JAIST Repository

https://dspace.jaist.ac.jp/

Title	ノイズの見えに対する視知覚特性のモデル化と定量的 評価手法に関する研究		
Author(s)	庄原,誠		
Citation			
Issue Date	2013-09		
Туре	Thesis or Dissertation		
Text version	ETD		
URL	http://hdl.handle.net/10119/11548		
Rights			
Description	Supervisor:党 建武,情報科学研究科,博士		

Japan Advanced Institute of Science and Technology

ノイズの見えに対する視知覚特性のモデル化と

定量的評価手法に関する研究

北陸先端科学技術大学院大学

庄原 誠

博士論文

ノイズの見えに対する視知覚特性のモデル化と

定量的評価手法に関する研究

庄 原 誠

主指導教員:小谷 一孔 准教授

北陸先端科学技術大学院大学

情報科学研究科

平成 25 年 9 月

要旨

カメラやカメラ付きの情報端末が普及するとともに画像は非常に身近なものとなって いる.カメラの内部では様々な画像処理が実施されている.画像処理には主にその観察 者が人間であるか否かに応じて2種類に分けられる .一般に普及しているカメラは人間 が観察するために使用されるものであり、そのような機器の画像処理では、人が快適に、 あるいは人が好ましいと感じる画像の生成を目指して画像処理が行われる .観察者が感 じる画像の質を画質と呼ぶ、どのような画質を人が好ましいと感じるのかについては個 人や文化の違いがあり,画質の高さを画一的に表現することは難しい.しかしながら, 画質を定量化する試みは多くあり,画質を定量的に表現する指標は画質評価指標と呼ば れる.これらの評価指標は目的に応じて使い分ける必要がある.画質を左右する要素に ついては明るさ, 色, 階調性, コントラスト, 画角, 構図など様々あるが, 応用上課題 となることが多い要素であることから ,本研究ではノイズを扱う .ノイズは妨害ととら えられ画質を損なう要因とされる一方,ディザのように階調性を高めるために活用する 場合もある .ノイズを観察すると画像の色や明るさに応じて見え方に変化が生じている ことがわかる.このようなノイズの見えに関する研究は画質設計等,応用上重要な要素 であるにもかかわらず,色の見え等の研究に比べて少ない.本研究ではノイズの見えに 関し ,その視覚特性を定量化し ,どのような視知覚モデルによってそれが説明できるの かを明らかにする.カラー画像ははじめに光として眼球に入り,網膜で光が神経信号に 変換される.神経信号は網膜,外側膝状体(LGN),皮質へと伝達され,伝達の過程で信 号処理が行われる.本研究では眼球における光の収差の影響や,網膜での L, M, S 錐体 細胞の分光特性 , 色の見えなどを考慮した視知覚モデルを構築し , 主観評価実験によっ てノイズの見えの視知覚特性を検証する 主観評価実験は所定の色相方向に変化する色 ノイズの見えを比較法によって行う.この実験によって色ノイズの色相方向,背景色, 明るさに関するノイズの見え特性を明らかにする .実験によって得られた色ノイズの色 相方向の見え特性は色の弁別関数によって説明できることがわかった .この色相方向の 見えについてはS錐体信号を減衰させた視知覚モデルを用いることで説明できること を示す.また,色ノイズの空間周波数に応じた見えの違いを閾値実験によって明らかに する .空間周波数に対するノイズの見えはコントラスト感度(CSF) 特性と類似した特徴 が見られるものの,輝度ノイズの見えについては背景色によってその特性は異なってい た.このような視知覚特性は視覚の多段階モデルを拡張することで説明できると考えら

れる.さらに,本研究ではノイズの視知覚特性に関する応用例を示す.デジタルカメラ のノイズがどのように見えるのか,デジタルカメラをモデル化しそのノイズの見えにつ いて議論する.デジタルカメラの画像処理には視知覚特性を利用したデモザイク処理や ノイズ低減画像処理が画質を左右している.本研究ではそのような視覚的画像処理とし てノイズ軽減手法の例を示す.さらに画質評価指標としてノイズの見え特性を適用した 評価指標について議論する.本研究ではノイズの見えを反映する画質評価指標を定義し, 実際の画像ヘノイズを適用した際の主観評価値と各種画質評価値を比較する.本研究で はノイズの見えの視知覚特性を明らかにし,この視知覚特性を表現する視知覚モデルを 構築した.また,得られたノイズの見え特性が応用可能であることを示すことで,ノイ ズの見えとその応用に関する基礎を築いた.

1.	序論		1
	1.1. Z	な研究の背景	1
	1.2. Z	\$研究の目的	2
	1.3. Z	▶論文の構成	2
	1.4. F	开究背景	5
	1.4.1.	視覚系	5
	1.4.1.1	概要	5
	1.4.1.2		5
	1.4.1.3	網膜構造	7
	1.4.1.4	. 網膜における信号処理	8
	1.4.1.5	. 外側膝状体(LGN)における信号処理	10
	1.4.2.	錐体分布	12
	1.4.3.	色の見え	12
	1.5. 彷	送来研究	14
	1.5.1.	ノイズの見え	14
	1.5.2.	画質評価指標	14
2.	ノイズ	の見え	16
	2.1. É	色ノイズの色相方向依存性	16
	2.1.1.	はじめに	16
	2.1.2.	ノイズモデル	16
	2.1.2.1	ガウスノイズ	17
	2.1.2.2	. LabGauss ノイズ	17
	2.1.2.3	. LabVecC ノイズ	18
	2.1.2.4	. LabVecR ノイズ	18
	2.1.3.	ノイズの見えモデル	19
	2.1.3.1	2 種類の視知覚モデル	19
	2.1.3.2	. 視覚系の仕組みと視知覚モデル	19
	2.1.3.3	. 眼球の色収差モデル	19
	2.1.3.4	色ノイズの視知覚モデル(演繹的モデル)	20
	2.1.4.	色ノイズの見えの測定	23
	2.1.4.1		23
	2.1.4.2	知覚色ノイズの測定手法	24
	2.1.4.3	测定対象	25
	2.1.5.	色ノイズの見えの定量化	26
	2.1.5.1	. 色方向特性に関する実験	26

目次

2.1.5.2	. 背景色特性に関する実験	
2.1.5.3	. 背景輝度特性に関する実験	
2.1.5.4	. 空間周波数特性に関する実験	
2.1.6.	考察	
2.1.6.1	. 瓢箪形状と色差	
2.1.6.2	. 色ノイズの知覚感度特性	
2.1.6.3	. 反対色信号比較機構	
2.1.6.4	. 瓢箪形状と CSF 特性	
2.1.6.5	. 視知覚モデルの評価	
2.1.6.6	. 均等色ノイズ	
2.1.6.7	. 被験者数について	
2.1.7.	まとめ	
2.2.	ノイズ感度特性	
2.2.1.	はじめに	
2.2.2.	定義	
2.2.2.1	. ノイズモデル	
2.2.2.2	. ノイズ感度特性と閾値	
2.2.3.	ノイズ感度特性の測定	
2.2.3.1	. ノイズ知覚閾値の測定	
2.2.3.2	. 輝度ノイズと色ノイズのノイズ感度特性	
2.2.4.	考察	
2.2.4.1	. ノイズ感度特性	
2.2.4.2	. 色相方向依存性との比較	
2.2.4.3	. 視覚系モデル	
2.2.4.4	. ノイズの知覚特性の定式化	
2.2.5.	まとめ	
3. ノイズ	の見えを利用した応用	
3.1. 7	デジタルカメラのノイズと知覚	
3.1.1.	はじめに	
3.1.2.	デジタルカメラの画像処理	
3.1.2.1	デモザイク処理	
3.1.2.2	. ノイズ軽減処理	
3.1.3.	システムモデル	
3.1.3.1	カメラモデル	
3.1.3.2	. ノイズモデル	
3.1.3.3	. 実カメラノイズモデル	

3.1.4	4. カメラノイズの見え	
3.1.4	4.1. 主観評価実験方法	
3.1.4	4.2. 実験環境	
3.1.4	4.3. Lab 輝度ノイズの背景輝度依存性	
3.1.4	4.4. カメラノイズの背景輝度依存性	
3.1.4	4.5. 輝度ノイズと色ノイズの知覚差	
3.1.4	4.6. カメラノイズの背景色依存性	
3.1.:	5. 考察	
3.1.:	5.1. 輝度ノイズを用いた比較実験	
3.1.:	5.2. 視知覚モデルとの比較	
3.1.:	5.3. 実カメラとの比較	
3.1.0	6. まとめ	
3.2.	ノイズ軽減画像処理	
3.2.	1. はじめに	
3.2.2	2. ノイズ軽減手法	
3.2.	3. ノイズ軽減効果	
3.2.4	4. まとめ	
3.3.	画質評価指標	
3.3.	1. はじめに	
3.3.2	2. S-CIELAB に基づく色ノイズの評価	
3.3.	3. 色ノイズの見え	
3.3.4	4. ノイズモデル	
3.3.	5. 色ノイズの見えに基づく画質評価モデル	
3.3.	6. 画質の定量評価	
3.3.2	7. 画質の主観評価値と評価指標	
3.3.	8. 考察	
3.3.	9. まとめ	
4. 結論	Ì	
4.1.	まとめ	
4.2.	今後の展望	117
5. 謝辞	ž	119
6. 参考	交献	
7. 本研	F究に関する発表論文	
7.1.	論文(査読付)	
7.2.	国際会議(査読付)	
7.3.	国内学会	

1. 序論

1.1.本研究の背景

人は古来より毎日,様々なものを見て,多くのことを感じながら生活している.近 年ではデジタルカメラが普及し、写真や映像を自ら撮影し、インターネットを介して多 くの人々と情報を共有することが一般的になっている .人は特に意識することなく風景 や写真,画像などを認識することができるが,人々は本当に同じものを見ているのだろ うか.人の脳は何を認識しているのだろうか.人が映像,画像を見る際,どのような情 報処理がなされているのかについては従来から多くの研究がなされているにもかかわ らず,未だ解明されていない課題が多くある.このような人の視覚認識,視覚情報処理 のモデル化に関しては心理学,神経生理学,計算論的神経科学,色彩科学などさまざま な観点から研究がされている 視覚は入力された信号を徐々に変換しながら脳に伝えて おり,視覚系という信号処理システムは,入力信号が多段階で並列処理され,最終的に 知覚や認識という状態に至る,多段並列回路とも考えられる.知覚,認知,認識,クオ リアといった言葉はこのような多段化の過程に対応すると考えられる 神経生理学の研 究によれば、大脳に至る前に多くの信号処理がなされていることが知られている.また, 視覚系はデジタルカメラなどの工学製品に比べて ,光学的にも電気的にも収差やノイズ が多い信号を扱っている .このような収差やノイズはどのように視知覚に影響している のだろうか.本研究では脳へ入力する信号に着目し,特に静止カラー画像に対して付加 したノイズがどのように見えるのかを研究することで、ノイズの見え特性を元に初期視 覚情報処理モデルについて研究する、視覚情報処理モデルを元に、色の見えやコントラ スト感度特性,輝度と色の分離機構について考察する.

また,デジタルカメラ画像や医用画像において、ノイズの取り扱いは製品性能を左 右する重要な要素である.画質設計や画像処理アルゴリズム開発においては,画質の客 観評価が重要な指標となる.これまでにS-CIELAB[1]やSSIM[2]など多くの評価指標が 提案されているが,カラー画像に対するノイズの見えを考慮したものは少ない.本研究 ではノイズの見えを元に,画質評価モデルを構築することで,画質を定量評価する方法 を示す.視覚情報処理モデルは画質設計や画像処理アルゴリズムの開発,デジタルカメ ラのさらなる小型・高画質化,圧縮センシングライトフィールドカメラ[3][4]のような 次世代デジタルカメラの画像処理,医用画像機器における病変等の視認性の改善,ステ ガノグラフィーやウォーターマーキングのような画像への情報付加[5],画像の高圧縮 化アルゴリズムなどの応用が考えられる .本研究ではその一例としてノイズ軽減方法を 示す.

1.2.本研究の目的

本研究では視覚情報処理のメカニズムを明らかにし,高画質化画像処理へ応用する ことを目指し,色ノイズの見えに着目する.視覚系におけるノイズとは,視覚内の細胞 で発生するノイズの他,画像に付加したノイズが挙げられる.ノイズは視知覚に対して 多くの影響を与える.視知覚において神経伝達はパルス信号で行われ,ノイズには比較 的堅固と考えられる.そのため,最もノイズの影響を受けると思われるのは視神経細胞 に伝達する前の(パルス信号の)段階である.ここでは網膜内のLMS 錐体細胞,桿体 細胞,水平細胞,双極細胞が関与する.本研究ではLMS 錐体細胞に対してノイズを付 加することを意図し,映像としてのノイズを与える.LMS 錐体細胞に対するノイズは いわゆる色ノイズであり,これが色ノイズの見えに着目した一つの理由である.ノイズ の存在によって生じる視覚特性(空間周波数特性)があることが知られており,色ノイ ズの見えを測定することによって視覚情報処理メカニズムに対する知見を得られるこ とが期待できる.

本研究の目的はノイズの見えに関する主観評価実験を行うことによって,静止カラ ー画像に対する視覚のメカニズムを明らかにし,視覚メカニズムを高画質化画像処理へ 活かすことにある。高画質化においては視覚メカニズムの知見だけでなく,元になる画 像の特性を知ること,および画質を数値化することが欠かせない.本研究では特にデジ タルカメラの画像を例に,物理的なノイズ特性,主観的なノイズの見え,視覚特性を生 かした画像処理,画質評価指標の例を示す.

1.3.本論文の構成

第1章では本論文の概要を述べる.本研究では人の脳は何を見ているのか,脳に対 する入力視覚信号の特徴からそれを推測することを目指している.本節では研究の目的, 研究の背景について述べる.ノイズの見えは眼球と視神経からV1にかけての初期視覚 系の処理によって概ね説明できる.デジタルカメラのようなセンサーで風景を撮影する のとは違い,人が物を見るときには視覚情報処理によって,様々な視覚特性が得られる. 本章ではそのうち代表的な視覚特性として色の知覚特性,空間周波数特性について説明 する.特に色とは何か,ある色を他の人に伝えるにはどのような手段を用いればよいの かについては従来から多くの研究がなされており,本研究はこれらの研究の元に成り立 っている.色の知覚特性については,LMS 錐体応答によって順応を表す von Kries の モデルをはじめ,Retinex モデル,反対色空間での色表現を含む色の見えモデルがある. 空間周波数特性に関連したコントラストの見えは視覚系内外のノイズの存在によって 説明できることが知られており,このモデルは色ノイズの見えに関しても多くの示唆を 与える.生理学的なモデルとしてガボールフィルタがある.

第2章ではノイズの知覚について論じる.ノイズの見えをモデル化しそれを検証す る.既定のノイズモデルを用いて生成した色ノイズ付加画像に対するノイズの見えを主 観評価実験によって測定し,ノイズの見え特性を得る.2.1節ではノイズを色相方向に 変化させて見え特性を測定し,視知覚モデルを検証する.視知覚モデルには眼球の色収 差を考慮し,色の見えモデルを部分的に用いる.色ノイズの色相方向依存性を背景色, 輝度,空間周波数を変化させて測定し,ノイズの見えに関する視覚特性を得る.2.2節 ではノイズの空間周波数特性について詳細に議論する.コントラスト感度特性との比較 やノイズの空間周波数特性を表現する視知覚モデルについて考察する.輝度ノイズの空 間周波数特性はバンドパスとなっており,色ノイズはローパス特性であることは視知覚 モデルに多段階モデルを用いて説明できると考えられる.しかしながら,輝度ノイズは 背景色に依存してローパス特性を示すこと議論する.

第3章ではノイズの見え特性の応用について論じる.3.1節では実用において課題 となることが多い,デジタルカメラのノイズとその知覚について議論する.実際のデジ タルカメラに相当するノイズがどのように知覚されるのかについて論じる.デジタルカ メラにおいてノイズがどのように見えるのかについての知見は工学的に有用である.こ こではノイズの見えを輝度ノイズと色ノイズ分けて測定した結果を示す,3.2節ではノ イズの見え特性を利用する方法を例示するため,ノイズ軽減を例にあげる.3.3節では 画質評価指標について議論する.画質評価指標は各種提案されているものの,色ノイズ の見えを考慮したものは少ない.色ノイズの見え特性を用いた画質評価指標を考案し, これを評価する.

第4章では色ノイズの見えから得られた視覚情報処理の特徴についてまとめ,今後の展望を述べる.今後は視知覚モデルの詳細を検証するとともに,より高度な知覚であ

る感性がどのようにして生じるのか,その画像特徴,オブジェクトをヒントに研究を行いたいと考えている.人に依存した好みや人々に共通な感覚の特徴はどこにあるのかを 解析することで,知覚情報処理についての知見を得ることを考えている.

1.4. 研究背景

1.4.1.視覚系

1.4.1.1. 概要

人が物を見るとき,さまざまな情報処理が視覚系で実行され,物がどのような形か, 色か,何であるか,ということを判断している.そのような情報処理は脳だけでなく, 眼球においても行われている.視覚系は主に第一次視覚野(V1)までの経路と V1 以降の 経路に分けられる.V1 までに基本的な空間情報処理,色情報処理がなされる.V1 の先 は背側経路,腹側経路に分かれ,前者が奥行きや動きなどの空間情報処理,後者が色や 形状などの認識処理が行われると考えられている.V1までを初期視覚系と呼び,V1 より先を高次視覚系と呼ぶ.本研究では主に色の情報処理,空間情報処理の基本的な見 えを扱い,これは初期視覚系で扱われると考えられる.

図 1-1 初期視覚系

1.4.1.2. 眼球構造

眼球は図 1-2のような構造を持つ[6].入射した光は角膜によって大きく曲げられ, ピント調節を行う水晶体を介し,網膜で結像する.人が視線を合わせ,焦点を合わせる 部分は網膜の中央の中心窩と呼ばれる領域である.瞳孔は周囲の明るさの変化に適応す るために利用され,大きさが直径2~8mm程度変化し,網膜に到達する光の量を調節す る[7].人の目を標準化したモデルがあり,眼球光学系のモデルとしてGullstrand-Le Grand のモデルがある[8].

1.4.1.3. 網膜構造

網膜は図 1-2,

図 1-3,図 1-4 に示すように層状の構造を持つ .網膜内の位置,中心視野(中心窩), 周辺視野で細胞組成が異なり,各層の厚みは位置に応じて異なる.図 1-4 は周辺視野に 相当する領域の網膜断層画像である.色彩に関連する錐体細胞は主に中心窩にあり,周 辺視野では色を検出しにくい.一方,光に対する感度が高く,暗所で働く桿体細胞は周 辺視野に多く存在する.

図 1-4 OCT 眼底断層画像([10]のデータを元に生成)

1.4.1.4. 網膜における信号処理

網膜には表 1-1 に示すように光信号に反応する光受容細胞と信号処理を行う細胞, 視覚情報を脳へ伝える神経節細胞があり,信号処理を行いながら情報を脳へ伝達する. 網膜の信号処理システムについては生理学や解剖学,光学,心理学,神経科学など様々 な分野で研究が行われている.

色は網膜にある3種類の分光感度特性を持ったL,M,Sの錐体を経て,神経信号に 変換される.視神経細胞にはOn-Center,Off-Center などの種類があり,脳内のLGNへ射 出している.色情報を含む神経信号は反対色信号が形成された上でLGNを経て視覚野 に伝達される[11],[12].この反対色特性および高次の色認識の機序に関しては,基本軸 モデルをはじめとして関連する多くの研究がなされている[13],[14],[15],[16],[17],[18]. しかしながら,網膜上に複雑に分布している錐体から反対色がどのような仕組みで生成 されているのか,網膜の生理と色知覚の関係については未だ解明されていない[19].

表 1-1 視覚に関連する網膜の主な細胞

	光受容	錐体(L,M,S)	桿体	メラノプシン
網膜	受容野生成	水平細胞(ON 型, OFF 型)	アマクリン	(光受容神経節
	信号処理・伝達	双極細胞,神経節細胞(20種)	細胞)

・ 光受容細胞(錐体,桿体,メラノプシン)

網膜に到達した光は主に錐体細胞,桿体細胞で受光され,水平細胞,双極細胞を経 て神経節細胞(視神経)へ送られる.明所では錐体細胞が働き,L,M,Sの3種の錐体 信号を元に色を知覚できる.暗所では主に桿体細胞が働き,色を区別することはできな い.網膜の様子は補償光学系を用いて調べることができ,錐体,桿体の網膜上における 分布を知ることができる.S錐体の分布割合が少なく,L,M,S錐体の割合はおおよそ 6:3:1で,個人によって大きく異なる[20],[21].

· 双極細胞,水平細胞

双極細胞には ON 型, OFF 型があり, それぞれ対応する神経節細胞に接続している [22].水平細胞は錐体細胞に関して中心周辺拮抗型の神経節細胞受容野を構成している [23].

· 神経節細胞(視神経細胞)

神経節細胞の樹状突起は IPL 層内で,層状に広がっている.樹状突起の広がりが単 層の神経節細胞を monostratified,2層になっている神経節細胞を bistratified とよぶ.神 経節細胞はその樹状突起の広がる大きさと IPL 層内での深さによって,分類できる[24]. 神経節細胞(網膜視神経細胞)は20種類あるが,色の知覚に関連する主な神経節細胞 は3種類(ミジット細胞,パラソル細胞,バイストレティファイド(bistratified)細胞) ある[19].それぞれの特徴を表 1-2にまとめた. ON 細胞は大きさが大きく異なり,素 早く反応する.特に強いS 錐体信号ではそれが顕著である.神経節細胞における,中心 周辺拮抗型の特性から以下のような反対色が生成されると考えられている.

• L-on/M-off(赤,マゼンタ)

- M-on/L-off(緑,シアン)
- S-on/(L+M)-off(青)
- (L+M)-on/S-off(黄色)

色の知覚においてはユニークヒューとよばれる4色があり,赤 緑,青 黄の反対 色特性と関連するとされる.しかしながら,知覚される反対色特性と網膜神経節細胞で 生成される4色との間の単純な関係は否定されている[19].パラソル細胞から LGN の M 細胞に伸びる経路が輝度に関連すると思われるが,M 細胞は比較的解像度が低いと 考えられ,輝度信号が色信号に比べて解像度が高いという性質と矛盾すると考えられる. この点は未だ議論されている課題である.

図 1-5 神経節細胞の種類と樹状突起の広がり([24]より引用)

1.4.1.5. 外側膝状体(LGN)における信号処理

外側膝状体(Lateral Geniculate Nucleus, LGN)は脳の視交叉の先にあり,網膜の神経 節細胞の軸索の投射先である.左右の眼球に入った光はそれぞれ視野の左側と右側に分 けられ,左側の視野は左のLGN,右側の視野は右のLGN で処理される.LGN では小 細胞

(parvocellular, P細胞), 大細胞 (magnocellular, M細胞), 顆粒細胞(koniocellular, K細胞) により,より網膜と同様の演算処理が行われる.LGN での処理は神経節細胞で処理さ れた信号に対して適用される.LGN には神経節細胞同様に中心周辺拮抗型の細胞があ り, Type I 細胞と呼ばれる.その他,異なる信号に対して空間的に同程度で,興奮性と 抑制性を示す,Type II 細胞が知られている[25].色に関しては網膜錐体細胞では反対色, LGN では二重反対色が得られる LGN の神経は主に第一次視覚野(V1)へ投射する LGN は折れ曲がった層状の構造をしており,層ごとに機能が異なるとされている.

神経節 細胞 (種類) 投射先 (LGN)	ミジェット (Midget) 小細胞 (parvocellular, P 細胞)	パラソル (Parasol) 大細胞 (magnocellular, M 細胞)	バイストレティファイ ド (Bistratified) 顆粒細胞 (koniocellular, K 細胞)
投射先(V1 以降) 反応速度	腹側経路(色,形状認 識) 低速	背側経路(空間情報処 理) 高速	中速
受容野 タイプ	少ない錐体 中心周辺拮抗型	多くの錐体 中心周辺拮抗型	非常に多くの錐体 中 心 の み (B-on/(L+M)-off)
割合 機能・特徴	7 色(赤緑 , L-M)に関連 輝度に関連	2 主に輝度に関連 色の変化にはほとんど 反応しない	1 色(青黄, S-(L+M))に関 連
	 ・1~数個の錐体に対して1つの Midget 細胞 色の変化に敏感 ・中心周辺拮抗型 ・Off-midget 細胞は, On-midget, Parasol 細胞 に比べて5倍以上,S 錐体の強い信号に反応 する. 	・広く複数の錐体を束 ね,解像度が低い ・中心周辺拮抗型	・色の変化にやや反応 ・複数の錐体を束ね, 解像度は Midge と Parasolの中間. ・小型 Bistratified は Type II 細胞と同等

表 1-2 主な神経節細胞

1.4.2. 錐体分布

網膜における L,M,S 錐体はクラスター状に分布しており S 錐体のみ孤立している. またこの分布は個人によって異なる.このような分布は比較的低周波なサンプリングを 行っていると考えられ,特に空間周波数的に高周波な色を認識することは難しいはずで ある.分布に個人差があるにもかかわらず,通常の視覚を持つ人は個人によって色の見 えが異なることはないと考えられる.

1.4.3. 色の見え

色の知覚を表現する定量的な指標として表色系がある.表色系は生理的なモデルか ら構築したものや色の見えから構築したものがある.DKL 色空間[14],[26],CIELAB 色 空間,CIELUV 色空間は反対色特性を考慮した表色系である.CIELAB 色空間,CIELUV 色空間は均等色空間とよばれ,色空間における距離によって色の見えの違いが表現でき るという特性がある.CIELUV 色空間は MacAdam 楕円の局所的な均等性を重視し, CIELAB は色空間全体の均等性を重視している[27].また,2 つの色の間の色差の表現 に関しては CIEDE2000 がある[28].これは CIELAB 色空間におけるユークリッド距離 を主観評価実験により,知覚的な色差に近づけたものである.近年,さらに色の見えを 考慮した CIECAM02 [29],iCAM [30]が提案されている.CIECAM02 は色順応を考慮し た色の見えに応じた指標,明度J,明るさQ,クロマC,カラフルネスM,飽和度s, 色相角 h,色相成分 H で表したものである.iCAM は CIECAM02 を画像に応用したも のである.

実際に色を表現する場合、それはディスプレイやプリンタなどの表示装置によって 表現できる色が制限される.ディスプレイが表示できる色域はディスプレイ毎に異なる ものの、標準的な色域を定義するものとして sRGB[31]がある.図 1-6 は輝度成分 L*=50 の時の sRGB が表現する色域を示す.図で a*は主に赤 緑の色成分、b*軸は黄 青の色 成分を意味する.本研究では色域を sRGB に合わせキャリプレーション(調整)したデ ィスプレイを用い、表色系として主に CIELAB を用いる.

図 1-6 CIELAB (L*=50 における a*b*平面)による sRGB の表現

色の知覚には色順応,明るさ順応,色対比,明暗対比,同化など様々な特性が関連 する.一部はクレイク・オプライエン錯視[32]など錯視として知られている.色順応は 画像処理においてはホワイトバランスと関係があり,von Kries のモデルで説明できる [33].また,画像処理との関連においては神経節細胞の中心周辺拮抗特性を DoG (Difference of Gaussian)を用いて表現することがある.また,中心周辺の視野を扱う Retinex 理論[34] があり,視知覚モデルを利用した画像処理としても利用されている[35], [36].さらに第一視覚野(V-1)の視神経細胞を模擬した画像処理フィルターとして,ガボ ールフィルタ が用いられることがある.ガボールフィルタ は方向付きバンドパス特 性を持ったガウスフィルターであり,画像認識や特徴抽出に用いられている[37].

1.5. 従来研究

1.5.1. ノイズの見え

ノイズの見えに関する視知覚特性は画質を重視する画像処理において重要な特性 である.画質を考える上でノイズは一般に妨害と考えられることが多いが,階調性の向 上など有益な場合もあり,適切なノイズの取り扱いが画質向上のためには重要となる. 画質向上のための画像処理の一つであるノイズ軽減処理には様々な手法が提案されて おり[38], [39], [40], [41], 画像処理順序によってもその効果が異なる[42].ノイズパラメ ータを知ることが難しい画像に対しては人のノイズに対する視知覚特性を知り,これを 利用することが特に重要となる.ノイズの見えに関しては ISO15739 [43], [44] において, Visual Noise として定義されている.ISO15739 の Visual Noise は人のコントラスト感度 特性(CSF)[45]を考慮した主にモノクロのノイズの見えを表している.S-CIELAB[1]は視 覚の CSF 特性を反映したカラー画像に対する2つの画像の差を定量化する指標を与え る.しかしながら,ノイズマスキング実験で用いられるような色方向を持ったノイズの 見えを S-CIELAB で表現できるかどうかについては検証が必要である.詳細は3.3 節で 述べるが S-CIELAB を用いてノイズの見えを表現することは難しい.ノイズの「見え」, 色の「見え」を定量化する指標を画像に適用する場合,画質の一要素を定量化する指標 と考えられ,画質評価指標の一種と考えることができる.

1.5.2. 画質評価指標

画質評価指標は画像圧縮やノイズ軽減などの画像処理による効果測定のため,幅広く 利用されている. 画質評価指標には比較対象となる画像があるかどうかで二つのタイプに分か れる[2]. 参照画像を用いる画質評価指標[1], [2], [46], [47], [48]では, 画質評価したい画像 と画像劣化していない参照画像を比較することで,参照画像に対する画像劣化の程度を 測定する用途で使用される. PSNR のように単純な比較を行う指標の他,視覚特性を考慮した 指標として SSIM[2]や STSIM[48], S-CIELAB[1]がある. STSIM, S-CIELAB はカラー画像に も適用できる. STSIM は局所的な画像の統計値を2つの画像間で比較することで, 画質評 価値を算出する.また,S-CIELAB は視覚特性である CSF 特性を利用して二つの画像を 比較する.これらの画質評価指標はどのような状況でも主観評価値を反映した指標を出 力するわけではなく,目的に応じて使い分けることが必要である.参照画像なしで1枚 の画像から評価値を算出する方法は主観評価実験をもとに評価値を算出する.しかしな がら,その複雑性から安定した評価値を算出することは難しい[49].本研究では参照画像 を用いる画質評価指標について議論する(3.3 節).

2. ノイズの見え

2.1. 色ノイズの色相方向依存性

2.1.1.はじめに

近年,デジタルカメラの高画素化・高感度化が進むにつれ,高ノイズ画像を扱う機 会が増加しており,各種のノイズ軽減画像処理が提案されている[50],[51].ノイズ軽減 処理ではノイズがどのように見えているのかが重要となる.一方,ノイズの見えに関す る知見は画像処理のみならず,視覚系の特性を解明する上でも重要な役割を担う.ノイ ズの見えに関してはノイズマスキング実験[12],[13],[52],[53]や知覚されるノイズの大 きさ[54]に関する研究が行われているが,色ノイズの見えと視知覚モデルについての議 論は十分でない.本研究では色ノイズの視知覚モデルを構築し,主観評価実験によって これを評価した.視知覚モデルの構築によって色ノイズの知覚機序を議論すると共に, ノイズの視知覚特性を知ることで,画像処理や画質評価指標などへの応用が期待できる.

2.1.2. ノイズモデル

本章では加算ノイズを扱う.

$$\mathbf{G}(x, y) = \mathbf{I}(x, y) + \mathbf{n}(x, y), \qquad (2.1)$$

ここで G(x, y) はノイズが加えられた画像の座標(x, y)における画素値 ,I(x, y)はノイズ加 算前の画素値を意味し , n(x, y) は後述するノイズモデルで表されるノイズ成分である . 本章では CIELAB 色空間を用いるため , I(x, y), n(x, y) および G(x, y) はそれぞれ (L_c, a_c, b_c) , (n_L, n_a, n_b) , (L_n, a_n, b_n) と表される.

本研究では3種類のノイズモデル(LabGauss ノイズ LabVecC ノイズおよびLabVecR ノイズ)を定義する.LabGauss ノイズは色空間上で等方的な色ノイズであり,背景色, 背景輝度に応じた色ノイズの見えの大きさを表す.LabVecC ノイズ,LabVecR ノイズは Hansen ら[13]のノイズモデルのように方向を持ったノイズである.LabVecR ノイズは予 備実験において LabVecC ノイズの主観評価実験結果に比べ,より単純な実験結果が得 られたため導入した.これらの違いは実験結果に示す.いずれのノイズモデルも背景色 に対してガウスノイズを付加したものである.ノイズの平均色となる背景色は表 2-1 に示した sRGB 色空間(IEC 61966-2-1)内の7 色である.

Color	L*	a*	b*
Gray	50.0	0.0	0.0
Red	50.0	66.0	52.1
Green	50.0	-45.1	42.9
Blue	50.0	30.1	-68.0
Purple	50.0	64.8	-10.1
Yellow	50.0	-0.1	46.1
Blue-violet	50.0	64.9	-60.1

表 2-1 生成ノイズの背景色

2.1.2.1. ガウスノイズ

本研究で用いるガウスノイズn(σ)は,確率密度関数がガウス関数となる正規乱数からなる.正規乱数は一様乱数から Box-Muller法[55]によって得ることができる.

$$\mathbf{n}(\sigma) = \sigma \sqrt{-2 \ln(\mathbf{U}_1)} \cos(2\pi \mathbf{U}_2) \tag{2.2}$$

ここで U₁, U₂は(0,1]の一様乱数, σは標準偏差である.一様乱数は疑似乱数としてコン ピュータ上で生成する.疑似乱数はメルセンヌ・ツイスタ(MT)[56]と呼ばれる方法 や MTを元に倍精度浮動小数点数に対して高速化した dSFMT[57]を用いて生成できる. 本研究においては dSFMT によって生成する一様な疑似乱数 U₁, U₂を式(2.2)に適用して ガウスノイズを生成する.

2.1.2.2. LabGauss ノイズ

LabGauss ノイズは CIELAB の a*b*平面(以下 ab 平面と呼ぶ)上で色を分散させた ガウスノイズ(標準偏差 σ_{ab})である.LabGauss ノイズを付加した画素値は背景色 (L_c , a_c , b_c)に対してノイズを付加した画素値は(L_c , a_c + $\mathbf{n}_i(\sigma_{ab})$, b_c + $\mathbf{n}_j(\sigma_{ab})$)である.ガウ スノイズ $\mathbf{n}_i(\sigma_{ab})$, $\mathbf{n}_j(\sigma_{ab})$ は 2.1.2.1 節に示した方法で生成する.添え字 *i*, *j* は乱数生成 による異なる値であることを示す.

2.1.2.3. LabVecC ノイズ

LabVecC ノイズは ab 平面上で所定の方向(角度 $\theta = 0~180$ 度)に色を分散させたガウ スノイズ(標準偏差 σ_{vc})である.図 2-1(左)に示すように ab 平面上のどの色方向 に対しても同じノイズの標準偏差(σ_v)となる.

$$\sigma_{\rm VC} = \sigma_{\rm V} = \text{const} \tag{2.3}$$

円の中心となる背景色(L_c , a_c , b_c)に対して LabVecC ノイズを付加した画素値は(L_c , a_c + $\mathbf{n}_i(\sigma_{VC})\cos\theta$, b_c + $\mathbf{n}_i(\sigma_{VC})\sin\theta$)とする . \mathbf{n}_i は 2.1.2.1 節に示した方法で生成されるガウスノイズである .

2.1.2.4. LabVecR ノイズ

LabVecR ノイズは色方向に応じてノイズ強度が異なる.図 2-1(右)に示したよう に,色方向によってノイズの標準偏差は矩形中心から辺までの距離に相当する大きさを もつ.LabVecRのノイズの標準偏差(σ_{VR})は以下のように表せる.

$$\sigma_{\rm VR}(\theta) = \sigma_{\rm V} / |\cos(\phi)| \tag{2.4}$$

ここで, σ_{v} は $\theta = 0$ 度でのノイズの標準偏差であり, ϕ は

$$\phi(\theta) = \operatorname{mod}(\theta + \pi/4, \pi/2) - \pi/4 \tag{2.5}$$

である 矩形の中心となる背景色(L_c , a_c , b_c) に対して LabVecR ノイズを付加した画素値 は(L_c , a_c + $\mathbf{n}_i(\sigma_{VR}(\theta))\cos\theta$, b_c + $\mathbf{n}_i(\sigma_{VR}(\theta))\sin\theta$)である.ここで \mathbf{n}_i は 2.1.2.1 節に示し た方法で生成されるガウスノイズである.

図 2-1 LabVecC, LabVecR のノイズ分布方向

2.1.3. ノイズの見えモデル

2.1.3.1. 2種類の視知覚モデル

色およびノイズの知覚に関連した上記のような多くの研究がなされているが,色ノ イズの知覚を説明する視知覚モデルは得られていない.本研究では,実験によって得ら れる色ノイズの見えの回帰式によって導出される帰納的なモデル化に加え,視知覚モデ ルによる演繹的なモデル化を行う.帰納的モデルはそのまま画像処理などへの応用が可 能であり,演繹的モデルは色ノイズの知覚機序解明の糸口を与える.帰納的モデルは実 験結果を示した後に説明し,以下では視覚系の仕組みと既知の視知覚モデルを考慮した 演繹的モデルについて説明する.

2.1.3.2. 視覚系の仕組みと視知覚モデル

色ノイズの知覚は,眼球を通った光を3種の錐体細胞が捕らえることから始まる. この際,眼球の光学的な色収差によって光の波長と空間周波数に応じた信号の減衰が生 じる[58].また,色順応によって錐体細胞の感度が変化する.錐体細胞によって得られ た光信号は,神経信号へ変換され,視神経細胞に伝達される.視神経細胞は外側膝状体 へと投射され,その後,視覚野へと投射される[11].

これらを考慮した色ノイズの視知覚モデルとして,LMS 錐体信号の空間周波数特 性を用いたモデルが考えられる.Marimont らは眼球による色収差の錐体への影響をモ デル化し,空間周波数の変化に対するコントラストの変化をシミュレートした[58].ま た,色順応を考慮した色空間表現は CIECAM02[29]が提案されている.本研究では Marimont らの色収差モデルと,CIECAM02 を組み合わせた視知覚モデルを構築し,主 観評価実験結果を用いてこれを評価する.

2.1.3.3. 眼球の色収差モデル

Marimont らの色収差モデルを用いて錐体への色収差の影響を確認する.本研究で 表示に用いる液晶モニターの分光特性をコニカミノルタ製 CS-1000 を用いて測定し,色 収差モデルおよび錐体の分光特性[59]を用いて錐体へ入射する光のコントラストを推 定する.図 2-3 は LCD でグレーを表示した条件での錐体信号のシミュレーション結果 である.空間周波数と光の波長に依存した信号の減衰を表す.L 錐体に比べ,S 錐体の 方が空間周波数の増大と共に,信号のコントラストがより減衰する様子がわかる.

2.1.3.4. 色ノイズの視知覚モデル(演繹的モデル)

色順応を考慮した CIECAM02 に, 色収差モデルを組み込んだ, 図 2-2 に示すよう な色ノイズの視知覚モデルを導入する.図は色収差,LMS 錐体による受光部分は眼球 内で行われ,知覚に関わる信号処理が網膜以降で行われる様子を示している.

図 2-2 色ノイズの視知覚モデル

色ノイズ信号は CIELAB 色空間上で生成される 生成される色ノイズ(*n_L*, *n_a*, *n_b*)は, 背景色(*s_L*, *s_a*, *s_b*)に対して,

$$\begin{cases} n_a(\sigma_{\rm VR}, \theta) = s_a + \sigma_{\rm VR} \cdot \cos(\theta) \\ n_b(\sigma_{\rm VR}, \theta) = s_b + \sigma_{\rm VR} \cdot \sin(\theta), & n_L = s_L = 50, \end{cases}$$
(2.6)

と表せる . θ は図 2-1 に示した , 色ノイズの方向 , σ_{VR} は Lab VecR ノイズの標準偏差 を表す . Lab 信号は LCD 表示される際 , R,G,B の光信号として表示され , 眼球に伝達さ れる . 眼球に入射した RGB 信号は LMS 錐体信号へと変換される .実際のシミュレーシ ョンにおいては , はじめに低周波信号(色票)における色変換を仮定し , Lab 信号(n_L , n_a , n_b)から XYZ 信号(n_X , n_Y , n_Z)へ CIE 1976 の定義に従って変換する . 白色点には D65 (X_w =0.9504, Y_w =1.0000, Z_w =1.0889)を用いる . その後 , XYZ 信号(n_X , n_Y , n_Z)を ,

$$\begin{pmatrix} n_L \\ n_M \\ n_S \end{pmatrix} = M_{CAT02} \begin{pmatrix} n_X \\ n_Y \\ n_Z \end{pmatrix}, \quad M_{CAT02} = \begin{pmatrix} 0.7328 & 0.4296 & -0.1624 \\ -0.7036 & 1.6975 & 0.0061 \\ 0.003 & 0.0136 & 0.9834 \end{pmatrix}$$
(2.7)

に適用し,LMS 錐体信号へ変換する.ここでは CIECAM02 における色順応の扱いを参 考に,M_{CAT02}を用いて変換した LMS 信号に対して色収差による影響を考慮する.色ノ イズの減衰信号(n_L',n_M',n_S')は, 色収差による LMS 錐体信号の減衰率(G_L,G_M,G_S)を用 いて,

$$\begin{pmatrix} n_{L}' \\ n_{M}' \\ n_{S}' \end{pmatrix} = \begin{pmatrix} G_{L} * n_{L} + (1.0 - G_{L}) * s_{L} \\ G_{M} * n_{M} + (1.0 - G_{M}) * s_{M} \\ G_{S} * n_{S} + (1.0 - G_{S}) * s_{S} \end{pmatrix} ,$$

$$(2.8)$$

と表せる.眼球の色収差モデルによるシミュレーション結果より,LMS 錐体に入射する信号の減衰率(G_L , G_M , G_S)は,L 錐体を基準として,空間周波数が0.8[cpd]のとき(G_L , G_M , G_S)=(1.0,0.90,0.52),13[cpd]のとき,(G_L , G_M , G_S)=(1.0,0.73,-0.03)である.減衰錐体値(n_L' , n_M' , n_S')および平均錐体値(s_L , s_M , s_S)に対して CIECAM02 の定義に従って,色順応を考慮した明度 J,クロマ C,色相 h を得る.この際の算出条件は,順応輝度 L_A =20, 背景輝度 Y_b =0.184,観察条件s=Average である.ここでは XYZ 信号から M_{CAT02} を用いて変換した LMS 信号に対して色収差の影響および色順応の影響を勘案し,一旦 XYZ 信号に戻した後, M_{HPE} を用いて変換した LMS 信号を用いてJ,C,hを算出する.以上より,本視知覚モデルによる色 Jイズの見えを色差 σ_{CP} ,

$$\sigma_{\rm CP} = \sqrt{\Delta J^2 + \Delta C^2} \quad , \tag{2.9}$$

として定義する.ここで, AJは,

$$\Delta J = J_n - J_b \tag{2.10}$$

J_b:背景色の明度, *J_n*:ノイズの明度

であり, ΔC は,

$$\Delta C = \sqrt{(C_n \cos(h_n) - C_b \cos(h_b))^2 + (C_n \sin(h_n) - C_b \sin(h_b))^2}$$

$$C_b : 背景色のクロマ, \quad C_n : J イズのクロマ$$

$$h_b : 背景色の色相, \quad h_n : J イズの色相$$

$$(2.11)$$

である.

図 2-3 LCD(CG-241W)表示信号の色収差による減衰のシミュレーション (a)は LCD の分光特性の色収差による減衰を表す .(b),(c),(d)の 3 つは L,M,S 錐体および LCD の分光特性を考慮した,L,M,S 錐体の受光分光特性を表す.

2.1.4. 色ノイズの見えの測定

提案した視知覚モデルを評価するため,主観評価実験を行う.主観評価実験は表 2-2 に示した7種類の条件で行う.表 2-2 は測定する色ノイズの依存特性とノイズの生 成に用いたモデル,測定方法を記した表である.条件(b),(c)においてはベクトルノイズ の色方向とノイズの見えの関係を測定すると共に,ノイズモデルによる違いを測定する. 条件(d)においてはグレーの背景色で3段階に輝度を変えた場合の各色方向でのベクト ルノイズの見えを測定する.条件(e)においてはより詳細に輝度レベルを変更し,背景輝 度に応じたノイズの見えを測定する.条件(f),(g)においては色ノイズの空間周波数特性 を測定する他,測定方法の違いを確認する.

2.1.4.1. 実験条件

実験では sRGB に調整したモニターEIZO CG-241W (画素ピッチ 0.27 [mm/pixel])を 用い,モニターから 40 cm の距離で観察した.観察環境は sRGB の観察環境に準拠する. また,空間解像度の異なる条件で実験を行うため,表示画像を最大 16 倍に拡大(ニア レストネイバー)し,擬似的に画素サイズを変更した実験を行った.これにより空間解 像度は最高周波数条件(等倍表示)では 13 [cpd],最低周波数条件(16 倍拡大表示)では 0.8 [cpd]となる.被験者は石原テストを通過した 2 ~ 7 人であり,実験条件によって異なる.

	依存特性	生成ノイズ	測定方法	被験者数
(a)	背景色	LabGauss	等知覚	7
(b)	色方向	LabVecC	等知覚	6
(c)	背景色&色方向	LabVecR	等知覚	1-7*
(d)	背景輝度&色方向	LabVecR	等知覚	1
(e)	背景輝度	LabGauss	等知覚	2
(f)	空間周波数&		空加兴	2
	背景色&色方向	Labveck	守和見	2
(g)	空間周波数	LabVecR	JND	2

表 2-2 主観評価実験条件

(*) 測定した背景色により被験者数が異なる.

2.1.4.2. 知覚色ノイズの測定手法

知覚色ノイズの測定は2種類の方法で行った.基本となる実験方法は等知覚色ノイズ実験であり,もう一つは弁別閾値の測定を行う JND 実験である.詳細を以下に説明する.

・ 等知覚色ノイズ実験法(比較法)

実験は色差測定に用いられるグレースケール法[60]を参考に,図 2-4 に示したよう な画面を用いて主観評価実験を行う.被験者は背景色グレーでの知覚色ノイズ(コント ロールノイズ)の標準偏差をコントロールバーで調整し,測定する色ノイズ(ターゲッ トノイズ)と主観的な知覚ノイズレベル(背景色グレーでのコントロールノイズの標準 偏差)が同等になるようにする.コントロールノイズは $\theta=0$ 度のLabVecC ノイズ($\theta=0$ 度の場合,LabVecR ノイズでも同等)とする.ターゲットノイズは $\sigma_V = 12$ のLabVecR ノイズおよび LabVecC ノイズである.ターゲットノイズ,コントロールノイズ共に左 右二分割されており,片側にノイズを表示し,もう片側にはノイズを表示せず,背景色 のみを表示する.このことにより,背景色に対するノイズの大きさ(標準偏差)を知覚 できるようにする.ノイズを左右どちらに表示するかは測定毎にランダムに切り替える. また,被験者が回答を決定するまでの時間は任意とする.図 2-4 で色ノイズペア,知覚 色ノイズの表示サイズは 108 x 54 [mm],視野角 15.1 x 7.7 [度]である.

図 2-4 色ノイズ知覚の測定に用いた提示画面(等知覚色ノイズ実験用,比較法)

・ 色ノイズ弁別閾値実験法(JND 法)

空間解像度依存性に関しては, 色ノイズの弁別閾値(Just Noticeable Difference, JND) を測定することで行う.被験者は図 2-5 に示したようなコントロールノイズの標準偏差 を調整し,ノイズが丁度見えなくなるようにコントロールバーを操作する.この時のコ ントロールノイズの標準偏差をJND 測定値とする.被験者が回答を決定するまでの時 間は任意とする.図 2-5 の色ノイズペアの表示サイズは 108 x 54 [mm],視野角 15.1 x 7.7 [度]である.

図 2-5 色ノイズ知覚の測定に用いた提示画面(JND 実験用)

2.1.4.3. 測定対象

・知覚色ノイズの色方向特性

生成する色ノイズは色空間(ab 平面)上で方向(図 2-1,角度θ)を持ったノイズで ある.ある背景色と色方向(θ)をもった色ノイズがどのような視知覚特性を持つのかを 測定することで,色に応じた色ノイズの知覚しやすさを測定する(実験条件(c)).測定 は等知覚色ノイズ実験によって行う.色方向特性の測定では LabVecR ノイズおよび LabVecC ノイズを用いて実験を行い,これらのノイズモデルによる違いについて確認す る(実験条件(b),(c)).

・知覚色ノイズの背景色特性

色ノイズの背景色は生成したガウスノイズの平均値に相当する.背景色特性の測定

は色方向特性の測定と同様に,色に応じた色ノイズの知覚しやすさを等知覚色ノイズ実験によって測定する.背景色は表 2-1 に示した7色を用いる.7色は sRGB 色域内でノ イズの大きさを考慮して選択した.色方向に依存しない背景色に対する色ノイズの見え については LabGauss ノイズを用いて測定を行い(実験条件(a)),色ノイズ方向と組み合 わせた色ノイズ知覚の測定(実験条件(c),(f))については LabVecR ノイズモデルを用い る.

・知覚色ノイズの背景輝度特性

色ノイズの背景輝度特性は複数の輝度レベルで等輝度色ノイズを生成し,各輝度に おける色ノイズの見えを測定する(実験条件(d),(e),(f)).実験条件(d)は LabGauss ノイ ズを用いて測定毎に輝度レベルを変更して実験を行い,実験条件(e),(f)は3種類の輝度 レベル(L*=25,50,75)で測定を行う.

・知覚色ノイズの空間周波数特性

色ノイズの空間周波数特性は2種類の空間周波数(0.8,13[cpd])と,ノイズの色 方向と組み合わせた等知覚色ノイズ実験(実験条件(f))の他,色ノイズ弁別閾(JND)を 用いて空間周波数を変化した際の色ノイズの見えを測定する(実験条件(g)).実験条件 (g)で等知覚ノイズ実験ではなく,JNDを用いた実験方式を用いたのは,予備実験にお いて異なる空間解像度の2種類のノイズを見た際に主観的にノイズを比較することが 難しいことが確認されたためである.実験条件(f)におけるコントロールノイズとターゲ ットノイズの空間周波数は同一とする.

2.1.5. 色ノイズの見えの定量化

2.1.5.1. 色方向特性に関する実験

色方向特性は特定色およびその反対色による色ノイズの見えを意味する.これに対応する色ノイズの生成モデルは LabVecC および LabVecR である.色ノイズは色差同様に周辺色,周辺輝度に応じて特定の色方向において見えやすいと考えられる.

背景色が灰色の場合のベクトルノイズ(LabVecC 及び LabVecR)による測定結果(実験条件(b)と(c)の一条件)を図 2-6,図 2-7,図 2-8 に示す.図 2-6,図 2-7 は被験者1 名による実験結果であり,図 2-7 は図 2-6 と同じ実験結果を極座標表示したものであ る . 図 2-8 は被験者 6 名分の結果を示す . 図 2-6 の LabVecR ノイズの極大,極小付近 で LabVecC ノイズは知覚されにくい様子がわかる.図 2-6,図 2-7 の LabVecR ノイズ の灰色背景色における知覚色ノイズ(σ_{NV})の回帰式を以下に示す(決定係数=0.92).

$$\sigma_{\rm NV}(\theta) = \sqrt{157.6 \cos^2(\theta - 37.2) + 34.0}$$
(2.12)

同様に被験者6名による回帰式は,

$$\sigma_{\rm NV}(\theta) = \sqrt{174.4\cos^2(\theta - 35.9) + 46.9}$$
(2.13)

となる(決定係数=0.73).後者の決定係数が小さいのは個人差が反映されたものと考えられる.

図 2-6 LabVecC, LabVecR ノイズの知覚レベル(背景色 = 灰色) 2 種類のベクトルノイズによる知覚ノイズレベル(σ_{NV})比較. はLabVecR ノイズ, は LabVecC ノイズ.実線はLabVecR ノイズによる実験結果の回帰式.被験者は1名(MS).

図 2-7 LabVecC, LabVecR ノイズの知覚レベル,極座標表示(背景色 = 灰色) 図 2-6を ab 平面上で極座標表示したもの.記号(,)の意味は図 2-6と同じ.中心か らの距離が知覚ノイズレベル(σ_{NV}),方位がノイズの色相方向を示す.

図 2-8 LabVecC, LabVecR ノイズの知覚レベル, 極座標表示

(背景色=灰色,被験者6名)

図 2-7 と同じ実験を被験者6名に対して実施した結果.

2.1.5.2. 背景色特性に関する実験

LabGauss ノイズの背景色に依存したノイズの見えに関する実験結果(実験条件(a)) を図 2-9 に示す.知覚される色ノイズの大きさ(*σ*_{NE})を重回帰式で表すと,以下のよう にあらわせる.決定係数は 0.60 である.

$$\sigma_{\rm NE} = 0.047 \times a^* - 0.042 \times b^* + 10.12 \tag{2.14}$$

色ノイズ知覚には背景色依存性があり, Green に比べて Blue-violet が約3倍色ノイズ を知覚しやすいことが分かる.

LabVecR ノイズによる色ノイズ知覚の背景色依存性を図 2-10 に示す(実験条件(c)). 背景色に依存して色ノイズを知覚しやすい大きさ,ノイズの色相方向が異なることが分 かる.図 2-10 に示した知覚色ノイズ(*σ*_{NV})の回帰式は,

$$\sigma_{\rm NV}(\theta) = \sqrt{K^2 \cos^2(\theta - D) + C^2}$$
(2.15)

である.ここで *K*, *C*, *D* はそれぞれ瓢箪形状の長軸, 短軸, 回転角であり, 背景色に依存する.回帰式の係数を表 2-3 に示す.

表 2-3 より青が ab 平面で 55.6 度, 灰が 35.5 度, 緑が 24.5 度, 赤が 10.3 度の色ノイズ を加えた際に最も強く色ノイズを知覚することが分かる.また,特に背景色が赤の場合 にばらつきが大きく,相関係数が 0.54 と低いことがわかる.この原因としては色順応 が考えられ,順応時間(測定時間)に依存したばらつきが生じているものと考えられる. 回帰式(2.15)を拡張し,任意の ab 平面の色に対して可能な回帰式を,

$$\sigma_{\rm CP}(\theta, a, b) = \sqrt{K_1 \cos^2(\theta - K_2) + K_3}$$
 (2.16)

$$K_{j}(a,b) = \sum_{i=1}^{2} \left(k_{a_{ij}} * a^{i} + k_{b_{ij}} * b^{i} \right) + k_{c_{j}} * a * b + k_{d_{j}}$$
(2.17)

と定義すると(*j*=1~3),回帰係数は表 2-4 で与えられる.式(2.16)の回帰式によるシミュレーション結果は図 2-10に細実線の瓢箪形状で示す.

"+"は測定値,実線が回帰曲線.矩形とその中心にある曲線はそれぞれ,生成したノイズの標準偏差と式(2.16)を用いた回帰曲線.被験者数は Blue-violet 6 名, Purple 1 名,他の 背景色は7 名.

表 2-3 背景色依存性に関する係数(式(2.15))

Color	K	D	С	相関係数
Gray	13.3	35.5	7.0	0.85
Red	14.5	10.3	4.6	0.77
Green	6.3	24.5	5.5	0.54
Blue	15.7	55.6	8.3	0.85
Purple	16.1	25.7	6.9	0.93
Yellow	11.8	8.7	4.4	0.85

表 2-4 背景色に依存した回帰係数(式(2.17))

var.	value	var.	value	var.	value
<i>k</i> _{<i>a</i>11}	1.95	<i>k</i> _{<i>a</i>12}	- 3.71*10 ⁻¹	<i>k</i> _{<i>a</i>13}	1.33*10 ⁻¹
<i>ka</i> ²¹	- 7.68*10 ⁻³	<i>ka</i> ²²	2.31*10 ⁻³	<i>k</i> _{<i>a</i>23}	4.02*10 ⁻⁴
<i>k</i> _{<i>b</i>₁₁}	-0.514	$k_{b_{12}}$	-5.53*10 ⁻¹	<i>k</i> _{<i>b</i>13}	-2.05*10 ⁻¹
<i>k</i> _{<i>b</i>21}	- 9.17*10 ⁻⁴	<i>k</i> _{<i>b</i>22}	-1.10*10 ⁻³	<i>k</i> _{<i>b</i>23}	- 4.43*10 ⁻³
k_{c_1}	-5.86*10 ⁻³	k_{c_2}	3.98*10 ⁻³	k_{c_3}	-2.29*10 ⁻³
k_{d_1}	158	k_{d_2}	37.2	k _{d3}	34.0

2.1.5.3. 背景輝度特性に関する実験

図 2-11 は LabVecR ノイズを用いて, ノイズの方向および背景色グレーで輝度を変 化させた場合の色ノイズの見えを示す(実験条件(d),空間周波数 0.8[cpd]).図 2-11 の 回帰式は式(2.15)の形式で表せ,回帰係数は表 2-5 に示した.背景輝度が L*=25,50,75 と高くなるにつれ, K の値が 70%程度小さくなり,ノイズがより見えにくくなっている. また,瓢箪形状の回転角は背景輝度が L*=25 と 75 では高いものの方が反時計回りに 8 度程度回転していることがわかる.

より詳細な背景輝度依存色ノイズの視知覚特性を実験条件(e)によって得た結果を 図 2-12 に示す.図 2-12 は背景色グレーでの LabGauss ノイズ(標準偏差 _{σab}=10)によ る結果を示す.図 2-12 で実線は,

$$\sigma_{\rm LP}(L) = \sum_{i=0}^{4} \left(k_{\rm L_i} \cdot \log(L^*)^i \right)$$
(2.18)

と定義した回帰曲線であり,知覚ノイズレベルの輝度依存性を表す.回帰曲線(2.18)の 係数は表 2-6 に示す.L*=35 付近の色ノイズが最も知覚しやすいことを示している.

図 2-11 LabVecR ノイズの輝度および方向依存 背景色はグレーにおける,3つ輝度 レベル L*=75(●), L*=50(), L*=25(■)における知覚ノイズレベルの比較.

図 2-12 知覚ノイズレベルの輝度依存性

Color	K	D	С	相関係数
Gray (L*=25)	14.5	32.3	6.4	0.93
Gray (L*=50)	13.0	38.1	5.7	0.94
Gray (L*=75)	10.3	40.0	5.4	0.92

表 2-5 背景輝度に依存した知覚ノイズの回帰係数

表 2-6 輝度に依存した知覚ノイズの回帰係数

var.	value	var.	value	var.	value
k_{L_0}	128	k_{L_2}	86.7	k_{L_4}	1.28
k_{L_1}	-175	k_{L_3}	-17.7		

2.1.5.4. 空間周波数特性に関する実験

図 2-13,図 2-14 は 2 種類の空間周波数に依存した知覚ノイズレベルの主観評価 実験結果である(実験条件(f)).回帰曲線は式(2.15)と同様であり,回帰係数は表 2-7 に示す.表で K, D, Cの添え字は空間周波数を示す.図 2-13 は背景色グレーにおける 実測値と回帰曲線を,図 2-14 は各背景色に対する知覚ノイズの測定結果(回帰曲線) を示す.CSF 特性[45]上,知覚しやすい周波数 0.8[cpd]と知覚しにくい高周波 13[cpd] において,瓢箪形状で表されるノイズ知覚の違いは背景色の違いによる変化に比べて小 さいことがわかる.

Color	K _{13.0}	D _{13.0}	C _{13.0}	K _{0.8}	D _{0.8}	C _{0.8}
Gray	12.6	37.2	5.8	13.1	43.6	5.9
Red	14.3	4.7	3.7	12.9	12.5	4.1
Green	6.5	25.1	4.0	7.6	29.4	4.3
Blue	15.9	52.5	6.0	14.9	60.7	7.6
Purple	16.1	25.7	6.9	17.7	34.0	6.7
Yellow	11.5	9.4	3.9	12.6	18.9	3.8
Blue-violet	-	-	-	20.1	51.4	4.8

表 2-7 空間周波数と背景色に依存した回帰係数

図 2-13 LabVecR ノイズに対する知覚ノイズレベルの空間周波数依存性 ライトグ レーの および破線が高周波 13[cpd],ダークグレーの および実線が低周波 0.8[cpd]での 知覚ノイズレベル.

図 2-14 LabVecR ノイズに対する知覚ノイズレベルの空間周波数と背景色に対する 依存性 破線は高周波ノイズ(13 [cpd]),実線は低周波ノイズ(0.8[cpd])の回帰曲線.

図 2-15 は色ノイズに対する空間周波数に応じた知覚可能な最小の知覚ノイズレベ ル(JND)を示す(実験条件(g)). LabVecR ノイズモデルのグレー背景色における, $\theta = 0$ 度および 128 度の平均値である.128 度は色ノイズを知覚しやすい色方向であることか ら選択した.CSF 特性と同様に高周波のノイズほど見えにくいことがわかる.図 2-15 の実線は回帰曲線であり,

$$\sigma_{\rm VS} = -0.0117f^2 + 0.7591f + 0.3111 \tag{2.19}$$

とあらわせる.

図 2-15 空間周波数 f と知覚色ノイズの閾値 σ_{VS}

2.1.6.考察

2.1.6.1. 瓢箪形状と色差

色差弁別特性[28]は楕円形状であるのに対して,色ノイズの色方向に対する視知覚 特性は瓢箪形状となった.しかしながら,これらは同じ視覚特性から説明できる.楕円 を極座標系で表し,楕円の長半径,短半径(*a*,*b*),角度θとすると,半径_{*r*_e(θ)}は,

$$r_{\rm e}(\theta) = \frac{a \cdot b}{\sqrt{a^2 \cdot \sin^2(\theta) + b^2 \cos^2(\theta)}}$$
(2.20)

瓢箪形状の半径 $r_{\rm g}(\theta)$ は,

$$r_{\rm g}(\theta) = \sqrt{a^2 \cos^2(\theta) + b^2 \sin^2(\theta)} = \frac{a \cdot b}{r_{\rm e}(\theta)}$$
(2.21)

と表せ,楕円と瓢箪形状は反比例の関係にある.式(2.21)を用いて,実験結果(図 2-14) を色差楕円に変換すると,図 2-16のように表せる.ノイズの視知覚特性は色差の見え の大きさを示し,色弁別閾値は色差が見えなくなる限界を示す.ノイズの視知覚特性の 図(例えば図 2-7)では中心からの距離が大きいほどノイズを知覚しやすい一方,色差 弁別楕円は中心からの距離が大きいほど色差を知覚しにくい.また,色差弁別閾より大 きな等色差線は色差が大きくなるにつれて,弁別閾の楕円が概ね線形的に大きくなるこ とが知られている[61].このことから,標準偏差で示される一定の色差の色ノイズは, 等色差線に反比例することが考えられる.ノイズの視知覚特性から等色差視知覚特性を 推定すると,色ノイズ知覚の回帰式(2.13)より,楕円の長径(*a*)および楕円率(*b*/*a*)は $a = \sqrt{174.4 + 46.9} = 14.9$, a/b = 2.2となる.また,楕円の傾きは瓢箪と長径方向の傾き が 90 度異なり,125.9 度となる.CIEDE2000 においては Gray における等色差線が ab 平面上で楕円状となり,ノイズ知覚が瓢箪形状となることを説明できない.しかしなが ら,本研究の結果は MacAdam 楕円[62],[63]および Xu ら[61]より得られる弁別楕円 (a = 12.47, a/b = 1.84,傾き 114 度)と類似している.

図 2-16 知覚ノイズレベルから得られる色差楕円 破線は高周波ノイズ(13 [cpd]),実線は低周波ノイズ(0.8[cpd]).

2.1.6.2. 色ノイズの知覚感度特性

色の違いが区別できない範囲(JND)が色差弁別に相当するとし,ある程度の線形 性が成り立つとすれば,色の見えに相当する色差はノイズの見えと同様にJNDの逆数 で表せ,色ノイズの見えは色差に相当する値を表しているといえる.ここで線形性を仮 定し,背景色と輝度に依存した色ノイズの見え_{のCPN}を,

$$\sigma_{CPN}(L_c, a_c, b_c, dC, \theta) = cpnGain(L_c, a_c, b_c, \theta) \cdot dC$$

$$cpnGain(L_c, a_c, b_c, \theta) = \frac{\sigma_{CP}(a_c, b_c, \theta)}{\sigma_{VR}(\theta)} \frac{\sigma_{LP}(L_c)}{\sigma_{ab}}$$
(2.22)

と定義する.ここで, L_c , a_c , b_c は背景色を意味する.dC は背景色を中心としたノイズの 標準偏差であり, θ は図 2-1 で表した色相方向である. σ_{CP} は比較法による背景色 (L*=50)に依存した色ノイズの見えを表し,式(2.16)に相当する. σ_{VR} は σ_{CP} の実験 条件に依存し,ここでは式(2.4)で σ_V = 12を代入した色相方向依存値である.同様に σ_{LP} は比較法による背景輝度に依存した色ノイズの見えを表し,式(2.18)に相当する. σ_{ab} は σ_{LP} の実験条件に依存し,ここでは σ_{ab} = 10 である.

2.1.6.3. 反対色信号比較機構

瓢箪形状は ab 平面上で等距離となる標準偏差でノイズを生成した LabVecC では なく,矩形状の標準偏差で生成した LabVecR において得られた.LabVecR ノイズにお いて,反対色に相当する a*, b*軸に沿った2つのノイズ強度の最大値をとるとき,円形 状の LabVecC に相当するノイズを得られる.ノイズの知覚においては視覚系に2つの 反対色信号強度を比較する機能の存在を仮定することでノイズ知覚が LabVecR におい て瓢箪形状を得られたと考えることができる.

CIELAB 空間の a*, b*を独立な反対色とみなし ,これらの大きい方の信号が見えの 強さ σ_p に影響していると仮定する.すると LabVecC に対する見えの強さ σ_{pVC} は式

$$\sigma_{pVC}(\theta) = \max(\sigma_{VC} * \cos(\theta), \sigma_{VC} * \sin(\theta))$$
(2.23)

と表せる.これを式(2.22)の *dC* に代入し,図 2-6 の LabVecC ノイズに対する視知覚特性と比べると,図 2-17 のように表せる.ここで,決定係数 R² = 0.92 であり,上記の想定が成り立つことを示す.反対色空間での信号の強さを比較し,強い信号を伝達する機

構が脳内に備わっている可能性が考えられる.

図 2-17 LabVecC に対する色ノイズの見えと反対色比較 青色の実線は反対色を比較し最大値をとる機構を考慮した視知覚モデルによって得られる LabVecC ノイズに対する見えの予測. は LabVecC ノイズに対する見えを意味し,図 2-7 に示した結果に同じ.

2.1.6.4. 瓢箪形状と CSF 特性

空間周波数の高周波なノイズと低周波なノイズで瓢箪状の色方向依存性は低周波 に比べて高周波の方が平均7.4度程度,ab平面上で時計回りに回転していた.Poirson ら[64]によれば,高周波信号ほど色の波長に応じた眼球の色収差によってコントラスト が低下するため,空間周波数に応じて瓢箪型形状に変化が生じた可能性がある.また, JNDを用いた閾値はCSFに相当する変化が見られた.このことから,瓢箪形状の大き さはCSFに相当する変化が見られたはずである.しかしながら,コントロールノイズ の空間周波数をターゲットノイズと同様に変化させたため,実験条件(f)では瓢箪形状の 大きさの変化が観察されなかったと考えられる.これは,コントロールノイズの空間周 波数を固定にする条件で比較法による主観評価実験を行うことが難しかったためであ る.比較法は比較的小さな変化が測定できる一方,大きな変化について測定することが 難しい特徴を持つ.空間周波数に関する詳細は2.2節で議論する.

2.1.6.5. 視知覚モデルの評価

色ノイズの視知覚モデルによって得られた色差(式(2.9))を生成したノイズと比較 すると図 2-18,図 2-19のように表せる.それぞれ空間周波数が0.8[cpd],13[cpd]におけ る式(2.9)の視知覚モデルおよび実験結果の回帰曲線を表す.視知覚モデルおよび回帰曲 線との間の相関係数は,0.8[cpd]のとき0.74,13[cpd]のとき0.83 であった.視知覚モデ ルにおいて, 色収差によるノイズ信号の減衰が存在しないと仮定すると, 0.8[cpd]の回 帰曲線と比較した視知覚モデルは図 2-20 のように表せる.この場合の相関係数は 0.70 である.図 2-20 において,視知覚モデルは背景色グレーにおいて,特徴的な瓢箪形状 を反映できておらず,本モデルで仮定した色収差モデルが色ノイズ知覚に大きな影響を 与えていると考えられる.図 2-19 で視知覚モデルはくびれとなる部分で0に近い小さ な色差となり,実験結果が広がりを持っているのは,JNDの影響があると考えられる. 実験はノイズの大きなところから徐々にレベルを下げ , JND を測定したため ,知覚ノイ ズレベルは JND で下限値に達する.そのため,シミュレーションでは知覚ノイズレベ ルが 0 に近づき,実験では一定の大きさとなっていると考えられる.一方,0.8[cpd]の 結果を示す図 2-18 では,実験結果とやや異なっていた. 13[cpd]の条件と比べると, このことは青色の信号コントラストの低下が低周波においても大きいことを示し,錐体 分布において S 錐体の数が少ないことが影響している可能性が考えられる.図 2-18, 図 2-19 に示した様に,提案した視知覚モデルでは瓢箪形状を概ね説明できる.しかし ながら ,特に背景色 Purple 付近で ,実験結果との差がやや大きい . これは演繹的な視知 覚モデルの精度の問題と考えられ,同モデルの精度向上に関しては今後の課題である.

図 2-18 視知覚モデルによる色ノイズ知覚楕円(0.8[cpd]) 黒太線が視知覚モデルのシミュレーション結果.薄線は実験結果の回帰曲線.

図 2-19 視知覚モデルによる色ノイズ知覚楕円(13[cpd]) 黒太線が視知覚モデルのシミュレーション結果.薄線は実験結果の回帰曲線.

図 2-20 視知覚モデル(減衰なし)による色ノイズ知覚楕円(0.8[cpd]) 黒太線が色収差を考慮しない場合のシミュレーション結果.薄線は実験結果の回帰曲線.

2.1.6.6. 均等色ノイズ

これまでに述べた色ノイズの見えを用いると,均等に色ノイズが見える画像を生成 することができる.色ノイズの見えに関する式(2.16),式(2.18)を用いて,知覚ノイズレ ベルが任意の色で同じ値σ_{CPN}となるノイズの標準偏差σ_{cn}は,式(2.22)より,

$$\sigma_{cn}(\theta, L, a, b) = \frac{\sigma_{CPN}}{cpnGain}$$
(2.24)

と表せる.

図 2-21 は均等色ノイズを加えた画像 (JIS XYZ / SCID, S6) である. LabGauss ノ イズと比べると,均等色ノイズは知覚的に多くの色で同レベルのノイズを生成している ことがわかる.均等色ノイズに比べて LabGauss ノイズは青色パッチでノイズが見やす いが,緑色では知覚しにくいことがわかる.

図 2-21 均等色ノイズを加えた画像(左,中央), LabGauss ノイズを加えた画像(右), 中央,右の画像は左の画像の赤枠部分の拡大画像である.

2.1.6.7. 被験者数について

一般に画質に関する主観評価実験は10名以上で行うこととされるが,本研究では 主観評価実験に依存するが,最小では1名で実施した場合もある.被験者数が少ない場 合,それが母集団に対して特殊である可能性が考えられ,結果から一般化することが難 しい.他の研究例を見ると,画質のような視覚の高次な特性を調べる場合,多くの被験 者で結果を得ていることが多く[2],[48],[65],視覚特性のような視覚の比較的低次の特 性を測定する場合は比較的少ない被験者で結果を得ている例が多い[20],[45],[63].これ は実験のしやすさにも依るが,実験結果にどれだけばらつきが起こりうるかにも依存す る.実験結果のばらつきが大きい場合,被験者数あるいは一人の被験者であっても実験 回数を増やさなければ有用な結果が得られないと考えられる.一方,色の弁別特性のよ うに比較的一人の被験者でも比較的ばらつきが少なく,視覚の特徴が得られる実験の場 合,一人の被験者で色の弁別特性を得たとしてもその視知覚モデルを考慮するうえでは 有用な結果が得られる.本研究におけるノイズの見えに関していえば,図 2-7 のように 一人の被験者であっても,6人の被験者による結果(図 2-8)と同様に特徴的な視覚特 性を得ることができることがわかる.被験者毎に主観評価実験に対する関心が異なるこ とから,被験者数を増やすだけでは視覚特性の特徴が失われてしまう可能性もありうる. 基本的には十分な数のサンプルが必要であるが,人数を増やすことで実施するか,経験 ある数少ない被験者で行うかはその実験の目的と方法に依存する.本研究ではノイズの 見えの特徴を得ること,その特徴を説明する視知覚モデルを示すことを目指している. ここではJNDに近い特性について議論することから,個人性はむしろ眼球の特徴や, 生理学的な違いが大きな要因となると考えられる.その点に関して言えば,少ない被験 者であっても十分な数の主観評価実験を行い,視知覚の特徴を得ること,その被験者が 母集団から大きく離れた視覚特性を持っていないこと(例えば,6人の被験者による結 果(図 2-8)の中で視覚的特徴が母集団から大きく外れていない被験者による実験であ ること(図 2-7))が確認できれば,少ない被験者においても有用な結論が得られると 考えられる.

2.1.7.まとめ

本節では演繹的および帰納的な色ノイズの視知覚モデルを構築した.また,色ノイズの演繹的な視知覚モデルを主観評価実験によって得られた色ノイズの視知覚特性を 用いて評価した.演繹的な視知覚モデルによる色ノイズ知覚の推測および実験結果に基 づく帰納的な色ノイズの視知覚モデルはともに色方向を持ったベクトル色ノイズに対 して瓢箪形状となった.色相方向依存性は空間周波数の影響をほとんど受けていなかっ た.背景色依存性,空間周波数依存性について,同様の瓢箪形状の特徴を持つ結果を得 られた.色ノイズの色相方向依存性が瓢箪形状は色差の逆数を考慮することで説明でき る.このことは色差が,軸上色収差の影響や低いS錐体密度の影響を受けていることを 示唆している.

また,演繹的な視知覚モデルの構築で用いた眼球の色収差が色ノイズの知覚に影響していると考えられる.視知覚モデルにおいては軸上色収差を考慮しており,特に青色のコントラスト低下が大きい.しかしながら,低周波においても青色の低コントラストを仮定しなければ,主観評価実験結果を説明できない.このことはS錐体の網膜内におけ

る密度が低いことが関連している可能性がある.

また,視知覚モデルを検証するため,均等色ノイズを提案した.色ノイズの視知覚 モデルは画像処理[33],画質評価指標,画像設計への応用が可能である.空間周波数と 背景色の関係について次節で議論する.

2.2. ノイズ感度特性

2.2.1.はじめに

2.1 節で色ノイズの知覚特性に関し,ノイズの知覚レベルの色相方向,背景色依存 性について議論した.本節では主に空間周波数と背景色に依存した色ノイズの知覚特性 について議論する.

空間周波数に依存した,人のコントラストに関する知覚特性はコントラスト感度関数(CSF)として表される.コントラスト感度はコントラスト弁別閾値の逆数で定義される[66].ノイズに対する感度特性はCSFと類似した特性を示すことが予想できるが,主に規則的な空間的に1次元の矩形波,正弦波を用いて測定されたコントラスト感度特性が空間的にランダムに変化するノイズで適用できるとは限らない.そこで,ノイズに対する人の感度特性についてノイズの弁別閾値の逆数で定義し,ノイズの弁別閾値を二者択一型の主観評価実験(2AFC)によって求めた.

また,輝度ノイズと色ノイズの背景色による知覚特性について議論する.色と輝度 の視覚情報処理経路が異なるとされていることから,輝度ノイズと色ノイズでは異なる 特性を示すと考えられる.CSF の場合,主に反対色を用いた2 色での実験が多い[45], [66]..色に対する CSF はローパス的な特性が得られ,輝度に対する CSF はバンドパス 特性が得られることが知られている[45].このことから,輝度ノイズに対してはバンド パス特性,色ノイズに対してはローパス特性が得られると予想できる.本研究では CIELAB 色空間上に中心となる色(背景色)を決め,この色を中心にのa*b*色平面上に ガウス上に広がる色ノイズ,L*方向に変化する輝度ノイズを生成し,この知覚特性を主 観評価実験によって調べた.本章では知覚的に均等色空間とされ,画像処理において汎 用的な CIELAB 色空間を用いる.

2.2.2.定義

本節では表 2-1 に示す 7 つの背景色に対して,輝度ノイズ,色ノイズを加算し,ノ イズの見えの強さに関する主観評価実験を行う. 2.2.2.1. ノイズモデル

本節では色と輝度の二つのノイズモデルを扱う .色ノイズは色成分にのみガウスノ イズを加えた,

$$(L_n, a_n, b_n)_{\text{Color}} = (L_c, a_c + n_a, b_c + n_b)$$
(2.25)

で表せる等輝度色ノイズであり、これは 2.1.2.1 節で定義した LabGaussNoise と同じである. 輝度ノイズは、

$$(L_n, a_n, b_n)_{\text{Lum}} = (L_c + n_L, a_c, b_c)$$
(2.26)

のように輝度成分のみにガウスノイズn_Lを加算したノイズである.

空間周波数の異なるノイズはノイズ画像をリサイズ(拡大)することによって生成 する.本節では2種類のリサイズ手法を用いる.一つはニアレストネイバー(NN),もう 一方は線形補間(IB)である.線形補間(IB)による2倍リサイズ画像img1_{IB}は,リサイズ 前のノイズ画像imgから,

$$\operatorname{img1}_{IB}(\mathbf{x}, \mathbf{y}) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} \operatorname{lpf}_{IB}(\mathbf{i}, \mathbf{j}) * \operatorname{img}(\mathbf{x}/2 + \mathbf{i}, \mathbf{y}/2 + \mathbf{j})$$
(2.27)

$$lpf_{IB}(\mathbf{i},\mathbf{j}) = \begin{pmatrix} 0.0625 & 0.125 & 0.0625 \\ 0.125 & 0.25 & 0.125 \\ 0.0625 & 0.125 & 0.0625 \end{pmatrix}$$
(2.28)

によって算出できる.lpf_{IB}は補間に使用するローパスフィルターである.線形補間(IB) は表 2-8 に示すように拡大率2倍で繰り返しバイリニア画像を生成することで2のN 乗倍にリサイズする.これは、

$$imgN_{IB}(x,y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} lpf_{IB}(i,j) * img\{N-1\}_{IB}(x/2+i,y/2+j)$$
(2.29)

と表せ、ここで $img\{N-1\}_{IB}$ は 2^{N-1} 倍に拡大した画像を意味する。

ニアレストネイバー(NN)によるリサイズ画像は,同様に

$$\operatorname{imgN}_{NN}(\mathbf{x}, \mathbf{y}) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} \operatorname{lpf}_{NN}(\mathbf{i}, \mathbf{j}) * \operatorname{img}(\mathbf{x} * 2^{-N} + \mathbf{i}, \mathbf{y} * 2^{-N} + \mathbf{j})$$
(2.30)

とした際、lpf_{NN}が,

$$lpf_{NN}(\mathbf{i},\mathbf{j}) = \begin{pmatrix} 0 & 0. & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}$$
(2.31)

として算出する.

リサイズによってノイズは主に表 2-8 に示す空間周波数を有する.リサイズ方式に よって主な空間周波数は変わらないものの,ノイズが有するスペクトル分布が異なる. 図 2-22 にリサイズ方式 IB による,図 2-23 にリサイズ方式 NN によるノイズのスペク トル分布を示す.これらのスペクトル分布はナイキスト周波数でノイズが極端に白黒に 振れるような極端な条件で生成したノイズの空間周波数成分を表す.図 2-22 と図 2-23 を比較するとリサイズ方式 NN はピーク周波数以外の成分が大きいことがわかる.実際 にはガウス状にノイズを生成するため,より低周波側の成分が多い.実際に生成したノ イズ画像(0.8[cpd],輝度ノイズ)の例を図 2-24,図 2-25 に示す.図 2-24 は 1600%に 拡大したノイズ画像であり,リサイズ方式によるノイズの見えの違いを示す.図 2-25 は図 2-24 のノイズ画像をフーリエ変換した際のパワー成分である.図 2-25 からわか るようにノイズ成分はリサイズ方式 IB では折り返しが見られないが,リサイズ方式 NN では周期的な空間周波数成分が多く含まれていることがわかる.

リサイズ率[%]	空間周波数[cpd]	
100	12.0	Bilinear
100	13.0	R esize
200	6.5	Bilinear
200	0.5	R esize
400	2.2	Bilinear
400	5.2	R esize
800	1.6	Bilinear
800	1.0	S Resize
1600	0.9	Bilinear
1600	0.8	S Resize
3200	0.4	Bilinear
	0.4	R esize
6400	0.2] 🖛

表 2-8 ノイズのリサイズ率と空間周波数の関係

図 2-22 リサイズ方式 IB による加算ノイズの周波数成分. 図内の各プロットはリサイズ率毎のノイズのパワースペクトルを示す.横軸は空間周波数 fsであり,縦軸は FFT 結果のパワー成分を示す.

図 2-23 リサイズ方式 NN による加算ノイズの周波数成分. 図内の各プロットはリサイズ率毎のノイズのパワースペクトルを示す.横軸は空間周波数 f_sであり,縦軸は FFT 結果のパワー成分を示す.

図 2-24 リサイズしたノイズ画像, 左: IB 方式, 右: NN 方式.

図 2-25 リサイズノイズ画像の FFT 結果,左:IB 方式,右:NN 方式.

2.2.2.2. ノイズ感度特性と閾値

ノイズに対する視知覚感度(ノイズ感度 s_n)は知覚閾値(t_n)の逆数で定義される.

$$s_n = t_n^{-1}$$
 (2.32)

ノイズ感度が下がるとき、ノイズは見え難いことを意味する.知覚されるノイズの閾値、 ノイズ知覚閾値はコントラストの知覚における閾値[66]に倣い、ノイズが見える確率が 50%となるノイズの標準偏差とする.知覚閾値は CIELAB 色空間を用いて表現する.ノ イズ感度特性がある空間周波数で2の場合、ノイズの知覚閾値が0.5、すなわちノイズ の標準偏差が CIELAB 色空間で0.5の時、50%の確率でノイズを知覚できることを意味 する.輝度ノイズ感度はノイズが背景色を中心とした輝度方向に変動するノイズの標準 偏差の逆数と定義する.色ノイズ感度は背景色を中心とした彩度方向に変動するノイズ の標準偏差の逆数と定義する.

2.2.3. ノイズ感度特性の測定

空間周波数に依存したノイズの見え特性を得るため,ノイズの見えに関する閾値を 測定する主観評価実験を行う.主観評価実験は二者択一(2AFC)法を用いて実施する. 被験者は呈示されたノイズが見えるか見えないかを回答する.被験者が回答するまでの 時間は1秒以上3秒以内とする.実験はノイズの標準偏差,背景色(ノイズの平均,表 2-1記載の7色),空間解像度,LCDモニター輝度を変化させて行う.空間解像度は7 通りであり,高周波(13[cpd])のノイズ画像を元にノイズ画像を拡大することで空間解像 度を変化させる.ノイズ画像の拡大の際にはNN,IBの2通りの拡大手法を用いる.こ の二種に関してはコントラスト感度特性においても同様にsin波と矩形波に対する視知 覚特性が研究されており[67],これに倣った.被験者は8名であり,表 2-10に示すよ うに被験者数は条件によって異なる.実験条件は表 2-9に示す 392通りである.

実験は図 2-26 に示すようなダイアログウインドウ上で行い,被験者はモニターか ら 40cm 離れたところから観察し,中央のパッチ部分にノイズが見えたかどうかを回答 する.パッチ部分は左右に分かれ,どちらか一方のみにノイズを表示する.表示するパ ッチのサイズはノイズを表示する領域としない領域をあわせて,30 x 15 cm(視野角: 74°x41°)である,左右どちらにノイズが表示されるかはランダムに変化する.ノイ ズの標準偏差は被験者の回答を受けて調整する.見える条件と見えない条件が同程度に なるようにソフトウエアで次に表示するノイズの標準偏差を決定する.実験は1セット でノイズモデル,空間周波数,LCD 輝度,リサイズ方法を固定した条件で,背景色を 変化させて実施する.表示モニターにはEIZO CG-241W (画素ピッチ 0.27[mm/pix])を用 い,sRGB条件(80cd/m²,6500K)にあわせて調整する.また,LCD 輝度を変更する際は輝 度レベルのみ 200cd/m²に変更して調整する.

	Туре	Num	Value
(a)	ノイズモデル	2	輝度ノイズ , 色ノイズ(LabGauss)
(b)	空間周波数	7	13, 6.5, 3.2, 1.6, 0.81, 0.40, 0.20 [cpd]
(c)	背景色	7	7 色の詳細は表 2-1 参照
(d)	LCD 輝度	2	80 および 200 [cd/m ²]
(e)	リサイズ方法 s	2	線形補間 (IB) , 最近傍補間(NN)
	全実験条件数	392	$= 2_{(a)*}7_{(b)*}7_{(c)*}2_{(d)}*2_{(e)}$

表 2-9 実験条件数

図 2-26 主観評価実験に用いたダイアログウインドウ

2.2.3.1. ノイズ知覚閾値の測定

2AFC による実験結果はある条件においてノイズが見えるか見えないかで示される. ノイズの標準偏差を変化させ,同じノイズの標準偏差についても複数回,測定する.見 える,見えないを1,0 で表現すると,ある空間周波数においてノイズが見える確率,ノ イズ知覚確率(*p_{vis}*)が得られる.図 2-27 に示すように,この確率が 50%となる空間 周波数をノイズ知覚閾値と定義する.本研究では,実験結果に対してシグモイド関数を 回帰式とすることで,ノイズ知覚閾値を決定する.ノイズ知覚確率(*p_{vis}*)のシグモイ ド関数は,

$$p_{vis} = \frac{1}{1 + \exp\left(-c \cdot (\sigma_n - t_n)\right)} \tag{2.33}$$

と表せる.ここで t_n がノイズ知覚閾値, σ_n はノイズの標準偏差,cは定数である. t_n および cを変数として実験結果から回帰曲線を決定する.

これをすべての実験条件で実施し,各条件でのノイズ知覚閾値を決定する.図 2-28 は被験者 MS に対する輝度ノイズに対するノイズ知覚閾値測定結果である.背景色(7色) と空間周波数(7種)を変更してテストした49種の結果が示されており,この49種を 1セットとして実験を行った.このような測定を色ノイズに対して1セット,およびLCD 輝度を変化させた 200cd/m2 での実験(輝度ノイズ,色ノイズの2セット),リサイズ方 式を変更した実験(4セット),計8セット(392通り)行った.被験者に応じて実施した 実験条件の数(実験セット数)が異なる.

実験条件	LCD 輝度	リサイズ 方式	ノイズ モデル	空間周波 数 <i>f</i> 。 [cpd]	背景色	被験者
1		最近傍補	輝度ノイズ		6	MS RS MN YK
2	80	間(NN)	間(NN) 色ノイズ 名.5 Gray Red 6.5 Green Blue 1.6 Purple 0.81 Yellow	Gray Red Green Blue Purple Yellow	MA YU MT YT	
3		線形補間	輝度ノイズ	0.2	Blue-violet (表 2-1)	MS
4		(IB)	色ノイズ		-	RS
5		最近傍補 間(NN)	輝度ノイズ 色ノイズ			
7	200	線形補間 (IB)	輝度ノイズ 色ノイズ			MS

表 2-10 実験条件と被験者数

図 2-28 ノイズ知覚閾値の測定(被験者 MS, 輝度ノイズ, リサイズ方式 NN, モニター輝度 80cd/m²の場合) 各背景色,ノイズの空間周波数 fs における主観評価実験結果.横軸はノイズの標準偏差 ",縦軸はノイズ知覚確率(p_{vis})を表す.

図 2-29 ノイズ知覚閾値の測定(被験者 MS, 色ノイズ, リサイズ方式 NN, モニター輝度 80cd/m²の場合) 各背景色,ノイズの空間周波数 f_sにおける主観評価実験結果.横軸はノイズの標準偏差 ",縦軸はノイズ知覚確率(p_{vis})を表す.

2.2.3.2. 輝度ノイズと色ノイズのノイズ感度特性

ノイズ感度特性は式(2.32)で示すように測定したノイズ知覚閾値の逆数で表す.輝 度ノイズに対する MS, RS のノイズ感度特性を図 2-30,図 2-31 に示す.ノイズ感度特 性は背景色がグレー,黄色のとき,1.6~6.5 [cpd]でピークを持つバンドパスの特徴を示 した.この特性は輝度に対する CSF 特性と矛盾しない.他の背景色では弱いバンドパ ス特性を示した.ノイズ感度特性(s_n)の回帰式には,

 $s_n = 10^{\wedge} \left(-(a_1 \cdot (\log_{10}(f_s))^2 + a_2 \cdot \log_{10}(f_s) + a_3) \right)$ (2.34) を用いた.ここで f_s は空間周波数であり, a_1, a_2 および a_3 は調整係数である.

図 2-30 背景色に依存した輝度ノイズのノイズ感度特性. 横軸はノイズの空間周波数 fs, 縦軸はノイズ感度 Suを表す. 各点と実線は各背景色に応じ

た測定値と式(2.34)による回帰式を示す.(被験者 MS, リサイズ方式 IB, モニター輝度 80cd/m²の場合).

図 2-31 被験者 RS の背景色に依存した輝度ノイズのノイズ感度特性. 図の表記は図 2-30 と同じ.(被験者 RS、リサイズ方式 IB、モニター輝度 80cd/m²の場合)

図 2-32,図 2-33 は,それぞれ被験者 MS,RS に対する輝度ノイズ(リサイズ方式 NN)のノイズ感度特性を示す.リサイズ方式 NN の場合,リサイズ方式 IB よりも感度 が5 倍程度高い.矩形波をフーリエ変換し,基本波と比べると振幅で4/(1.27)倍大 きくなるが,これよりも大きな違いが出ている.これは sin 波の CSF 特性と矩形波の CSF 特性の関係に似ている[67].また,リサイズ方式 NN はもっとも感度の高い空間周 波数が約 1[cpd]でリサイズ方式 IB の場合よりも低い.

図 2-34 は モニター輝度 200 [cd/m²], 被験者 MS に対する輝度ノイズのノイズ感度 特性を示す.200[cd/m²]でのノイズ感度特性は 80[cd/m²] の場合よりも高い.このこと は CSF 特性の結果と矛盾しない[66].

59

図 2-32 輝度ノイズ感度特性 (被験者 MS, リサイズ方式 NN, モニター輝度 80[cd/m²])

図 2-33 輝度ノイズ感度特性 (被験者 RS, リサイズ方式 NN, モニター輝度 80[cd/m²])

図 2-34 輝度ノイズ感度特性 (被験者 MS, リサイズ方式 IB, モニター輝度 200[cd/m²])

図 2-35, 図 2-36 , 図 2-37 は色ノイズに対する感度特性を示す . 図 2-35, 図 2-36 は被験者 MS および RS に対する, IB 方式でリサイズした際の色ノイズ感度特性 である . る . 図 2-37 はリサイズ方式 NN , 被験者 MS に対する , 色ノイズに対する感 度特性を示す . リサイズ方式 NN はローパス特性を示すが , リサイズ方式 IB では空間 周波数に対する感度特性の変化が緩やかであることがわかる .

図 2-35 色ノイズ感度特性 (被験者 MS, リサイズ方式 IB, モニター輝度 80[cd/m²])

図 2-36 色ノイズ感度特性 (被験者 RS, リサイズ方式 IB, モニター輝度 80[cd/m²])

図 2-37 色ノイズ感度特性 (被験者 MS, リサイズ方式 NN, モニター輝度 80[cd/m²])

2.2.4.考察

2.2.4.1. ノイズ感度特性

図 2-30 と図 2-35 を比較することで,被験者 MS に対する輝度ノイズと色ノイズの 知覚感度比を求めると図 2-38 のように表せる.同様に被験者 RS に対しては図 2-39 の ように表せる.空間周波数と背景色に依存して 1~100 倍程度,輝度ノイズが色ノイズよ りも知覚しやすいことがわかる.この輝度と色の感度差は CIELAB 色空間の特徴を表 す.輝度ノイズの大きさは CIELAB 色空間における輝度方向の変化を示し,色ノイズの 大きさは色相,彩度方向の変化を示す. 2.1.6.1 節で述べたようにノイズ感度特性は色 差の逆数と考えることができると考えられる.背景色がグレーの場合,輝度ノイズと色 ノイズの感度比はほぼ1倍であったことから,背景色がグレーの場合は CIELAB で表す 色差は輝度差と彩度差から表現できるが,他の背景色や空間周波数では単純に色差を用 いてノイズの感度特性を調べることはできないことを意味する.

図 2-40 はリサイズ方式 NN での輝度ノイズに対する被験者(MS, RS)間比較である. 横軸に被験者 MS のノイズ感度を縦軸は被験者 RS のノイズ感度を示す.被験者 MS の 輝度ノイズ感度(*s*_{*lnMS*})と被験者 RS の輝度ノイズ感度(*s*_{*lnRS*})を比較すると図の黒点のよ うに表せる.各点は空間周波数と背景色毎の輝度ノイズ感度に対応する.図 2-40 の 黒線で表せる回帰式は,

$$\log(s_{lnRS}) = 2.0 \log(s_{lnMS}) - 0.31 \tag{2.35}$$

である.この回帰式から,被験者 RS の輝度ノイズの知覚感度は被験者 MS のおよそべき乗であることがわかる.一方,色ノイズの知覚感度を被験者 RS (*s_{cnRS}*), MS (*s_{cnMS}*)で比較すると,図 2-40の赤点のように表せ,赤線で表す回帰式は,

$$\log(s_{cnRS}) = 0.84 \log(s_{cnMS}) - 0.14$$
(2.36)

である.色ノイズに関しては輝度ノイズに比べて個人差が少ないと考えられる.

図 2-38 輝度ノイズの色ノイズに対する知覚感度比. 横軸は空間周波数,縦軸は輝度ノイズ知覚感度の色ノイズ知覚感度に対する比を表す.(被 験者 MS,リサイズ方式 IB,モニター輝度 80[cd/m²])

図 2-39 輝度ノイズの色ノイズに対する知覚感度比.

横軸は空間周波数,縦軸は輝度ノイズ知覚感度の色ノイズ知覚感度に対する比を表す.(被 験者 RS,リサイズ方式 IB,モニター輝度 80[cd/m²])

図 2-40 被験者 RS と MS の間の個人性の比較.

モニター輝度 80[cd/m²]における結果を示す.横軸が被験者 MS のノイズ感度,縦軸は被験 者 RS のノイズ感度を示す.黒点,黒線は輝度ノイズ,赤点,赤線は色ノイズである. 及 び 、実線はリサイズ方式が NN の場合の結果, 及び 、点線はリサイズ方式が IB によ る結果を示す.

図 2-41 に全被験者によるノイズ感度特性の違いを示す.背景色に関して平均した 輝度ノイズと色ノイズの空間解像度特性を表す.被験者によって大きくノイズ感度が異 なることがわかる.特に輝度ノイズは被験者に応じてノイズ感度差が大きかった.輝度 ノイズの被験者に依存したばらつきは165%(平均7.7,標準偏差12.8)あり,色ノイズ に対するばらつき64%(平均0.28,標準偏差0.18)に比べて大きい.輝度ノイズの被験 者依存性は視力に依存する可能性が考えられる.ノイズ感度が高い被験者(MA, MN)は 視力が2.0であり,他(MS,RS,YU,MT,YT)は0.8 程度であった.色ノイズのばらつき が少ないのは光学系以外の視覚系の情報処理において空間的なローパス特性が働いて いるためと考えられる.

図 2-41 ノイズ感度の被験者依存性 (13 [cpd], リサイズ方式 NN, 背景色間平均). 横軸は被験者,縦軸は対数で表記した輝度ノイズ感度,色ノイズ感度を意味する.

平均的な輝度ノイズと色ノイズの知覚特性をまとめることは,ノイズの視知覚特性 を応用する上で有用である.7つの背景色に対して平均した輝度ノイズ,色ノイズの視 知覚特性は,のように表せる.図はリサイズ方式 IB における被験者 MS, RS による結 果を平均したものである.回帰式は式(2.34)であり,輝度ノイズ感度特性*s_{nL}*および色ノ イズ感度特性*s_{nc}*の回帰係数を表 2-11 に示す.ノイズ感度特性はバンドパス特性を示し, バンドパス特性の最大感度となる空間周波数*f_{so}*は,式(2.34)より,

$$f_{s0} = 10^{-\frac{a_2}{2 \cdot a_1}} \tag{2.37}$$

であらわせる.表 2-11 に最大感度空間周波数 *f*_{s0}を併記した.輝度ノイズと色ノイズは 2~3 cpd で最大感度となることがわかる.

	a_1	<i>a</i> ₂	<i>a</i> ₃	<i>f</i> _{<i>s</i>0} [cpd]
輝度ノイズ感度特性 $s_{nL}(f_s)$	0.731	-0.755	-0.297	3.29
色ノイズ感度特性 $s_{nC}(f_s)$	0.175	-0.117	0.653	2.16

表 2-11 ノイズ感度特性の回帰係数 (式(2.34))と最大感度空間周波数 f_{s0}

図 2-42 輝度ノイズおよび色ノイズに対するノイズ感度特性(リサイズ方式 IB,背景色間 平均,被験者 MS,RS 平均)

2.2.4.2. 色相方向依存性との比較

空間周波数に依存した色ノイズのノイズ感度特性(図 2-35,図 2-36,図 2-37)は背 景色に依存して,見えやすい背景色と見えにくい背景色がある.この見えやすい背景色 と見えにくい背景色の順序は,2.1 節で行った色ノイズの色相方向依存性に関する主観 評価実験結果と矛盾しないものであった.最も色ノイズが知覚しやすい背景色は Blue-violet であり,最も見えにくいものは Green であった.

2.1 節では比較法によって測定したが,本節ではJND に関する 2AFC 法によって実 験を行った.比較法によるノイズ感度特性の評価は主観的に見えの程度が同じになるよ うにノイズを調整することで行う.そのため,比較的細かな違いを高精度に効率よく測 定できる一方,輝度ノイズと色ノイズ,空間周波数の異なるノイズ同士のように,調整 しても主観的に見えの違いが大きいノイズを比較することは難しい.一方,本節で用い た 2AFC 法は,見えるか見えないかを判別することで評価値を得るため,適用可能な実 験条件が多い一方,どこが見えてどこが見えないのか境界がはっきりしないこともあり, 評価を安定した結果を得るまでに比較的時間を要する.

2.2.4.3. 視覚系モデル

背景色がグレーと黄色における,輝度ノイズの感度特性はバンドパス特性を示し, 色ノイズの感度特性はローパス特性を示した.これは CSF 特性[45]と矛盾しないもので ある.バンドパス特性は視神経細胞による側抑制によって説明でき[66],輝度ノイズの バンドパス特性は多段階モデル[17]による二重拮抗細胞の働きで説明することができ る.また,色ノイズのローパス特性についても反対色信号が中心周辺拮抗タイプでない 色信号用の細胞を介して伝達されると考えられる.多段階モデルは色と輝度の CSF 特 性をうまく表しているが,輝度ノイズで特定の背景色でのみバンドパス特性を示したこ とについては直接説明することができない.輝度に関しても背景色依存性があることが 考えられ,2.1 節で用いた比較実験を,輝度ノイズを用いて行うことで確認できると考 えられるが,これは今後の課題としたい.

2.2.4.4. ノイズの知覚特性の定式化

ノイズの知覚特性を定式化することは,ノイズ知覚特性を利用した応用において有用である.輝度ノイズが知覚されない場合は色ノイズが知覚され,色ノイズが知覚されないときは輝度ノイズが知覚されると考え,知覚ノイズレベル(P_N)を,

$$P_N = f_{CL}(\sigma_{CPNf}, \sigma_{LPNf})$$
(2.38)

と定義する.ここでσ_{CPNf}は色ノイズに対する知覚レベルであり,σ_{LPNf}は輝度ノイズに 対する知覚レベルである.f_{CL}は輝度ノイズと色ノイズの知覚レベルに依存した関数で あり,たとえば,輝度ノイズと色ノイズの強度に合わせて

$$f_{CL}(\mathbf{c},l) = \frac{c-l}{1 + \exp\left(-\alpha * \frac{c}{c+l}\right)} + l$$
(2.39)

のようにシグモイド関数で表現できる.強いノイズがより強く知覚される.ここで は 調整パラメータである.また,

$$f_{CL}(\mathbf{c}, l) = \max(c, l) \tag{2.40}$$

と近似してもよい.輝度ノイズと色ノイズが同時に知覚される場合の詳細な表現については今後の課題である.式(2.38)でσ_{CPNf}は色相方向に変動する色ノイズの見えσ_{CPN}に 関する式(2.22)に,式(2.34)と表 2-11 で表した空間周波数に関する色ノイズ感度特性 $s_{nc}(f_s)$ を含めたものであり,

$$\sigma_{CPNf} = \sigma_{CPN}(L_c, a_c, b_c, dC, \theta) \cdot s_{nC}(f_s)$$

$$= \frac{\sigma_{CP}(a_c, b_c, \theta)}{\sigma_{VR}(\theta)} \frac{\sigma_{LP}(L_c)}{\sigma_{ab}} s_{nC}(f_s) \cdot dC$$
(2.41)

と表す.輝度ノイズに対して知覚ノイズレベルのLPNfは,

$$\sigma_{LPNf} = \sigma_{LPN}(L_c, a_c, b_c, dL, f_s) \cdot s_{nL}(f_s)$$
(2.42)

とする.ここで σ_{LPN} は背景色に依存した輝度ノイズの見えであり,輝度ノイズの場合は 空間周波数に依存して背景色依存性が大きく変化する.また,輝度ノイズ知覚特性は個 人性が大きく,定義が難しい.用途に応じて $\sigma_{LPN} = dL$ と近似し,背景色依存性を無視 し,空間周波数のみに依存した平均的な値を用いることも有用と考えられる.式(2.38) のノイズの知覚レベル(P_N)は,

$$P_N = \max\left(\frac{\sigma_{CP}(a_c, b_c, \theta)}{\sigma_{VR}(\theta)} \frac{\sigma_{LP}(L_c)}{\sigma_{ab}} s_{nC}(f_s) \cdot dC, \quad s_{nL}(f_s) \cdot dL\right)$$
(2.43)

と表せる.

2.2.5.まとめ

この節ではコントラスト感度特性に倣い,ノイズ感度特性を定義し,ノイズの見え に関する空間周波数特性について議論した.ノイズ感度特性を説明する視知覚モデルと して多段階モデルがあげられる.しかしながら,多段階モデルは色と輝度の CSF 特性 をうまく表しているが,輝度ノイズで特定の背景色でのみバンドパス特性を示したこと については直接説明することができない.そのため,多段階モデルを元に何らかの拡張 が必要と考えられる.

輝度ノイズは特定の背景色(グレーと黄色)で強いバンドパス特性を示し,他の背 景色の輝度ノイズはローパス特性を示した.色ノイズに関してはどの背景色についても ローパス特性を示した.また,輝度ノイズは色ノイズに比べて,背景色,空間解像度に 依存して1~100倍知覚しやすいことがわかった.このことは画像処理において有用 な知見であると考えられる.また,個人性に関して輝度ノイズは非常に個人差が大きか った.これは被験者の視力に依存すると考えられる.一方,色ノイズの個人性が小さか ったのは視覚系の情報処理において空間的なローパス特性が働いているためと考えら れる. 輝度に関しても背景色依存性についての詳細と,詳細な視知覚モデルの構築,輝度 ノイズと色ノイズが同時に知覚される場合のより詳細な知覚特性については今後の課 題である.

3. ノイズの見えを利用した応用

3.1. デジタルカメラのノイズと知覚

3.1.1.はじめに

・ 背景

近年,デジタルカメラの高画素化・高感度化が進むにつれ,高ノイズ画像を扱う機 会が増加しており,ノイズ軽減画像処理が重要となっている.ノイズ軽減処理としては 単純なローパスフィルターを用いることで SNR を改善できるが,先鋭度が低下し,ぼ やけた画像になってしまう.このため,ノイズ軽減処理では SNR を改善しつつ先鋭度 を保つ必要があり,各種方式が検討されている[38],[39],[40],[42],[68],[69].特にこれ らのノイズ軽減処理方式では,人が見るうえで重要な情報(テクスチャ,色)を保存し, ノイズのみを選択的に軽減する方法が検討されている.適応的な画像処理を行う場合は そのノイズが視覚的にどの程度よく見えるノイズなのかを与える指標が重要になる.一 方,デジタルカメラ画像の画質評価においては,従来,MTF (Modulation Transfer Function) や RMSE (Root Mean Square Error)が用いられてきたが,画像処理が発達するにつれてこ れらの単純な画質評価指標で画質を測ることが難しく,人の視知覚特性を考慮した画質 評価指標が重要となっている.例えば RMSE をカラー画像に適用する場合,どの色空 間(sRGB や XYZ, CIELab, CIELuv, YCbCr)で測定するかによって大きく結果は異なって しまう.ノイズの見えを反映した空間で測定することで,適切なノイズの評価が行うこ とができる.

デジタルカメラにおいて, ノイズの取り扱いは重要な要素であるが, その見えにつ いてはあまりよく知られていない.我々は輝度ノイズと色ノイズが見えにどの程度影響 しているのか定量化することで,デジタルカメラの画像処理システムの設計や画質評価 に活用することを目指している.そこで本章ではカメラノイズの見えについて主観評価 実験を行い, ノイズの輝度成分, 色成分の見えへの影響を明らかにする.

・ 色ノイズの知覚

これまで視覚的なノイズの見えについては ISO15739 [43]において, Visual Noise として定義されている. ISO15739の Visual Noise ではコントラスト感度特性(CSF)を考慮

したノイズの見えを表している.しかしながら CSF は特定のテクスチャについて測定 した結果であり,色差は主に色票などの低空間周波数で定義されたものである.輝度ノ イズと色ノイズの間の関係についての研究は少なく,画質評価指標や画像処理にノイズ の視覚特性を組み込む際に課題があり,これらの知覚量の違いを検証することは有用で ある.

色の表現

•

色の知覚を表現する指標として表色系があり,均等色空間として CIELAB 色空間, CIELUV 色空間がある.CIELUV 色空間は MacAdam 楕円の局所的な均等性を重視し, CIELAB は色空間全体の均等性を重視している[27].また,2つの色の間の色差の表現 に関しては CIEDE2000 がある[28].これは CIELAB 色空間におけるユークリッド距離 を主観評価実験により,知覚的な色差に近づけたものである.

3.1.2.デジタルカメラの画像処理

デジタルカメラは図 3-1 のような構成となっており,レンズからの光を撮像素子 (CCD/CMOS)で受光し,受光した信号を画像処理ブロックで処理して,汎用的な画像に 変換する.画像処理ブロックでは図 3-2 のような RAW 現像処理を行い,撮像センサー (CCD/CMOS)からの信号を処理し,JPEG 画像を生成する.

3.1.2.1. デモザイク処理

撮像センサー(CCD/CMOS)には様々な種類があるがデジタルカメラではカラーフ ィルターアレー(CFA)を用いた単板型のセンサーが用いられ,中でもベイヤー型[70]の CFA が使用されることが多い.このようなベイヤー型 CFA の撮像センサーでは色補間 もしくはデモザイクと呼ばれる補間処理が行われ,2次元に並んだ R,G,B の各画素に対 して,図 3-3 に示すようにそれぞれの画素位置で R,G,B の信号が補間され,RGB 画像 に変換される.このデモザイク処理はナイキスト周波数を超えた信号を生成する超解像 処理の一種である.デモザイク処理の方法は様々方式が検討されている[42],[71],[72], [73],[74],[75].これらの処理の多くはエッジを保存した補間方法に加えて,色信号は輝 度信号に比べて見えにくいという視覚特性を利用している.

図 3-1 デジタルカメラのシステム概要

RGB画像

図 3-3 デモザイク補間処理

3.1.2.2. ノイズ軽減処理

CFA を有するデジタルカメラの画像処理フローにおいてノイズ軽減処理はデモザ イク補間処理の前,中,後の3か所に分類,配置できる[42].デモザイク前のノイズ軽 減処理は,テクスチャの判別が困難である反面,センサーのノイズ特性を利用しやすい という利点がある.デモザイク後のノイズ軽減処理の場合,輝度と色に分離したノイズ 軽減処理を行いやすい一方,一般にデモザイクによってセンサーのノイズ特性が非線形 に変化しているため,センサーのノイズモデルを適用しにくく,より視覚的なノイズ軽 減処理が求められる.いずれの場合においても完全なノイズ除去は難しく,画像処理シ ステムの設計,評価においては視覚特性を考慮したノイズの評価が重要となる.

3.1.3. システムモデル

3.1.3.1. カメラモデル

デジタルカメラの信号処理をモデル化すると図 3-4 のような処理で表せる.図 3-4 はカメラデバイスの色空間で表される画素値から,表示に用いる sRGB 色空間への変 換処理を示す.図の中で WB はホワイトバランス処理を意味し, はガンマ変換を意味 する.イメージセンサーは光を電気に変換し,いわゆる RAW 信号 C = (CR, CG, CB) を 生成する.この信号にホワイトバランスゲイン wb = (*wbR*, *wbG*, *wbB*) を乗算し,適 切なガンマカーブ*g*を適用することで, sRGB 信号 S = (sR, sG, sB) が得られる.この 過程は次の式で表せる.

$$sR(x, y) = g(wbR \times CR(x, y)),$$

$$sG(x, y) = g(wbG \times CG(x, y)),$$

$$sB(x, y) = g(wbB \times CB(x, y)),$$

(3.1)

$$g(s) = \begin{cases} 12.92s & s \le 0.0031308\\ 1.055s^{1/2.4} - 0.055 & s > 0.0031308 \end{cases}$$
(3.2)

ここで sR, sG, sB は 8bit の sRGB 値であり, CR, CG, CB は[0.0~1.0]の値をとるものと する.また g(s) はガンマ関数であり,ここでは sRGB [31]で定義されたガンマカーブを 用いる.カラーフィルターアレイ (CFA)を有するカメラではデモザイク処理を行う.

図 3-4 仮想カメラ色空間から sRGB 色空間への変換

3.1.3.2. ノイズモデル

本研究で用いるノイズモデルは加算ノイズであり,

$$\mathbf{G}(x, y) = \mathbf{I}(x, y) + \mathbf{n} \tag{3.3}$$

と表せる.ここで, I(x, y) は座標(x, y)における理想的なカラー画素値, n はノイズを表す.本研究の主観評価実験で用いるノイズモデルは,カメラノイズモデル(CamNoise, CamColorNoise)とLab ノイズモデル(LabLumNoise)である.

・ カメラノイズモデル

カメラノイズモデルは実際のデジタルカメラを模擬したノイズのモデルである。デ ジタルカメラのノイズはその要因を元にモデル化されている[76].EMVA1288 はデジタ ルカメラのノイズモデルを物理モデルと数学モデルに分けて定義している[77].デジタ ルカメラのノイズモデルを図 3-5,表 3-1 に示す。この中で実際のカメラにおける主要 なノイズ源は(a)光ショットノイズ、(b)PRNU、(e)読み出しノイズであることが知られて いる[78][79]。本研究ではカメラノイズの最も主要な要素と考えられる光ショットノイ ズとダークカレントノイズを扱う。光ショットノイズは光子によって光電変換される過 程で発生する不可避なノイズであり、ポワソン分布に従うことが知られている[76]。光 子数 n_p が十分多いとき,ポワソン分布p(k)は、平均が n_p ,標準偏差が $\sqrt{n_p}$ の正規分布 n(k)に近似できる。ここでkは観測される光(電)子数である。本節で用いる仮想カメラ ノイズモデルは,ノイズの標準偏差(σ_s^2)がオフセットノイズ(d)と信号レベル(s)に依存 したショットノイズ($k \cdot s$)を用いて次のように表せるものとする.

$$\sigma_s^2(s) = k \cdot s + d^2 \tag{3.4}$$

ここで信号レベル(s)は画像 I の各画素値に相当する.また, kはショットノイズゲイン である.式(3.4)で表されるノイズモデルは視細胞においても生じるノイズであり,視覚 系においても成り立つ[80].

図 3-5 カメラノイズ生成モデル

表 3-1 主なカメラノイズ要素

モデル	ノイズ要素	パラメータ	
光起因	(a) 光ショットノイズ	入射光子数	
ノイズ	(b) 光感度不均一性(PRNU)	入射光子数	
	(c) クロストーク	隣接画素の入射光子数	
ダーク	(d) ダークショットノイズ	温度、露光時間	
ノイズ	(e)オフセット不均一性(DSNU)	温度、露光時間	
	(f)読み出しノイズ	温度、読み出し率	
量子化	(g) 量子化ノイズ	AD 変換ビット精度	
ノイズ			

ノイズモデル CamNoise はショットノイズを考慮したノイズであり,センサーの画 素信号 I_eに対して信号依存ノイズ n_eを加算するノイズモデルである.I_e および n_eはカ メラのデバイス色空間で表せ,

$$\mathbf{I}_{\mathbf{c}} = [iR(x, y), iG(x, y), iB(x, y)]^{\mathrm{T}},$$

$$\mathbf{n}_{\mathbf{c}} = [nR(x, y), nG(x, y), nB(x, y)]^{\mathrm{T}},$$
(3.5)

のように線形 RGB 空間で定義する .ここで *iR*, *iG*, *iB* はセンサーが出力する理想画素値, *nR*, *nG*, *nB* はそれぞれの画素に付加されるショットノイズである .このショットノイズ の確率密度関数は,

$$P(nR) = \frac{1}{\sqrt{2\pi} \cdot \sigma_{cn}(iR)} \exp\left(-\frac{(nR - iR)^2}{2 \cdot (\sigma_{cn}(iR))^2}\right),$$
(3.6)

と表せる .式(3.6)は *iR* について記述したが ,*iG*,*iB* についても同様である .ここで *σ_{cn}* はガウス関数の標準偏差を表し ,*k* はデバイスに依存したパラメータである .本研究で は*k*=4 とし ,固定的に使用する .また *iR*,*iG*,*iB* は 8bit 値とする .

 $\sigma_{cn}^{2}(iR) = k \cdot iR$

CamNoise を加えた信号 G_cは上記カメラモデル($C = G_c$)によって信号処理される. 本研究では信号処理の過程で使用するホワイトバランスとして *wbR*=2.6, *wbG*=1.0, *wbB*=1.5 を固定的に用い, sRGB 信号を生成する.信号処理後の sRGB 信号を CIELAB 信号に変換し,輝度と色に分離した信号をそれぞれ CamLumNoise および CamColorNoise と呼ぶ.CIELAB への変換においては,白色点として D65 (x=0.31271, y=0.32902)を用いる.

Lab ノイズモデル(LabLumNoise)

Lab ノイズモデルは CIELAB 色空間における加算ノイズである.Lab 輝度ノイズモ デルLabLumNoiseはCIELAB 色空間における輝度信号 I_Lに対する加算ノイズ n_Lである. 加算ノイズ n_Lの確率密度関数は,

$$P_{nL}(l) = \frac{1}{\sqrt{2\pi} \cdot \sigma_{nL}} \exp\left(-\frac{(l-L)^2}{2 \cdot (\sigma_{nL})^2}\right)$$
(3.7)

で表せるガウスノイズである.ここで,l はノイズを付加した画像 G_Lの輝度値,L は 画像 I_Lの輝度値であり,背景輝度レベルを意味する.σ_{nL} はノイズの標準偏差である. Lab ノイズモデルは信号に依存しないガウスノイズモデルである.同様に Lab ノイズモ デルの一つに CIELAB 空間での色信号に対する加算ノイズ(LabColorNoise)があるが,本 節の実験では直接使用せず,比較の際に参照する.

3.1.3.3. 実力メラノイズモデル

実際のカメラのノイズモデルは式(3.4)の形式となるが,量子化の影響(12bit の場 合は 0~4095 に画素値が制限される)を考慮すると,以下のように定義できる.u をダ ークノイズの平均,s をダークノイズの標準偏差,k をショットノイズゲイン,r を画素 値,xMax を最大画素値(12bit AD の場合は 4095), xMin を最小画素値(=0)とすると,カ メラノイズの標準偏差σ_{raw}は,

$$\sigma_{raw}(\mathbf{u}, \mathbf{s}, \mathbf{k}, \mathbf{r}) = \sqrt{\operatorname{var}_{\mathbf{s}}(\mathbf{k}, \mathbf{r}) + \operatorname{var}_{\mathbf{d}}(\mathbf{u}, \mathbf{s}, \mathbf{r})}$$
(3.8)

と表せる.var_s(k,r)はショットノイズの分散,var_d(u,s,r)はダークノイズの分散に相当 する.ショットノイズの分散var_s(k,r)は以下のように表せる.

$$\operatorname{var}_{s}(\mathbf{k},\mathbf{r}) = \frac{\int_{xMin}^{xMax} (\mathbf{x} - \operatorname{ave}_{s}(\mathbf{k},\mathbf{r}))^{2} * \operatorname{gs}(\mathbf{x},\mathbf{r},\sqrt{\mathbf{k}*s}) \, dx}{\int_{xMin}^{xMax} \operatorname{gs}(\mathbf{x},\mathbf{r},\sqrt{\mathbf{k}*s}) \, dx}$$
(3.9)

ここで, avesはショットノイズの平均であり,

$$\operatorname{ave}_{s}(\mathbf{k},\mathbf{r}) = \frac{\int_{xMin}^{xMax} \mathbf{x} * \operatorname{gs}(\mathbf{x},\mathbf{r},\sqrt{\mathbf{k}*s}) \, dx}{\int_{xMin}^{xMax} \operatorname{gs}(\mathbf{x},\mathbf{r},\sqrt{\mathbf{k}*s}) \, dx}$$
(3.10)

と表せ,gsはガウス関数であり,

$$gs(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$
(3.11)

と表せる.式(3.8)でダークノイズの分散 $var_d(u, s, r)$ は以下のように表せる.

$$\operatorname{var}_{d}(u, s, r) = \frac{\int_{xMin}^{xMax} (x - r - \operatorname{ave}_{d}(u, s, r))^{2} * gs(x - r, u, s) \, dx}{\int_{xMin}^{xMax} gs(x - r, u, s) \, dx}$$
(3.12)

ここで, aved はダークノイズの平均であり,

ave_d(u, s, r) =
$$\frac{\int_{xMin}^{xMax} (x - r) * gs(x - r, u, s) dx}{\int_{xMin}^{xMax} gs(x - r, u, s) dx}$$
(3.13)

と表せる.

実デジタルカメラ(Ricoh, GR Digital II)でマクベスチャートを露出と ISO 感度を変化させながら撮影し,パッチの標準偏差を測定した結果を図 3-6 に示す.回帰式は式 (3.8)であり,係数(u, s, k)を表 3-2 に示す.係数(u, s, k)は量子化誤差の影響があり,最大 画素値がb倍される場合,係数はそれぞれb倍される ($u_b = b \cdot u, s_b = b \cdot s, k_b = b \cdot k$). 例えば,12bit 値における係数 u_{12} は 8bit 値における係数 u_8 に対して, u_{12} = (2^(12-8))* u_8 =16* u_8 の関係にある.

図 3-6 デジタルカメラのノイズ

ISO	100	200	400	800	1600
u	16.76	5.32	2.75	3.25	1.00
S	3.59	9.55	19.74	38.98	74.72
k	1.05	1.85	3.54	6.96	13.46

表 3-2 実力メラノイズの回帰式

3.1.4. カメラノイズの見え

本節では特にデジタルカメラのノイズに対する画質評価値を得ること,また,輝度 ノイズと色ノイズが混在したノイズにおけるノイズの見えを調べるため,ノイズモデル としてカメラノイズモデルを使用して,主観評価実験を行う.

3.1.4.1. 主観評価実験方法

カメラノイズを輝度と色に分離した場合の輝度ノイズ,色ノイズそれぞれの見えが どの程度異なっているのかを主観評価実験によって確認する.また,比較のため Lab 輝度ノイズモデルを用いた見えについても主観評価実験によって確認する.

実験は図 3-7 に示す画面を用いて主観評価実験を行う.被験者は背景色グレー (L*=50, a*=0, b*=0)で知覚される輝度ノイズ(コントロールノイズ)の標準偏差を,所 定のノイズの標準偏差で生成したノイズ(ターゲットノイズ)とノイズの見えが同等に なるようにコントロールバーで調整する.コントロールノイズは LabLumNoise とし, 式(3.4)でk = 0, dをパラメータとしたノイズである.ノイズの見えが同等となった時の dの値を知覚ノイズレベルと呼ぶ.実験はノイズモデル毎に実験を行う.ターゲットノ イズには4種のノイズモデル CamNoise, CamLumNoise, CamColorNoise, LabLumNoise を 使用し,それぞれ背景輝度(L*を変化)および背景色(表 2-1 の 7 色)毎に実験を行 う.ノイズ生成条件は,CamNoise, CamLumNoise, CamColorNoise の場合は式(3.4)におい てd = 0, k = 4, LabLumNoise の場合は式(3.4)でd = 5, k = 0のガウスノイズを生成す る.ターゲットノイズ,コントロールノイズ共に左右二分割されており,片側にノイズ を表示し,もう片側にはノイズなし背景色を表示する.ノイズを左右どちらに表示する かは測定毎にランダムに切り替える.また,被験者が回答を決定するまでの時間は任意 とする.

図 3-7 色ノイズ知覚の測定に用いた呈示画面

3.1.4.2. 実験環境

実験では sRGB (80[cd/m2]) に調整したモニターEIZO CG-241W (画素ピッチ 0.27 [mm/pixel])を用い,モニターから 40 cm の距離で観察した.空間解像度は 13 [cpd]となる.被験者は石原テストを通過した 2 人である.

3.1.4.3. Lab 輝度ノイズの背景輝度依存性

図 3-8 は Lab 輝度ノイズ(LabLumNoise)を提示した際の知覚ノイズレベル(σ_{Lab_L})を表す.回帰曲線は,

$$\sigma(L^*) = \sum_{i=0}^{4} p_i L^{*i}$$
(3.14)

で表し,係数は表 3-3 に示す.図 3-8 より,L*~30 付近の輝度ノイズが知覚されやすい ことがわかる.生成したノイズの標準偏差は固定(*d* = 5)であり,図 3-8 はこの条件に おける輝度ノイズ知覚の輝度依存性を表す.図 3-8 で L*=0, L*=100 の近傍はノイズが 生成できないことから知覚ノイズレベルも低下している.また,色ノイズの輝度依存性 については 2.1.5.3 節で議論し,L*=35 付近の色ノイズが最も知覚しやすいことを示し た.

図 3-8 輝度ノイズ (LabLumNoise) の主観評価実験結果

表 3-3 輝度ノイズによる主観評価実験結果(図 3-8)に関する回帰係数と決定係数 R²

	LabLumNoise (σ_{Lab_L})		
p_0	2.967		
p ₁	2.883	*10 ⁻¹	
p_2	-9.689	*10 ⁻³	
p ₃	1.264	*10 ⁻⁴	
p ₄	-5.755	*10 ⁻⁷	
R ²	0.56		

3.1.4.4. カメラノイズの背景輝度依存性

図 3-9 は CamNoise, CamLumNoise の知覚ノイズレベル (それぞれ σ_{CamL} , σ_{CamL})を表す.これらの回帰曲線はそれぞれ CamNoise Regression, CamLumNoise Regression で 表している.回帰曲線は式(3.14)で与え,係数を表 3-4 に示す. CamNoise と CamLumNoise の輝度依存性は類似しており,知覚ノイズレベルの比は $\overline{\sigma_{CamL}}/\overline{\sigma_{CamL}} = 1.1$ とおおむね同じレベルである.輝度ノイズと色ノイズを同時に提示 した場合であっても,輝度ノイズのみを提示した場合と同様の見えであることを意味す

る.図 3-9 で CalcL はノイズモデル(CamLumNoise)の色差を元に算出したノイズの標準 偏差 (σ_{CalcL_L}) を表す.

図 3-10 は CamColorNoise の知覚ノイズレベル (σ_{CamC_L}) と回帰曲線を示す.回帰 曲線は式(3.14)で与え,係数を表 3-4 に示す.CalcC は生成したノイズモデル (CamColorNoise)の色差を元に算出したノイズの標準偏差(σ_{CalcC_L})を表す.

CamNoise の輝度成分 σ_{CalcL_L} に比べて色成分 σ_{CalcC_L} の値の方が大きな値をとる ($\overline{\sigma_{CalcL_L}} = 5.26$, $\overline{\sigma_{CalcC_L}} = 19.53$). しかしながら,ノイズの見えに関しては輝度成分 σ_{CamL_L} の方が色成分 σ_{CamC_L} より大きく,ノイズの見えに対して輝度ノイズが支配的であ ることがわかる.

3.1.4.5. 輝度ノイズと色ノイズの知覚差

図 3-11 は生成したノイズの標準偏差に対する知覚されるノイズの大きさの割合を 表す.ノイズモデルにカメラノイズモデルを用いた場合(CamLumNoise ,CamColorNoise), およびLabノイズモデルを用いた場合(LabLumNoise,LabColorNoise)に関する輝度依存 性を示す.色ノイズ(LabColorNoise)については比較のため2章の結果を示す. CamLumNoise および CamColorNoise の知覚ノイズレベルの比k_{CamLL}k_{CamLL}k,

$$k_{CamLL} = \sigma_{CamL_L} / \sigma_{CalcL_L}$$
(3.15)

$$k_{CamCL} = \sigma_{CamC_L} / \sigma_{CalcC_L}$$

と定義する.輝度依存性の回帰曲線は式(3.14)で表せ,係数を表 3-5 に示す. LabLumNoiseに対する知覚ノイズレベルの比($k_{LabLumL}$)は,図 3-8 に示した回帰曲線を ノイズの標準偏差(d = 5)で正規化した曲線である.図 3-11 に示した式(3.15)の平均値は $\overline{k_{CamLL}} = 1.14, \overline{k_{CamCL}} = 0.15$ (3.16)

であり,輝度ノイズに関する値k_{CamLL}が色差とほぼ同等(1.14)の見えを与えているのに 比べ,色ノイズの見えの比k_{CamCL}は小さい(0.15).このことは CIELAB の色差で表すノ イズの標準偏差が輝度ノイズ,色ノイズとも同じ値の場合,輝度ノイズは色ノイズの約 7.6 倍強く知覚されることを示す.

2章ではコントロールノイズ,ターゲットノイズ共に色ノイズを用いたが,本章で はコントロールノイズとして輝度ノイズ(LabLumNoise)を用いた.このため,色ノイズ の見えの値が小さな値となっている.図 3-11 で示した輝度ノイズ(LabLumNoise)の輝度 依存性はL*~25 付近でピークとなり,L*=60~80 付近が平坦である.一方で,色ノイズ (LabColorNoise)の輝度依存性はL*=35 付近でピークとなり,なだらかに低下していた. 同様の傾向は CamLumNoise, CamColorNoise の輝度依存性についても言える.一方,ピ ークについては CIEDE2000 における輝度依存性は L*=50 にピークをもち,最も感度の 高いとされる輝度値が本節の結果と異なっている.これは信号の空間周波数の違いが起 因していると考えられる.

また,本実験で用いたカメラノイズモデルは線形色空間でのノイズであり,Labノ イズモデルは視覚的な色空間でのノイズである.カメラノイズモデルは CIELAB 空間で 非ガウスノイズとなるが,Labノイズモデルによる結果と傾向は類似していた.

図 3-9 カメラノイズ (CamNoise, CamLumNoise) の主観評価実験結果 縦軸は CamNoise, CamLumNoise に対して知覚ノイズレベル ,CalcL に対してノイズの 標準偏差を表す. 横軸は背景輝度 L*を表す.

図 3-10 カメラノイズ (CamColorNoise)の主観評価実験結果

	$CamNoise(\sigma)$	CamLumNoise	CamColorNoise	
	Calmvoise (O _{Cam_L})	(σ_{CamL_L})	(σ_{CamC_L})	
p_0	2.098	-1.205 *10 ⁻¹	-7.142 *10 ⁻¹	
\mathbf{p}_1	6.759 * 10 ⁻¹	1.022	5.094 *10 ⁻¹	
p ₂	-2.254 *10 ⁻²	-3.686 *10 ⁻²	-1.644 *10 ⁻²	
p ₃	2.732 *10 ⁻⁴	4.745 *10 ⁻⁴	1.944 *10 ⁻⁴	
p ₄	-1.152 *10 ⁻⁶	-2.075 *10 ⁻⁶	-7.979 *10 ⁻⁷	
R ²	0.76	0.82	0.78	

表 3-4 カメラノイズによる主観評価実験結果(図 3-9,図 3-10)に関する回帰係数と 決定係数 R²

図 3-11 主観評価値と色差の比

	k_{CamLL}		k_{CamCL}	
p ₀	-2.230	*10 ⁻⁷	-1.055	*10 ⁻⁸
p ₁	4.985	*10 ⁻⁵	2.995	*10 ⁻⁶
p ₂	-3.772	*10-3	-2.904	*10 ⁻⁴
p ₃	1.012	*10 ⁻¹	9.773	*10 ⁻³
p4	5.026	*10-1	7.658	*10 ⁻²
R^2	0.57		0.59	

表 3-5 主観評価値と色差の比(図 3-11)に関する回帰係数と決定係数 R²

3.1.4.6. カメラノイズの背景色依存性

7つの背景色に応じた主観評価実験結果を図 3-12 に示す.図 3-12 はカメラノイズ(CamNoise, CamLumNoise, CamColorNoise)に対する背景色依存性を示す.背景輝度依存性の結果と同様に色ノイズ(CalcC)の分散が大きく,輝度ノイズ(CalcL)の分散は小さい.一方,知覚されるノイズの大きさは輝度ノイズ(CamLumNoise)の方が色ノイズ(CamColorNoise)よりも大きいことがわかる.また,CamNoiseの知覚を CamLumNoiseの知覚と比較すると,背景色毎に傾向が異なっていることがわかる.背景色 Red では

CamNoise と CamLumNoise の知覚は似た値をとり, CamColorNoise に対する知覚ノイズ レベルは小さいが, Purple ではそれらの比率が異なっている. Red, Purple 共に生成さ れる色ノイズ(CalcC)の標準偏差は似ているが, 色ノイズ(CamColorNoise)に対する知覚 ノイズレベルは Red が小さく, Purple の方が大きな値をとる.このことは2章の結果と も矛盾しない.

図 3-12 カメラノイズに対する知覚ノイズレベルの背景色依存性

3.1.5. 考察

3.1.5.1. 輝度ノイズを用いた比較実験

本節においては輝度ノイズをコントロールノイズとして比較法による実験を行ったが,2章においては色ノイズを用いていた.本節の実験でコントロールノイズに輝度 ノイズを用いたのは,色ノイズの見えが輝度ノイズと大きく異なり,輝度ノイズを色ノ イズで比較測定することが難しかったためである.また,輝度ノイズは色ノイズに比べ, ノイズの標準偏差に依存した違いを知覚することが難しく,これは本実験における0.5 ~0.8 程度の決定係数によってもわかる.

3.1.5.2. 視知覚モデルとの比較

実験によって得られた輝度ノイズと色ノイズの見えを比較(kcamLL/kcamCL)する

と 7.6 倍, 輝度ノイズが見えやすいという結果が得られた.これはノイズが高周波信号 であり, 色信号と輝度信号における視覚の CSF 特性が影響するためと考えられる.空 間周波数を変更した場合の色ノイズと輝度ノイズの見えがどのように変わるのかにつ いては 2.2 節で議論した.本節で用いた 13[cpd]の輝度ノイズの色ノイズに対する知覚ノ イズレベルの比は図 2-38, 図 2-39 からおよそ 10 倍あることがわかる.これは本節の 結果と矛盾しない.また, Mullen[45]によれば,本研究で用いた,コントラスト感度は 緑単色の場合と赤緑二色の場合で約 8.5 倍のコントラスト感度差があり,本節の結果と もほぼ一致する.

3.1.5.3. 実力メラとの比較

カメラノイズ CamNoise のノイズパラメータは式(3.4)においてd = 0,k = 4とした. これは実際のカメラ(Ricoh GR Digital II)の値を参考に実験のしやすさ及びモデルの単純 化を考慮したためである.また,このノイズパラメータは 8bit の画素値(b=1/16)に対し て $k_{1/16} = 4$ のノイズを付加したものに相当する.この条件は 3.1.3.3 節の実デジタルカ メラにおける ISO 感度とkの値の関係を考慮すると,12 ビット相当でk = 64に相当し, ISO6400 程度の高感度条件となる.

3.1.6. まとめ

本節ではノイズの見えにおける輝度ノイズと色ノイズの関係について検討した.ノ イズモデルにカメラノイズモデルを用い,主観評価実験によってノイズの見えに関する 特性を測定した.その結果,ノイズの見えは以下の特徴を持つことがわかった.(a)同 じ標準偏差の輝度ノイズ,色ノイズの見えを比較すると,輝度ノイズは色ノイズの約8 倍強く知覚された.このためノイズの見えを予想する際には,単純にノイズの分散を用 いるのではなく,輝度,色成分に分離して取り扱う必要がある.(b)カメラノイズの標 準偏差は輝度成分よりも色成分の方が大きいにもかかわらず,その見えは色成分よりも 輝度成分の方が大きかった.このため,デジタルカメラの画像処理において,ノイズ軽 減処理を行う際には,デモザイク前のセンサーデータに対して処理することで,輝度ノ イズの見えを軽減できると考えられる.ノイズの見えは人の視覚特性と大きく関連する.

また,実際のカメラにおけるノイズパラメータは固定のノイズレベルと画素値に依存したショットノイズを仮定することで表現できることを示した.このノイズパラメー

タはノイズの見えを適用しない通常のノイズ軽減画像処理において使用できると考え られる.

3.2. ノイズ軽減画像処理

3.2.1.はじめに

画像処理は様々な目的で行われ,その画像を誰が参照するかによって2分される. すなわち,機械(コンピュータ)が画像を参照するのか,人間が画像を参照するのかに よって,画像処理の内容は大きく変わる.デジタルカメラのように一般には人間が参照 する画像の場合,人間にとって認識しやすいもしくは快適な画像が望まれる.この場合, 人間はどのようなものを認識しやすいのかといった視覚特性を知り,利用することが画 像処理において重要となる.このように視覚的画像処理とは人間の視覚特性を利用した 画像処理を意味する.本節ではこれまでに述べたノイズの見え特性を利用したノイズ軽 減画像処理を視覚的画像処理の一例として示す.ノイズ軽減画像処理は実用上重要であ ることから様々な手法が提案されている.色ノイズの低減手法としては色差内で画素置 換を行う方法[81]がある.そのほか,ディザのように誤差拡散することで階調を滑らか にする手法[82]が提案されている.

3.2.2. ノイズ軽減手法

色ノイズの知覚モデルを使った色ノイズ軽減方法を図 3-13 に示す.ここでは2段 階のノイズ軽減を行っており,バイラテラルフィルター[39] を改変した方法を第一段 階のノイズ軽減に用いる.ここで我々はオリジナルのバイラテラルフィルターに対して 変更を加えた.ローパスフィルターを適用した画像 *l*(*x*, *y*) を色信号の重み係数の算出時 に用いる.一方,輝度信号に対してはオリジナルの手法通り,元の入力画像 *i*(*x*, *y*)を用 いる.このような畳み込みフィルターは同じオブジェクトに対して大きな係数を持ちつ つ,エッジを保存することができる.

図 3-13 カラー画像の視覚特性を利用したノイズ軽減

バイラテラルフィルター

バイラテラルフィルターの重み係数は以下のように算出できる.

$$g(x, y) = \frac{\sum_{(i,j) \in L_{xy}} \left(coef(x, y, i, j) * i(i, j) \right)}{\sum_{(i,j) \in L_{xy}} \sum_{(i,j) \in L_{xy}} coef(x, y, i, j)}$$
(3.17)

ここで, L_{xy} は画素(x, y)周辺の畳み込み領域である. coef 関数は,

$$coef(x, y, i, j) = coef_L * coef_C * coef_D$$
 (3.18)

と定義できる.ここで, $coef_L$, $coef_C$, および $coef_D$ は, それぞれ輝度, 色, 距離の係数 であり,

$$coef_{L}(x, y, i, j, \sigma_{v}) = G(dL_{b}(x, y, i, j), \sigma_{v})$$

$$coef_{C}(x, y, i, j, \sigma_{v}) = G(dC_{b}(x, y, i, j), \sigma_{v})$$

$$coef_{D}(x, y, i, j, \sigma_{d}) = G\left(\sqrt{(i-x)^{2} + (j-y)^{2}}, \sigma_{d}\right)$$
(3.19)

と表せる . σ_v , σ_d はパラメータである . G はガウス関数 ,

$$G(diff,\sigma) = \exp\left(-\left(\frac{diff}{\sigma}\right)^2\right)$$
(3.20)

である.dL_b,および dC_bは色差に相当し以下のように定義する.

$$dL_{b}(x, y, i, j) = |i_{L}(i, j) - i_{L}(x, y)|$$

$$dC_b(x, y, i, j) = \sqrt{\left(l_A(i, j) - l_A(x, y)\right)^2 + \left(l_B(i, j) - l_B(x, y)\right)^2}$$
(3.21)

計算に用いる画像は輝度用と色用で異なるものを用いる(i for dL_b, l for dC_b).

ランダムサンプリング

•

ランダムサンプリングは色ノイズ軽減において重要な役割を果たす.これはディザのように高周波のノイズを生成する.ランダムサンプリング処理は単純なサンプリングであり,

$$o(x, y) = rand_{(s,t) \in S_{xy}} \{g(s,t)\}$$
(3.22)

のように表せる.ここで o と g は図 3-13 に示すように,それぞれ出力,入力画像で ある. S_{xy} は局所領域にある,知覚ノイズレベルが元の画素値に対して P_N の範囲にあ る画素の組を意味する.この制限を設けることで,知覚されやすい色ノイズが生成され ることを防ぐ.このようにランダムサンプリングでは制限された S_{xy} の組の中から画素 をランダムに選び,画素を置き換える.このことでノイズの標準偏差はほぼ変わらない が,CSF 特性を利用して知覚的にはノイズの少なく,階調の連続性を保った画像を得る ことができる.

3.2.3. ノイズ軽減効果

図 3-14 にノイズ軽減結果を示した.ここでは元画像として LabGauss ノイズ (σ_{ab} =24)を画像に加えた.ローパスフィルターとしては縦横分離型のフィルターを用い, 係数は{1/16, 1/4, 3/8, 1/4, 1/16}とした.バイラテラルフィルターではカーネルサイズは7, σ_v =24, σ_d =7 をパラメータとして用いた.ランダムサンプリングではカーネルサイズを 13, P_N を 1.5 (=0.5* σ_v/k_{LC})とした.最終的なノイズ軽減画像は 図 3-14 (e)である.階 調がスムーズでノイズが見えにくいことがわかる.

(e)

図 3-14 ノイズ軽減結果 (a) 元画像.赤枠は拡大領域 (b) 元画像の拡大表示 (c) ガウ スノイズを加えた画像 *i*(*x*, *y*). (d) バイラテラルフィルター適用後画像 *g*(*x*, *y*). (e) ランダム サンプリング後画像 *o*(*x*, *y*).

3.2.4.まとめ

本節では視覚特性を利用した画像処理である,視覚的画像処理の一例として,ノイ ズ低減について議論した.視覚特性にはノイズ感度特性と背景色依存性を利用した.ノ イズ低減手法は二種類の画像処理からできている.一つは通常のバイラテラルフィルタ ーをカラー画像に対応させたものであり,もう一つは誤差拡散的に一定の条件で空間的 に広がりを持ったノイズを生成する,ランダムサンプリングである.この一定の条件に ノイズの視知覚特性を組み込むことで,ノイズの見えを軽減した.バイラテラルフィル ターのような平滑化では色ノイズが低周波側へ移動し,かえって色ノイズが見やすくな る場合がある.一方,ランダムサンプリングでは低周波ノイズを,ノイズが見えにくい 色方向の高周波ノイズに変換することで,ノイズ低減することが可能であることを示した.このノイズ低減は応用の一例であり,さらに有効な方法があると考えられるものの,本節では視覚特性の活用が有効であることを示した.

3.3. 画質評価指標

ノイズの見えに基づく主観評価実験(第2章)では所定のノイズモデルをスケール として用い、そのノイズの標準偏差を変化させることで、各種条件におけるノイズの見 えを測定した.これらの結果を画質評価指標に応用し,主観的なノイズの影響を表すこ とのできる画質評価指標を構築する.

3.3.1.はじめに

デジタルカメラのように視覚的な見えが重要な画像処理において客観的な画質評価指標は有用である.本研究では色票を元にした色ノイズの見え特性を画像に適用することで,画質を客観評価する指標を検討する.評価指標には色ノイズの見え特性に加え,コントラスト感度特性(CSF),コントラストマスキングを考慮したモデルを用いる. 一方,ノイズを付加した画像の主観評価実験を行い、画像29種,ノイズモデル4種を用いて主観評価値と客観評価指標を比較検証する.本評価指標がノイズモデルに対して主観評価値を反映することを確認した.また,既知の客観評価指標(PSNR およびS-CIELAB)と比較し,特性を確認した.

客観的な画質評価指標は画像設計や画像処理の検討において重要な性能指標である.特に,デジタルカメラのように画質を重視するアプリケーションにおいては,主観評価を反映する客観評価値が重要となる.

本章ではこれらの色ノイズの見え特性を画像に適用し,画質の主観評価を反映する 評価モデルを検討する.また,ノイズ付加画像に対する主観評価実験を行い,主観評価 値と各種客観評価値を比較することで,本評価モデルの特性を検証する.

3.3.2.S-CIELAB に基づく色ノイズの評価

色ノイズの見えに関する主観評価実験および S-CIELAB モデルによるシミュレー ションより得られる知覚色ノイズの色相方向依存特性、背景色依存特性について述べる。 また、S-CIELAB モデルを参考に色ノイズ知覚特性を良好に近似する視知覚モデルにつ いて考察する。

画像におけるノイズは一般には視覚を妨げる妨害としてとらえられることが多い

が、ディザのように階調性を向上させる場合やマットな金属感を表現する場合など質感 向上のために積極的にノイズを付加する場合がある。さらに青色ノイズを付加した場合 に画質が若干良くなったという報告もある[50]。そもそもノイズは無秩序な存在ではな く、統計的な特徴を有する制御可能な存在である。視覚は錐体応答から神経伝達まで時 間的、空間的ノイズを含む信号を処理しており、視覚にはそれらのノイズを処理する機 能が備わっていると考えられる。これらノイズの効果については定量的な議論が不可欠 である。

カラー画像のノイズ等による画質劣化を表す指標が提案されている(例えば[1],[2], [46],[47],[83],[84])。この中で S-CIELAB[1]は反対色色空間における視覚の周波数特性 を考慮したモデルであり、色差を計算することにより誤差を計量できる。しかしながら CIELAB は劣化した画質に対する主観評価値との相関性が画質劣化要因に依存するこ とが報告されており[85]、ノイズの見え(ノイズ知覚)について、主観値を良好に近似 するモデルが必要である。第2章で得たノイズの見え特性を利用した画質評価値を定義 し,これを S-CIELAB による色差と比較する.

・ S-CIELAB の色ノイズ知覚向け拡張

S-CIELAB は2つの画像の間の空間周波数を考慮した色差を与える。本研究ではノ イズの有無による色差と知覚色ノイズ強度の関連性を確認する。S-CIELAB では下記の 処理を行い、最後に CIELAB 空間において色差を得る。

図 3-15 S-CIELAB 算出フロー

本研究では3種類の方法で色差を算出する。

(i) 色差 1(E1)

S-CIELAB の定義に従い算出した色差。実際のノイズ画像から色差を算出する。図 3-16 に算出結果を示す(E1を1.5倍した結果を表示)。青色背景色では斜めに傾いた楕 円、その他はやや横長の楕円形状であり、背景色依存性は高くないことが分かる。図 3-16でS-CIELAB が色ノイズ知覚実験をうまく表現できない原因の一つとして前提とす る評価実験条件の違いが考えられる。S-CIELAB で採用されている反対色空間の定義は 4[cpd]程度までの方形波のコントラストと色の知覚実験(CSF)[58]に由来し,CSF は背 景色に依存した色ノイズの色方向については考慮されていないためと考えられる.

図 3-16 ab 方向ノイズ(円形)の S-CIELAB 色差(E1) 楕円中心からの距離が S-CIELAB 演算色差を 1.5 倍したものに相当する(E1 x1.5)。

(ii) 色差 2(E2)

図 3-17 のように減衰フィルタと代表ノイズ画素値を用いて色差を算出する。減衰 フィルタは差分(高周波)に適用するため LPF フィルタとして働く。減衰フィルタ係 数は S-CIELAB の空間フィルタをガウスノイズに適用した際の減衰ゲイン(A: 0.62, C1: 0.28, C2:0.19)を用いる。代表ノイズ画素値は背景色を中心に色差 (=12)、色相方向*θ*に ある画素値とする。 は ab 方向ノイズの標準偏差(*σ_V*)に同じである。この演算による 色差を図 3-18 に破線で示す。傾いた瓢箪形となり、青色が大きく、緑色が小さい傾向 がある。図 3-18 には第2章で得た,色ノイズの見えについても実線で示した.

図 3-17 色差(E2)の算出方法

図 3-18 ab 方向ノイズ(矩形)のノイズ知覚と色差(E2) それぞれの瓢箪形状の 中心からの距離が知覚ノイズの大きさ(σ_{NV})に相当。実線は評価実験結果の回帰式、破線は S-CIELAB による対角成分同士の色差を 3 倍したもの(E2 x3)。

(iii) 色差 3(E3)

図 3-18 に示した実線と破線の瓢箪形状の回転角の違いは実際の視覚で減衰フィル タ(LPF)が適用される色空間が S-CIELAB で採用されている反対色空間とは異なるこ とを意味する。一方 LPF の原因として眼球の軸上色収差が挙げられる[12]。軸上色収差 が楕円を生じる原因ならば、LPF 効果は LMS 錐体空間で生じる。色差(E2)算出時の 反対色空間を LMS 空間(CIECAM02[13])に変更した色差(E3)を図 3-19 に示す。実験結 果と同様の回転角が得られることがわかる。色差(E3)の減衰フィルタのゲインは L:0.9, M:0.1, S:0.0 であり、S 錐体に対応する本実験のノイズは色ノイズ知覚にほとんど寄与し

図 3-19 LMS 空間フィルタによる色差(E3) 実線は評価実験結果(*σ_{NV}*)の回帰式。破線 は LMS 空間で減衰フィルタを適用して算出した色差を 3 倍したもの(E3 x3)。

3.3.3.色ノイズの見え

色ノイズの見えは a*b*平面中の色方向に依存し,その見えの大きさは a*b*平面上 で瓢箪形状を示す.本節において,背景色・輝度、色ノイズ(色相)方向の依存性を考 慮した色ノイズの見えの大きさは(2.43)式から次のように表す.

 $P_N(\mathbf{C}_c, \mathbf{C}_n) = \max(k_{CL}\sigma_{CPN}(L_c, a_c, b_c, dC, \theta) dC, dL)$ (3.23) ここで各変数は以下の意味を持つ.

 C_c :背景色 (L_c , a_c , b_c), C_n : ノイズ色 (L_n , a_n , b_n), dC: 色差, $dC = \sqrt{(a_n - a_c)^2 + (b_n - b_c)^2}$, dL: 輝度差, $dL = |L_n - L_c|$, σ_{CPN} : 色ノイズの知覚感度特性(背景色・輝度依存),式(2.22) k_{CL} : 色ノイズと輝度ノイズ間の知覚感度比.

3.3.4. ノイズモデル

本研究で用いるノイズモデルは図 3-20 に示す4種類である.いずれも等輝度の色 ノイズであり,同じ標準偏差(o_c)で生成するガウスノイズである.

VecC ノイズ

•

VecC ノイズは図 3-20 左上のように a*b*平面上で極座標上の半径方向にガウスノ イズ(n)を生成したノイズモデルであり,角度方向(θ)はランダムに選択する.画像全体 としては a*b*平面上に円形状に広がる確率分布をもつノイズである.元画素値(a_c , b_c) に対するノイズ画素値(a_n , b_n)_{Vecc}は以下のように表せる.

$$(a_n, b_n)_{VecC} = (n \cdot \cos(\theta) + a_c, n \cdot \sin(\theta) + b_c)$$
(3.24)

・ VecC2 ノイズ

VecC2 ノイズは a*, b*方向に独立にガウスノイズ(n_a , n_b)を加えたノイズモデルで あり, 2 つのノイズで表現されることから VecC2 ノイズのノイズの標準偏差は VecC に 比べて約 1.2 倍となる.ノイズ画素値(a_n, b_n) $_{VecC2}$ は以下のように表せる.

$$(a_n, b_n)_{VecC2} = (a_c + n_a, b_c + n_b)$$
(3.25)

・ VecCS ノイズ

VecCS ノイズは色ノイズの見えを考慮したノイズである. 色ノイズの見えの瓢箪 形状のうち,ノイズの見えにくい色方向(θ_S)にのみノイズを生成する.ノイズの見えに くい色方向は式(2.22)から得られる.ノイズ画素値(a_n, b_n)_{VecCS}は以下のように表せる.

$$(a_n, b_n)_{VecCS} = (\mathbf{n} \cdot \cos(\theta_S) + a_c, \mathbf{n} \cdot \sin(\theta_S) + b_c)$$
(3.26)

・ VecCL ノイズ

VecCL ノイズは VecCS と逆に色ノイズの見えが大きい色方向(θ_L)にのみノイズを生成する.ノイズの見えが大きい色方向は式(2.22)から得られる.ノイズ画素値 $(a_n, b_n)_{VecCL}$ は以下のように表せる.

$$(a_n, b_n)_{VecCL} = (\mathbf{n} \cdot \cos(\theta_L) + a_c, \mathbf{n} \cdot \sin(\theta_L) + b_c)$$
(3.27)

図 3-20 ノイズモデル4種

3.3.5. 色ノイズの見えに基づく画質評価モデル

色ノイズの見え特性を画像に適用する場合,色票に比べて画像は局所的な空間周波 数が異なるほか,マスキングや順応などの影響を受けると考えられる.式(3.23)で表す 色ノイズの見え特性に空間周波数の影響を考慮したモデルを構築し,客観評価値を得る. 同様の手法には S-CIELAB がある. S-CIELAB は2つの画像間の違いを表す視覚特性 を考慮した指標である.S-CIELAB は反対色空間で異なる空間周波数特性を持つローパ スフィルターを適用した後,CIELAB 空間で色差を測定する.一方,本研究ではより高 精度な評価値を得ることを目指し,図 3-21 に示す評価モデルで,画像の空間解像度を 評価し,ノイズの見えを考慮した評価値を得る.空間解像度特性として,コントラスト 応答(CSF)の他,コントラストマスキング効果[86]を考慮する.

· 色空間変換

入力された元画像(Original)と評価対象画像(Distorted)を, sRGB 色空間(IEC 61966-2-1)の定義に従い, CIE 1931 XYZ 色空間に変換, その後, CIE1976 L*a*b*信号

(CIELAB)に変換する.この際, 白色点には D65 を用いる.

・ 画像の空間周波数 (f_1)

元画像の輝度信号から 5 段のガウシアンピラミッドを生成し,図 3-22 に示すよう に DoG 係数が最大値となるピラミッド画像を選択することで局所的な空間周波数 *f_l(x,y)*を決定する.図 3-22 右の空間周波数画像は白が高周波(13[cpd]),黒が低周波 (0.8[cpd])を意味する.(図 3-21(C))

・ コントラスト感度特性(CSF, G_{sf})

ノイズ付加画像のコントラスト感度特性は,画像の局所空間周波数f_lにおける CSF 特性に対する,ノイズの CSF 特性をゲインG_{sf}として表す.

$$G_{sf}(x,y) = S_{JND}(f_n(x,y)) / S_{JND}(f_l(x,y))$$

$$S_{IND}(f) = \exp(0.8252 \cdot \log(f) + 0.0706)$$
(3.28)

ここで f_n はノイズの空間周波数を意味する.ここでは画像局所的な位置に依存せず,ノ イズを画素ごとに生成するため,画像の最大空間周波数と同じ $f_n = 12.93$ [cpd]とする. $S_{IND}(f)$ は色ノイズに対する空間周波数特性である.(図 3-21(D))

・ 空間周波数マスキング (M_{sf})

空間周波数に関する視覚特性の一つであるマスキング効果を考慮するため, Blakemore ら[86]の結果を利用する.空間周波数マスキングゲイン*M_{sf}*を次のように定義 する.

$$M_{sf}(f_n, f_l) = a_m \left(e^{-f_k^2} - e^{-4f_k^2} \right)^2 + 1$$

$$f_k(f_n, f_l) = k \cdot f_n / f_l + 1$$
(3.29)

ここでa_m = 4.4803, k = 0.6798とした.(図 3-21(E))

・ 評価指標算出(PCN)

前述の色ノイズの見え(P_N), CSF 特性(G_{sf}), 空間周波数マスキング(M_{sf})を元に客 観評価指標(PCN)を得る.(図 3-21(F))

$$PCN = P_N \cdot G_{sf} / M_{sf} \tag{3.30}$$

また,比較に用いる PSNR は,

$$PSNR = 20 \cdot \log\left(100/\sqrt{dL^2 + dC^2}\right) \tag{3.31}$$

と定義した値を利用する.(図 3-21(G))

図 3-21 画質評価モデル

図 3-22 画像の局所空間周波数

3.3.6. 画質の定量評価

画像に対して付加した色ノイズの見えを主観評価実験によって求めた.

・ 実験手順

実験は図 3-23 に示すように、 色ノイズを付加した測定対象となる画像(ターゲット画像)と 被験者がノイズの標準偏差を制御できるコントロール画像をモニター画面に表示して実施した. ターゲット画像とコントロール画像の元画像は同一である. 被験者はターゲット画像に対するノ イズの見えとコントロール画像のノイズの見えが同等になるように、コントロール画像の色ノイズ 標準偏差を調整する. 調整したコントロール画像のノイズの標準偏差をターゲット画像に対す る知覚ノイズレベル(ノイズの見え)とする. コントロール画像のノイズモデルは VecC であり、 色 相で 0 度方向のノイズとする.

図 3-23 主観評価実験

実験環境

実験はキャリブレーションした液晶モニター(Nanao CG241W)を用い, sRGB 環境で実施 した. 被験者は40cm離れたところからモニターを観察する. この条件でのノイズの空間周波数 は 13[cpd]である. 被験者は 20~30 歳代の 12 名であり, 男性 11 名, 女性 1 名である. 使用し た画像はLIVE データベース[2], [65], [87]から取得した 29 枚の画像に対し, 4 種類のノイズモ デル(σ_{G} = 12)によって生成したノイズを付加した画像である. 画像はランダムな順序で表示 する. 得られる評価値は 12[名] x 4[ノイズモデル] x 29[画像] = 1392 個である.

図 3-24 使用画像(LIVE DB)

3.3.7. 画質の主観評価値と評価指標

主観評価実験の結果を以下に示す.

・ ノイズモデル依存性

主観評価実験結果および客観評価指標を用いてノイズモデル毎の特徴を表した結 果を図 3-25 に示す.横軸はノイズモデル,縦軸は各評価指標に対する評価値を表し, 評価値は値が小さいほどノイズが見えにくいことを示す.主観評価値のエラーバーは被 験者のばらつきと画像によるばらつきを合わせた標準偏差を示す.客観評価値(PCN, S-CIELAB, PSNR)のエラーバーは画像間のばらつきによる標準偏差を表す.主観評価値 からわかるように VecC2, VecCL, VecC, VecCS の順にノイズの視覚への影響が小さいこ とがわかる.PSNR は VecC2 と VecC2 以外で約 2[dB]程度の差があり,生成したノイズ の標準偏差を反映している.一方, VecC2 以外では PSNR の変化は小さく,主観評価値 を反映できていない.

図 3-25 知覚ノイズレベルのノイズモデル依存性

· 画像依存性

図 3-26 は画像に依存した主観評価値の変化を示す.エラーバーは被験者間のばら つき(標準偏差)を表す.画像毎の主観評価値はばらつきが大きいものの,ノイズモデ ル毎の違いは識別できることがわかる.図 3-27 は客観評価値(PCN)の画像依存性を示 す.PCN も主観評価同様,画像毎に大きく値が異なっているが,全体としてノイズモ デル毎の違いを示している.図 3-28 は評価モデル毎に評価値を正規化した,それぞれ の主観,客観評価値における画像依存性を表しているが,画像毎の共通な特徴を見つけ ることはできない.

図 3-27 客観評価値 (PCN)の画像依存性

図 3-28 VecC ノイズに対する各評価値の画像依存性

主観評価実験結果の個人性

図 3-29 は個人性を表す. 被験者によってノイズモデル毎に表現する値が異なって いるが,ノイズモデル毎の相対的な違いは個人によって順序が大きく入れ替わることは なかった. 視覚特性に依存した VecCL, VecCS のみでなく, VecC2 も被験者に依存して 変化していることがわかる.

図 3-29 主観評価値の個人性

3.3.8.考察

主観評価値,客観評価値ともに画像の変動に比べ,ノイズモデル間の違いの方が大 きく,被験者平均主観評価値の画像間標準偏差が 0.34 なのに対して,画像毎のノイズ モデル平均主観評価値の被験者間標準偏差は 0.94 であった.主観評価値が画像によっ て大きくばらつきを生じたのは主にオブジェクト依存性を含む誘目性が関連している と考えられる.また,図 3-28 で PSNR に画像依存性があるのは色域境界付近で定義通 りノイズを生成できない領域があるためと考えられる.

図 3-25 において, PSNR が主観評価値と一致しなかったのは,生成したノイズの 特性に依存する.VecCL, VecC, VecCS が同じノイズの標準偏差において見やすいノイズ, 見えにくいノイズを生成していたため, PSNR で主観評価値を表すことができなかった のは当然の結果である.また,このことは一般画像においても式(2.22)で表す色ノイズ の見え特性が成り立つことを意味する.

PCN と S-CIELAB の評価値の違いを画像内の領域で観察すると,図 3-30 のような 違いがある.図 3-30 上を比較すると評価値の大きな領域が異なっており,図 3-30 下 の拡大図を見ると, PCN の方が空間的に細かく評価されていることがわかる.いずれ の評価モデルも CSF 特性を考慮しているが,空間周波数の扱いが異なるため特徴が異 なると考えられる.PCN がおおむね視覚を反映して見えるが,詳細については今後の 課題である.

図 3-30 PCN(左上,下中央)と S-CIELAB(右上,右下)

3.3.9.まとめ

今回検討した画質評価指標(PCN)では色ノイズの見えに加え,画像の空間周波数と マスキングを考慮した評価モデルを用いた.PCN と S-CIELAB はいずれも CSF を考慮 した評価値であるが,空間周波数の扱いが異なることから,画像依存性を含め,その特 性は異なるものとなった.PCN は PSNR や S-CIELAB と異なり,生成したノイズモデ ルの主観評価値を反映することができた.

また, VecCL, VecCS が主観評価値を反映できることを示し,一般画像においても 式(2.22)で表す色ノイズの見え特性が成り立つことを示した.

画質評価指標としては SSIM など, すでに応用が進んでいる評価モデルもある.ノ イズの視知覚特性は色差に代わる形で応用することが可能であることから,さらなる応 用が考えられる.画像に対する主観評価値の高精度な測定方法の検討,多様なノイズモ デルでの検証,評価モデルの更新が今後の課題である.

4. 結論

4.1.まとめ

本研究ではノイズの見えを説明する視知覚モデルについて議論するとともにノイ ズの見えの定量化を行った.これまでノイズの見えの定量化は応用上非常に有用である にもかかわらず,ノイズの見えに関しての詳細な研究は多くない.本研究ではノイズの 見えの視知覚特性について研究し,色相方向に依存した色ノイズの見え(知覚ノイズレ ベル)が瓢箪形状となることを明らかにした.また,この視知覚特性を表現する視知覚 モデルを構築した.ノイズの見えが示す瓢箪形状を再現するためにはS錐体に対するノ イズ感度特性を低下させることで表現できることを視知覚モデルによって明らかにし た.さらに,得られたノイズの見え特性が応用可能であることを示すことで,ノイズの 見えとその応用に関する基礎を築いた.

第2章では,主観的なノイズの見えを定量化するために,比較法を用いた主観評価 実験によって,各種条件下における色ノイズの見えを詳細に定量化した.また,色ノイ ズの見えを表現する視知覚モデルとして,眼球レベルでは軸上色収差モデルと錐体密度 分布を考慮し,視神経処理レベルでは多段階モデルを元にしたモデルを考慮することで, 色ノイズの見えを説明できることを示唆した.

2.1 節では演繹的および帰納的な色ノイズの視知覚モデルを構築した.また,色ノ イズの演繹的な視知覚モデルを主観評価実験によって得られた色ノイズの視知覚特性 を用いて評価した.演繹的な視知覚モデルによる色ノイズ知覚の推測および実験結果に 基づく帰納的な色ノイズの視知覚モデルはともに色方向を持ったベクトル色ノイズに 対して瓢箪形状となった.色相方向依存性は空間周波数の影響をほとんど受けておらず, 背景色依存性,空間周波数依存性について,同様の瓢箪形状の特徴を持つことがわかっ た.また,演繹的な視知覚モデルの構築で用いた眼球の軸上色収差は色ノイズの知覚に 影響していると考えられ,特に青色のコントラスト低下が大きい.しかしながら,色相 方向依存性は空間周波数の影響をほとんど受けていなかったことから,低周波において も青色の低コントラストとなることが推測される.これにはS錐体の網膜内における密 度が低いことが関連していると考えられる. 色ノイズの色相方向依存性が瓢箪形状となったが,これは色差の逆数を考慮することで説明できることを示した.このことは色差が,軸上色収差の影響や低いS錐体密度の影響を受けていることを示唆している.

2.2 節ではノイズ感度特性を定義し、ノイズの見えに関する空間周波数特性につい て議論した.ノイズ感度特性を説明する視知覚モデルとして多段階モデルがあげられる. しかしながら、多段階モデルは色と輝度の CSF 特性をうまく表しているが、輝度ノイ ズで特定の背景色でのみバンドパス特性を示したことについては直接説明することが できない.そのため、多段階モデルを元にした拡張が必要と考えられる.

輝度ノイズは特定の背景色(グレーと黄色)で強いバンドパス特性を示し,他の背 景色の輝度ノイズはローパス特性を示した.色ノイズに関してはどの背景色についても ローパス特性を示した.また,輝度ノイズは色ノイズに比べて,背景色,空間解像度に 依存して1~100倍知覚しやすいことがわかった.このことは画像処理において有用 な知見である.また,個人性に関して輝度ノイズは非常に個人差が大きかった.これは 被験者の視力に依存すると考えられる.一方,色ノイズの個人性が小さかったのは視覚 系の情報処理において空間的なローパス特性が働き,視力の影響を受けにくいと考えら れる.

3.1 節ではノイズの見えにおける輝度ノイズと色ノイズの関係について検討した. ノイズモデルにカメラノイズモデルを用い,主観評価実験によってノイズの見えに関す る特性を測定した.その結果,ノイズの見えは以下の特徴を持つことがわかった.

(a) 同じ標準偏差の輝度ノイズ,色ノイズの見えを比較すると,輝度ノイズは 色ノイズの約8倍強く知覚される.

(b)カメラノイズの標準偏差は輝度成分よりも色成分の方が大きいにもかかわらず, その見えは色成分よりも輝度成分の方が大きい.

これらのことから, ノイズの見えを予想する際には,単純にノイズの分散を用いるので はなく,輝度,色成分に分離して取り扱う必要がある.デジタルカメラの画像処理にお いて,ノイズ軽減処理を行う際には,デモザイク前のセンサーデータに対して処理する ことで,輝度ノイズの見えを軽減できると考えられる.ノイズの見えは人の視覚特性と 大きく関連する. 3.2 節では視覚特性を利用した画像処理である,視覚的画像処理の一例として,ノ イズ低減について議論した.視覚特性にはノイズ感度特性と背景色依存性を利用した. ノイズ低減手法は二種類の画像処理からできている.一つはバイラテラルフィルターを 改変したものであり,もう一つはランダムサンプリングである.ランダムサンプリング にノイズの視知覚特性を組み込むことで,ノイズの見えを軽減した.バイラテラルフィ ルターのような平滑化では色ノイズが低周波側へ移動し,かえって色ノイズが見やすく なる場合がある.一方,ランダムサンプリングでは低周波ノイズを,ノイズが見えにく い色方向の高周波ノイズに変換することで,ノイズ低減することが可能であることを示 した.このノイズ低減は応用の一例であり,さらに有効な方法があると考えられる.本 研究では視覚特性の活用が有効であることを示した.

3.3 節では,画質評価指標に色ノイズの見え特性を応用する手法を示した.また, 一般画像においても2章で示した色ノイズの見え特性が成り立つことを示した.

画質評価指標(PCN)には色ノイズの見えに加え,画像の空間周波数とマスキングを 考慮した評価モデルを用いた.PCN と S-CIELAB はいずれも CSF を考慮した評価値で あるが,空間周波数の扱いが異なることから,画像依存性を含め,その特性は異なるも のとなった.PCN は PSNR や S-CIELAB と異なり,生成したノイズモデルの主観評価 値を反映することができた.また,VecCL,VecCS が主観評価値を反映できることを示 し,一般画像においても式(2.22)で表す色ノイズの見え特性が成り立つことを示した.

画質評価指標としては SSIM など, すでに応用が進んでいる評価モデルもある.ノ イズの視知覚特性は色差に代わる形で応用することが可能であることから,さらなる応 用が考えられる.

4.2.今後の展望

本研究では色ノイズの視知覚モデルを構築し、この視知覚モデルを主観評価実験に よって得られた色ノイズの視知覚特性を用いて評価した.視知覚モデルで用いた眼球の 色収差が色ノイズの知覚に影響していることが示唆されたが、S 錐体の網膜上の密度も 関連していると考えられる.他の視覚特性との関連を含め、視知覚モデルの精度向上に 関しては今後の課題である.ノイズ感度特性に関する研究では、多段階モデルを元にし た拡張することで、輝度ノイズの背景色依存性を説明することができることが示唆され たが、その具体的な拡張についてはさらなる実験とともに検討が必要と考えられる.

得られた帰納的な色ノイズの視知覚モデルは画像処理[33],画質評価指標,画像設

計への応用が可能である .本研究では画像処理に対してノイズ軽減への応用例を示した . 画質評価指標などへの色ノイズの視知覚特性の応用に際しては ,縦横縞の知覚特性の違 いやマスキング効果など他の知覚特性を合わせて考慮する必要がある .色ノイズの見え を考慮した画質評価指標を提案したが ,この評価指標の効果については検証が必要であ る .より高次な主観評価が必要な自然画像に対する評価指標の構築などの具体的な応用 方法については今後の課題である .

本研究では主に網膜や LGN における初期視覚情報処理を対象として,主観評価実 験を行い,色ノイズの知覚特性を得た.未だ解明できない部分について今後も引き続き 研究を続けるとともに,今後はより高次な質感の定量化や質感再現など,より高度な視 覚情報処理についても研究を行っていきたい.人に依存した好みや人々に共通な感覚の 特徴はどこにあるのかを解析することで,知覚情報処理についての知見を得ることを考 えている.

視覚特性の画像処理への応用は私にとって直近の課題である.より高画質なデジタ ルカメラ,医用画像を扱うことができるよう,視覚特性を活かした情報処理を行いたい. また,さらに詳細に視覚系の仕組みを明らかにすることで緑内障などの病変を早期に発 見する手法の開発に役立てていきたい.

5. 謝辞

本研究を行うにあたり,終始ご指導を賜った小谷一孔 准教授に深謝いたします. 本研究を執筆するにあたり,草稿の段階から貴重なご助言及びご指導を賜りました 北陸先端科学技術大学院大学 情報科学研究科 党建武 教授,吉高淳夫 准教授,田中宏 和 准教授,千葉大学大学院 融合科学研究科 矢口博久 教授に心より感謝いたします.

本研究を行うにあたり多大なご助言及びご指導をいただいた小寺イメージング研 究室 小寺 宏曄先生,産業技術総合研究所 坂本 隆先生,千葉大学 富永昌治教授,千 葉大学 堀内隆彦 教授,日本色彩学会 辻埜孝之様に深く感謝いたします.また,研究 を始めるにあたり視覚特性及びS-CIELABに関して貴重なご助言をいただいたStanford 大学 Brian Wandell教授に感謝いたします.学会発表論文執筆に際し,ご指導を賜りま した北陸先端科学技術大学 先端領域基礎教育院 Jean-Christophe Terrillon准教授, Mark G. Elwell講師, Dubhgan Hinchey講師に感謝いたします.

副テーマに関しご指導を賜りました北陸先端科学技術大学院大学 情報科学研究科 浅野哲夫 教授に感謝いたします.

本研究に際してLCDモニターの発色と分光特性について貴重な知見をいただいた中 尾政史氏(株式会社ナナオ(当時))に感謝いたします.また,主観評価実験に際し多大 な時間を費やしていただいた,小笠原氏,大森氏,水嶋氏,長船氏,塗谷氏をはじめ, 小谷研究室の学生の方々,高園氏とそのご友人の方々に深く感謝いたします.同様に評 価実験にも協力いただき、日頃よりお気遣いいただいた庄原家の皆様に感謝いたします。

学会発表にあたり助成いただいたIEEE Signal Processing Society (ICIP2010),日本学術振興会 (ICIP2011),電気通信普及財団 (AIC2012)に深く感謝いたします.

また,社会人として研究を行う機会を与えていただいた同僚,諸先輩方に御礼申し 上げます.

最後に,研究を行うにあたり日々支えていただき,多くの時間を共に学び、研鑽した妻,律智子に深く感謝いたします。

119

6.参考文献

- X. Zhang and B. A. Wandell, "A spatial extension of CIELAB for digital color image reproduction," *Journal of the Society for Information Display*, vol. 5, no. 1, p. 61, 1997.
- [2] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity.," *IEEE Transactions on Image Processing*, vol. 13, no. 4, pp. 600–612, Apr. 2004.
- [3] K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, "Compressive Light Field Photography Using Overcomplete Dictionaries and Optimized Projections," *ACM Trans. Graph.*, vol. 32, no. 4, pp. 46:1–46:12, 2013.
- M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, "Single-Pixel Imaging via Compressive Sampling," *Signal Processing Magazine, IEEE*, vol. 25, no. 2, pp. 83–91, 2008.
- [5] A. Cheddad, J. Condell, K. Curran, and P. M. Kevitt, "Digital image steganography: Survey and analysis of current methods," *Signal Processing*, vol. 90, no. 3, pp. 727–752, 2010.
- [6] H. Kolb, R. Nelson, E. Fernandez, and B. Jones, "Webvision: The Organization of the Retina and Visual System," 2011. [Online]. Available: http://webvision.med.utah.edu/book/. [Accessed: 08-Feb-2013].
- [7] A. B. Watson and J. I. Yellott, "A unified formula for light-adapted pupil size.," *Journal of vision*, vol. 12, no. 10, p. 12, Jan. 2012.
- [8] R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," *Journal of the Optical Society of America A*, vol. 2, no. 8, p. 1273, Aug. 1985.

- [9] J. Schuman, C. Puliafito, and J. Fujimoto, *Optical coherence tomography of ocular diseases*, 2 edition. Slack Incorporated, 2004.
- [10] M. Balasubramanian, C. Bowd, G. Vizzeri, R. N. Weinreb, and L. M. Zangwill, "Effect of image quality on tissue thickness measurements obtained with spectral domain-optical coherence tomography," *Opt. Express*, vol. 17, no. 5, pp. 4019–4036, 2009.
- [11] S. G. Solomon and P. Lennie, "The machinery of colour vision.," *Nature reviews. Neuroscience*, vol. 8, no. 4, pp. 276–86, Apr. 2007.
- [12] R. T. Eskew, "Higher order color mechanisms: a critical review.," Vision Research, vol. 49, no. 22, pp. 2686–704, Nov. 2009.
- [13] T. Hansen and K. R. Gegenfurtner, "Higher level chromatic mechanisms for image segmentation.," *Journal of vision*, vol. 6, no. 3, pp. 239–59, Jan. 2006.
- [14] A. M. Derrington, J. Krauskopf, and P. Lennie, "Chromatic mechanisms in lateral geniculate nucleus of macaque.," *The Journal of physiology*, vol. 357, pp. 241– 65, Dec. 1984.
- [15] B. R. Conway and M. S. Livingstone, "Spatial and temporal properties of cone signals in alert macaque primary visual cortex.," *The Journal of Neuroscience*, vol. 26, no. 42, pp. 10826–46, Oct. 2006.
- [16] C. R. Ingling and B. Huong-Peng-Tsou, "Orthogonal combination of the three visual channels," *Vision Research*, vol. 17, no. 9, pp. 1075–1082, 1977.
- [17] R. L. De Valois and K. K. De Valois, "A multi-stage color model," Vision Research, vol. 33, no. 8, pp. 1053-1065, May 1993.
- [18] K. T. Mullen and M. A. Losada, "Evidence for separate pathways for color and luminance detection mechanisms," *Journal of the Optical Society of America. A*, vol. 11, no. 12, pp. 3136–51, Dec. 1994.
- [19] B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, "Advances in color science: from retina to behavior.," *The*

Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 30, no. 45, pp. 14955–63, Nov. 2010.

- [20] A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye.," *Nature*, vol. 397, no. 6719, pp. 520-2, Feb. 1999.
- [21] A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, "Packing arrangement of the three cone classes in primate retina," *Vision Research*, vol. 41, no. 10–11, pp. 1291–1306, 2001.
- [22] D. A. Dartt, *Encyclopedia of the Eye*, 1st ed. Academic Press, 2010, p. 2344.
- [23] D. M. Dacey, "Parallel pathways for spectral coding in primate retina.," Annual review of neuroscience, vol. 23, pp. 743-75, Jan. 2000.
- [24] D. M. Dacey, B. B. Peterson, F. R. Robinson, and P. D. Gamlin, "Fireworks in the Primate Retina: In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types," *Neuron*, vol. 37, no. 1, pp. 15–27, 2003.
- [25] T. N. Wiesel and D. H. Hubel, "Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey," *J Neurophysiol*, vol. 29, no. 6, pp. 1115– 1156, Nov. 1966.
- [26] T. Hansen and K. R. Gegenfurtner, "Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space.," *Journal of vision*, vol. 13, no. 1, Jan. 2013.
- [27] 小林光夫, "'均等色空間(II): CIELUV と色差'(表色系 第 7 回),"日本色彩学 会誌, vol. 26, no. 3, pp. 196-204, Sep. 2002.
- [28] M. R. Luo, G. Cui, and B. Rigg, "The development of the CIE 2000 colourdifference formula: CIEDE2000," *Color Research & Application*, vol. 26, no. 5, pp. 340–350, Oct. 2001.
- [29] N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, "The CIECAM02 Color Appearance Model," in *IS&T/SID 10 th Color Imaging Conference*, 2002, pp. 23–27.

- [30] M. Fairchild and G. Johnson, "Meet iCAM: A next-generation color appearance model," in *IS&T/SID 10 th Color Imaging Conference*, 2002, pp. 33-38.
- [31] M. Anderson, M. Stokes, R. Motta, and S. Chandrasekar, "A Standard Default Color Space for the Internet - sRGB," 1996. [Online]. Available: http://www.w3.org/Graphics/Color/sRGB.html. [Accessed: 09-Jun-2013].
- [32] D. Purves, A. Shimpi, and R. B. Lotto, "An Empirical Explanation of the Cornsweet Effect," *The Journal of Neuroscience*, vol. 19, no. 19, pp. 8542– 8551, Oct. 1999.
- [33] K. Barnard, "Practical colour constancy," Simon Fraser University, 1999.
- [34] E. H. Land and J. J. McCann, "Lightness and Retinex Theory," *Journal of the Optical Society of America*, vol. 61, pp. 1–11, 1971.
- [35] D. J. Jobson, Z. Rahman, and G. A. Woodell, "A multiscale retinex for bridging the gap between color images and the human observation of scenes.," *IEEE transactions on image processing : a publication of the IEEE Signal Processing Society*, vol. 6, no. 7, pp. 965–76, Jan. 1997.
- [36] L. Meylan and S. Susstrunk, "High dynamic range image rendering with a retinex-based adaptive filter," *Image Processing, IEEE Transactions on*, vol. 15, no. 9, pp. 2820-2830, 2006.
- [37] A. K. Jain and F. Farrokhnia, "Unsupervised texture segmentation using Gabor filters," *Pattern Recognition*, vol. 24, no. 12, pp. 1167–1186, 1991.
- [38] J.-S. Lee, "Digital image smoothing and the sigma filter," *Computer Vision Graphics and Image Processing*, vol. 24, no. 2, pp. 255–269, 1983.
- [39] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 839–846, 1998.
- [40] S. G. Chang, B. Y. Bin Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression," *IEEE Transactions on Image Processing*, vol. 9, no. 9, pp. 1532–1546, 2000.

- [41] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising with block-matching and 3D filtering," *Proceedings of SPIE*, vol. 6064, no. 30, pp. 606414-606414-12, 2006.
- [42] K. Hirakawa and T. W. Parks, "Joint demosaicing and denoising," in *IEEE Transactions on Image Processing*, 2006, vol. 15, no. 8, pp. 2146–2157.
- [43] ISO/TC42, ISO 15739:2003, Photography Electronic still-picture imaging -Noise measurements. American National Standards Institute (ANSI), 2003.
- [44] 鬼頭伸一郎 and 洪博哲, "ISO 15739に対応したDSC/イズ評価ツールの 開発," *Konika Minolta Technol Rep*, vol. 1, no. 2, pp. 193-196, Apr. 2005.
- [45] K. T. Mullen, "The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings," *The Journal of Physiology*, vol. 359, no. 1, pp. 381-400, 1985.
- [46] C.-H. Chou and K.-C. Liu, "A Fidelity Metric for Assessing Visual Quality of Color Images," in *Proceedings of 16th International Conference on Computer Communications and Networks, 2007. ICCCN 2007.*, 2007, pp. 1154–1159.
- [47] J. LEE and T. HORIUCHI, "Image Quality Assessment for Color Halftone Images Based on Color Structural Similarity," *IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences*, vol. E91–A, no. 6, pp. 1392–1399, Jun. 2008.
- [48] X. Z. X. Zhao, M. G. Reyes, T. N. Pappas, and D. L. Neuhoff, "Structural texture similarity metrics for retrieval applications," *15th IEEE International Conference on Image Processing*, vol. 17, no. 8. IEEE, pp. 1196–1199, 2008.
- [49] S. S. Hemami and A. R. Reibman, "No-reference image and video quality estimation: Applications and human-motivated design," *Signal Processing Image Communication*, vol. 25, no. 7, pp. 469–481, 2010.
- [50] G. M. Johnson and M. D. Fairchild, "The effect of opponent noise on image quality," in *Proceedings of SPIE*, 2005, vol. 5668, pp. 82-89.

- [51] B. W. Kolpatzik and C. A. Bouman, "Optimized Error Diffusion for High Quality Image Display," *Journal of Electronic Imaging*, vol. 1, pp. 277–292, 1992.
- [52] F. Giulianini and R. T. Eskew, "Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms.," *Vision Research*, vol. 38, no. 24, pp. 3913–3926, 1998.
- [53] R. T. Eskew, J. R. Newton, and F. Giulianini, "Chromatic detection and discrimination analyzed by a Bayesian classifier," *Vision Research*, vol. 41, no. 7, pp. 893–909, Mar. 2001.
- [54] X. Song, G. Johnson, and M. Fairchild, "Minimizing the perception of chromatic noise in digital images," *IS&T/SID 12th Color Imaging ···*, no. M, 2004.
- [55] B. G. E. P. and M. Mervin E., "A note on the generation of random normal deviates," *The Annals of Mathematical Statistics*, 1958.
- [56] M. Matsumoto and T. Nishimura, "Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator," ACM Transactions on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3-30, Jan. 1998.
- [57] M. Saito and M. Matsumoto, "A PRNG Specialized in Double Precision Floating Point Numbers Using an Affine Transition," in in *Monte Carlo and Quasi-Monte Carlo Methods 2008 SE - 38*, P. L' Ecuyer and A. B. Owen, Eds. Springer Berlin Heidelberg, 2009, pp. 589-602.
- [58] D. H. Marimont and B. a. Wandell, "Matching color images: the effects of axial chromatic aberration," *Journal of the Optical Society of America. A*, vol. 11, no. 12, p. 3113, Dec. 1994.
- [59] A. Stockman and L. T. Sharpe, "The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype.," *Vision Research*, vol. 40, no. 13, pp. 1711–1737, 2000.
- [60] W. G. Kuo and M. R. Luo, "Methods for quantifying metamerism Part 1-Visual assessment," *Journal of the Society of Dyers and Colourists*, vol. 112, no. 11, pp. 312-320, Oct. 2008.

- [61] H. Xu, H. Yaguchi, and S. Shioiri, "Correlation between visual and colorimetric scales ranging from threshold to large color difference," *Color Research & Application*, vol. 27, no. 5, pp. 349–359, 2002.
- [62] A. R. Robertson, "The CIE 1976 color-difference formulae," *Color Research & Application*, vol. 2, pp. 7–11, 1977.
- [63] D. L. Macadam, "Visual Sensitivities to Color Differences in Daylight," *Journal of the Optical Society of America*, vol. 32, no. 5, p. 247, May 1942.
- [64] A. B. Poirson and B. A. Wandell, "Appearance of colored patterns: pattern-color separability," *Journal of the Optical Society of America. A*, vol. 10, no. 12, pp. 2458-2470, Dec. 1993.
- [65] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, "A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms," *IEEE Transactions on Image Processing*, vol. 15, no. 11, pp. 3440–3451, Nov. 2006.
- [66] P. G. J. Barten, *Contrast sensitivity of the human eye and its effects on image quality*, vol. 52, no. 3. SPIE-International Society for Optical Engineering, 1999, p. 208.
- [67] F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings.," *The Journal of physiology*, vol. 197, no. 3, pp. 551–66, Aug. 1968.
- [68] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, "An Iterative Regularization Method for Total Variation-Based Image Restoration," *Multiscale Modeling Simulation*, vol. 4, no. 2, p. 460, 2005.
- [69] K. Huang, Z. Wu, G. S. K. Fung, and F. H. Y. Chan, "Color image denoising with wavelet thresholding based on human visual system model," *Signal Processing: Image Communication*, vol. 20, no. 2, pp. 115–127, Feb. 2005.
- [70] B. E. Bayer, "Color imaging array," 39710651976.
- [71] J. J. F. Hamilton and J. J. E. Adams, "Adaptive color plan interpolation in single sensor color electronic camera," 56297341995.

- [72] R. Kimmel, "Demosaicing: image reconstruction from color CCD samples," IEEE Transactions on Image Processing, vol. 8, no. 9, pp. 1221–1228, 1999.
- [73] L. Zhang and D. Zhang, "A joint demosaicking-zooming scheme for single chip digital color cameras," *Computer Vision and Image Understanding*, vol. 107, no. 1-2, pp. 14-25, Jul. 2007.
- [74] N.-X. Lian, L. Chang, Y.-P. Tan, and V. Zagorodnov, "Adaptive Filtering for Color Filter Array Demosaicking," *IEEE Transactions on Image Processing*, vol. 16, no. 10, pp. 2515–2525, Oct. 2007.
- [75] X. Li, B. Gunturk, and L. Zhang, "Image demosaicing: A systematic survey," *Proc. of SPIE*, 2008.
- [76] R. D. Gow, D. Renshaw, K. Findlater, L. Grant, S. J. McLeod, J. Hart, and R. L. Nicol, "A Comprehensive Tool for Modeling CMOS Image-Sensor-Noise Performance," *Electron Devices, IEEE Transactions on*, vol. 54, no. 6, pp. 1321–1329, 2007.
- [77] EMVA, "EMVA Standard 1288 Standard for Characterization of Image Sensors and Cameras Release 3.0," 2010. [Online]. Available: http://www.emva.org/. [Accessed: 10-Jun-2013].
- [78] H. T. Boyd, H. Tian, B. Fowler, and A. El Gamal, "Analysis of Temporal Noise in CMOS Photodiode Active Pixel Sensor," *IEEE Journal of Solid-State Circuits*, vol. 36, pp. 92–101, 2001.
- [79] K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, "A Technique for Evaluation of CCD Video-Camera Noise," *Circuits and Systems for Video Technology, IEEE Transactions on*, vol. 18, no. 2, pp. 280–284, 2008.
- [80] K. Donner, "Noise and the absolute thresholds of cone and rod vision," Vision Research, vol. 32, no. 5, pp. 853–866, May 1992.
- [81] 池田 栄一郎, "色ノイズ低減回路及びそれを用いた撮像装置," 特開2006-109416(P2006-109416A)2004.

- [82] R. Ulichney, "A Review of Halftoning Techniques," SPIE, vol. 3963, pp. 378–391, 2000.
- [83] Z. W. Z. Wang and A. C. Bovik, "Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures," *IEEE Signal Processing Magazine*, vol. 26, no. 1, IEEE, pp. 98–117, 2009.
- [84] X. Zhang, W. Lin, and P. Xue, "Just-noticeable difference estimation with pixels in images," *Journal of Visual Communication and Image Representation*, vol. 19, no. 1, pp. 30–41, Jan. 2008.
- [85] 安川慎一, 小泉真季, and 羽石秀昭, "S-CIELAB を用いたカラー画像の色再 現性評価方法,"日本写真学会誌, vol. 70, May 2007.
- [86] C. Blakemore and F. W. Campbell, "On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images," *The Journal of Physiology*, vol. 203, no. 1, pp. 237–260, 1969.
- [87] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik, "LIVE Image Quality Assessment Database Release 2," 2009. .

7.本研究に関する発表論文

7.1. 論文(査読付)

• 庄原誠,小谷一孔,"ベクトル色ノイズの視知覚特性:背景色,色方向,空間周 波数依存性",日本色彩学会誌,vol.36(2) pp.95-106, 2012

7.2.国際会議(査読付)

• Makoto Shohara and Kazunori Kotani, " The Visual Perception Sensitivity for Achromatic Noise and Chromatic Noise", IEEE International Conference on Image Processing (ICIP) 2013, (in press)

 Makoto Shohara and Kazunori Kotani, "The image quality index in consideration of the visual characteristics for a color noise", The International Colour Association (AIC) AIC2012 Midterm Meeting, 2012

 Makoto Shohara and Kazunori Kotani, "Modeling and application of color noise perception dependent on background color and spatial frequency", IEEE International Conference on Image Processing (ICIP) 2011, pp.1689-1692, Sep. 2011

• Makoto Shohara and Kazunori Kotani, "The Dependence of Visual Noise Perception on Background Color and Luminance.", 28th Picture Coding Symposium, Dec. 2010

• Makoto Shohara and Kazunori Kotani, "Measurement of Color Noise Perception.", IEEE International Conference on Image Processing (ICIP) 2010, pp. 3225-3238, Sep. 2010

7.3.国内学会

• 庄原誠,小谷一孔,"色ノイズの見え特性に基づく画質評価指標",日本色彩学会 視覚情報基礎研究会(CSAJ-SigFVI) 第14回研究発表会,Dec. 2012.

• 庄原誠,小谷一孔,"色ノイズの知覚特性と画像処理への応用",日本色彩学会 視覚情報基礎研究会(CSAJ-SigFVI)2010 年度 第3回研究発表会,pp.31-34, Mar. 2011.

• 庄原誠,小谷一孔,"S-CIELAB による知覚色ノイズの評価に関する研究",日本 色彩学会 視覚情報基礎研究会(CSAJ-SigFVI)2009 年度 第3回研究発表会, p-42-45, Dec.2009

• 庄原誠,小谷一孔,"ディスプレイ上のカラー画像に付加した色ノイズの視覚効果",第11回日本感性工学会大会(JSKE),1F3-6,Sep.2009