independent component analysis), projection pursuit, nonlinear dimensionality reduction

methods have been actively developed such as polynomial or kernel PCA [Bernhard et al.,

1997], locally-linear embedding [Roweis and Saul, 2000], Isomap [Tenenbaum et al., 2000].

A topic model is a statistical model that analyze the words of the original texts to

discover the themes or hidden topics consisting of a set of words that frequently occur

together [Blei, 2012]. Topic models can be seen as a tool for dimensionality reduction

for different data types. The typical topic models include LSA (latent semantic analysis)

[Deerwester et al., 1990], PLSA (probabilistic latent semantic analysis) [Hofmann, 2001],

and LDA (latent Dirichlet allocation) [Blei et al., 2003], the most currently used.

In this work, we approach to the characterization and prediction problems in a new
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way. Instead of characterizing and predicting directly from the original data as traditional

methods often do, we propose a framework to characterize and predict outcomes of HCV

treatment by using topic modeling. This framework is based on the two-step framework

[Than et al., 2012] which is developed for SDR (emphsupervised dimension reduction) with

topic modeling. Concretely, before prediction, our framework performs a transformation

of data into a topical space by using label information and nearest neighbor information

of the data. Because the input sequences are short in length and very similar to each

other, the information of nearest neighbors plays an important role for characterizing

properties of SVR and non-SVR. We believe that our framework represents an effective

approach more than previous methods, especially when input sequences do not provide

enough information and the number of labeled data is small.

The proposed framework is adapted to three topic models: PLSA (probabilistic latent

semantic analysis) [Hofmann, 2001], LDA (latent Dirichlet allocation) [Blei et al., 2003],

and FSTM (fully sparse topic models) [Than and Ho, 2012], resulting in PLSAc, LDAc, and

FSTMc for prediction of SVR and non-SVR. Extensive experiments have been performed

to test the quality of these methods, with more than 2000 experiments. Compared with

the baseline method SVM (support vector machine) for prediction, the three methods

(PLSAc, LDAc, and FSTMc) often perform significantly better. As an example, with 5

folds cross validation, FSTMc often predict 91.94% correctly, as compared with 69.5% by

SVM.

The characterization results are reliable subsequences with high contributions to a

set of SVR or non-SVR sequences. These discriminative subsequences can be considered

as potential patterns for predicting SVR or non-SVR sequences, concurrently suggest

evidences to the better comprehension of resistance to IFN/RBV therapy of HCV.

4.2 Method

4.2.1 Topic model

In natural language processing, a topic model is a statistical model that analyze the

words of the original texts to discover the themes or hidden topics consisting of a set of

words that frequently occur together [Blei, 2012]. The early topic model, LSA (latent

semantic analysis), was developed by [Deerwester et al., 1990]. The next one, PLSA, was

introduced by [Hofmann, 2001]. The most common topic model currently in use, LDA,

was described by [Blei et al., 2003]. And a recent topic model, FSTM, was proposed

by [Than and Ho, 2012].

The goal of topic modeling is to automatically discovery topics from a collection of
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unlabeled documents. The documents themselves are observed while topics are hidden.

The central computational problem for topic modeling is to use the observed documents

to infer the hidden topics [Blei, 2012].

In a topic model, a document is often assumed to contain multiple topics. Hence it has

a latent representation in the topical space, and such a representation can be inferred once

the topic model had been learned. Note that the topical space is often lower dimensions

than the original space of documents. For this reason, topic modeling provides a potential

approach to dimension reduction.

4.2.2 Supervised dimension reduction

SDR (supervised dimension reduction) is the problem that we are asked to find a low-

dimensional space which preserves the predictive information of the response variable.

Projection on that space should keep the discrimination properties of the data in the

original space. Once the new space is determined, we can work with projections in that

low-dimensional space instead of the high-dimensional one. In text applications, a data

point or an instance of data is a document, the formal definition of SDR is stated as

follows.

Given a corpus D = {d1, ..., dM} consisting of M documents which are composed from

a vocabulary of V terms. Each document d is represented as a vector of term frequencies,

i.e. d = (d1, ...dV ) ∈ RV , where dj is the number of occurrences of term j in d. Let

{y1, ..., yM} be the class labels assigned to those documents, respectively. The task of

SDR is to find a new space of K dimensions which preserves the predictiveness of the

response/label variable Y .

4.2.3 The two-step framework

In SDR problem, many studies often find directly a low-dimensional space that preserves

the discriminative properties of the data classes in the original space. With the two-step

framework, Than et al. [Than et al., 2012] proposed a novel approach to SDR, in which

the first step tries to find an initial topical space and the second step tries to utilize label

information and local structure of the data, to find the discriminative space (Figure 4.1).

The first step learns an unsupervised topic model to obtain topics. And the second step

consists of four tasks performing the projection of documents onto the initial space so

that inner-class local structure is preserved and inter-class margin is widen. Therefore,

the discriminative property is not only preserved, but also better in the final step. The

details of the two-step framework are shown in Algorithm 4.
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Discriminative spaceInitial spaceOriginal space
(a)

Unsupervised 
learning

(b)
Discriminative 

inference

(c) Supervised learning

Figure 4.1: Sketch of approaches for SDR [Than et al., 2012]. Existing methods for SDR

directly find the discriminative space, which is supervised learning (c). The two-step

framework consists of two separate steps: (a) first find an initial space in a unsupervised

manner; then (b) utilize label information and local structure of data to derive the final

space.

Algorithm 4 Two-step framework for SDR

Step 1: Learn a unsupervised model to get K topics β1, ...,βK .

A = span{β1, ...,βK} is the initial space.

Step 2: Build the discriminative space

(2.1) for each class c, select a set Sc of topics which are potentially discriminative for

c.

(2.2) for each document d, select a set Nd of its nearest neighbors which are in the

same class as d.

(2.3) infer new representation θ∗d for each document d in class c by the Frank-Wolfe

framework with the objective function

f(θ) = λ.L(d̂) + (1− λ). 1
|Nd|

∑
d′∈Nd

L(d̂′) +R.
∑

j∈Sc
sin(θj),

where L(d̂) is the log likelihood of document d̂ = d/||d||1; λ ∈ [0, 1] and R are nonneg-

ative constants.

(2.4) compute new topics β∗1, ...,β
∗
K from all d and θ∗d.

B = span{β∗1, ...,β∗K} is the discriminative space.
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4.2.4 Methodology

From the perspective of sequence characterization and prediction, why do we think topic

modeling approaches are appropriate to solve these problems? In our observations, the

answer comes from the two key properties: interpretability and practical effectiveness.

More concretely, the following attractive characteristics provide us an affirmative answer:

- Discovery of latent factors: probabilistic topic models are models of latent factors.

Each factor is called a topic, and is unobservable. They can be learned efficiently

from data by the EM algorithm or Gibbs sampling. Hence topic modeling provides

a reasonable way to explore factors/topics hidden in our data.

- Uncovering contributions of latent factors: many topic models are admixture models

such as LDA, PLSA, and FSTM. They often assume that a document is a mixture

of hidden topics, and that each topic is a distribution over terms. Therefore, once a

model is learned, we can easily interpret which topics drive the theme of a specific

document and which terms are important for a hidden topic. In addition, we can

inspect easily the contribution/effect of a hidden topic to the whole data.

- Uncovering effects of latent factors to a class: when dealing with supervised data,

e.g., ISDR sequences, topic models provide us a principled way to investigate the

effect of a hidden factor to a class of data. Indeed, by estimating contributions of

hidden topics to a class, we can see explicitly which topics play an important role

in a class. More importantly, by comparison from different classes, we can uncover

which topics are discriminative for a class.

- Effectiveness in classification for discrete data: recent work [Than et al., 2012,Yhu

et al., 2012] demonstrate that topic models can exploit well label information when

learning form data. Excellent performance on document classification was observed

by various researches [Than et al., 2012,Yhu et al., 2012]. This observation will be

further supported from our problem of predicting SVR or non-SVR, as investigated

later.

1. Framework for prediction

To perform the characterization and prediction for sequences by using topic model-

ing, our framework consists of 3 main steps: data representation, characterization,

and prediction. The graphical framework is shown in below Figure 4.2.

(a) Data representation

To represent a sequence in the context of topic modeling, we firstly perform

the subsequence extraction from a sequence dataset by using sliding windows.
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Figure 4.2: The proposed framework for sequence characterization and prediction.

>r_17_CHIBA
LSLKPTCTTNHDSPDVDLIEANLLWRQEMGGNITRVESEN
//
>r_26_CHIBA
VSLKAACTTRHDPPDADLIEANLLWRQEMGGSITXVESEN
//
>n_55_CHIBA
PSLKATCTTHHDSPDADLXEAXLLWRQEMGGNITRVESEN
//

1 259:1 794:1 354:2 1737:1 36:1 148:1 72:1 958:1 630:1
1 1124:1 30:1 780:1 630:1
-1 443:1 1299:1 809:1

Frequency of a subsequence

Index of a subsequence

Class label of sequence

Figure 4.3: Data representation. A sequence is represented by many subsequences, subse-

quence frequencies, and class of that sequence. Each subsequence in a vector is represented

by its index in the dictionary.

During the extraction process, the occurrence frequency of each subsequence

is calculated. After this process ends, we obtain a dictionary of subsequences.

Secondly, basing on the assumption that the significant regions appear more

frequently than they are expected to preserve their structure and function

during the evolution [Nevill-Manning et al., 1998], we remove subsequences

having few occurrences in the whole dataset from the dictionary. Finally, a

sequence is represented by a vector of frequencies of subsequences occurring in

that sequence (Figure 4.3).

In this representation, we do not limit the length of a subsequence and thus a

sequence is represented by subsequences with different lengths. Our approach

differs from common representation methods, in which a sequence is repre-

sented by subsequences with identical lengths, however with this approach we

want to keep information of a short sequence as much as possible. And in

order to avoid dense representations, we do not choose subsequences contained

in other subsequences to represent a sequence. We bias to choose subsequences

whose length is longer.

(b) Characterization

The characterization step consists of 2 tasks, topical space searching and data

projection, that work as follows.

Topical space searching: By using the two-step framework [Than et al., 2012],
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1 259:1 794:1 354:2 1737:1 36:1 148:1 72:1 958:1 630:1
1 1124:1 30:1 780:1 630:1
-1 443:1 1299:1 809:1

Frequency of a subsequence

Index of a subsequence

Class of sequence

1 5:0.9999995232 8:0.0000004768 
1 1:0.9999995232 8:0.0000004768 
-1 3:0.9999995232 4:0.0000001788 6:0.0000002980 

Contribution level of the second topic

Class label of sequence

The second topic

Figure 4.4: An example of projection of data onto 10-dimensioned topical space. A

sequence in the topical space is a mixture of topics. Topics that do not have any contri-

butions will be omitted in representation.

we find a discriminative space, or topical space, on which data are well sepa-

rated. The KL (Kullback-Leibler) divergence is used in this step to find nearest

neighbors of the data. KL divergence is a measure of the difference between two

probability distributions, and often applied to measure the similarity among

data points. Our data points are data vectors in which frequencies of subse-

quences are discrete values (Figure 4.4). Therefore, the use of KL divergence

to choose k-nearest neighbors is reasonable for our problem. Despite of the

reasons stated in [Than et al., 2012], many researches show the excellent per-

formance of KL divergence for document classification, such as [McCallum and

Nigam, 1998] and [Madsen et al., 2005]. In addition, finding k-nearest neigh-

bors directly with sequence data instead of discrete data is also a potential

approach that we will investigate in the future.

Data projection: We finally project data onto the new space, the topical space

resulting from the previous step. In this step, data are projected without

labels by using inference methods, such as variational methods for LDA [Blei

et al., 2003], folding-ing in PLSA [Hofmann, 2001], and sparse inference in

FSTM [Than and Ho, 2012].

(c) Prediction

To learn a classifier from data, we use support vector machine (SVM) [Fan

et al., 2008]. In our framework, SVM learns a linear function working in the

topical space and finds an optimal hyperplane such that the margin from two

classes to this hyperplane is maximized. Note that, other methods such as

decision tree or boosting can be used for prediction.

2. Analysis of discriminative subsequences and topics

Next, we discuss how to find subsequences and hidden topics (factors) that char-

acterize each class (SVR/non-SVR) of sequences. In other words, we want to see

which subsequences and which topics are potentially discriminative for a class. To
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this end, some inherent properties of admixture topic models will be exploited. In

the following, we will use concepts document and term in the argument. However,

one can readily map documents to sequences, terms to subsequences, and topics to

hidden factors.

It is often assumed in admixture topic models that a document is a distribution over

hidden topics, and each topic is a distribution over words. These assumptions are

employed by various models including LDA, PLSA, and FSTM. Let θdk = P (zk|d)

be the probability that topic k appears in document d, and βkj = P (wj|zk) be the

probability that term j contributes to topic k. These definitions basically imply

that
∑K

k=1 θdk = 1 for each document d, and
∑V

j=1 βkj = 1 for each topic k. Once

a topic model is learned, we can assess β = (β1, ...,βK). The topic proportion

θd = (θd1, ..., θdK) of document d can be found by doing inference for d. Note

that we can obtain β and θd’s just after doing the first two steps of the proposed

framework in Fig 4.2.

Discriminative topics: We first consider which topics are potentially discriminative

for a class by assessing θd’s. Our key idea is to estimate the contributions of a

topic to classes, and then contrast those contributions to find discriminative topics.

Let D1 (and D2) be the set of sequences in class SVR (and non-SVR, resp.). The

contribution of topic k to class c is approximated by

Tck =

∑
d∈Dc

P (zk|d)∑K
i=1

∑
d∈Dc

P (zi|d)
=

∑
d∈Dc

θdk∑K
i=1

∑
d∈Dc

θdi
. (4.1)

If a topic k characterizes class c, then it is expected to contribute to class c signifi-

cantly greater than to the other class. Hence, by contrasting T1k and T2k, one can

decide which class topic k is discriminative for.

Discriminative terms: We find discriminative terms for a class by first estimating

contributions of terms to classes and then contrasting those contributions. Note that

the probability of term j appearing in document d is P (wj|d) =
∑K

k=1 P (wj|zk)P (zk|d) =∑K
k=1 θdkβkj. Hence the contribution of term j to class c can be approximated by

Wcj =

∑
d∈Dc

P (wj|d)∑V
r=1

∑
d∈Dc

P (wr|d)
=

∑
d∈Dc

∑K
k=1 θdkβkj∑V

r=1

∑
d∈Dc

∑K
k=1 θdkβkr

. (4.2)

Similar to the above argument, one can contrast W1j and W2j to see which class

term j has more significant contribution. In practice, we are mostly interested in

terms that have high contributions.

Discriminative terms by assembling models: It is possible to find discriminative

terms by combining results from different models. Our framework for prediction

of SVR/non-SVR allows employment of various topic models. Each employment
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will result in a pretty different topics (or topical space). Such a randomness can

yield different results when finding discriminative terms as described above. This

behavior would potentially give us unstable sets of discriminative terms.

To obtain a stable set of discriminative terms, our idea is to assemble different

models. More concretely, we first find a set of potentially discriminative terms for

each topic model, as described before. We then remove all, but keep only terms

that appear at least τ times. In order to guarantee statistically significant terms,

the number of topic models should be larger than 30.

4.3 Results

4.3.1 Datasets

In this study, all sequence data are ISDR sequences before treatment of HCV genotype

1b. We use datasets as follow:

- 14 sequences (9 SVR and 5 non-SVR) from Chiba University

- 20 sequences (11 SVR and 9 non-SVR) from LANL1 database

- 90 sequences (59 SVR and 31 non-SVR) from 4 published studies that analyzed

the relationship between IFN/RBV therapy and ISDR sequences [Yoon et al., 2007,

Rueda et al., 2008,Chayama et al., 1997,Enomoto et al., 1996].

4.3.2 Accuracy of prediction

We now investigate the effectiveness of our framework on prediction of SVR and non-SVR.

Our framework is very general and flexible, and hence can result in various methods for

prediction, by adapting to existing topic models. In our investigation however, only three

topic models were taken into consideration, FSTM [Than and Ho, 2012], PLSA [Hofmann,

2001], and LDA [Blei et al., 2003]. The resulting methods for prediction are respectively

FSTMc, PLSAc, and LDAc. Because of no existing work for prediction of SVR/non-SVR

in the case of very short and few sequences, we also investigate the effectiveness of support

vector machines (SVM). We would like to remark that SVM is one of the state-of-the-art

methods for doing classification in Machine Learning and Data Mining. We took SVM

into comparison as a baseline.

1Los Alamos National Laboratory (http://hcv.lanl.gov).
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Table 4.1: Accuracies of 7 methods for predicting sequences

No. of topics FSTMc LDAc PLSAc

5 91.9355 95.1613 79.8387

10 91.9355 91.9355 94.3548

20 91.9355 86.2903 89.5161

30 91.9355 90.3226 90.3226

40 91.9355 89.5161 91.1290

SVM-NormalizedPoly SVM-Puk SVM-RBF SVM-Linear

68.14 69.50 63.70 59.75

In summary, we conducted prediction with 7 methods: FSTMc, PLSAc, LDAc, SVM-

linear, SVM-NormalizedPoly, SVM-Puk, and SVM-RBF2. Different kernels for SVM are

investigated to ensure that the investigation is extensive for our problem, and also to show

the advantages of our framework. For SVM-linear, SVM-NormalizedPoly, SVM-Puk, and

SVM-RBF, we chose the best regularization parameter C from 1, 10, 100, 1000 by 5-folds

cross-validation. High values of C essentially mean high penalties on the method when

making error in the trainning data. When learning unsupervised topic models, we used

default settings for their parameters and varied the number of topics. In our experiments

with the two-steps framework, we found the following setting to be reasonable for our

data: K = 30, Nd = 1, R = 0, λ = 0. This setting basically says that only the nearest

neighbor plays a crucial role when doing projection for a document. K = 30 says that the

topical space is rich enough to characterize our data. For all prediction methods, 5-folds

cross-validation was used and prediction accuracy is averaged from 5 folds.

It can be observed from Table 4.1 that accuracies of each topic model working on our

framework are better than the accuracies of SVM with 4 types of kernel functions. For

example, with the number of topics is 10, the accuracies of FSTMc, LDAc, and PLSAc

are 91.9355%, 91.9355% and 94.3548% respectively, while the best accuracy of SVM is

69.50%. Among three topic models, with different settings, the accuracies of FSTMc do

not change much when compared with those of LDAc, and PLSAc. Therefore, it can

be said that FSTMc is more stable than LDAc, and PLSAc. The experimental results

show that the setting of {K = 30, Nd = 1, R = 0, λ = 0} will be good for all of three

topic models. The reason making this setting reasonable is explained in Figure 4.6 of

2We use Weka to experiment SVM with different kernels (http://www.cs.waikato.ac.nz/ml/weka/).
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Original space Supervised transformation

Figure 4.5: SVR and non-SVR sequences in the original space and in topical space. ©
and ♦ are respectively non-SVR and SVR sequences.

the section C below where we will discuss the sensitivity of choosing a good setting for

FSTMc, LDAc, and PLSAc.

In the SVM experiments, the SVM-linear is the least effective method, because its ac-

curacy is the lowest (59.75%). Other kernel functions such as SVM-RBF, SVM-NomalizedPoly,

and SVM-Puk, work better than the SVM-linear, however their accuracy differences are

negligible, about 10% comparing to the best accuracy (69.50%) of SVM-Puk.

Figure 4.5 compares the discrimination of data projected onto the original space and

topical space. It is obviously that data on the topical space are discriminated better than

data on the original space. Therefore, prediction on topical space is done more exactly and

effectively. The bad separability of data in the original space may be the main drawback

that worsen performance of SVM (even with different kernels).

4.3.3 Choosing a good setting for the framework

In this section, we will analyze the effect of the parameters to see which parameters play

an important role in the proposed framework. A set of parameters consists of Nd, R, K,

and λ, where Nd is a number of neighbors for a document to be used and is chosen from

{1, 5, 10}; λ is a constant that combines a document with its neighbors, and is chosen

from {0, 0.1, 0.5, 1}; R is a regularization constant and is chosen from {0, 1000, 10000} ;

and K is a number of topics that can receive values in {5, 10, 20, 30, 40}.

Parameters are examined one after another by making a parameter change its values

while keeping the values of three remaining parameters. For example, when the parameter

K is considered, parameters λ, Nd, and R are fixed and set to 0, 5, and 1000 respectively.

Observing Figure 4.6, the parameter Nd plays an important role when λ = 0, in order
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Figure 4.6: The impact of the parameters. (a) Changing Nd, while fixing λ = 0, R = 1000,

and K=10. (b) Changing R, while fixing Nd = 5, λ = 0, and K = 10. (c) Changing

K, while fixing Nd = 5, λ = 0, and R = 1000. (d) Changing λ, while fixing Nd = 5,

R = 1000, and K = 10.

words when data are projected onto the new space, the nearest neighbor information is

the most important. When the value of λ increases, the role of Nd decreases in searching

a topical space. In our observation, parameter R does not affect much the results of

experiments.

4.3.4 Discriminative subsequences

To find reliable subsequences that characterize SVR and non-SVR sequences, we opt to

analyze qualified topic models. In our analysis, we chose a collection of topic models

for which the associated prediction accuracy is at least 90%. The resulting collection

consists of 75 models 3. We believe that a model with a good quality of prediction (or a

high accuracy) can provide good discriminative subsequences. Furthermore, in order to

guarantee the statistical significance of a subsequence, selected subsequences have to be

highly evaluated by at least in 30 models. Table 4.2 presents 39 potential discriminative

subsequences that are found from 75 models for each class of SVR and non-SVR.

Observing Table 4.2, all subsequences are considered important in a class label of

sequences, and not important in the remaining class. In other words, subsequences are

rated for one class by many models while being rated for the remaining class by very few

models. This suggests that these subsequences have the ability to discriminate classes

very well. Let us take some examples of subsequences that have very high contributions

3Note that each choice of {K,Nd, λ,R} and {PLSA,LDA,FSTM} will result in a specific model.
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Table 4.2: Discriminative subsequences characterizing SVR and non-SVR outcomes of

HCV treatment

No. of No. of

models models

Subsequence rating for rating for

SVR non-SVR

AA 0 33

ANLLW 0 33

ATCTTRHDSPD 2 43

ATY 15 35

CTTNHDSPD 3 51

DSPDADLIEANLLW 8 40

DSPDVDLIEANLLWRQEMGGNITRVESEN 0 64

EANLLWRQEMGGSITRVESEN 5 31

EK 11 35

EV 18 42

GGDITRVESEN 6 32

HDSPDADLIEANLLWRQEMGGNITRV 38 11

HDSPDV 3 32

HDSPDVDLIEANLLWRQEMGG 4 61

HHDSPD 6 38

KATCTTHHDSPD 3 32

LIEANLLW 3 32

LSLK 2 58

LSLKAACT 2 48

LSLKATC 6 39

PDL 33 11

PSLKATC 19 31

PSLKATCTA 44 6

PSLKATCTTH 6 38

PSLKATCTTHHDSPDADLI 0 33

PSLRATCTT 14 39

PSSK 9 38

QE 6 35

QEMGGNITRVESEN 0 45

RH 11 38

RHDSPD 2 39

SE 34 6

SKAT 9 38

SLKAACTT 5 38

TCTTNHDS 9 47

THHDSPDADLIEANLLWRQEMGGNITRVESE 5 32

THRDSPD 6 48

TQ 17 41

TYIT 9 35
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to only one class, “HDSPDVDLIEANLLWRQEMGG” is rated by 61 models for non-SVR

while only 4 models vote it for SVR (its contributions to SVR/non-SVR are respectively

WSV R = 0.0005 and Wnon−SV R = 0.0602) or “ANLLW” has no models rating for SVR, but

33 models rate it for non-SVR (its contributions are WSV R = 0, 0005 and Wnon−SV R =

0.0054) or “PSLKATCTA” is rated by 6 models for non-SVR while 44 models vote it

for SVR (its contributions are WSV R = 0.0463 and Wnon−SV R = 0.0086). One can say

that subsequences such as “ANLLW”, “DSPDVDLIEANLLWRQEMGGNITRVESEN”,

or “QEMGGNITRVESEN” can be good discriminative subsequences for predicting non-

SVR sequences, and subsequences such as “PSLKATCTA” or “SE” can be potential

candidates to predict SVR sequences.

Comparison with existing method: By using the web version of MEME4 to find dis-

criminative subsequences (or motifs) with ISDR data, we want to know the differences be-

tween the results of MEME and ours. We choose MEME because it is currently one of the

most well known and widely used software for searching discriminative motifs. For SVR,

MEME found 3 motifs, “HHDSPDADLIEANLLWRQEMGGNITRVES”, “PSLKATCT”,

and “EN”; for non-SVR, MEME found only 1 motif with a length of 40 amino acids,

“PSLKATCTTHHDSPDADLIEANLLWRQEMGGNITRVESEN”.

To evaluate the discriminative ability of SVR motifs found by MEME, we count

the number of occurrences of them in both SVR and non-SVR sequences. “HHDSP-

DADLIEANLLWRQEMGGNITRVES” is found 6 times in non-SVR and 5 times in SVR;

“PSLKATCT” is found 31 times in non-SVR and 26 times in SVR. It is clearly that

these motifs are not good enough to discriminate SVR and non-SVR sequences. In the

experimental results of DPA, not many models voted for these motifs: with “HHDSP-

DADLIEANLLWRQEMGGNITRVES”, we have 11 models voting for SVR and 17 models

voting for non-SVR; and with “PSLKATCT”, we just have 8 models voting for SVR and

9 models voting for non-SVR. In our observation, “EN” is a basic characteristic of data

and cannot be a discriminative motif for SVR or non-SVR, because it occurs in nearly

almost sequences of the data.

Complication of non-SVR sequences and consequences: Table 4.2 shows that subse-

quences voted for non-SVR dominate ones voted for SVR. About 35 subsequences were

found to potentially characterize for non-SVR in total of 39 subsequences. Further, each

subsequence which is assumed to characterize for non-SVR often receives a high num-

ber of rates from 75 models. These observations suggest the diversity and complication

of non-SVR sequences. And because of these diversity and complication, the prediction

problem can meet some difficulties to give exact results. That is also the reasons that

SVM methods work ineffectively.

4Multiple Em for Motif Elicitation (http://meme.nbcr.net/meme/cgi-bin/meme.cgi).
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Connection to experimental research: In our observation, although the number of SVR

sequences (79 sequences) is larger than the number of non-SVR sequences (45 sequences)

in our dataset, most subsequences in Table 4.2 are rated highly for non-SVR. This helps

us confirm that our findings are appropriate to the current state of the art of HCV study

in which HCV genotype 1b (HCV-1b) is the least response to IFN/RBV therapy. The

SVR rate of HCV-1b (42 to 52%) is lower than SVR rates of other HCV genotypes (50

to 80%) [Wohnsland et al., 2007,El-Shamy et al., 2011].

Significance in practice of HCV treatment: With characteristics that are found for

non-SVR in our experiments, we believe that it will lead to better understandings of

the resistance to IFN/RBV therapy of HCV. The diversity and complication of HCV-1b

through our findings contribute to explain the reason why it is very difficult to treat

HCV-1b. Addition to, these promising findings provide physicians hints or biomarkers in

order to get a better treatment that avoids side effects and saves expense for patients.

4.4 Conclusion

We have proposed a novel computational approach to characterize and predict SVR/non-

SVR outcomes of HCV treatment by using topic modeling. Our framework was demon-

strated to search effectively a topical space (or discriminative space), represent well se-

quence data into a document space as well as discriminative space, and interpret results

of computational process. The proposed framework also works effectively in a special case

of data (sequences are short in length and resemble each other) that traditional methods

could not overcome. Further, it has shown to be general and flexible and can be applied

many kind of data.

The quality of the prediction method in this framework often outperforms the baseline

method and can reach more than 30% improvement. The subsequences we obtained are

promising and when verified by physicians, they can be good discriminative patterns for

predicting SVR/non-SVR sequences.

Regarding my own contributions in this work, I have contributed the following points:

1. The optimal representation for data. Concretely, from the properties of sequence

data, I found the new way to represent them into the properties of documents in

order to get the effectiveness of the proposed method. The main property of the

document representation is very sparse in a multiple dimensional space. Therefore,

finding the way to represent sequence data so that this representation is a sparse

high-dimensional representation is the important step for the whole framework. In

other words, with short sequence data, 40 amino acids in length, it is very hard
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for methods to discover the optimal discriminative motifs, because short input data

are lacking in information for searching process. I decided to approach the problem

in two stages: (i) enrich short sequences by a representation in a high dimensional

space containing subsequences and then (ii) discriminate these subsequences.

2. Computational elucidation for experimental results. In details, I first carried out

the experimental performance, next I performed a comparison of the results of

the proposed method with those of other methods that are popular in biological

field, interpreted the meaning of subsequence patterns and finally found connections

between subsequence patterns and HCV genotype 1b.
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Chapter 5

Conclusion

This final chapter summarizes the research problem and solutions that the dissertation

has done and achieved. Limitations and future research directions of the dissertation are

also addressed.

5.1 Dissertation summary

Discriminative motif learning is to find motifs occurring more frequently in one sequence

set and not occurring in the other sequence sets by using a set of two-class sequences.

Recently, discriminative motif learning has received much attention from the research

community and could be the next step of motif learning. So far, many methods have been

developed to discover discriminative motifs with a probabilistic model, such as [Bailey

et al., 2010, Redhead and Bailey, 2007, Segal et al., 2002, Lin et al., 2011, Huggins et al.,

2011, Kim and Choi, 2011, Smith et al., 2005, Leung and Chin, 2006, Sinha, 2006], and

with a string-based model, such as [Vens et al., 2011, Fauteux et al., 2008, Mason et al.,

2010, Mehdi et al., 2013, Narang et al., 2010, Jr. and Liang, 2010]. However, in the case

of our study on HCV treatment, previous methods have shown to be ineffective because

of the input sequences are similar, short in length and small in number. The main reason

of these limitations is that traditional methods require a large number of sequences to

learn the optimal motif models. Therefore, our research aimed to develop new methods

to discover discriminative motifs in two situations: few labeled data and short sequences,

and then we applied these new methods to HCV study to discover the new knowledge

from the relationship between NS5A protein and IFN/RBV therapy. Obtaining this new

knowledge, we believe that our potential findings can provide additional knowledge to

answer two main research questions: what are NS5A biomarkers of IFN/RBV resistance

and response? and what are links among these biomarkers?
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We have presented our study on discriminative motif learning for HCV treatment

with considerations of computational and biomedical aspects. Results of the dissertation

are the novel computational methods for discover discriminative motifs and potential

discriminative motifs that are able to help to predict signals of response or resistance to

IFN/RBV therapy, together with the additional insight of the relation between NS5A

protein and IFN/RBV therapy. Our contributions were made in following,

Discriminative motif learning for few labeled data. In many research fields, labeled

data are difficult to have, because they need a lot of factors such as human annotations,

expert knowledge, special devices, and so on. For example, in our HCV study, we can

obtain a very small number of existing labeled protein sequences (147 NS5A sequences for

non-SVR and 105 NS5A sequence for SVR) while a large number of unlabeled sequences

(more than 5,000 NS5A sequences) are available at public databases. The objective of this

situation is to develop a semi-supervised ensemble method that has ability to discovery

discriminative motifs from an extended labeled sequence that contains labeled sequences

and unlabeled sequences with predicted labels.

We proposed a semi-supervised ensemble method for discriminative motif learning

based on the SLUPC algorithms, a separate-and-conquer searching method. The proposed

method, named E-SLUPC (Ensemble SLUPC), firstly search a core motif set from a small

number of labeled data, then use these core motifs to extend the training dataset by

exploiting a large unlabeled data with the majority voting strategy in ensemble learning.

Strong discriminative and frequent motifs characterizing two outcome classes of HCV

treatment (SVR and non-SVR) were detected and analyzed. These motifs are promising as

they represent many patterns that have not been known before. E-SLUPC can improve the

quality of discriminative motifs when compare to discriminative motifs found by MEME

and DEME, and the accuracy when compare to the SLUPC algorithm.

The proposed method showed the ability to find strong discriminative motifs and ob-

tain higher accuracy when provide more data for the training dataset. However, using two

thresholds coverage and discriminant, the SLUPC algorithm could eliminate quickly some

potential candidates during recursively expand a subsequence because the two thresholds

must be satisfied simultaneously. Working with a small labeled dataset, even though we

used a self-training technique of semi-supervised learning to enlarge the training dataset,

the over-fitting problem is inevitable.

Discriminative motif learning for short sequences. The input sequences are short in

length and similar to each other that are serious obstacles for current methods, because

these sequences do not provide enough information for the motif searching process. In our

HCV study, the ISDR of NS5A protein contains 40 amino acids only and has few variants

at some positions. The objective of this situation is to develop an effective computational

method for discriminative motif discovery.
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We approached to discriminative motif learning in a new way by using topic model-

ing. The short sequences were first enriched by a representation in a high dimensional

space. Then we constructed a discriminative space (topical space) by using unsupervised

learning with a topic model. We used labels and neighborhood information to infer a new

representation of data as well as new latent components of the discriminative space. Next,

we project the data onto the discriminative space by using the inference procedure of the

topic model. Finally, we performed the prediction and analysis of discriminative patterns

from the projected data. This method was applied to get insight into SVR and non-SVR

properties of IFN/RBV therapy. We found a large number of discriminative subsequences

for non-SVR, even though the number of non-SVR sequence is small. This suggests that

non-SVR sequences are very diverse and complicated. And this is in coincidence with

experimental researches of HCV genotype 1b.

The proposed method has shown its effectiveness through the prediction quality being

often higher than the quality of the baseline method, about 30% improvement. However,

in topic model, the data or documents are often represented sparsely. If the representation

of short sequences is dense, we cannot get a high accuracy for prediction.

5.2 Future Work

In order to go further in the computational perspective from this dissertation, we aim to

extend our study at the following points:

- During topical space searching of the second work, the KL (Kullback-Leibler) diver-

gence is used to find nearest neighbors of the data. Many researches have shown

the excellent performance of KL divergence for document classification, but finding

k-nearest neighbors for sequence data should be performed directly with sequences

instead of discrete data.

- The process of searching neighbors is currently using labeled data. In order to

exploit the available unlabeled data, we suggest to use semi-supervised learning to

search neighbors.

- In the discriminative motif analysis, we need to connect more experimental evidences

to findings of the dissertation, for example discriminative motifs contain mutation or

not, which types of mutation do discriminative motifs contain?, and which position

do mutations happen? Or we should analyze the simultaneous occurrences of two

or more discriminative motifs.

Regarding future works for HCV study, we have the following remarks:
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- With the appearance of a new drug, TVR (telaprevir), for HCV treatment, patients

who had failed with IFN/RBV therapy are highly likely to achieve a SVR when their

treatment is with the addition of telaprevir [McHutchison et al., 2010,Zeuzem et al.,

2011, Jacobson et al., 2011]. Telaprevir offers an additional to the HCV treatment

because the standard therapy of IFN/RVB is less effective, especially on genotype 1.

Although telaprevir has a side effect, the most common side effect is rash, telaprevir

is currently indicated for use against HCV genotype 1 in USA and Japan. Therefore,

the study of IFN/RBV therapy for HCV genotype 1 is not necessary in the future,

but the study of triple combination therapy may be considered.

- The IL-28B polymorphism can help to explain individual and racial differences in

response to HCV treatment. Therefore, the study on variations of IL-28B gene may

be needed.
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