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Abstract Limit cycle walking including passive-dynamic walkers is generally
modeled as a nonlinear hybrid dynamical system with state jumps. The in-
elastic collision model is usually derived on the assumption that the rear leg
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however, inappropriate in the case of compliant-legged walkers. This paper
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through investigations of passive dynamic walking of a viscoelastic-legged rim-
less wheel. First, we experimentally confirm that measurable period of DLS
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conditions for transition to DLS motion and specify the computational proce-
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1 Introduction

Limit cycle walking including passive-dynamic walkers [1] is generally mod-
eled as a nonlinear hybrid dynamical system including state jumps; which
consists of the robot equation of motion and transition equations at impacts.
The equation of collision is developed as a perfectly inelastic model on the
assumption that the previous stance-leg (rear leg) leaves the ground imme-
diately after landing of the next stance-leg (fore leg) [1][2][3]. The period of
double-limb support (DLS) then vanishes and the continuous motion consists
only of the period of single-limb support (SLS). This model is valid in the case
that limit-cycle walkers with rigid leg-frames walk on a rigid ground.

Unlike traditional limit-cycle walkers, compliant-legged walkers are often
modeled to generate the period of DLS which is not instantaneous. Using a
simple mass-spring model, Geyer et al. numerically showed that the pattern
of the ground reaction force (GRF) in the generated gait is significantly sim-
ilar to that of human walking; there are double-peaks in the vertical GRF
[4]. Whittington et al. also performed a related study using an elastic-legged
compass-like biped with semicircular feet [5]. The current simulation models
are, however, intuitively developed and the condition for transition to DLS
motion has not been mathematically identified yet.

It is known that the period of DLS accounts for more than 10% of one
cycle in human walking [6][7][8]. In contrast, the period of DLS does not exist
in rigid-legged limit cycle walking as mentioned. The properties of DLS must
have great effects on the creation of natural, efficient, flexible walking motion
of human walking. Also in robot walking, DLS would play important roles in
enhancing and improving the gait efficiency and stability. For investigating it,
first of all, we should develop the fundamental mathematical model and deter-
mine the conditions for transition to DLS motion. It is necessary to reconsider
and rewrite the traditional inelastic collision model.

Based on the observations, in this paper we investigate the potentiality
and fundamental properties of passive dynamic walking (PDW) including
DLS motion which is not instantaneous. As the simplest model for PDW
that generates measurable period of DLS, we introduce the model of a planar
passive viscoelastic-legged rimless wheel (VRW) that consists of eight iden-
tical telescopic-legs incorporating viscoelastic elements. First, we observe the
passive-dynamic gait of our experimental machine shown in Fig. 1, and discuss
how the traditional collision model should be modified. Second, we develop
the mathematical model based on the considerations, and numerically exam-
ine the potentiality of stable gait generation including DLS on a gentle slope
with commonly-used physical parameters for bipeds. We also numerically an-
alyze the fundamental gait properties and the change of ground reaction force
with respect to the viscosity. Furthermore, we mathematically reconsider the
conditions for transition to DLS motion and specify the corresponding com-
putational procedures.

This paper is organized as follows. In Section 2, we summarize the exper-
imental results of PDW of our VRW machine. In Section 3, we develop the
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Fig. 1 Viscoelastic-legged rimless wheel

mathematical model for numerical simulation following the experimental re-
sults. In Section 4, the validity of the model is investigated through numerical
simulations. In Section 5, we discuss the conditions for transition to DLS mo-
tion. Section 6 concludes this paper and describes future research directions.

2 Experimental results

The experimental VRW shown in Fig. 1 consists of eight identical telescopic-
legs incorporating a coil spring. A force due to friction is also derived with
the telescopic-leg action. A silicon cap is attached on the end point of the
telescopic-leg frames to suppress bouncing at impact. This frame is extended to
the end point (maximum length) by the elastic force and is then mechanically
locked. The total mass is 4.610 [kg] and the diameter without leg contraction
is 0.385 [m].

The telescopic-leg frames can be replaced with rigid-leg ones, and the VRW
is also able to generate rigid-legged PDW without measurable period of DLS.
By loosening the screw at the central axis, the two identical crossed frames;
one is the outside rich-blue frame and the other is the inside light-blue one,
can rotate independently and the VRW can behave as a compass-like biped
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Fig. 2 Snapshots of experimental walking

robot. The center of mass of each leg is, however, positioned at the central
axis and the leg’s swinging motion does not emerge in the absence of viscosity
on the axis [9]. The screw tends to loosen while walking, so we developed and
attached a POM (polyacetal) cap for fixing the symmetric configuration.

Using this machine, we conducted an experiment of PDW on a treadmill.
Fig. 2 shows the snapshots of the experimental walking on a gentle slope;
eight successive pictures taken every 1/60 [s] are laid out in two lines. We can
confirm that DLS motion which is not instantaneous emerges after landing
of the fore leg (next stance-leg) by using the leg viscoelasticity. The next
stance-leg hits the ground and the end point does not bounce nor slip, that
is, inelastic collision occurs but the rear leg (current stance-leg) does not leave
the ground. The contact condition then changes from SLS to DLS. During the
period of DLS, the central position moves along a circular path in accordance
with the law of inscribed angle. In this period, the VRW behaves as a 1-DOF
system as described later. Soon afterwords the rear leg begins to leave the
ground because the ground reaction force perpendicular to the slope reaches
zero from positive. After takeoff, the contact condition changes to SLS and
the rear leg extends to the end stopper.

In the subsequent sections, we develop the mathematical model and nu-
merically examine the validity. In the simulation studies, however, we consider
a larger VRW which can be regarded as the simplified model of human-sized
biped walking.

3 Modeling

3.1 Specifications

In this paper, we treat the model of Fig. 3 for analysis and take the following
assumptions.

– The model does not have any actuators and is fully passive.
– Each leg frame has viscoelastic elements in the prismatic joint.
– Let m [kg] be the mass of one telescopic-leg frame and mH [kg] be that of

the body frame.
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Fig. 3 Model of passive viscoelastic-legged rimless wheel

– The model consists of eight identical leg frames and the shape is symmetry.
Therefore all the relative angles between neighboring legs are α = π/4 [rad].

– The fore and rear legs are called “Leg 1” and “Leg 2”.
– Only Leg 1 and Leg 2 expand or contract. The other six legs are mechani-

cally locked by the stopper and their length is kept L0 [m].
– Let (x, z) and θ [rad] be the end position and vertical angle of Leg 1.
– Let Lj [m] (j = 1 or 2) be the length of Leg j.
– Let a [m] be the length between the end point and mass position of each

leg frame.

3.2 Equation of motion

Let qT =
[
x z θ L1 L2

]
be the generalized coordinate vector. The dynamic

equation of the VRW then becomes

M(q)q̈ + h(q, q̇, φ) = τ ve(q, q̇) + J(q)Tλ, (1)

J(q)q̇ = 0, (2)

where τ ve(q, q̇) ∈ R
5 represents the viscoelastic force that acts on Leg 1 and

Leg 2 and is given by

τ ve(q, q̇) =

⎡
⎣ 03×1

−k (L1 − L∗)− cL̇1

−k (L2 − L∗)− cL̇2

⎤
⎦ . (3)
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Where k [N/m] is the elastic coefficient, c [N·s/m] is the viscosity coefficient,
and L∗ [m] is the natural length of the leg frame.

Eq. (2) is the holonomic constraint condition and the Jacobian matrix,
J(q), changes in accordance with the constraint conditions. By differentiating
Eq. (2) with respect to time, we get

J(q)q̈ + J̇(q, q̇)q̇ = 0. (4)

Eq. (1) can be arranged as

q̈ = M(q)−1 (τ ve(q, q̇)− h(q, q̇, φ)) +M (q)−1J(q)Tλ. (5)

Following Eq. (4) and (5), we get

J(q)q̈ = J(q)M(q)−1 (τ ve(q, q̇)− h(q, q̇, φ)) + J(q)M(q)−1J(q)Tλ

= −J̇(q, q̇)q̇. (6)

The vector λ is then solved as

λ = −X(q)−1J(q)M (q)−1 (τ ve(q, q̇)− h(q, q̇, φ))

−X(q)−1J̇(q, q̇)q̇, (7)

X(q) = J(q)M(q)−1J(q)T. (8)

By eliminating this into Eq. (1), we get

M (q)q̈ = Y (q) (τ ve(q, q̇)− h(q, q̇, φ))− J(q)TX(q)−1J̇(q, q̇)q̇, (9)

Y (q) := I5 − J(q)TX(q)−1J(q)M(q)−1. (10)

3.3 Constraint conditions during stance phase

The passive gait of the VRW consists of the following five phases (See Fig. 4).

1. Collision phase I: Landing of Leg 1
2. Stance phase (DLS): DLS and 1-DOF
3. Stance phase (SLS-I): SLS and 3-DOF
4. Collision phase II: Hitting the stopper of Leg 2
5. Stance phase (SLS-II): SLS and 2-DOF

In the following, the equations of motion according to each constraint condition
are described in detail.
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Fig. 4 Motion sequence

3.3.1 Period of double-limb support

In this period, the following two constraint conditions are satisfied.

(a) Leg 1’s end contacts with the ground without slipping.
(b) Leg 2’s end contacts with the ground without slipping.

The equations for the velocity constraints are written as follows.

ẋ = 0

ż = 0
d

dt
(x+ L1 sin θ − L2 sin(θ + α)) = 0

d

dt
(z + L1 cos θ − L2 cos(θ + α)) = 0

By summarizing these four equations, the Jacobian matrix becomes

J(q) =

⎡
⎢⎢⎣

J1

J2

J3(q)
J4(q)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
1 0 J33 sin θ J35
0 1 J43 cos θ J45

⎤
⎥⎥⎦ =: JDLS(q), (11)

where

J33 = L1 cos θ − L2 cos(θ + α), J35 = − sin(θ + α),

J43 = −L1 sin θ − L2 sin(θ + α), J45 = − cos(θ + α).

In this period, the 5-DOF robot equation of motion has four holonomic con-
straints. The generated motion thus becomes 1-DOF. As previously mentioned,
the central position of the VRW moves along a circular orbit.
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The holonomic constraint force term in Eq. (1) can be divided into

J(q)Tλ = JT
1 λ1 + JT

2 λ2 + J3(q)
Tλ3 + J4(q)

Tλ4. (12)

The ground reaction force acting on Leg 1’s end perpendicular to the slope is
λ2, and that of Leg 2 is λ4. We can detect the instant of takeoff of Leg 2 by
checking the sign of λ4.

3.3.2 Period of single-limb support I

In this period, only the condition (a) is satisfied. The Jacobian matrix then
becomes

J =

[
J1

J2

]
=: JSLS, (13)

where J1 and J2 are the same as those of Eq. (11)

3.3.3 Period of single-limb support II

In this period, the following condition is added.

(c) Leg 2 is fully-extended and immobile (mechanically locked).

This velocity constraint condition is given by L̇2 = 0. The Jacobian matrix
then becomes

J =

⎡
⎣ J1

J2

0 0 0 0 1

⎤
⎦ =: J ′

SLS. (14)

3.4 Collision equations

3.4.1 Landing of Leg 1

As can be seen in Fig. 5, we must replace the position and velocity vectors
immediately before impact, q− and q̇−, with those exchanging Leg 1 and Leg
2 for the next, q† and q̇†, which are detailed as follows.

q† =

⎡
⎢⎢⎢⎢⎣

0
0

θ− − α
L0

L−
1

⎤
⎥⎥⎥⎥⎦ , q̇† =

⎡
⎢⎢⎢⎢⎣

ẋ†

ż†

θ̇
−

0

L̇−
1

⎤
⎥⎥⎥⎥⎦ (15)

ẋ† = ẋ− +
(
L−
1 cos θ− − L0 cos(α − θ−)

)
θ̇
−
+ L̇1 sin θ

− (16)

ż† = ż− − (
L−
1 sin θ− + L0 sin(α− θ−)

)
θ̇
−
+ L̇1 cos θ

− (17)

By adding the following assumption, we can derive the inelastic collision model.

(d) Leg 1’s end collides with the ground but Leg 2 does not take off.
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Fig. 5 Coordinate change at collision phase I

The equation is then given by

M (q†)q̇+ = M(q†)q̇† + JI(q
†)TλI , (18)

JI(q
†)q̇+ = 04×1. (19)

Here, note that λI is the vector obtained by integrating the impulsive force at
impact for zero time and therefore the unit of each element is N·s. This is also
explained in section 5. In this situation, the constraint conditions are (a) and
(b). The Jacobian matrix JI(q

†) ∈ R
4×5 is therefore identical to Eq. (11). By

solving Eqs. (18) and (19) for the velocity vector immediately after impact,
we get

q̇+ =
(
I5 −M(q†)−1JI(q

†)TXI(q
†)−1JI(q

†)
)
q̇†, (20)

XI(q
†) := JI(q

†)M (q†)−1JI(q
†)T. (21)

3.4.2 Collision to stopper of Leg 2

The constraint conditions for this collision are (a), (b), and (c). Therefore
the corresponding Jacobian matrix becomes J ′

SLS and the inelastic collision is
modeled as

M(qs)q̇
+
s = M(qs)q̇

−
s +

(
J ′

SLS

)T
λs, (22)

J ′
SLSq̇

+
s = 03×1. (23)

Here, we denoted the position and velocity vectors at this instant, however, as
qs and q̇s. λs ∈ R

3 is the vector obtained by integrating the impulsive force at
impact for zero time. We assume that this collision occurs during the period
of SLS. By solving Eqs. (22) and (23) for the velocity vector immediately after
impact, we get

q̇+
s =

(
I5 −M(qs)

−1
(
J ′

SLS

)T
Xs(qs)

−1J ′
SLS

)
q̇−
s , (24)

Xs(qs) := J ′
SLSM(qs)

−1
(
J ′

SLS

)T
. (25)

Note that this collision occurs only in the case that the natural length, L∗, is
longer than the nominal length, L0.
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3.5 Mechanical energy

The total mechanical energy of the VRW is determined as

E(q, q̇) =
1

2
q̇TM (q)q̇ + P (q), (26)

where the potential energy, P (q), is the sum of energies of position and elas-
ticity. The elastic energy is given by

1

2
k (L1 − L∗)2 +

1

2
k (L2 − L∗)2 + 3k (L0 − L∗)2 . (27)

The viscous dissipation function, R(q̇), is given by

R(q̇) =
1

2
c
(
L̇2
1 + L̇2

2

)
, (28)

and the damping force then dissipates mechanical energy as

Ė = −q̇T ∂R(q̇)

∂q̇T
= −c

(
L̇2
1 + L̇2

2

)
≤ 0. (29)

The total mechanical energy then monotonically decreases during motion.

4 Typical gaits

Fig. 6 shows the simulation results of PDW of the VRW on a slope where
φ = 0.30 [rad]. The physical parameters were chosen as listed in Table 1. The
nominal leg length, L0, was chosen by reference to the biped models in related
works [4][5]. The generated motion can then be regarded as the human-sized
bipedal gait without swing-leg motion. Fig. 7 plots the stick diagram of the
steady gait in X-Z plane; Leg 1 and Leg 2 are respectively depicted by the
solid and dotted lines.

We can see the following characteristics in each figure.

(a) The angle monotonically increases during the stance phases.
(b) Leg 1 monotonically contracts after landing, while Leg 2 monotonically

extends and finally collides the stopper.
(c) The distribution of the ground reaction force perpendicular to the slope

shifts from the rear leg (Leg 2) to the fore one (Leg 1) soon after the
collision phase I. The period of DLS accounts for about 53 % of one cycle.

(d) The position of Leg 2’s end monotonically moves upward after the collision
phase II.

From Fig. 6(e), we can see that λ2 discontinuously changes at the instant that
the motion transitions from DLS to SLS. This is because λ3 (ground reaction
force of Leg 2 parallel to the slope) jumps from nonzero to zero at this instant.
Unlike the simple spring-mass walkers [4][5], there is only one force-peak during
one cycle.
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Table 1 Physical parameter settings

mH 10.0 kg
m 1.0 kg
α π/4 rad
a 0.3 m

L0 1.0 m
L∗ 1.02 m
k 500 N/m
c 200 N·s/m

Fig. 8 shows the time evolutions of the end position of Leg 2 for three values
of c. If c is small, Leg 2 rapidly extends immediately after takeoff and the end
position hits the ground. Except the case of c = 200, Leg 2 hits the ground
during the stance phase of SLS-I. The leg viscosity controls the extension speed
of the telescopic-leg frame and must be chosen carefully to avoid the hitting.

Fig. 9 shows the ground reaction force perpendicular to the slope of Leg
2, λ4, for three values of c. We can see that the value immediately after col-
lision phase I, λ+

4 , approaches to zero as c increases. If c increases further,
the value reaches zero and Leg 2 cannot maintain contact with the ground
immediately after impact. The Leg 2 will leave the ground immediately after
impact, and the ground reaction force completely shifts from Leg 2 to Leg
1. This corresponds to the traditional inelastic collision model for stance-leg
exchange [1][2][3]. Large c intends that the deformation velocity of the com-
pliant leg frames is low. This implies that the traditional collision model that
does not generate measurable period of DLS is reasonable in the case with
difficulty deformable compliant leg frames. In addition, note that the slope
was chosen as 0.30 [rad] and this is much steeper than the available slope for
passive compass-like walkers [2] and rimless wheels [10] that consist of rigid-
leg frames. This implies that viscoelastic-legged walkers need sufficiently large
driving force in the walking direction.

On the other hand, it has been pointed out that there are two peaks of
the vertical ground reaction force in level dynamic walking of a simple spring-
mass model [4][5]. In our model, however, only one peak is found in the case
of c = 200. A number of reasons can be given for this difference; existence of
leg mass, effect of viscosity, magnitude of the slope, and so on. Now we are
investigating the mathematical reason from various point of views.
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Fig. 6 Simulation results of passive dynamic walking

Fig. 7 Stick diagram of steady gait
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Fig. 9 Time evolution of ground reaction force perpendicular to slope

5 Indicators for emergence of double-limb support

In the previous section, we intuitively performed numerical simulations on the
assumption that Leg 2 does not leave the ground immediately after touchdown
of Leg 1. This section reconsiders the validity and defines the conditions for
transition to DLS motion.

5.1 DLS-Indicators and computational procedures

Let f be the vector of ground reaction force on the contact points of Leg 1
and Leg 2 at impact, and JI(q) be the corresponding Jacobian matrix. The
equation of motion then becomes

M (q)q̈ + h(q, q̇, φ) = τ ve(q, q̇) + JI(q)
Tf . (30)
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Let q† and q̇† be the vectors defined in Eq. (15). Note that q† = q− = q+

holds. We assume that the touchdown of Leg 1 occurs at t = T0 [s], that is,
q† = q(T0). The time integral of the left-hand side of Eq. (30) then becomes

lim
ε→+0

∫ T0+
ε
2

T0− ε
2

(M(q)q̈ + h(q, q̇, φ)) dt =

∫ T+
0

T−
0

M(q†)q̈ dt

= M(q†)
(
q̇+ − q̇†

)
, (31)

whereas the time integral of the right-hand side becomes

lim
ε→+0

∫ T0+
ε
2

T0− ε
2

(
τ ve(q, q̇) + JI(q)

Tf
)
dt = JI(q

†)T lim
ε→+0

∫ T0+
ε
2

T0− ε
2

f dt

= JI(q
†)TλI . (32)

The collision equation then becomes

M (q†)q̇+ = M(q†)q̇† + JI(q
†)TλI , (33)

JI(q
†)q̇+ = 0. (34)

Eq. (33) is the same as Eq. (18) but the size of the Jacobian matrix at impact,
JI(q

†), and the dimension of Eq. (34) are exchanged in accordance with the
following algorithm.

Computational procedure for determining q̇+

(A1) We set JI(q
†) = JDLS(q

†) in Eq. (34) and compute the Lagrange un-
determined multiplier vector in Eq. (33), λI ∈ R

4. This is solved as

λI =
(
I5 −M (q†)−1JI(q

†)TXI(q
†)−1JI(q

†)
)
q̇†, (35)

where XI(q
†) is identical to Eq. (21).

(A2) Divide the obtained λI into λI =
[
λI1 λI2 λI3 λI4

]T
. λI2 ≥ 0 and

λI4 ≥ 0 must hold to transition to DLS motion. It is obvious, however,
that λI2 > 0 always holds. Therefore we should check the sign of λI4

only.
(A3) If λI4 < 0, DLS motion does not emerge. We then solve Eqs. (33) and

(34) for q̇+ by setting J(q†) = JSLS.
(A4) If λI4 ≥ 0, the motion then transitions to DLS. We then solve Eqs. (33)

and (34) for q̇+ by setting J(q†) = JDLS(q
†).

Here, note that the unit of each component of λI is N·s because this is time-
integral of the impulsive force, f , as suggested by Eq. (32). The component of
λI is positive means, however, the average value of the corresponding impulsive
ground reaction force during zero-time interval is positive. Therefore λI4 [N·s]
can be treated in the same manner as the corresponding ground reaction force,
λ4 [N].
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Leg 2 begins to leave the ground at the instant that the sign of λ4 in Eq.
(12) continuously changes from positive to negative. The problem is that λ4

immediately after impact, λ+
4 , does not always become positive even if λI4

is positive in the case that the collision occurs while exerting the viscoelastic
force. We therefore consider the following computational procedure.

Computational procedure for determining q̈+

(B1) If λI4 ≥ 0, the motion is determined to transition to DLS. The equations
of motion immediately after impact are then specified as

M(q†)q̈+ + h(q†, q̇+, φ) = τ ve(q
†, q̇+) + JDLS(q

†)Tλ+, (36)

JDLS(q
†)q̇+ = 04×1, (37)

by using q̇+ obtained in (A4). We can solve Eqs. (36) and (37) for λ+ ∈
R

4 as

λ+ = −X(q†)−1
(
JDLS(q

†)M(q†)−1
(
τ ve(q

†, q̇+)− h(q†, q̇+, φ)
)

+J̇DLS(q
†, q̇+)q̇+

)
. (38)

q̈+ is then immediately calculated by substituting this into Eq. (36).

(B2) Divide the obtained λ+ into λ+ =
[
λ+
1 λ+

2 λ+
3 λ+

4

]T
. If λ+

2 ≥ 0 and

λ+
4 ≥ 0, then we take q̈+ obtained in (B1) as the proper initial accelera-

tion vector and continue the numerical integral. A measurable period of
DLS motion emerges.

(B3) If λ+
2 ≥ 0 and λ+

4 < 0, unilateral constraint condition is not satisfied
and the motion should transition to SLS. We then break q̈+ obtained in
(B1), and solve the following equations

M (q†)q̈+ + h(q†, q̇+, φ) = τ ve(q
†, q̇+) + JT

SLSλ
+ (39)

JSLSq̇
+ = 02×1, (40)

for λ+ ∈ R
2 and q̈+. Here, λ+ is calculated by replacing JDLS(q

†)
and J̇DLS(q

†, q̇†) in Eq. (38) by JSLS and 02×5. We take this newly-
calculated acceleration vector as the proper initial one, and begin the
numerical integral.

The measurable period of DLS emerges immediately after impact if λI4, λ
+
2 ,

and λ+
4 are positive. These three quantities are thus termed as the DLS-

Indicator (DLSIs).

5.2 Analysis of DLSIs

Fig. 10 plots the DLSIs with respect to the leg viscosity, c, in PDW on the
slope of φ = 0.10 [rad]. The physical parameters except c were chosen as listed
in Table 1. Here, (a) plots λI4 and (b) plots λ+

2 and λ+
4 . We also plotted their
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values with different symbols in the case that scuffing of Leg 2 arises; the
rear leg quickly extends after takeoff where c is small and the end-point hits
the ground. Our mathematical model cannot deal with bouncing of Leg 1 and
scuffing of Leg 2. We therefore plotted only the case where λ+

2 ≥ 0 and omitted
the effect of scuffing of Leg 2 in the numerical simulations. All the DLSIs are
positive where c = 50, 100, and 200 [N·s/m]. Therefore we can confirm that the
simulation results performed in the previous section were valid except scuffing.

As seen from Fig. 10 (b), λ+
4 monotonically decreases as c increases and

finally reaches zero where c = 220 [N·s/m]. λ+
4 < 0 implies that unilateral

constraint of Leg 2 immediately after impact does not hold and the stance-leg
exchange is then completed instantaneously where c ≥ 220. This also implies
that the normal velocity of the end-point of Leg 2 immediately after impact is
positive. λI4 is, however, always positive as shown in Fig. 10 (a). The Jacobian
matrix in Eqs. (33) and (34) is therefore always chosen as JI(q

†) = JDLS(q
†).

Bourgeot et al. investigated the condition for transition to DLS and the-
oretically clarified that there are four possible situations immediately after
impact according to the relation between the pre- and post-impact velocities
[11]. They mathematically derived how the post-impact situations are deter-
mined based on the concept of the rocking block. Font-Llagunes and Kövecses
analyzed the condition in passive compass-like biped robot based on a similar
approach [12]. They used the post-impact normal velocity of the trailing foot
(the end-point of the rear leg) as DLSI. Our analysis results, however, indi-
cate that the following two conditions are not equivalent in the presence of
redundant DOFs.

(C1) The normal velocity of the end-point of the rear leg immediately after
impact is negative.

(C2) The impulse of the rear leg at impact is positive.

The VRW can generate stable PDW gaits even in the case where c ≥ 220
but we omitted the plot because the generated gaits are unrealistic and are
not 1-period. On the other hand, λ+

2 monotonically decreases as c decreases
and finally reaches zero where c = 4.0 [N·s/m]. This implies that bouncing of
Leg 1 arises where c ≤ 4.0.

6 Conclusion and future work

In this paper, we developed a mathematical model for the passive VRW fol-
lowing the experimental results and numerically analyzed the fundamental
gait properties. Throughout numerical investigations, we showed that stable
gaits including measurable period of DLS can be generated in the presence
of large driving force in the walking direction. Furthermore, we mathemati-
cally investigated the conditions for transition to DLS motion and specified
the corresponding computational procedures.

As the analysis of DLSIs suggested, the stance-leg exchange becomes to
terminate instantaneously where c is large because λ+

4 reaches zero. In this
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Fig. 10 Double-limb support indicators with respect to c

case, Leg 2 begins to extend and hits the ground immediately after the stance-
leg exchange. This leads the next collision of Leg 2 soon after takeoff, and
complicated motion is then caused as the result of it. The mathematical model
and the corresponding computational procedure in this paper cannot deal with
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this situation. They are also not able to deal with the case of bouncing where
c is small. We should try to develop the appropriate models in the future.

The contribution of this paper is to have clarified that measurable period
of DLS motion emerges in PDW of the VRW and showed how it should be
mathematically modeled and simulated. The benefit of the compliance the leg
viscoelasticity creates, however, has not been discussed in detail. In the future,
we should consider how the evaluation indices should be defined and investigate
what effects and advantages DLS motion had on the gait properties.
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