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Abstract

In this thesis, cooperative wireless communications are intensively investigated from
the perspective of exploiting correlations among multiple sources. The primary goal
is to create theoretical bases and establish practical coding frameworks for cooperative
wireless communications that exploit multi-dimensional correlations, and finally achieve
new paradigm shift in wireless communication system design. Particularly, we focus on
three representative problems to demonstrate the impact of the source correlations on
the performance of the cooperative wireless communication systems and how we can best
utilize the correlation knowledge among the distributed multiple sources.

Creation of the design concept and the algorithms of the conventional point-to-point
(P2P) systems are the basis for solving the problems arising in cooperative wireless com-
munications. Initially, the problem of transmitting binary Markov sources from a single
source to a single destination over wireless channels is studied. The achievable compres-
sion rate region is determined by the source coding theorem. The performance limits in
Additive White Gaussian Noise (AWGN) channels and outage probability in Rayleigh
fading channels are then derived. Furthermore, we propose a new joint source-channel
(JSC) decoding scheme, based on serial-concatenated convolutional codes (SCCC). By
combining the trellis diagrams of Markov source and the outer code, a super trellis is con-
structed to exploit the time-domain correlation of the source. A novel modified version
of Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is derived based on this super trellis and
used for decoding of the joint outer code.

Then, we investigate the problem of transmitting Markov source over a one-way single
relay channel, which consists of one source, one relay and one destination. The relay just
extracts and forwards the source information sequence to the destination, even though
the extracted information sequence may contain some errors. Therefore, the information
sent from the source and relay nodes are correlated, which is referred to as source-relay
correlation. The achievable compression rate region of this system is determined by the
Slepian-Wolf theorem. Lower bound of the performance limit in AWGN channels and
the outage probability in block Rayleigh fading channels can be derived based on the
achievable compression rate region. We also propose a distributed joint source-channel
(DJSC) decoding scheme to exploit the source-relay correlation and the source memory
simultaneously. In our proposed technique, a Log-likelihood Ratio (LLR) updating func-
tion, which is supported by the Slepian-Wolf theorem, is used to estimate and exploit the
source-relay correlation, while the JSC technique proposed above is used to exploit the
source memory.

Finally, we consider the problem of transmitting two correlated sources over orthogonal
multiple access relay channel (MARC). The MARC consists of two sources communicating
with a common destination with the assistance of a single relay. The role of the relay
is to perform network coding, followed by channel coding, to assist the two sources to
improve the probability of successful signal reception at the destination. In this case, the
achievable compression rate region is derived based on the theorem for source coding with
side information. The performance limits in AWGN channels and the outage probability
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in block Rayleigh fading channels are derived based on the achievable compression rate
region. Furthermore, we propose a novel joint source-channel-network (JSCN) decoding
technique to fully exploit the correlation between the two sources, as well as the benefit of
network coding. In our proposed technique, modified versions of boxplus operation that
takes into account the correlation between the two sources are derived for the relay and
source nodes.

In the three problems described above, the impacts of source correlations on the perfor-
mance of the corresponding systems are investigated through asymptotic analysis. The
convergence properties of the proposed JSC and DJSC techniques are verified through
Extrinsic Information Transfer (EXIT) chart analysis. Moreover, the effectiveness of the
proposed JSC, DJSC, and JSCN decoding techniques and the accuracy of the theoretical
analysis are verified through a series of simulations, including bit-error-rate (BER) per-
formance in AWGN channels and frame-error-rate (FER) performance in Rayleigh fading
channels.

Keywords: Cooperative wireless communications, source correlation, achievable com-
pression rate region, performance limit, outage probability, relay channel, multiple access
relay channel, Slepian-Wolf theorem, source coding with side information theorem
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Chapter 1

Introduction

In this chapter, we first of all briefly introduce the basic concept of cooperative wireless
communications. The motivation of the research on exploiting multi-dimensional cor-
relations among multiple sources in cooperative wireless communications and literature
review on existing results of some techniques used in this research is then presented. The
contribution of this research is also provided, which is followed by the organization of the
dissertation.

1.1 Cooperative Wireless Communications

The fundamental goal of future ubiquitous communications systems is to transmit infor-
mation data efficiently and reliably from multiple sources to multiple destinations over
wireless channels, where signal fading is the major channel impairment [1]. In order
to increase the data rate through spatial multiplexing and to mitigate the fading effect
through spatial diversity, multiple-input multiple-output (MIMO) techniques where mul-
tiple antennas are employed at the transmitter and/or receiver sides have been widely
acknowledged and adopted in various wireless standards [2]. There are a great number of
papers available on the performance limits, capacity analysis and practical coding schemes
on MIMO systems, and a survey on MIMO techniques can be found in [3]. However, in
future cellular networks or wireless sensor/mesh networks, multiple antennas may not be
supported due to the bandwidth, size and energy limitations. To overcome these limi-
tations, cooperative wireless communications have emerged as a promising technique for
future communication systems [4, 5].

Due to the broadcast nature of wireless signals, a signal transmitted from a source
node to a particular destination node in a wireless network can be “overheard” at the
neighboring nodes. These neighboring nodes can process signals they overhear and trans-
mit towards the destination. The basic idea of cooperative wireless communications is
to enhance power and spectrum efficiencies and improve communication reliability, by
allowing wireless nodes in a wireless network to overhear and help the information trans-
mission of each other. These neighboring nodes that overhear and help in information
transmission are usually referred to as relays (or partners, helpers). It is easily to identify
that, in cooperative wireless communications, multiple nodes in a wireless network form a
virtual multiple antenna system by sharing the single antenna of each node [6]. Therefore,
spatial diversity of the MIMO techniques can be achieved by allowing node cooperation
in cooperative wireless communications. Moreover, compared with MIMO techniques,

1



cooperative wireless communications is advantageous in terms of deployment flexibility
and hardware feasibility [7].

The basic idea of cooperative wireless communications can be traced back to relay
channel introduced by Van der Meulen [8] in 1970s, where a three terminal relay channel is
investigated. Shortly after that, capacity of the relay networks was intensively investigated
by Cover and Gamal in [9], where the results constructed the theoretical basis for the
subsequent research work on cooperative communications. Since then, various cooperative
wireless communication schemes have been proposed to exploit the advantages in terms
of the capacity, diversity, the error rate, the outage probability, etc. [10].

Generally, there are two ways to achieve cooperation in a wireless network: (1) deploy
extra relay nodes to assist the communication between source nodes and their correspond-
ing destinations, (2) allow the nodes in the same wireless network to hep each other to
communicate with their corresponding destinations. Systems using these two ways of
operation are referred to as relay networks and cooperative networks, respectively [2]. In
relay networks, the only purpose of relay nodes is to forward the information sent from
the source nodes, therefore they do not have their own information. On the other hand, in
cooperative networks, each node acts as both a source node and a relay node at different
transmission phases. Beside this difference, as far as signal processing at relay is con-
cerned, there is no difference between the relay networks and the cooperative networks.
Therefore, in this thesis, we use the common terminology “cooperative wireless communi-
cations” to represent the general wireless communication system where node cooperation
is involved, including both the relay networks and the cooperative networks.

SNR

(dB)

SNR

(dB)

SD link

RD link

Figure 1.1: An example of a cooperative wireless communication system.

We demonstrate the basic concept of cooperative wireless communication by consid-
ering a simple example of relay system, shown in Fig. 1.1, where a source node S wants
to communicate with a destination node D with the help of a relay node R over wireless
channels. In the first time slot, S broadcasts its signal to both R and D, and at the second
time slot, R will forward the overheard signal to D. Thus D has two copies of the same
information. Because of the channel variation, the transmission fails when the channel
experiences a deep fade, i.e., when the instantaneous signal-to-noise ration (SNR) of the
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SD link falls below a certain threshold T , which is denoted by the gray region in Fig. 1.1.
However, if R can overhear the signals from S and send it to D, then the transmission
fails only if the instantaneous SNR of both SD and RD links fall below T , as shown in
Fig. 1.1. Hence, through cooperation between S and R, spatial diversity can be achieved,
by which the probability that the transmission fails is significantly reduced.

The relay protocol specifies the processing performed by the relay node upon its re-
ceived signals. In the above example, the relay node decodes and re-encodes the received
signal, then forwards the coded sequence to the destination node. However, the signal
processing at the relay node should not necessarily be decoding, re-encoding and for-
warding. Based on the operations at the relay node, there are several prominent relay
protocols [11], which are listed as follow:

• Amplify-and-Forward
Amplify-and-forward (AF) (also called scale-and-forward) is one of the simplest
relay protocols [12, 13]. For the AF protocol, each relay node simply scales its
received signal according to its power constraint and forwards the scaled signal to
the destination. The destination node make decision by properly combining signals
transmitted from the source and relay nodes, and thereby spatial diversity can be
achieved by the AF protocol. The major problem of the AF protocol is that the
noise at the relay node is also amplified. The outage probability and bit-error-rate
(BER) performance of the AF protocol is presented in [12] and the impact of relay
location on the system performance is investigated in [14]. It is shown in [14] that
when the relay node is located in the middle of the source and destination nodes,
optimum performance can be achieved.

• Compress-and-Forward
Compress-and-Forward (CF) (also called estimated-and-forward, or quantize-and-
forward) is another widely investigated protocol. For the CF protocol, the relay
node retransmits a quantized and compressed version of the received signal to the
destination node. Furthermore, the relay takes advantages of the statistical de-
pendence between the signal received at the relay node and that received at the
destination node. Although CF is not as popular as AF, some practical aspects of
CF can be found in [15–17], where the relay use Wyner-Ziv source coding [18] to
exploit side information at the destination.

• Decode-and-Forward
Decode-and-Forward (DF) has drawn more attention than AF and CF, and it is
well-studied among all the relay protocols. For the DF protocol, after receiving
signals transmitted from the source node, the relay node first decodes the received
signals and then re-encodes before transmitting it to the destination node. Therefore
additioned error protection to the original information can be provided. A lot of
practical implementations of the DF protocol have been proposed, using different
code families, such as convolutional code [19], Turbo codes [20–22] and low density
parity check (LDPC) codes [23, 24]. It is found that, when the channel quality of
the source-relay link is good, DF based cooperation scheme outperforms AF and
CF based schemes. However, AF and CF based cooperative schemes are more
advantageous if the source-relay link suffers from deep fade [7].
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The relay node can work in either full-duplex mode or half-duplex mode. Under
half-duplex constraint, the receiving and transmitting at the relay node are carried out
in different time slots. Due to its simplicity of implementation, half-duplex relaying is
assumed in a large number of existing works on cooperative wireless communications [21,
25–29]. However, the half-duplex relaying suffers from loss in bandwidth efficiency because
it requires resource partitioning for signal reception and transmission. To overcome the
drawback of half-duplex relaying, full-duplex relaying is considered in [30–34], where the
relay node receives signals from the source node and transmits signals to the destination
node at the same time and in the same frequency band. With full-duplex mode, higher
spectral efficiency can be achieved, at the price of extra hardware implementation and
increased energy consumption. Full-duplex relaying has been considered impractical in
the past due to the strong self-interference caused by the transmitter to its own receiver,
but recent advances on antenna technology and signal processing make it feasible [35].
Recently, a relay scheme that uses relay selection and half-duplex relays with buffers to
mimic full-duplex relaying is proposed in [36].

In cooperative wireless communications, the source and relay nodes can transmit
through either orthogonal channels or non-orthogonal channels [2]. In orthogonal trans-
missions, the signals transmitted from the source and relay nodes can be separated at
the destination node, thus there is no interference and the receiver processing is simple.
Some related works can be found in [37–44]. In non-orthogonal transmissions, the source
and relay nodes transmit to the destination node at the same time and the same fre-
quency. Hence, the signal received at the destination node is a combination of the signals
transmitted from the source and relay nodes. Some practical code designs for cooperative
wireless communications over non-orthogonal channels are proposed in [45–47]. Gener-
ally, they can achieve higher throughput than orthogonal channels. However, the choice
of orthogonal or non-orthogonal channels depends on both SNR and power allocation,
which are investigated in [48,49].

1.2 Motivations and Research Background

1.2.1 Motivations

Wireless sensor networks (WSNs) [50] made up of a great number of densely deployed low-
energy consuming wireless nodes (e.g. micro cameras and small relays) have attracted a lot
of attention recently, and its potential applications cover a vast area of human activities,
such as wireless video surveillance, environmental monitoring, health care system, and
many other possible applications [51]. An example of a simple WSN is depicted in Fig. 1.2,
where several wireless sensors are deployed in a forest area for monitoring. There are
several inherent properties within WSNs that make the problem interesting: (1) the
correlation exists between the data collected at the wireless nodes, (2) the wireless nodes
can exchange information to increase their efficiency or flexibility through cooperation,
(3) the wireless nodes have energy consumption limit, and hence their computational
capabilities are also limited. Therefore the signaling complexity as well as the transmitting
power has to be as low as possible.

The problem of optimal code design for WSNs that makes efficient use of the advantage
of correlation knowledge among sources as well as achieving spatial diversity through node
cooperation falls into the category of cooperative communication for correlated sources
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Figure 1.2: An example of a simple WSN.

[52–54]. It has been shown in [55] that the problem of transmitting correlated sources
over the cooperative networks involves the issues of joint source-channel (JSC) coding,
distributed source coding (DSC) [56] and network coding [57]. At the initial stage, JSC,
DSC and network coding were performed separately [55]. JSC and DSC exploits the
correlation among sources for efficient source compression while network coding provides
cooperative diversity for fading mitigation. However, it is well known that in practical
cooperative networks such as WSNs with limited complexity, separate design of source,
channel and network coding may not be optimal [58].

Recently, joint source-channel-network (JSCN) coding has emerged as a promising
technique for correlated sources transmission over the cooperative networks. This prob-
lem was originally investigated in [59], where a general network of discrete memoryless
channels (DMCs) with multiple relay nodes and a single sink node is considered. Later,
multicasting of correlated sources over a network of noiseless channels were considered
in [52], where error exponents are provided. Reference [53] provides theorems with their
proofs that can be used as a theoretical basis for solving the problem of network infor-
mation flow with correlated sources. Following the theoretical investigations described
above, some practical JSCN coding schemes have also been proposed [60–63]. A JSCN
coding scheme for bidirectional wireless relays based on fountain code is proposed in [62],
and JSCN coding schemes for multicasting are presented in [55,58,61].

However, there are still many open problems in cooperative wireless communications
exploiting multi-dimensional correlations among correlated sources, based on different
network topologies and cooperative strategies. In the next subsection, we provide brief
reviews on state-of-the-art technologies in JSC, DSC and network coding which are in-
volved in this research, respectively.
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1.2.2 Joint Source-Channel Coding

In conventional point-to-point (P2P) systems, source coding and channel coding are usu-
ally designed independently. The optimal design of conventional system has largely re-
lied on the design criteria supported by the Shannon’s separation theorem [64]. How-
ever, there are several impractical limitations while utilizing the separation theorem [65],
which prevent communication systems from achieving desired performance in practice.
As a consequence, JSC optimal design has drawn considerable attentions over the last
two decades [66–69].

In the majority of the approaches to JSC decoding, variable-length code (VLC) is
employed as source encoder and the implicit residual redundancy after source encoding
is additionally used for error correction in the decoding process. A common idea is to
represent the VLC as a symbol-level or bit-level trellis and decode it with maximum
a posteriori probability (MAP) algorithm by modifying the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [70, 71]. The extended work of this category is presented in [72–74],
where convolutional code (CC) is replaced by more powerful Turbo code. Quite recently,
Multiple Label Mapping (MLM) is investigated in [75] to eliminate the boundary problem
due to the variable length source coding, and the use of Burrows-Wheeler Transform
(BWT) is investigated in [76], both with the aim of achieving efficient JSC code design.

Instead of utilizing the residual redundancy after source encoding, there are several
techniques which focus on exploiting the memory structure of the source in the decoding
process directly. There are two advantageous points with this class of JSC design: (1) no
source encoding is needed and hence it can be employed in universal applications, while
it simplifies the encoder structure and reduces power consumption at the transmitter,
(2) the error correction capability of the system, as a whole, can further be improved.
An approach of combining Hidden Markov Model (HMM) with the Turbo code design
framework is presented in [77,78], while combining HMM in the framework of LDPC code
design in [79–81]. Besides HMM, Markov Chain (MC) is also used to describe the source
and combined with Turbo code, which is presented in [82].

1.2.3 Distributed Source Coding

Source coding is one of the most important signal processing component in communication
systems. In conventional source coding techniques, a single encoder or several encoders
collaborate with each other to exploit the redundancy of the source in order to perform
compression, which is usually referred to as centralized source coding [56]. However, the
advance of wireless sensor/mesh networks and ad-hoc networks brought new challenges to
the source coding problem: the source information to be compressed appears at several
separate terminals and it is not always feasible to communicate among these terminals.
The resulting source coding problem is often referred to as distributed source coding
(DSC) [83]. The first fundamental theory about DSC was established in Slepian and
Wolf’s pioneer work [84], where two correlated sources coding problem was considered.
Slepian and Wolf proved that as long as joint decoding is performed, separate encoding
can be as efficient as joint encoding for lossless compression, and the admissible rate region
for separate encoding is also derived. The first practical framework for distributed source
coding using syndromes (DISCUS) was introduced in [85]. Later on, many excellent
schemes for DSC were proposed, which are based on irregular repeat accumulate (IRA)
codes [86–88], Turbo codes [89,90] and LDPC codes [91–94].
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The DSC concept can be applied to relay system to achieve better performance. With
DF relaying, the information forwarded by the relay node is a replica of that transmit-
ted from the source node, therefore the performance of the relay system can be further
improved if signaling and coding at the source and relay nodes are performed in the
framework of DSC. Based on this concept, a variety of distributed coding structures have
been successfully developed over the past several years for wireless relay systems, which
are based on distributed Turbo codes (DTC) [22,95] or Distributed LDPC codes [24].

With DF relaying protocol, decoding errors may occur at the relay node, depending
on the quality of the source-relay link. In conventional DF systems, the recovered data
sequence is discarded if errors are detected after decoding at the relay node. It is believed
that if the relay re-encodes this erroreous data sequence and forwards it to the destination,
error propagation will occur, which leads to even worse performance. However, even
with some errors occurring in the information part, the data sequence transmitted from
the source and relay nodes are still highly correlated, therefore Slepian-Wolf’s correlated
source coding theorem can be well utilized in this situation. Reference [96] formulates
this issue from the viewpoint of Slepian-Wolf theorem, where the authors assume the
relay does not aim to perfectly correct the errors in the source-relay link, instead, it just
simply extracts1 information part from the received signals, interleaves, re-encodes and
then forwards to the destination node. The extracted data may contain errors, but by
iterative processing with the Log-likelihood Ratio (LLR) updating function [88], the error
probability can be estimated and further utilized at the destination node. This scheme
is referred to as extract-and-forward (ErF) relaying in [96]. The ErF concept is adopted
and combined with bit-interleaved coded modulation with iterative detection (BICM-ID)
in [97]. The outage probability of the ErF relay system in block Rayleigh fading channel
is evaluated in [98, 99], where the impacts of not only the source correlation but also the
correlation of the link variation are theoretically analyzed.

1.2.4 Network Coding

Broadcast Broadcast

(a) (b)

Figure 1.3: Examples of simple relay networks. (a) The conventional relay strategy. (b)
A network coded relay strategy.

In cooperative wireless communications, multiple source nodes are communicating

1Full iterative decoding is not performed at the relay with the aim of reducing the computational
burden on the relay node. Instead, the relay performs only 1 round of iteration to obtain a tentative
estimate of the source information sequence.
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with multiple destination nodes with the help of multiple relay nodes. Here we consider
a simple network model where two source nodes S1 and S2 are communicating with a
common destination D with the help of several relay nodes. According to the early
cooperative communication protocols (AF, CF and DF, etc.), two relay nodes R1 and R2

are needed to help the data transmission of S1 and S2, respectively, as shown in Fig. 1.3(a),
thus diversity gain can be achieved with each data transmission. However, the signal sent
from S2 can also be overheard at R1, due to the broadcasting property of the wireless
medium. Therefore, a new strategy for information transmission in networks has been
proposed, as shown in Fig. 1.3(b), which is referred to as network coding [100]. With
network coding, a single relay R is used to help S1 and S2 simultaneously by forwarding
the combination of signals received from S1 and S2 to D, thus the same diversity gain can
be achieved.

The concept of network coding was first introduced in [57], which shows that band-
width can be saved with network coding for multicasting in a wired network. Since then,
network coding has been applied to various cooperative communication schemes [101–103].
It has been shown that, despite of diversity gain, performance gains in terms of through-
put, energy/spectrum efficiency and reliability can be achieved with network coding. Ac-
cording to the relay strategy, there are mainly two types of network coding: analog
network coding and q-ary network coding. In analog network coding, AF is adapted to
combine the analog signals transmitted from the sources, some related work can be found
in [104, 105]. The outage behavior and optimum power allocation for analog network
coding are investigated in [106–108]. On the other hand, DF is employed in q-ary net-
work coding, where the relay node first decodes the signals received from the sources,
performs superposition of the information part, re-encodes and then forwards the en-
coded sequence to the destination node. Some practical approaches based on bit-wise
Exclusive-OR (XOR) operation for binary network coding are presented in [101–103,109].
Also, some literature focus on designing linear block codes defined over GF (q) for network
coding [110–113], where q represents the size of finite alphabet set.

1.3 Summary of Contribution

Our research investigates cooperative wireless communications from the perspective of
exploiting correlation among multiple sources, by considering three representative prob-
lems: (1) binary Markov source transmission in P2P communications, (2) binary Markov
source transmission in one-way relay system, and (3) correlated sources transmission over
multiple access relay channel (MARC). In all the three problems considered, the relay
nodes work in half-duplex mode. Although the system models are quite simple, our work
provides both theoretical and practical contributions to the existing research on wireless
cooperative communications. The main contributions of this thesis can be summarized
as follows:

A. Theoretical Contributions

• The performance limits of Problem (1) in Additive White Gaussian Noise (AWGN)
channels and the outage probability in Rayleigh fading channels are theoretically
analyzed.
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• For Problem (2), it is found that the Slepian-Wolf theorem can be used to de-
termine the achievable compression rate region. Lower bound of the performance
limits in AWGN channels and the outage probability in Rayleigh fading channels
are theoretically derived based on the achievable compression rate region.

• For Problem (3), the achievable compression rate region is determined by the the-
orem for source coding with side information, which is found to be a 3D space.
The performance limits in AWGN channels and the outage probability in Rayleigh
fading channels are derived based on the achievable rate region.

• The impact of source correlation on the performance of corresponding systems are
investigated through asymptotic analysis.

B. Practical Contributions

• For Problem (1), a new JSC decoding technique is proposed to exploit the source
memory, which is based on serial-concatenated convolutional codes (SCCC). A mod-
ified version of Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is derived for the joint
decoding of the Markov source and the outer code.

• The JSC technique is applied to Problem (2) and a distributed joint source-channel
(DJSC) decoding scheme is proposed to exploit the source memory and the source-
relay correlation simultaneously.

• We propose a novel JSCN decoding technique for Problem (3) to fully exploit the
correlation between the two sources and the benefit of network coding.

• We use of Extrinsic Information Transfer (EXIT) chart analysis to evaluate the
convergence property of the techniques proposed for Problem (1) and (2). Also, code
parameter optimization is performed based on EXIT chart analysis for Problem (1).

• Simulations are performed to evaluate the superiority of the proposed techniques
that exploit source correlations, and the impact of source correlations on the system
performance.

1.4 Dissertation Organization

The dissertation is organized as follow:
In Chapter 1 (this chapter), we have introduced the basic concept of cooperative

wireless communications, motivation of the research and some research backgrounds. We
have also summarized the contributions of this research and presented the structure of
the dissertation.

Chapter 2 reviews the concept of entropy and mutual information. A general modern
P2P communication system is described, where the issues of lossless source coding theo-
rem, noisy channel coding theorem, channel models and channel capacity are discussed.
Also, EXIT chart analysis which can be used for evaluating the convergence property of
communication systems is introduced.
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Chapter 3 investigates problem of transmitting binary Markov source in P2P com-
munications, where the source memory is exploited in the joint decoding process at the de-
coder. The performance limits in AWGN channels and the outage probability in Rayleigh
fading channels are first derived to evaluate the impact of exploiting source memory.
Then a new JSC decoding scheme based on SCCC to exploit the source memory is pre-
sented. The convergence property of the proposed technique is evaluated through EXIT
chart analysis, where the code parameters are optimized. The superiority of the proposed
JSC technique and the accuracy of the theoretical analysis are verified through computer
simulations.

Chapter 4 is devoted to the problem of transmitting Markov source over a one-way
single relay system, which is based on ErF relaying strategy. In ErF relay system, the
information sent from the source and relay nodes are correlated, which is referred to
source-relay correlation. Both the source-relay correlation and the memory structure of
the Markov source can be exploited at the destination node. The Slepian-Wolf theorem is
used to determine the achievable compression rate region of this system. The lower bound
of the performance limits in AWGN channels and the outage probability in Rayleigh
fading channels are derived based on the achievable compression rate region. Then the
DJSC decoding scheme that exploits the source-relay correlation and source memory
simultaneously is present. 3D EXIT chart analysis is presented to evaluate the convergence
property of the proposed DJSC technique. Results of simulations for BER and frame-
error-rate (FER) performance evaluations, as well as application to image transmissions
are presented.

Chapter 5 focuses on the problem of transmitting two correlated sources over or-
thogonal MARC, where binary XOR operation is employed at the relay node. First, the
achievable compression rate region is derived based on the theorem for source coding with
side information. The performance limits in AWGN channels and the outage probability
in Rayleigh fading channels are then derived based on the achievable compression rate re-
gion. A JSCN decoding scheme that fully exploits the correlation between the two sources
and the benefit of network coding is also presented. Simulation results of the BER and
FER performance are also presented.

Chapter 6 summarizes the work in this dissertation, and provides insights into the
future work.

10



Chapter 2

Preliminaries

In this chapter, we briefly provide explanations and definitions of background knowl-
edge exploited in this research. First we introduce the concept of entropy and mutual
information. Then we describe a general model of communication system, and several fun-
damental issues related, i.e., the lossless source coding theorem, the noisy channel coding
theorem, modulation/demodulation schemes, channel models and channel capacity, are
presented. Finally, the basic concept of EXIT chart analysis, which is used to evaluate
the convergence property of the communication systems, is provided in detail.

2.1 Entropy and Mutual Information

In Information theory, the concept of entropy was first introduced by Shannon in [64],
which is used as a measure of the uncertainty or ambiguity of a random variable. Consider
a discrete random variable X drawing i.i.d. from a finite alphabet X with probability
mass function p(x) = Pr{X = x}, x ∈ X . The entropy of X is defined by

H(X) = −
∑
x∈X

p(x) log p(x). (2.1)

If the log is to the base 2, entropy is expressed in bits. For the completeness, we use the
convention that 0 log 0 = 0, and H(X) is always non-negative.

This definition can be easily extended to a pair of random variables. Let X and Y be
a pair of discrete random variables with a joint distribution p(x, y). The joint entropy of
X and Y is expressed as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (2.2)

The conditional entropy of X given Y can be further described as

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y)

= −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y)

= −
∑
y∈Y

∑
x∈X

p(x, y) log p(x|y).

(2.3)
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Obviously, the joint entropy of a pair of random variables is the summation of the
entropy of one (X or Y ) and the conditional entropy of the other (Y or X, conditioned
on X or Y , respectively), which is also called the chain rule of entropy [114], expressed as

H(X, Y ) = H(X) +H(Y |X)

= H(Y ) +H(X|Y ).
(2.4)

The mutual information measures the common information that two random variables
contain. The mutual information between X and Y is defined by

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (2.5)

where p(x) and p(y) are marginal probability mass functions. When the random variables
X and Y are statistically independent, p(x|y) = p(x) and hence I(X;Y ) = 0. In summary,
the relationship between entropy and mutual information can be expressed as

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y ).

(2.6)

2.2 General Model of Communication System

Source

Encoder

Channel

Encoder
Modulator

Demodulator
Source

Decoder

Channel

Decoder

Channel

Source

Figure 2.1: System Model of a general communication system.

The block diagram of a general model of a P2P communication system is shown in
Fig. 2.1, where all higher layer protocols are removed and only physical layer and error
correction components are described. This communication system is designed to transmit
the information generated from a source to the destination. The output of the source
can be analog or digital (finite alphabet1) signals. In modern communication systems,
the analog signals are usually first sampled and quantized to convert into digital form.
Therefore, we assume that the output of the source u is a symbol sequence in digital

1This thesis only assume binary representation of the source.
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form. The information sequence u is first encoded by a source encoder to remove the
redundancy for compression, and then encoded by a channel encoder to add redundancy
for error correcting. The channel encoded sequence v is mapped into a sequence of signal
waveforms x to be transmitted through the channel, according to the modulation scheme
of the system. After receiving signals from the channel, the destination will perform
demodulation, channel decoding and source decoding to obtain the estimate of u.

2.2.1 Source Coding Theorem

The source encoder in Fig. 2.1 removes all redundant information from u (if any) and
obtains a compressed binary version of the data inw, with the aim of reducing the amount
of data to be transmitted, which is equivalent to minimizing the transmission power and
bandwidth. The compression rate Rs represents the number of bits per symbol needed to
describe the source. In general, there are two different categories of source coding, lossless
and lossy. In lossless source coding, the goal is to minimize the number of bits in such a
way that the source symbols can be exactly recovered from the compressed version of the
data. On the contrary, in lossy source coding, certain level of distortion is allowed when
recovering the source symbols. In this thesis, we only consider the lossless source coding
problem. The fundamental bound on Rs that achieving lossless source coding is given in
the following theorem first proved by Shannon [64].

Theorem 2.1 (Lossless source coding theorem) For a sequence {Xi}∞i=1 of discrete
random variables drawing i.i.d. from a source X according to the density mass function
p(x). There exists a lossless source code for this sequence if the compression rate Rs ≥
H(X).

This theorem is also called Shannon’s first theorem. According to this theorem, for any
compression rate Rs < H(X), lossless source coding is not possible. Cover and Thomas
extended this theorem to any stationary stochastic sources [114, Theorem 5.4.2], where
H(X) represents the entropy rate of the stochastic sources. There are many approaches
for lossless source coding, such as Huffman coding [64], Shannon-Fano-Elias coding [114]
and Lempel-Ziv coding [115].

2.2.2 Channel Coding Theorem

After source encoding, the channel encoder in Fig. 2.1 adds redundancy to w for more
reliable communication. The code rate of the channel encoder is denoted by Rc = Lw/Lv,
where Lv is the number of bits in the channel encoding output v. The condition on Rc

for reliable communication, if source coding and modulation is not considered, is specified
by the following theorem.

Theorem 2.2 (Noisy Channel Coding Theorem) Reliable Communication over a dis-
crete memroyless channel is possible if the communication rate Rc satisfies Rc ≤ C, where
C is the channel capacity2. At rates higher than channel capacity, reliable communication
is impossible.

2Discussion on channel capacity will be detailed in Section 2.2.5.
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The noisy channel coding theorem is also referred to as Shannon’s second theorem [64],
which is the fundamental theorem of communication theory. Note that Shannon’s proof
of this theorem employs a method called random coding. In this method, the codes are
constructed randomly and the performance of the system is averaged over them, which
proves the existence of good codes with which the error probability can be made arbitrarily
small, if Rc ≤ C. In Shannon’s landmark paper [64], it is stated that although this
theorem shows the existence of good codes, it does not provide any way of constructing
these good codes. Ever since the Shannon’s original paper, a variety of techniques have
been proposed to construct good channel code, such as Hamming code, convolutional
code. Most recently, many excellent codes approaching the capacity have been applied in
modern communication systems, such as Turbo-like codes and LDPC codes.

2.2.3 Modulation and Demodulation

As shown in Fig. 2.1, a general modulator takes every m bits from v and maps the m-bit
vector on to one symbol xi in x in the complex domain, where i is the time index. The set
of all possible symbols for xi is denoted as S = {s1, s2, · · · , sM}, M = 2m, which is also
called the symbol constellation. The most commonly used modulation schemes are M -ary
phase shift keying (MPSK) where theM symbols lie on a circle, and quadrature amplitude
modulation (QAM) where the symbols are equally spaced in the two dimensions [115].
Examples of symbol constellation for BPSK (binary PSK, M = 2), QPSK (quadrature
PSK, M = 4), 8PSK and 16QAM are shown in Fig. 2.2.

The modulated symbol sequence x is transmitted through the channel and corrupted
by the noise. At the destination, the received signal sequence y is fed into the demodulator
to calculate the extrinsic LLRs of all the bits of symbol xi. Further improvement of
decoding can be achieved by invoking the soft-decision feedback from the channel decoder’s
output to the demodulator in an iterative manner [116]. This concept is known as Bit-
Interleaved Coded Modulation with Iterative Decoding (BICM-ID) [117]. For an arbitrary
constellation, the extrinsic LLRs of the k-th bit of symbol xi that generated from the
demodulator can be expressed as [118]

Le(x
k
i ) = ln

Pr(yi|xk
i = 1)

Pr(yi|xk
i = 0)

= ln

∑
xi∈Sk

1

p(yi|xi)
∏m

j=1,j 6=k exp[x
j
i · La(x

j
i )]∑

xi∈Sk
0

p(yi|xi)
∏m

j=1,j 6=k exp[x
j
i · La(x

j
i )]

,

(2.7)

where Sk
1 and Sk

0 are subsets of the symbol constellations having the k-th bit being 1 and 0,
respectively. La(x

j
i ) represents the LLRs fed back from the channel decoder corresponding

to the j-th bit of xi. The output extrinsic LLRs of the demodulator are then forwarded
to the channel decoder for next iteration in BICM-ID.

In this thesis, we only consider BPSK modulation, where bit “0” is mapped to “−1”
and bit “1” to “+1”. However, the extension of the results presented in this thesis to
higher order modulation is quite straightforward. Using (2.7), it can easily be found that
for BPSK, the extrinsic LLRs in AWGN channels can be expressed as

Le(xi) = ln
Pr(yi|xi = 1)

Pr(yi|xi = 0)
=

4
√
Es

N0

yi, (2.8)
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BPSK QPSK

8PSK 16QAM

Figure 2.2: Symbol constellation for BPSK, QPSK, 8PSK and 16QAM with Gray map-
ping.
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where Es andN0 denotes the average energy per symbol and the two-sided spectral density
of the noise, respectively. It can be seen from (2.8) that, the demodulator needs to know
both Es and N0 to calculate the extrinsic LLRs of x based on y.

2.2.4 Channel Model

As noted in previous subsection, the modulated symbol sequence x is transmitted through
wireless channels where it suffers from various impairments such as fading, interference,
and/or distortions due to practical limitations [119]. In Information theory and wireless
communications, there are a variety of models that can be used to describe the statistical
properties of the wireless channels, such as Binary Symmetric Channel (BSC), Binary
Erasure Channel (BEC), AWGN channel, block Raleigh fading channel and Frequency-
selective fading channel. In this thesis, we only consider the most widely used AWGN
channel and block Rayleigh fading channel models.

AWGN Channel

If x is transmitted through AWGN channel, a random Gaussian noise vector n is added
to x. The received signal sequence at the destination can be expressed as

y = x+ n. (2.9)

The Gaussian random variables in n are i.i.d with zero-mean, with the variance of σ2
w = N0

2

per dimension.

Block Rayleigh Fading Channel

In block Rayleigh fading channel, the change in signal power over the transmission phase
due to multi-path fading and shadowing (also referred to as channel gain) is also consid-
ered. The received signal sequence at the destination is defined as

y = h · x+ n, (2.10)

where h represents the complex channel gain. With the block Rayleigh fading assumption,
the channel gain h remains constant over one block, but changes independently block-by-
block. We can model h as a zero-mean, circularly symmetric complex Gaussian random
variable with unit variance. Hence, the magnitude |h|2 is exponentially-distributed with
E[|h|2] = 1.

2.2.5 Channel Capacity

Channel capacity defines the maximum number of bits per dimension (or bits per channel
use) that could be reliably transmitted through a noisy channel [64]. The most widely
used channel model is the time-discrete Gaussian channel, where the output of the channel
is the sum of the input and the noise, described as

y = x+ z, (2.11)

where x, y and z are all one-dimensional random variables, and z is a zero-mean one-
dimensional Gaussian noise with variance σ2

z . Note that the channel input x and the
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noise z are independent of each other. The capacity of this Gaussian channel is defined
as

C = max
p(x)

I(x; y). (2.12)

According to (2.6), I(x; y) can be expanded as

I(x; y) = H(y)−H(y|x)
= H(y)−H(x+ z|x)
= H(y)−H(z|x)
= H(y)−H(z),

(2.13)

since z is independent of x. Now, H(z) = 1
2
log(2πeσ2

z), and the maximization of I(x; y)
is equivalent to maximize H(y). According to [114, Theorem 8.6.5], the maximum of
H(y) is achieved if y follows Gaussian distribution. In this case, obviously x also follows
Gaussian distribution with variance of σ2

x. Now H(y) is bounded by 1
2
log(2πe(σ2

x + σ2
z)),

and the capacity of the Gaussian channel is

C = max
p(x)

I(x; y)

= max
p(x)

H(y)−H(z)

=
1

2
log(2πe(σ2

x + σ2
z))−

1

2
log(2πeσ2

z)

=
1

2
log

(
1 +

σ2
x

σ2
z

)
.

(2.14)

It is shown in [64] that the entropy of a multi-dimensional Gaussian variable with equal
variances in all dimensions is equal to the number of dimensions times the entropy of the
one-dimensional Gaussian distribution. In practical communication systems, the channel
is assumed to be complex Gaussian channel. In this case, the noise is two-dimensional
and the variance in each dimension is σ2

z = N0/2. For complex Gaussian input, σ2
x = Es/2

and the capacity is

C = log

(
1 +

Es

N0

)
. (2.15)

For real Gaussian input (imaginary part not used), σ2
x = Es and the capacity can be

expressed as

C =
1

2
· log

(
1 + 2

Es

N0

)
. (2.16)

2.3 EXIT Chart Analysis

The extrinsic information transfer (EXIT) chart of soft-input soft-output (SISO) decoders
was first introduced by Stephan ten Brink [120,121] as a novel tool for the better under-
standing of convergence property of iterative decoding schemes. The exchange of extrinsic
information can be visualized as a decoding trajectory in the EXIT chart, which enables
the prediction of the turbo cliff position. Moreover, with the aid of EXIT chart, the code
optimization falls into the problem of the EXIT curve matching. Hence, EXIT chart anal-
ysis plays an important role in designing, analyzing and optimizing of iterative decoding
schemes.
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Figure 2.3: A serially concatenated codes and iterative decoder.

We consider a serial-concatenated codes with iterative decoding to present the basic
concept of EXIT chart, which is shown in Fig. 2.3. The output LLRs of the inner decoder
are generated on the received signals from the channel and the extrinsic information
generated from the outer decoder, while the LLRs output from the outer decoder are
calculated using the extrinsic LLRs generated from the inner decoder as input. Note that
the interleaver Π keeps the output LLRs from the outer and inner decoders uncorrelated
with each other over many iterations. Moreover, the probability density function (pdf) of
the extrinsic LLRs approaches the Gaussian-like distribution as the number of iterations
increased [120]. Therefore, it is appropriate to model the extrinsic LLRs as output of an
equivalent Gaussian channel, where the known transmitted information bit x is suffering
from zero-mean Gaussian noise nl with variance σ2

l , which can be expressed as

L = µlx+ nl, (2.17)

with µl = σ2
l /2 denoting the mean of LLRs. According to (2.5), the mutual information

between the information bits X and the LLRs L can be calculated as

I(X;L) =
∑

x=−1,+1

∫ +∞

−∞
p(x, l) log

p(x, l)

p(x)p(l)
dl

=
∑

x=−1,+1

∫ +∞

−∞
p(l|x)p(x) log p(l|x)

p(l)
dl.

(2.18)

With the assumption p(x = +1) = p(x = −1) = 1
2
and p(l) = 1

2
[p(l|x = +1) + p(l|x =

−1)], we can obtain

I(X;L) =
1

2

∑
x=−1,+1

∫ +∞

−∞
p(l|x) log 2p(l|x)

p(l|x = +1) + p(l|x = −1)
dl. (2.19)

Recall that L is Gaussian distributed and according to (2.17), the conditional pdf of
the LLRs L is

p(l|x) = 1√
2πσl

exp

[
−
(l − σ2

l

2
x)2

2σ2
l

]
, (2.20)
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with the following symmetry and consistency properties as follow:

Symmetry : p(−l|x = +1) = p(l|x = −1), (2.21)

Consistency : p(−l|x = +1) = e−l · p(l|x = +1). (2.22)

With (2.20), (2.22) and (2.22), the mutual information I(X;L) can be further expressed
as

I(X;L) = 1−
∫ +∞

−∞
p(l|x = +1) log[1 + e−l]dl

= 1−
∫ +∞

−∞

1√
2πσl

exp

[
−
(l − σ2

l

2
)2

2σ2
l

]
log[1 + e−l]dl

= I(σl)

(2.23)

According to [120], it is found that I(X;L) is a function of the square-root variance
σl of LLRs, which is specified by the so called J-function defined as

J(σ) = I(σl = σ), (2.24)

with the following property:

lim
σ→0

J(σ) = 0, and lim
σ→∞

J(σ) = 1, σ > 0. (2.25)

The J-function can not be expressed in closed form, instead, it can be calculated by
numerical methods. It is well known that the J-function can be approximated as [122]

J(σ) ≈ (1− 2−H1σ2H2 )H3 , (2.26)

with its inverse function

σ = J−1(I) =

[
− 1

H1

log2(1− I
1

H3 )

] 1
2H2

, (2.27)

where H1 = 0.3037, H2 = 0.8935, and H3 = 1.1064, which are obtained by least square
curve fitting. The functions J(·) and J−1(·) convert the square-root variance σ of LLRs to
mutual information, and vice versa, respectively. By using these functions, it is convenient
to measure the output mutual information of the inner and outer codes. If the square-root
variance σ of LLRs is not provided, mutual information can be calculated by histogram
measurement [120] according to (2.19).

An example of the EXIT chart of the iterative system shown in Fig. 2.3 is depicted
in Fig. 2.4. The green and blue curves indicate the EXIT curves of the outer and inner
decoders, respectively. Both of them use the output LLRs via interleaver/deinterleaver of
the other side as the a priori information. The red curve between the EXIT curves of the
outer and inner decoders is called trajectory, which visualizes the real mutual information
exchange between the outer and inner decoders. If the tunnel between the two EXIT
curves is kept open, the trajectory can finally reach the (1, 1) mutual information point
and successful transmission is guaranteed. Otherwise, a transmission failure results.
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Figure 2.4: An example of EXIT chart.

2.4 Summary

In this chapter, some background knowledge of this research is provided. The definitions
of entropy and mutual information are introduced first of all. Then the lossless source
coding theorem, the noisy channel coding theorem, modulation/demodulation schemes,
channel models and channel capacity, are presented. Finally, the basic concept of EXIT
chart analysis that plays an important role in code optimization and convergence analysis
in this research, is provided.
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Chapter 3

Markov Source Transmission in
Point-to-Point Communications

In this chapter, we consider the problem of transmitting binary Markov source over wire-
less channels in P2P communications. First of all, a brief description of the system model
assumed in this chapter is presented. Then, the theoretical analysis, including the perfor-
mance limits in AWGN channels and the outage probability in Rayleigh fading channels
are provided. We then propose a practical framework for JSC that exploits the memory
structure of the Markov source. The JSC decoding strategy that involves a modified
version of BCJR algorithm, will be detailed. The convergence property of the proposed
technique is evaluated by EXIT chart analysis, with the aim of searching for code pa-
rameters with which the decoder can achieve close-limit performance. Finally, simulation
results are presented to confirm the superiority of the proposed technique and verify the
results of the theoretical analysis.

3.1 System Model

The source we consider in this chapter is a stationary state emitting binary Markov
source S generating output sequence u, with the property that the current binary value
is determined only by its previous counterpart, as

Pr{ut|ut′ , 1 ≤ t′ < t} = Pr{ut|ut−1}, (3.1)

where ut denotes the t-th symbol of u. This can be conveniently described by using the
transition matrix

A = [ai,j] =

[
a00 a01
a10 a11

]
=

[
p1 1− p1

1− p2 p2

]
, (3.2)

with the transition probability defined as

ai,j = Pr{ut = j|ut−1 = i}, i, j ∈ {0, 1}. (3.3)

The entropy rate [114] of this stationary Markov source is

HM(p1, p2) = −
∑

i,j∈{0,1}

µiai,j log ai,j = µ0 ·Hb(p1) + µ1 ·Hb(p2), (3.4)
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Figure 3.1: Block diagram of the binary Markov source transmission.

where µ0 =
1−p2

2−p1−p2
and µ1 =

1−p1
2−p1−p2

are the stationary distribution for the two states that

emit “0” and “1”, respectively. Hb(x) = −x log(x)− (1−x) log(1−x) denotes the binary
entropy function. For symmetric Markov source, p1 = p2 = p and hence µ0 = µ1 = 0.5
holds, which yields

HM(p1, p2) = Hb(p). (3.5)

The block diagram of the system model is illustrated in Fig. 3.1. At the transmitter
side, the binary data sequence u, generated from the Markov source, is first encoded by
channel encoder Enc and then modulated by BPSK to obtain the modulated sequence
x. In this chapter, x is transmitted over wireless channel that suffers from AWGN and
frequency flat block Rayleigh fading. The received signal sequence at the receiver can be
expressed as

y = h · x+ n, (3.6)

where h represents the complex channel gain and n zero-mean i.i.d. complex Gaussian
noise vector with variance σ2. At the receiver side, the received signal sequence y is fed
into decoder Dec for JSC decoding, which will be detailed in Subsection 3.3.

3.2 Theoretical Analysis

Suppose the Markov source is compressed at rate Rs. According to Theorem 2.1, the
source can be recovered with arbitrarily small probability of error as long as Rs satisfies
Rs ≥ HM(p1, p2).

3.2.1 Performance Limits in AWGN Channels

According to Shannon’s separation theorem, if the total information transmission rate
satisfies [88]

Rs ·Rc ≤ C, (3.7)

then error probability at the receiver side can be arbitrarily reduced, where Rc denotes
the spectrum efficiency which takes into account the rate of channel coding and the
modulation scheme. C is the channel capacity. Since we assume BPSK modulation,
which is a one-dimensional modulation scheme, the channel capacity is defined as

C =
1

2
log2(1 + 2SNR), (3.8)

where SNR = Es/2σ
2.
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Combining (3.7) and (3.8), we can obtain the performance limit of the considered
problem in AWGN channel. The threshold limit for the corresponding Markov source
and spectrum efficiency Rc is

SNRlim =
22H

M (p1,p2)·Rc − 1

2
. (3.9)

3.2.2 Outage Probability in Rayleigh Fading Channels

As described in Section 3.1, the instantaneous SNR of the channel is denoted by γ =
|h|2Es/2σ

2, where Es represents the per-symbol power of x. The pdf of γ is

p(γ) =
1

Γ
exp(−γ

Γ
), (3.10)

where Γ = Es/2σ
2 denotes the average SNR of the channel. Assume the channel encoder

Enc is close limit achieving, according to (3.7) and (3.8), the relationship between the
threshold instantaneous SNR and its corresponding Rs is given by

Rs = Φ(γ) =
1

2Rc

log2(1 + 2γ), (3.11)

with its inverse function

γ = Φ−1(Rs) =
22RsRc − 1

2
. (3.12)

It is easy to identify that the outage happens if Rs < H(S), and the outage probability
of the proposed system can be expressed as

Pout = Pr{0 ≤ Rs < H(s)}
= Pr{Φ−1(0) ≤ γ < Φ−1[HM(p1, p2)]}

=

∫ Φ−1[HM (p1,p2)]

Φ−1(0)

p(γ)dγ

=
[
− exp(−γ

Γ
)
]Φ−1[HM (p1,p2)]

Φ−1(0)

= 1− exp

[
−22H

M (p1,p2)·Rc − 1

2Γ

]
.

(3.13)

For Markov sources, 0 ≤ HM(p1, p2) < 1. It can be seen from (3.13) that the outage
probability is reduced by utilizing the unsaturated entropy of Markov source, compared
with the i.i.d. source.

By using the Taylor expansion, and taking the first two parts of the exponential
function part of (3.13), as

e−x =
∞∑
n=0

(−x)n

n!
≈ 1− x, as x → 0, (3.14)

Pout in (3.13) can be approximated as

Pout = 1− exp

[
−22H

M (p1,p2)·Rc − 1

2Γ

]
≈ 22H

M (p1,p2)·Rc − 1

2Γ
, (3.15)
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Figure 3.2: Coding structure of Enc. C1 and C2 are convolutional codes and Π is random
interleaver.

for large enough average SNR Γ. It can be observed from (3.15) that Pout is inversely
proportion to Γ and hence no diversity gain can be achieved when the average SNR Γ
becomes large.

3.3 Practical Code Design

In the theoretical analysis, we have assumed the channel encoder Enc has close-limit
performance, and the source correlation can be exploited in the joint decoding process at
the destination node. In this section, we propose the coding/decoding framework based
on some practical channel codes for transmitting binary Markov sources.

3.3.1 Coding Structure

The block diagram for the coding structure of Enc is illustrated in Fig. 3.2. We use
SCCC, where a rate r1 = 1/2 outer code C1 and a rate r2 = 1 inner code C2 are serially
concatenated, yielding an overall rate r1r2 = 1/2. The information sequence generated
from the binary Markov source is fed directly to C1 to obtain the output sequence x1.
The output of C1, including systematic and parity bits, are then bit-interleaved by a
random interleaver Π and encoded by C2 to get x. The inner code C2 is a rate-1 recursive
convolutional code with doping1 rate Q, where every Q-th output bit is replaced by its
corresponding systematic bit.

3.3.2 Joint Source-Channel Decoding Strategy

The block diagram for the decoder structure of Dec is shown in Fig. 3.3. The Markov
source model and the outer code trellis are integrated to form a super trellis. Then a
modified BCJR algorithm is derived and employed at D1 to perform joint decoding of the
outer code and Markov source based on the super trellis, as indicated by the gray square
in Fig. 3.3. Moreover, the standard BCJR algorithm is employed at D2 to perform the
decoding of the inner code. Iterative decoding is invoked between two SISO modules D1

and D2, according to the Turbo decoding principle. Finally, hard decision is made on the
output of D1.

1The terminology “doping” was first proposed by ten Brink in [120] to express the notion that a small
portion of the coded bits are substituted by their systematic counterpart, without changing the code rate.
Here we use “code doping” rather than “doping” for the sake of clarity.
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Figure 3.3: Decoder structure of Dec. D1 and D2 are the decoder for C1 and C2, respec-
tively. Π−1 is deinterleaver.

In this section, we derive the modified version of the BCJR algorithm that takes
into account the memory structure of Markov source. Hence, in this section, we ignore
momentarily the serially concatenated structure and only focus on the decoding process
of one decoder using the BCJR algorithm.

Standard BCJR Algorithm

First of all, we briefly describe the standard BCJR decoding algorithm, originally devel-
oped to perform the MAP algorithm [123] for CC. For a CC with memory length v, there
are 2v states in its trellis diagram, which are indexed by m, m = 0, 1, · · · , 2v − 1. The
input to the encoder is denoted as u = u1u2 · · ·ut · · ·uL, of which the length is L. Let’s
assume that r1 = 1/2 for the simplicity. Then, the output of the encoder is denoted as
{xt} = {xv1

t ,xv2
t }. The coded binary sequence is BPSK mapped, and then transmitted

over an AWGN channel. The received signal is a noise corrupted version of the BPSK
mapped sequence, denoted as {yt} = {yv1

t ,yv2
t }. The received sequence during time

duration from t1 to t2 is denoted as yt2
t1 = yt1 ,yt1+1, · · · ,yt2 .

When making modifications on the BCJR algorithm, we do not assume that the code
is either systematic or non-systematic. Because the BCJR decoder can calculate the
extrinsic LLRs of coded and uncoded (information) bits by giving labeling properly in
the trellis diagram of the code corresponding to its input-output relationship [124]. The
BCJR algorithm evaluates the conditional LLR for {xv1

t } based on the whole received
sequence yL

1 , which is defined by

L(xv1
t ) = log

Pr{xv1
t = 1|yL

1 }
Pr{xv1

t = 0|yL
1 }

= log
Pr{xv1

t = 1,yL
1 }

Pr{xv1
t = 0,yL

1 }
. (3.16)

To compute the LLR of xv1
t , we use the joint probability

σt(m
′,m) = Pr{St−1 = m′, St = m,yL

1 }, (3.17)

and rewrite (3.16) as

L(xv1
t ) = log

Pr{xv1
t = 1,yL

1 }
Pr{xv1

t = 0,yL
1 }

= log

∑
(m′,m)∈B1

t

σt(m
′,m)∑

(m′,m)∈B0
t

σt(m′,m)
, (3.18)

25



where Bj
t denotes the set of transitions St−1 = m′ → St = m such that the output on

that transition is xv1
t = j, j ∈ (0, 1).

In order to compute (3.17), three parameters indicating the probabilities defined as
below have to be introduced:

αt(m) = Pr{St = m,yt
1}, (3.19)

βt(m) = Pr{yL
t+1|St = m}, (3.20)

γt(yt,m
′,m) = Pr{St = m,yt|St−1 = m′}. (3.21)

Now we have
σt(m

′,m) = αt−1(m
′)γt(yt,m

′,m)βt(m). (3.22)

It is easy to show that αt(m) and βt(m) can be computed via the following recursive
formulae

αt(m) =
∑
m′

αt−1(m
′)γt(yt,m

′,m), (3.23)

βt(m) =
∑
m′

βt+1(m
′)γt+1(yt,m,m′). (3.24)

Since the encoder always starts from zero state, the appropriate boundary conditions for
α are α0(0) = 1 and α0(m) = 0, m 6= 0. The boundary conditions for β depends on
whether the trellis diagram is terminated by transmitting the tail bits or not. If we leave
the encoder unterminated, the corresponding conditions for β are βL(m) = 1/2v, m =
0, 1, · · · , 2v − 1; otherwise, βL(0) = 1 and βL(m) = 0, for all m 6= 0. In our system, we
use a long and random enough interleaver, so that LLRs can be regarded as statistically
independent.

From the above descriptions, it is found that γ plays a crucial role in computing the
LLRs. Because yv1t and yv2t are statistically independent, γ can be computed by

γt(yt,m
′,m) = Pr{St = m|St−1 = m′}Pr{yv1t |xv1

t }Pr{yv2t |xv2
t }, (3.25)

The first term Pr{St = m|St−1 = m′} is determined by the 0/1 appearance probabilities
of the both input and output bits, as:

Pr{St = m|St−1 = m′} = Pr{ut}Pr{xv1
t }Pr{xv2

t }, (3.26)

where the input/output bits, ut/(x
v1
t , xv2

t ), are associated with trellis branch of St−1(m′) →
St(m). It should be mentioned that the input to the encoder is assumed to be memoryless
in standard BCJR algorithm, i.e., Pr{ut|ut−1} = Pr{ut}. We can rewrite (3.18) as

L(xv1
t ) = Lap(x

v1
t ) + Lch(x

v1
t ) + Lex(x

v1
t ), (3.27)

where

Lap(x
v1
t ) = log

Pr{xv1
t = 1}

Pr{xv1
t = 0}

, (3.28)

Lch(x
v1
t ) = log

Pr{yv1t |xv1
t = 1}

Pr{yv1t |xv1
t = 0}

, (3.29)

Lex(x
v1
t ) = log

∑
(m′,m)∈B1

t

α(m′)γ(yv2t ,m′,m)β(m)∑
(m′,m)∈B0

t

α(m′)γ(yv2t ,m′,m)β(m)
, (3.30)
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are called the a priori LLR, the channel LLR, and the extrinsic LLR, respectively. If
the decoder is not connected to the channel such as the outer code of SCCC, it can not
get any information about the coded bits from the channel, which means Lch = 0 and
L(Xv1

t ) = Lap(x
v1
t ) + Lex(x

v1
t ). The same result can be obtained for xv2

t .
In iterative decoding, the time position of Lex(x

v1
t ) and Lex(x

v2
t ) are rearranged by the

interleaver and fed into the other decoder.

Representation of Super Trellis

We denote the state of the outer encoder at time index t as Sc
t . Similarly, there are two

states in order-1 binary Markov source, and the state at the time index t is denoted as
Ss
t , Ss

t ∈ {0, 1}. For a binary Markov model described in section 3.1, the source model
and its corresponding trellis diagram are illustrated in Fig. 3.4(a). The output value
at a time instant t from the source is the same as the state value of Ss

t . The trellis
branches represent the state transition probabilities, which is defined by (3.3). On the
other hand, for the outer code, the branches in its trellis diagram indicate input/output
characteristics.

At the time instant t, the state of the source and the state of the outer code can
be regarded as a new state (Ss

t , S
c
t ), which leads to the super trellis diagram. A simple

example of combining binary Markov source with a recursive convolutional code (RSC)
with generator polynomial (Gr, G) = (3, 2)8 is depicted in Fig. 3.4. At each state (Ss

t , S
c
t ),

the input to the outer encoder is determined, given the state of the Markov source.
Actually, the new trellis branches represent both state transition probabilities of the
Markov source and input/output characteristics of the outer code defined in its trellis
diagram.

Modified BCJR Algorithm for Super Trellis

In the original BCJR algorithm, the information bits are assumed to be memoryless.
However, with the presence of the source correlation, the BCJR algorithm can well be
modified to best ultilize the redundancy inherent within the Markov source.

Again, the aim of the modified BCJR algorithm is to calculate conditional LLRs of the
coded bits {xv1

t }, based on the whole received sequence yL
1 , which is specified by (3.18).

To achieve this goal, variables α, β and γ have to be modified as

α∗
t (m, i) = Pr{St = m,ut = i,yt

1},
β∗
t (m, i) = Pr{yL

t+1|St = m,ut = i},
γ∗
t (yt,m

′, i′,m, i) = Pr{St = m,Ut = i,yt|St−1 = m′, ut−1 = i′}.
(3.31)

Then the joint probability σ can then be derived as

σt(m
′,m) =

∑
i′,i

α∗
t−1(m

′, i′)γ∗
t (yt,m

′, i′,m, i)β∗
t (m, i). (3.32)

As mentioned above, the new trellis branch contains information of input/output rela-
tionship corresponding to the state transition Sc

t = m′ → Sc
t = m, specified by the outer

code trellis, as well as of the state transition probabilities depending on Markov source.

27



+

(a)

(b)

(c)

Combine

Figure 3.4: Trellis diagram for (a) binary Markov source, (b) RSC code with generator
polynomial(Gr, G) = (3, 2)8, (c) joint outer code.
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Therefore, γ∗
t (yt,m

′, i′,m, i) can be decomposed as

γ∗
t (yt, i

′,m′, i,m) =

{
ai′,iγt(yt,m

′,m), if (i′,m′) ∈ Et(i,m);

0, otherwise,
(3.33)

where ai′,i is defined in (3.3), and γt(yt,m
′,m) is defined in (3.25). Et(i,m) is the set of

states {(Ss
t−1, S

c
t−1)} that have a trellis branch connected with state (Ss

t = i, Sc
t = m).

It is now found that the transition probability Pr{ut = i|ut−1 = i′} is utilized in the
computation of γ∗

t (yt,m
′, i′,m, i).

Once γ∗
t (yt,m

′, i′,m, i) is obtained, α∗ and β∗ can also be calculated in the same way
as in the standard BCJR algorithm, as

α∗
t (m, i) =

∑
m′,i′

α∗
t−1(m

′, i′)γ∗
t (yt,m

′, i′,m, i),

β∗
t (m, i) =

∑
m′,i′

β∗
t+1(m

′, i′)γ∗
t+1(yt,m

′, i′,m, i),
(3.34)

Since the outer encoder always starts from the zero state, while the probabilities for
the Markov source starts from state “0” or state “1” is equal. Hence, the appropriate
boundary conditions for α are α0(i, 0) = 1/2, i = 0, 1 and α0(i,m) = 0, m 6= 0. Similarly,
the boundary conditions for β are βL(i,m) = 1/2v+1, i = 0, 1;m = 0, 1, · · · , 2v − 1.

Combining all the results described above, we can obtain the conditional LLR for xv1
t ,

as
L(xv1

t ) = Lap(x
v1
t ) + Lch(x

v1
t ) + Lex(x

v1
t ), (3.35)

where

Lap(x
v1
t ) = log

p(xv1
t = 1)

p(xx1
t = 0)

, (3.36)

Lch(x
v1
t ) = log

p(yv1t |xv1
t = 1)

p(yv1t |xv1
t = 0)

, (3.37)

Lex(X
v1
t ) = log

∑
(m′,m)∈B1

t

∑
i′,i

α∗
t−1(i

′,m′)γ∗
t (y

v2
t , i′,m′, i,m)β∗

t (i,m)∑
(m′,m)∈B0

t

∑
i′,i

α∗
t−1(i

′,m′)γ∗
t (y

v2
t , i′,m′, i,m)β∗

t (i,m)
, (3.38)

which represents the a priori LLR, the channel LLR and the extrinsic LLR, respectively,
obtained as the result of the modified BCJR algorithm. Bj

t denotes the set of transitions
St−1 = m′ → St = m such that the output on that transition is xv1

t = j, j ∈ (0, 1).The
same representation should be applied to {xv2

t }. Using this modified BCJR algorithm, an
optimal decoder can be obtained with the cost of only double the decoding complexity.

Comparing the expressions described above with the standard BCJR algorithm, it is
found that with the modified BCJR algorithm, the a priori LLR and the channel LLR
(actually the channel LLR is 0 for the outer code of serially concatenated codes) stay the
same as that in the standard BCJR algorithm, respectively. The statistical structure of
the source is exploited inherently within the forward-backward calculations, resulting in
improved extrinsic LLR in the presence of source memory, which can be fed directly into
the other constituent decoder via interleaver without involving any other computations.
It should be noticed that if we apply this modified algorithm for memoryless source, since
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ai′,i = 0.5, for i′, i ∈ (0, 1), the extrinsic LLR of the modified BCJR algorithm, given
by (3.38), is the same as that of the standard BCJR. Moreover, as the source correlation
becomes larger, the extrinsic LLR will also becomes larger, which will help the decoder
recover the information bits even at lower SNR value range.

3.4 EXIT Chart-Based Code Optimization

In this section, we present results of EXIT chart analysis conducted to identify the impact
of source correlation on the decoder of the outer code, as well as the convergence property
of the proposed technique. We also use EXIT chart analysis to determine the best matched
pair of the outer and inner codes, and the doping rate for inner code.

3.4.1 EXIT Chart Analysis

Outer Code

From the descriptions in Subsection 3.3.2, we know that the source memory helps to in-
crease the output extrinsic information of the outer decoder. As described in Section 3.1,
the correlation of the source can be parameterized by the Markov state transition prob-
ability p1 and p2, 0 < p1, p2 < 1. p1 = p2 = 0.5 indicates a memoryless source while
p1, p2 > 0.5 (or equivalently p1, p2 < 0.5) indicates the source with memory. Since the
correlation is symmetric on p, we only consider the case 0.5 ≤ p1, p2 < 1.

As shown in Fig 3.3, the decoder D1 of C1 exploits a priori LLRs La(x1). By using the
modified BCJR algorithm, it generates extrinsic LLRs Le(x1). Hence the EXIT function
of D1 is defined as:

Ie[x1;Le(x1)] = TD1{Ia[x1;Le(x1)]}, (3.39)

where function Ie[x1;Le(x1)] denotes the mutual information between x1 and its extrinsic
LLRs Le(x1), which is obtained by the histogram measurement [121] according to (2.19).
Similar definition is applied to Ia[x1;La(x1)].

Now, let us assume memory-1 RSC code used with the generator polynomial (Gr, G) =
(3, 2)8 as an example. The EXIT curves with standard BCJR and with the modified
BCJR exploiting source with different transition probabilities are illustrated in Fig. 3.5.
For the source with p1 = p2 = 0.5, the EXIT curves with the standard BCJR decoder
and our modified BCJR decoders are the same. For the Markov sources with different
p1 and p2 values, the EXIT curves obtained by using the modified BCJR decoder are
pushed down and shifted to the right as HM(p1, p2) decreases, indicating that larger
extrinsic information can be obtained. These results are consistent with the consideration
provided in Subsection 3.3.2. Note that the contribution of source memory represented
by the increase in extrinsic mutual information is larger when a priori input IA < 0.5
than when IA > 0.5, and the contribution becomes negligible when IA > 0.9.

Inner Code

D2 calculates its extrinsic LLRs in the same way as D1, except that it has a direct
connection to the channel. Hence, its EXIT function is defined as

Ie[u2;Le(u2)] = TD2{Ia[u2;La(u2)], SNR}. (3.40)
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(Gr, G) = (3, 2)8.
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Figure 3.6: An example of observing outer coder for Markov source with p1 = p2 = 0.8.

Because the mutual information does not change after interleavering/deinterleavering,
the following equality holds

I(l)a [x1;La(x1)] = I(l−1)
e [u2;Le(u2)], (3.41)

I(l)a [u2;La(u2)] = I(l−1)
e [x1;Le(x1)], (3.42)

where l is the iteration index, i.e., the extrinsic information generated by the first decoder
is used as the a priori information for the second decoder, and vice versa. In the chain
simulations, we evaluated the extrinsic mutual information, iteration-by-iteration, and
plotted the obtained mutual information, according to (3.41) and (3.42).

3.4.2 Code Optimization

In this subsection, the code parameters of C1 and C2 are optimized from the viewpoint
of EXIT curve matching. An example of the code optimization for the state-emitting
Markov source with p1 = p2 = 0.8 is demonstrated in Fig. 3.6. First, the outer code
parameters can be determined using the EXIT chart analysis. The EXIT curves of some
outer codes with different memory length for Markov source with p1 = p2 = 0.8 are shown
in Fig. 3.6. It can be observed that memory-1 outer code with generator polynomials
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(Gr, G) = (3, 2)8 exhibits an excellent extrinsic information transfer characteristic, and
hence, it is the sub-optimal outer code (the best code among all the tested codes) for
Markov source with p1 = p2 = 0.8.

With this fixed outer code, next we can determine the best inner code that roughly
matches with outer code (i.e., the gap between the EXIT curves is minimized among those
inner codes parameters), assuming no code doping used (Q = 0). As shown in Fig. 3.7,
at SNR= −4.5 dB, a memory-2 inner code with (Gr, G) = (6, 7)8 has a better matching
with outer (3, 2)8 code, compared with the inner (3, 2)8 and (7, 5)8 codes.

After the optimal inner code is obtained, which is best matched with the Markov
source memory, the optimal doping rate is identified for the inner code by changing the
doping rate to gradually “bend” its EXIT curve, until there is a tunnel open between
the EXIT curves of the outer and inner codes. In this example, with Q = 15, there is
a narrow tunnel open which the trajectory can sneak through until convergence point,
as shown in Fig. 3.7. Now those three optimal code parameters are obtained for Markov
source with p1 = p2 = 0.8.

The EXIT chart and trajectory for Markov source with p1 = p2 = 0.8 by using these
optimized code parameters are shown in Fig. 3.8. It is found from Fig. 3.8(a) that with
SNR = −4.5 dB, the convergence tunnel is still open until a point very close to (1,1)
mutual information point, and the trajectory finally reaches the convergence point. The
convergence behavior with SNR = −4.6 dB is presented in Fig. 3.8(b), where the EXIT
curves of the outer and inner codes intersect with each other and the trajectory gets stuck.
This observation suggests that the convergence threshold is −4.5 dB for Markov source
with p1 = p2 = 0.8.

The optimization process is performed for the Markov source with different p1 and p2
values, and the optimal code parameters are summarized in Table 3.1.

Table 3.1: Optimized Code Parameters for Markov Sources with Different p1 and p2 Values
Source Parameters Code Parameters
p1 p2 HM(p1, p2) Outer Inner Q

0.9 0.9 0.47 (3, 2)8 (6, 7)8 25
0.8 0.8 0.72 (3, 2)8 (6, 7)8 15
0.7 0.7 0.88 (3, 2)8 (6, 7)8 4

0.9 0.8 0.55 (3, 2)8 (6, 7)8 25
0.9 0.7 0.57 (3, 2)8 (6, 7)8 25
0.8 0.7 0.79 (3, 2)8 (6, 7)8 10

3.5 Performance Evaluation

3.5.1 BER Performance in AWGN Channels

In this subsection, we evaluate the BER performance versus Eb/N0 (the energy per bit
to noise power spectral density ratio)2 of the proposed JSC decoding technique based on
the results of code optimization provided in the previous section. Both symmetric and

2The relationship between Eb/N0 and SNR is SNR= Rc · Eb/N0.
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35



asymmetric Markov sources are considered. The length of binary sequence generated from
the Markov sources is 10, 000 bits, and in total 1000 different blocks were transmitted to
guarantee the BER evaluation accuracy.
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Figure 3.9: BER peformance of the proposed technique for symmetric binary Markov
sources in AWGN channels. Code rate is 1/2.

The performance of our proposed JSC decoding technique for transmitting symmetric
and asymmetric binary Markov sources are shown in Fig. 3.9 and 3.10, respectively.
Simulations are performed for different Markov sources with overall code rate Rc = 1/2.
Theoretical limits for those cases are also plotted in the same figure. To demonstrate the
performance gains obtained by the exploitation of the memory structure, the BER curve
of SCCC with the same code parameters, decoded with the standard BCJR algorithm,
is also provided in the same figure, which is referred to as “standard”. It can be clearly
observed that at the BER level of 10−4, when p1 = p2 = 0.7, our system offers a gain
of 0.84 dB over the “standard” system, while achieving a gap to the theoretical limit of
0.85 dB. All the gains and gaps are summarized in Table 3.2, together with the results
of the technique proposed in [82], which is referred to as Joint Source Channel Turbo
Coding (JSCTC) as a reference.

It can be found from the table that substantial gains can be achieved for differ-
ent Markov sources with both our proposed SCCC based and [82]’s proposed parallel-
concatenated convolutional codes (PCCC) based systems. This implies that exploiting
the source redundancy provides us with significant advantage. The gains over the stan-
dard BCJR decoding and gaps to the Shannon limits are measured with respect to Eb/N0,
which provide an fair comparison between our proposed JSC technique and the JSCTC
technique proposed in [82]. It is found that besides the gap in the case of p1 = p2 = 0.7,
our technique outperforms JSCTC in terms of both gains and the gaps for binary Markov
sources.
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Figure 3.10: BER peformance of the proposed technique for asymmetric binary Markov
sources in AWGN channels. Code rate is 1/2.

Table 3.2: BER performance comparison between the proposed system and JSCTC
Source Parameters JSCTC Our system

p1 p2 Gain(dB) Gap(dB) Gain(dB) Gap(dB)
0.9 0.9 3.03 1.36 4.24 0.86
0.8 0.8 1.29 0.94 2.04 0.78
0.7 0.7 0.7 0.73 0.84 0.85
0.9 0.8 2.31 1.14 3.24 1.0
0.9 0.7 2.02 1.31 3.04 1.02
0.8 0.7 0.92 0.83 1.54 0.8

It should be emphasized that the derivation of the modified BCJR algorithm is based
on the super trellis that represents both the outer code and the binary Markov source,
which is more accurate than the method used in JSCTC which is based on approximation.
As a consequence, the extrinsic LLRs obtained by the two decoders can be exchanged
directly between them in our technique without losing any information, while the extrinsic
LLRs generated by the two constitute decoders have to be further modified before being
fed into each other in JSCTC. Moreover, JSCTC shown in [82] employs two memory-4
constituent codes, while our proposed system uses a memory-1 outer code (as described
in Subsection 3.3.2, the decoding complexity is equivalent to a memory-2 RSC code) and
a memory-2 inner coder. Hence, compared with JSCTC, the decoding complexity of our
proposed system is significantly reduced.
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3.5.2 FER Performance in Rayleigh Fading Channels

In this subsection, the numerical results of the theoretical outage probability analysis
shown in (3.13), and the FER performance of the proposed SCCC-based JSC technique
obtained through simulations are presented. The length of binary sequence generated
from the Markov sources is 2000 bits, and in total 10, 000 different frames, each having
different channel realizations, were transmitted.

The theoretical outage probability and the FER performance of the proposed tech-
nique for symmetric Markov sources are shown in Fig. 3.11. It can be observed that the
theoretical outage probability decreases as the source memory becomes stronger, since the
source memory can be well exploited by the proposed technique. However, all the theo-
retical outage curves have the same decay (no diversity), regardless of p1 and p2 values,
this is consistent with the analysis provided in Subsection 3.2.2. It is also shown that the
stronger the source memory, the more the FER performance improvement. For the given
p1 and p2 values, there are around 1 dB gaps between the FER curves obtained through
simulations and their corresponding theoretical outage curves.

Similar results can be obtained with the theoretical outage probability and the FER
performance of the proposed technique for asymmetric Markov sources, as shown in
Fig. 3.12. The decay of the FER curves are consistent with their corresponding outage
curves, and there are around 1 dB gaps between them. It can be found from Figs. 3.11 and
3.12 that, our proposed technique is efficient for both symmetric and asymmetric Markov
sources. However, we can not achieve diversity gain by exploiting the source memory.

3.6 Summary

In this chapter, we have investigated the problem of transmitting binary Markov source
over wireless channels, where the source memory is exploited at the destination.

First of all, we derived the performance limits in AWGN channels and the outage
probability in block Rayleigh fading channels, for a channel coding rate Rc and Markov
source with given entropy HM(p1, p2). It is found from the theoretical analysis that the
source memory helps reducing the outage probability. However, no diversity gain can be
achieved with the source memory.

We then proposed a new coding/decoding framework for the problem considered,
based on SCCC. To fully exploit the Markov source memory, the trellis of Markov source
and that of the outer code are combined to construct a super trellis. A modified BCJR
algorithm, suitable for this structure, has been derived based on the super trellis diagram.
To further approach the performance limits, code doping is employed for inner code, where
the standard BCJR algorithm is used to decode the inner code. The extrinsic information
generated by the inner and joint outer decoders is exchanged via interleaver/deinterleaver
in the same way as the decoding of serially concatenated codes. The code parameters,
including generator polynomials of the outer and inner codes, and the doping rate of inner
code, were optimized based on EXIT chart analysis.

It has been shown through BER performance simulations that the proposed technique
can achieve equivalent or even better performance than JSCTC technique using PCCC,
while requiring much smaller decoding complexity. In addition, the FER curves of the
proposed technique obtained through simulations were compared with their corresponding
outage curves obtained in the theoretical analysis. It has been found the FER curves are
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consistent with their corresponding outage curves, and there are around 1 dB gaps between
them.
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Chapter 4

Markov Source Transmission over
One-Way Relay Channel

In this chapter, we extend the results of Chapter 3 to the problem of transmitting binary
Markov source in a one-way relay system, where a source node is communicating with
a destination node with the help of a relay node. The relay strategy is ErF [96], where
the relay node only extracts and forwards the source message to the destination node,
implying imperfect decoding at the relay node. The probability of errors occurring in the
source-relay link can be regarded as source-relay correlation, which can be estimated at
the destination node and utilized in the decoding process. Moreover, the source memory
of the Markov source can also be exploited at the destination.

First of all, we will describe the system model of relay transmission for Markov source.
Then, the achievable compression rate region is derived based on the Slepian-Wolf the-
orem. The performance limits in AWGN channels and the outage probability in block
Rayleigh fading channels are derived based on the achievable compression rate region. We
also propose a new coding/decoding framework that exploits the source-relay correlation
and source memory simultaneously, based on some practical channel codes. Furthermore,
the convergence property of the proposed technique is evaluated by EXIT chart analysis.
The effectiveness of the proposed technique is verified through a series of simulations,
including BER performance in AWGN channels, FER performance in Rayleigh fading
channels and image transmission experiments. It is also verified through the numerical
results that the accuracy of the theoretical analysis.

4.1 System Model

An abstract model of Markov source transmission in a one-way relay system is illustrated
in Fig. 4.1. The Markov source considered is a stationary state emitting binary Markov
source, of which the property has already been addressed in Chapter 3, and the source
memory can be parameterized by the Markov state transition probability p1 and p2.

4.1.1 Source-Relay Correlation

At the source node S, the binary data sequence us generated from Markov source is
directly fed into the channel encoder Encs and then modulated by BPSK to obtain the
modulated sequence xs. The relay node operates in a half-duplex mode and ErF relaying
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Markov

Source

Figure 4.1: Block diagram of the binary Markov source transmission in a one-way relay
system and its equivalent bit-flipping model. S, R and D denote the source, relay and
destination node, respectively.

strategy is adopted. During the first time slot, the source node broadcasts xs to both the
relay and destination nodes. After receiving signal ysr from the source node, the relay
node tries to extract by a simple decoding method the original data sequence and get
an estimate of us, which is denoted as ur. Then ur is interleavered, re-encoded by the
channel encoder Encr and modulated to get the modulated sequence xr, even though
errors may occur between ur and us. The relay node sends xr to the destination node
during the second time slot.

As described above, in ErF relay system, the source-relay correlation indicates the
correlation between us and ur, which can be represented by a bit-flipping model, as
shown in Fig. 4.1. ur can be defined as ur = us ⊕ e, where e is an i.i.d. binary random
variable vector and ⊕ indicates modulus-2 addition. The correlation between us and ur

is characterized by pe, where pe = Pr(ek = 1) = Pr(uk
s 6= uk

r) [88]. Here, uk
s , u

k
r and ek

denote the k-th symbol of us, ur and e, respectively.
After receiving signals ysd and yrd from the source and relay nodes, respectively, the

destination node performs joint decoding to exploit both the source-relay correlation and
source memory to retrieve the original data sequence sent from the source. This will be
detailed in Subsection 4.3.2.

4.1.2 Relay Location and Channel Model

For notational simplicity, the source, relay and destination nodes are indicated as S, R
and D, respectively. The link between S and D is denoted as Lsd. Similar definitions are
applied to Lsr and Lrd, as shown in Fig. 4.1. R can be located closer to S or to D, or the
three nodes keep the same distance with each other. All these three different relay location
scenarios are considered in this chapter, as shown in Fig. 4.2. The geometric-gain [125]

43



Location A

Location B

Location C

Figure 4.2: Three different relay location scenarios.

Gxy of the link Lij can be defined as

Gij = (
dsd
dij

)l, (4.1)

where ij ∈ {sr, sd, rd}. The pass loss exponent l is empirically set at 3.52 [125]. According
to (4.1), the geometric-gain of the source-destination link Gsd is normalized to 1 without
the loss of generality.

The received signals at the relay and at the destination nodes can be expressed as

ysr =
√

Gsr · hsr · xs + nr, (4.2)

ysd =
√

Gsd · hsd · xs + nd, (4.3)

yrd =
√

Grd · hrd · xr + nd, (4.4)

where hsr, hsd and hrd denote the complex block Rayleigh fading channel gains of Lsr,
Lsd and Lrd, respectively. According to the block fading assumption, they are constant
in each block. Notations nr and nd represent the zero-mean AWGN noise vectors at the
relay and the destination with variances σ2

r and σ2
d, respectively. If we normalize the noise

power at R and D to 1, the relationship between the average SNR of the Lsr Lrd and Lsd

with the three different relay location scenarios, denoted as Γsr, Γrd and Γsd, respectively,
can be decided as1:
(1) for location A, {

Γsr = Γsd,
Γrd = Γsd,

(4.5)

(2) for location B, {
Γsr = Γsd + 21.19 dB,
Γrd = Γsd + 4.4 dB,

(4.6)

(3) for location C, {
Γsr = Γsd + 4.4 dB,
Γrd = Γsd + 21.19 dB.

(4.7)

1Note that 10 log10(4
3.52) = 21.19 dB, and 10 log10[(

4
3 )

3.52] = 4.4 dB.
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4.2 Theoretical Analysis

As described above, the source-relay correlation can be characterized by the error proba-
bility pe. With block Rayleigh fading assumption, pe is also kept constant over one block,
but varies between different blocks. In fact, the value of pe depends largely on the quality
of Lsr and the extracting method used at R. Therefore, it is impractical to derive the pdf
of pe. Hence, in this section, we assume that pe is a constant number and the impact of
the variation of the quality of Lsr in not considered. The lower bound of the outage prob-
ability of the proposed system is obtained by assuming pe = 0. Furthermore, we assume
that the channel encoders Encs and Encr are both close-limit achieving, corresponding
to their rates.

4.2.1 Slepian-Wolf Theorem

Let {Xi, Yi}∞i=1 be a sequence of i.i.d. discrete random pairs with a joint pdf, i.e., (Xi, Yi) ∼
p(x, y). According to Theorem 2.1, we known that a rate H(X, Y ) is sufficient if X and
Y are encoded together for lossless compression. For example, we can first compress X
into H(X) bits per symbol and then compress Y into H(Y |X) bits per symbol based on
the complete knowledge of X at both the encoder and the decoder.

However, if we want to encode X and Y separately and decode them jointly, de-
termining the sufficient rates for lossless compression of X and Y is not so straightfor-
ward. Clearly, X and Y can be separately encoded with a overall rate R = Rx + Ry =
H(X)+H(Y ), but this is greater than H(X,Y ) when X and Y are correlated. This prob-
lem has been theoretically investigated by Slepian and Wolf in their landmark paper [84],
of which the results can be described as follow.

Theorem 4.1 (Slepian-Wolf) For a sequence {Xi, Yi}∞i=1 of discrete random pairs (Xi, Yi)
drawing i.i.d. ∼ p(x, y), where Xi ∈ X and Yi ∈ Y . Then for any rate pair that satisfy

Rx ≥ H(X|Y ),
Ry ≥ H(Y |X),

Rx +Ry ≥ H(X,Y ),
(4.8)

there exists an integer n and mappings

i : X n → I = {1, 2, · · · , 2nRx},
j : Y n → J = {1, 2, · · · , 2nRy},
g : I × J → X n × Y n,

(4.9)

such that

Pr{g(i(X1, ·, Xn), j(Y1, · · · , Yn)) = (Xi, · · · , Xn, Y1, · · · , Yn)} ≥ 1− ε. (4.10)

According to the Slepian-Wolf theorem, an admissible rate region is specified, as shown
in Fig. 4.3. As long as the rate pair (Rx, Ry) falls inside the admissible rate region, the
error probability ε after joint decoding can be made arbitrarily small.

45



Admissible

Region

Figure 4.3: The admissible rate region of Slepian-Wolf theorem.

Spatial

Time

Figure 4.4: The two-dimensional correlation of the proposed system, which are source-
relay correlation and the source memory, respectively..
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4.2.2 Achievable Compression Rate Region

As described in Section 4.1, us is generated from a binary Markov source and ur is a
bit-flipped version of us. Therefore there are two-dimensional source correlation exists in
the proposed system, in terms of both spatial and temporal domains, as shown in Fig. 4.4.
Due to the source memory, the random pair (ui

s, u
i
r) does not follow the i.i.d. property,

and {ui
s, u

i
r}∞i=1 is an ergodic process. It has been proved by Cover that the Slepian-Wolf

theorem can be applied to arbitrary ergodic process and arbitrary number of correlated
sources [126]. Hence we can still use the Slepian-Wolf theorem to determine the achievable
compression rate region of the proposed system.

Assume us and ur are compressed at rates Rs and Rr, respectively. According to the
Slepian-Wolf theorem, successful recovery of both us and ur after joint decoding at D is
possible if Rs and Rr satisfy 

Rs ≥ H(us|ur),
Rr ≥ H(ur|us),

Rs +Rr ≥ H(us,ur).
(4.11)

Since us is generated from a binary Markov source, the entropy rate is H(us) =
HM(p1, p2), where H

M(p1, p2) is defined in (3.4). ur is the bit-flipped version of us, hence
the conditional entropy H(ur|us) is

H(ur|us) = Hb(pe). (4.12)

The joint entropy rate of us and ur is

H(us,ur) = H(us) +H(ur|us) = HM(p1, p2) +Hb(pe). (4.13)

For the relay R, ur can be regarded as the output of a HMM [127], where us is the
sequence of the states, as shown in Fig. 4.4. It is noticed that H(ur) represents the
entropy rate of this HMM. However, deriving explicit expression for H(ur) may not be
possible [128]. Instead, making approximation for the entropy rate of HMM using some
numerical methods have been studied in [128–130]. According to the results presented
in [129], H(ur) can be expressed as a function of the transition probability p1, p2 and the
bit-flipping probability pe, i.e., H(ur) = Ψ1(p1, p2, pe). For the approximation of H(ur),
please refer to the Appendix. After obtaining H(ur), the conditional entropy H(us|ur)
can be expressed as

H(us|ur) = H(us,ur)−H(ur)

= HM(p1, p2) +Hb(pe)−Ψ1(p1, p2, pe)

= Ψ2(p1, p2, pe).

(4.14)

Now the achievable compression rate region defined by (4.8) is obtained, which is
shown in Fig. 4.5. It can be seen from the figure that the entire region for the rate pair
(Rs, Rr) can be divided into 4 parts, and the probability that (Rs, Rr) falls into Part i
is denoted as Pi, i = 1, 2, 3, 4. As long as (Rs, Rr) falls into Part 3, us and ur can be
successfully recovered. However, in the proposed one-way relay system, the objective of
D is only to retrieve us, which is sent from S. On the other hand, the data sequence ur

sent from R does not need to be successfully recovered at D. Therefore, if Rs ≥ H(us),
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Figure 4.5: The achievable compression rate region for the proposed system, assuming pe
is constant.
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an arbitrary value of Rr is satisfactory, which indicates Part 4 should also be included in
the achievable rate region [99]. Hence, the achievable rate region of the proposed system
is represented by Part 3 and Part 4, as shown in Fig. 4.5. According to the figure, this
achievable rate region can be expressed as{

Rs ≥ Ψ2(p1, p2, pe) and Rs +Rr ≥ HM(p1, p2) +Hb(pe), if Rr ≥ Hb(pe);

Rs ≥ HM(p1, p2), if 0 ≤ Rr < Hb(pe).
(4.15)

It should be emphasized here that, in the system considered in this section, source
coding for compression is performed neither at S or R. Instead, the correlation knowledge
between us and ur is exploited at D to enhance the error correction capability of the
system.

4.2.3 Performance Limits in AWGN channels

Since we assume pe is constant, according to Shannon’s separation theorem, if the total
information transmission rate over independent channels Lsd and Lrd satisfy [88]{

RsRc,s ≤ Csd,
RrRc,r ≤ Crd,

(4.16)

the error probability after decoding can be made arbitrarily small, where Rc,sd and Rc,rd

are the rates of the channel encoders Encs and Encr, respectively. Csd and Crd are
expressed as {

Csd = 1
2
log2(1 + 2Γsd),

Crd = 1
2
log2(1 + 2Γrd),

(4.17)

which represents the channel capacity of Lsd and Lrd with one-dimensional transmission,
respectively. Then the performance limits of the proposed system can be obtained by
combining (4.15) and (4.16), if pe is constant.

4.2.4 Outage Probability in Rayleigh Fading Channels

If Lsd and Lrd both suffer from block Rayleigh fading, the instantaneous SNR of Lsd and
Lrd are denoted as γsd and γrd, respectively. γsd is defined as

γsd =
|hsd|2GijEs,sd

2σ2
, (4.18)

where Es,sd represents the per-symbol signal power of Lsd. Similar definition can be
applied to γrd. Since the channel encoders Encs and Encr are assumed to be close-
limit achieving, according to (4.16) and (4.17), the relationship between the threshold
instantaneous SNR of Lij and its corresponding rate Ri is given by

Ri = Φi(γij) =
1

2Rc,ij

log2(1 + 2γij), (4.19)

with its inverse function

γij = Φ−1
i (Ri) =

22RiRc,ij − 1

2
, (4.20)
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where i = {s, r}, and j = d.
As shown in Fig. 4.5, if rate pair (Rs, Rr) falls into Part 3 or Part 4, then us can be

successfully decoded at D. Hence, the outage event happens when (Rs, Rr) falls into Part
1 and Part 2, and the outage probability of the proposed system is defined as

Pout = P1 + P2, (4.21)

where

P1 = Pr{0 ≤ Rs ≤ Ψ2(p1, p2, pe), Rr ≥ 0}
= Pr{Φ−1

s (0) ≤ γsd ≤ Φ−1
s [Ψ2(p1, p2, pe)], γrd ≥ Φ−1

r (0)},
(4.22)

and

P2 = Pr{Ψ2(p1, p2, pe) ≤ Rs ≤ HM(p1, p2), Rs +Rr ≤ HM(p1, p2) +Hb(pe)}
= Pr{Φ−1

s [Ψ2(p1, p2, pe)] ≤ γsd ≤ Φ−1
s [HM(p1, p2)],

Φ−1
r (0) ≤ γrd ≤ Φ−1

r [HM(p1, p2) +Hb(pe)− Φs(γsd)]}.
(4.23)

Since Lsd and Lrd suffer from statistically independent block Rayleigh fading, the joint
pdf of γsd and γrd can be expressed as p(γsd, γrd) = p(γsd)p(γrd), with

p(γij) =
1

Γij

exp(−γij
Γij

), ij ∈ {sd, rd}, (4.24)

where Γij = GijEs,ij/2σ
2 denotes the average SNR of Lij. Based on (4.24), the probabil-

ities P1 and P2 can be further derived as

P1 =

∫ Φ−1
s [Ψ2(p1,p2,pe)]

Φ−1
s (0)

∫ Φ−1
r (∞)

Φ−1
r (0)

p(γsd, γrd)dγrddγsd

=

∫ Φ−1
s [Ψ2(p1,p2,pe)]

Φ−1
s (0)

1

Γsd

exp(−γsd
Γsd

)dγsd

= 1− exp

[
−Φ−1

s [Ψ2(p1, p2, pe)]

Γsd

]
,

(4.25)

and

P2 =

∫ Φ−1
s [HM (p1,p2)]

Φ−1
s [Ψ2(p1,p2,pe)]

∫ Φ−1
r [HM (p1,p2)+Hb(pe)−Φs(γsd)]

Φ−1
r (0)

p(γsd, γrd)dγsddγrd

=

∫ Φ−1
s [HM (p1,p2)]

Φ−1
s [Ψ2(p1,p2,pe)]

p(γsd) ·
[
− exp(−γrd

Γrd

)

]Φ−1
r [HM (p1,p2)+Hb(pe)−Φs(γsd)]

Φ−1
r (0)

dγsd

=
1

Γsd

∫ Φ−1
s [HM (p1,p2)]

Φ−1
s [Ψ2(p1,p2,pe)]

exp(−γsd
Γsd

)

[
1− exp

(
−Φ−1

r [HM(p1, p2) +Hb(pe)− Φs(γsd)]

Γrd

)]
dγsd

=
1

Γsd

∫ Φ−1
s [HM (p1,p2)]

Φ−1
s [Ψ2(p1,p2,pe)][
exp(−γsd

Γsd

)− exp

(
−γsd
Γsd

− Φ−1
r [HM(p1, p2) +Hb(pe)− Φs(γsd)]

Γrd

)]
dγsd.

(4.26)

It can be found from (4.26) that, the derivation for the explicit expression of P2 may
not be possible. Hence, we use a numerical method to calculated the value of P2.
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4.2.5 Asymptotic Analysis

In The Case pe = 0

If us and ur are fully correlated (pe = 0), it is easily to identify Ψ1(p1, p2, pe) = HM(p1, p2)
and Ψ2(p1, p2, pe) = 0. In this case, the integral range of γsd in (4.25) is from 0 to 0, and
the value of P1 always equals to 0. Hence, the outage probability is determined by P2

only.
When Γsd → ∞, Γrd also approaches ∞. According to (3.14), P2 can be further

approximated as

P2 =
1

Γsd

∫ 2
2Rc,sdH

M (p1,p2)−1
2

0[
exp(−γsd

Γsd

)− exp

(
−γsd
Γsd

− 22Rc,rd[H
M (p1,p2)+H(pe)−Φs(γsd)] − 1

2Γrd

)]
dγsd

≈ 1

Γsd

∫ 2
2Rc,sdH

M (p1,p2)−1
2

0[
(1− γsd

Γsd

)−

(
1− γsd

Γsd

− 22Rc,rd[H
M (p1,p2)+H(pe)−Φs(γsd)] − 1

2Γrd

)]
dγsd

=
1

Γsd

∫ 2
2Rc,sdH

M (p1,p2)−1
2

0

− 1

2Γrd

+
22Rc,rdH

M (p1,p2)

2
1+

Rc,rd
Rc,sd (1 + 2γsd)Γrd

 dγsd

=
1

Γsd

− γsd
2Γrd

+
22Rc,rdH

M (p1,p2) ln(1 + 2γsd)

2
2+

Rc,rd
Rc,sd Γrd

 2
2Rc,sdH

M (p1,p2)−1
2

0

=
1

ΓsdΓrd

[
−22Rc,sdH

M (p1,p2) − 1

4
+

22Rc,rdH
M (p1,p2) ln(22Rc,sdH

M (p1,p2))

2
2+

Rc,rd
Rc,sd

]
.

(4.27)

It can be seen from (4.27) that, as Γsd → ∞ and Γrd → ∞, p2 is inversely proportional to
the product of Γsd and Γrd. Hence, the outage probability exhibits the 2nd order diversity.

In The Case pe 6= 0

In the case us and ur are not fully correlated (pe 6= 0), as Γsd → ∞, P2 → 0 according
to (4.26). Therefore the outage probability is mainly determined by P1. According to
(3.14), P1 can be approximated as

P1 = 1− exp

[
−22Ψ2(p1,p2,pe)Rc,sd − 1

2Γsd

]
≈ 22Ψ2(p1,p2,pe)Rc,sd − 1

2Γsd

.

(4.28)

It can be concluded that as Γsd → ∞, P1 is inversely proportional to Γsd, which indicates
the outage probability can not achieve any diversity gain.
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It should be emphasized here that, the asymptotic tendency is influenced by the mem-
ory structure of us, however, no diversity gain can be achieved with the change of source
memory, as can be seen from (4.27) and (4.28).

4.3 Practical Code Design

In the theoretical analysis, we assumed both Encs and Encr have close-limit performance.
Furthermore, the extracting method is not specified and the error probability between us

and ur is assumed to be constant. In this section, we propose a practical coding/decoding
scheme that exploits the source-relay correlation and source memory.

4.3.1 Coding Structure

Extraction

Markov

Source

Figure 4.6: Code structure for source and relay.

The block diagrams of the proposed coding structure for the source and relay nodes
are shown in Fig. 4.6. At the source node S, SCCC which consists of a RSC code Cs

followed by a interleaver Πs and a doped ACC with a doping rate Qs are used for Encs.
At the relay node R, the decoding process is invoked only once (i.e., no iterative

processing at the relay) to obtain ur, which is used for extracting. Errors may occur
between us and ur, as shown in Fig. 4.7. Apparently, if iterative decoding is performed at
the relay node, the error probability between u and ur can be further reduced. However,
by performing extracting at the relay node, relay complexity can be significantly reduced
without causing any significant performance degradation by the proposed algorithm, as
detailed in Subsection 4.3.2. Encr has the same coding structure with Encs, except that
the doping rate for the ACC is Qr.

4.3.2 Distributed Joint Source-Channel Decoding Strategy

The block diagram of the proposed DJSC decoder for one-way relay system exploiting the
source-relay correlation and the source memory structure is illustrated in Fig. 4.8. The
BCJR algorithm is used for MAP-decoding of CC and ACC. Here, Ds and Dr denotes
the decoder of Cs and Cr, respectively. In order to exploit the knowledge of the memory
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Figure 4.7: BER of the source-relay link over AWGN channel versus Γsr. The doping rate
at the source node is Qs = 1.
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structure of the Markov source, the outer code Cs is combined with the Markov source
and treated as a single constituent code, and the modified version of the BCJR algorithm
proposed in Chapter 3 is used to jointly perform source and channel decoding at Ds.
However, Dr can not exploit the source memory due to the additional interleaver Π, as
shown in Fig. 4.6.

(Modified  BCJR)

Figure 4.8: The proposed DJSC decoder for single relay system exploiting the source-relay
correlation and the source memory structure. ACC−1 denotes the de-accumulator. Ds

and Dr denotes the decoder of Cs and Cr, respectively.

At the destination node, the received signals from the source and the relay are first
converted to LLR sequences L(ysd) and L(yrd), respectively, and then decoded via two
horizontal iterations (HI s), as shown in Fig. 4.8. The extrinsic LLRs generated from Ds

and Dr in the two HI s are further exchanged by several vertical iterations (VI ) through
a LLR updating function fc, of which the role is detailed in the next subsection. This
process is performed iteratively and after enough iterations, hard decision is made based
on the a posteriori LLRs obtained from Ds.

LLR Updating Function

First of all, the value pe (error probability occurring in the source-relay link Lsr) is esti-
mated at the destination using the a posteriori LLRs of the uncoded bits, Lu

p,Ds
and Lu

p,Dr

from the decoders Ds and Dr, as

p̂e =
1

N

N∑
n=1

exp(Lu
p,Ds

) + exp(Lu
p,Dr

)

[1 + exp(Lu
p,Ds

)] · [1 + exp(Lu
p,Dr

)]
, (4.29)

where N indicates the number of the a posteriori LLR pairs from the two decoders with
sufficient reliability; only the LLRs with their absolute values larger than a given threshold
T can be used for calculating p̂e [88].

After obtaining the estimated error probability using (4.29), the probability of us can
be updated from ur as{

Pr(us,t = 0) = (1− p̂e) · Pr(ur,t = 0) + p̂e · Pr(ur,t = 1),
Pr(us,t = 1) = (1− p̂e) · Pr(ur,t = 1) + p̂e · Pr(ur,t = 0),

(4.30)
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where us,t and ur,t denote the t-th elements of us and ur, respectively. This leads to the
LLR updating function [88] for us:

L(us,t) = ln
Pr(us,t = 0)

Pr(us,t = 1)
= ln

(1− p̂e) · exp[L(ur,t)] + p̂e
(1− p̂e) + p̂e · exp[L(ur,t)]

. (4.31)

Similarly, the LLR updating function for ur can be expressed as:

L(ur,t) = ln
Pr(ur,t = 0)

Pr(ur,t = 1)
= ln

(1− p̂e) · exp[L(us,t)] + p̂e
(1− p̂e) + p̂e · exp[L(us,t)]

. (4.32)

In summary, the general form of the LLR updating function fc, as shown in Fig. 4.8,
is given as

fc(x, p̂e) = ln
(1− p̂e) · exp(x) + p̂e
(1− p̂e) + p̂e · exp(x)

, (4.33)

where x denotes the input LLRs. The output of fc is the updated LLRs by exploiting
p̂e as the source-relay correlation. The VI operations of the proposed decoder can be
expressed as

Lu
a,Ds

= fc[Π
−1(Lu

e,Dr
), p̂e], (4.34)

Lu
a,Dr

= fc[Π(L
u
e,Ds

), p̂e], (4.35)

where Π(·) and Π−1(·) denote interleaving and de-interleaving functions corresponding to
Π, respectively. Lu

a,Ds
and Lu

e,Ds
denote the a priori LLRs fed into, and extrinsic LLRs

generated by Ds, respectively, both for the uncoded bits. Similar definitions apply to
Lu

a,Dr
and Lu

e,Dr
for Dr.

4.4 3D EXIT Chart Analysis

In this section, we present results of three-dimensional (3D) EXIT chart [120, 121, 131]
analysis conducted to identify the impact of the memory structure of the Markov source
and the source-relay correlation on the joint decoder. The analysis focuses on the decoder
Ds since the main aim is to successfully retrieve the information estimates ûs. As shown
in Fig. 4.8, the decoder Ds exploits two a priori LLRs: Lc

a,Ds
and the updated version of

Lu
e,Dr

, Lu
a,Ds

. Therefore, the EXIT function of Ds can be characterized as

Ice,Ds
= T c

Ds
(Ica,Ds

, Iue,Dr
, pe), (4.36)

where Ice,Ds
denotes the mutual information between the extrinsic LLRs, Lc

e,Ds
generated

from Ds, and the coded bits of Ds. I
c
e,Ds

can be obtained by the histogram measurement
[121]. Similar definitions can be applied to Ica,Ds

and Iue,Dr
.

First of all, we assume that the source-relay correlation is not exploited and only
focus on the exploitation of source memory. In this case, Iue,Dr

= 0 and the EXIT analysis
of Ds can be simplified to two-dimensional. The EXIT curves with the standard and
modified BCJR algorithms are illustrated in Fig. 4.9. The code used in the analysis
is a half rate memory-1 RSC with the generator polynomials (Gr, G) = (3, 2)8. It can
be observed from Fig. 4.9 that, compared to the standard BCJR algorithm, the EXIT
curves obtained by using the modified BCJR algorithm are lifted up over the entire a
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Figure 4.9: Extrinsic information transfer characteristic of Ds, with standard BCJR and
with modified BCJR. The source-relay correlation is not considered. Generator polyno-
mials of Cs is (Gr, G) = (3, 2)8.

56



(a) pe = 0.01

(b) pe = 0.3

Figure 4.10: The EXIT planes of decoder Ds with different pe values. For Markov source,
p1 = p2 = 0.8, H(S) = 0.72.
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priori input region, indicating that larger extrinsic mutual information can be obtained.
It is also worth noticing that the contribution of the source memory represented by the
increase in extrinsic mutual information becomes larger as the entropy of Markov source
decreases.

Next we conduct 3D EXIT chart analysis for Ds to evaluate the impact of the source-
relay correlation, where the source memory is not exploited. The corresponding EXIT
planes of Ds, shown in gray, are illustrated in Fig. 4.10. Two different scenarios, a
relatively strong source-relay correlation (corresponding to small pe value) and a relatively
weak source-relay correlation (corresponding to large pe value) are considered. It can be
seen from Fig. 4.10(a) that with a strong source-relay correlation, the extrinsic information
Iue,Dr

provided by Dr, has a significant effect on T c
Ds
(·). On the contrary, when the source-

relay correlation is weak, Iue,Dr
has a negligible influence on T c

Ds
(·), as shown in Fig. 4.10(b).

For the proposed DJSC decoding scheme, both the source memory (temporal) and
the source-relay (spatial) correlations are exploited in the iterative decoding process. The
impact of the source memory and the source-relay correlations on Ds, represented by the
3D EXIT planes, shown in light-blue, is presented in Fig. 4.10. We can observe that higher
extrinsic mutual information can be achieved (EXIT planes are lifted up) by exploiting the
source memory and the source-relay correlations simultaneously, which will help decoder
Ds to perfectly retrieve the source information sequence even at a low SNR scenario.

It can be seen from Fig. 4.10 that the EXIT planes of Ds changes with the value of
pe. Moreover, as shown in Fig. 4.8, there are two HIs and one V I in our proposed DJSC
decoding technique. Hence, code optimization which involves the optimization of these
iteration loops is a challenging topic. In this section, the EXIT chart analysis is only
used to demonstrate the convergence behavior of the proposed DJSC technique, and code
optimization based on EXIT chart analysis is out of the scope of this section. Instead,
the practical code parameters used for simulations are empirically chosen.

4.5 Numerical Results

In this section, we present the results of simulations conducted to evaluate the convergence
property, the BER performance in AWGN channels and the FER performance in block
Rayleigh fading channels of the proposed DJSC technique. The encoder used at the
source and relay nodes, Cs and Cr, respectively, are both memory-1 half rate RSC with
generator polynomials (Gr, G) = (3, 2)8. Five VI s took place after every HI, with the aim
of exchanging extrinsic information to exploit the source-relay correlation. The whole
process was repeated 50 times. All the three relay location scenarios were evaluated,
with respect to the SNR of the source-destination link. The doping rates were set at
Qs = Qr = 2 for location A, while Qs = 1, Qr = 16 for both the location B and C.

4.5.1 Convergence Behavior

The convergence behavior with the proposed DJSC decoder at the relay location A with
Γsd = −3.5 dB is illustrated in Fig. 4.11. As described in Subsection 4.3.2, the decoding
algorithms for Ds and Dr are not the same, and thus the upper and lower HI s are
evaluated separately. It can be observed from Fig. 4.11(b) that the EXIT planes of Dr and
ACC decoder finally intersect with each other at about Ice,Dr

= 0.52, which corresponds
to Iue,Dr

= 0.59. This observation indicates that Dr can provide Ds with Iue,Dr
= 0.59
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Figure 4.11: The 3D EXIT chart analysis for the proposed DJSC decoder in relay location
A, Γsd = −3.5 dB.

59



a priori mutual information via the VI. Fig. 4.11(a) shows that when Iue,Dr
= 0, the

convergence tunnel is closed, but it is slightly open at Iue,Dr
= 0.59. Therefore, through

extrinsic information exchange between Ds and Dr, the trajectory of the upper HI can
sneak through the convergence tunnel and finally reach the convergence point while the
trajectory of the lower HI gets stuck. It should be noted here that since p̂e is estimated
and updated during every iteration, the trajectory of the upper HI does not match exactly
with the EXIT planes of Ds and the ACC decoder, especially at the first several iterations.
Similar phenomena is observed for the trajectory of the lower HI.

4.5.2 Contribution of the Source-Relay Correlation
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Figure 4.12: The BER performance of the proposed DJSC decoder for relay systems
versus Γsd in AWGN channels. Three different relay location scenarios are considered.
The memory structure of Markov source is not considered.

The performance gains obtained by exploiting only the source-relay correlations largely
rely on the quality of the source-relay link (which can be characterized by pe), as described
in the previous subsection. Fig. 4.12 shows the BER performance of the proposed tech-
nique when pe is known and unknown at the decoder, while the memory structure of
Markov source is not taken into account. The threshold T on LLRs for estimating p̂e [88]
is set at 1. It can be observed that for relay locations A and C, the BER performance of
the proposed decoder is almost the same whether pe is known or unknown at the decoder.
However, for relay location B, convergence threshold is −7.7 dB and −7.4 dB when pe is
known and unknown at the decoder, respectively, which results in a performance degra-
dation of 0.3 dB. It can also be seen from Fig. 4.12 that, the performance gains obtained
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by exploiting only source-relay correlation (pe is assumed to be unknown at the decoder)
for the locations A, B and C, over the conventional P2P communication system where
relaying is not involved, are 0.6 dB, 5.4 dB and 2.6 dB, respectively. Among these three
different relay location scenarios, it is found that the quality of the source-relay link with
the location A is the worst and that with the location B is the best, if Γsd is the same.
This is consistent with the simulation results.

4.5.3 BER Performance in AWGN channels

In this subsection, we evaluate the BER performance of the proposed DJSC technique.
The information sequences are generated from Markov sources with different state tran-
sition probabilities. The block length is 10000 bits, and 1000 different blocks were trans-
mitted for the sake of keeping reasonable accuracy. The threshold for estimating p̂e [88]
is set at T = 1.

In the theoretical analysis, we assumed Pe is constant. However, in the BER simula-
tions, pe is determined by both the quality of Lsr (the value of Γsr) and the extracting
method used at R. According to Subsection 4.3.1, pe varies with Γsr. Therefore, deriving
the exact limits of the proposed system may not be possible. Instead, lower bound of the
limits can be obtained by assuming pe = 0. In this case, the achievable rate region in
(4.15) becomes 

Rs ≥ 0,
Rr ≥ 0,
Rs +Rr ≥ HM(p1, p2).

(4.37)

By combining (4.16) and (4.37), we can obtain the lower bound of the limits, which are
shown in Table 4.1. It should be mentioned that in the three relay locations considered,
pe 6= 0. Especially, in relay location C, the quality of Lsr is the worst where pe � 0,
and therefore big gaps between the lower bound of the limits and the corresponding BER
performance are expected.

Table 4.1: Lower bound of the performance limits of the proposed technique in AWGN
channels.

Markov Source Parameters Relay locations
p1 p2 H(S) A (dB) B (dB) C (dB)

0.5 0.5 1 -6.84 -9.43 -24.27
0.7 0.7 0.88 -7.48 -10.08 -25.01
0.8 0.8 0.72 -8.47 -11.1 -26.13
0.9 0.9 0.47 -10.54 -13.2 -28.4

The proposed DJSC technique exploits both source-relay correlation and the memory
structure of Markov source simultaneously during the iterative decoding process, thus
more performance gains should be achieved. The BER performance of the proposed DJSC
technique for relay location A is shown in Fig. 4.13. As a reference, the BER curve of the
technique that only exploit the source-relay correlation is also provided, which is labeled
as “w/o Markov source”. It can be observed that by exploiting the memory structure
of Markov source, the proposed DJSC technique can achieve 0.3 dB, 1.2 dB and 2.2 dB
performance gains over “w/o Markov source” for p1 = p2 = 0.7, 0.8 and 0.9, respectively.
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Figure 4.13: The BER performance of the proposed DJSC decoder for relay location A
versus Γsd in AWGN channels. Three different Markov sources are considered.
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Figure 4.14: The BER performance of the proposed DJSC decoder for relay location B
versus Γsd in AWGN channels. Three different Markov sources are considered.

63



−9 −8.5 −8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5
10

−4

10
−3

10
−2

10
−1

10
0

SNR of the source−destination link (dB)

B
E

R

 

 

p
1
=p

2
=0.9, H(S)=0.47

p
1
=p

2
=0.8, H(S)=0.72

p
1
=p

2
=0.7, H(S)=0.88

w/o Markov source

Location C

Figure 4.15: The BER performance of the proposed DJSC decoder for relay location C
versus Γsd in AWGN channels. Three different Markov sources are considered.
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The BER performance of the proposed DJSC technique for the relay locations B and C
are presented in Figs. 4.14 and 4.15, respectively. The performance gains achieved by the
proposed DJSC technique are summarized in Table. 4.2. It is found that by exploiting
the memory structure of Markov source, considerable gains can also be achieved for the
relay locations B and C.

Table 4.2: BER performance gains (dB) of the proposed DJSC technique over the tech-
nique that only exploits source-relay correlation.

Markov Source Parameters Relay locations
p1 p2 H(S) A B C

0.7 0.7 0.88 0.3 dB 0.45 dB 0.45 dB
0.8 0.8 0.72 1.2 dB 1.4 dB 0.9 dB
0.9 0.9 0.47 2.2 dB 3.05 dB 2.6 dB

4.5.4 Application to Image Transmission

The proposed technique was applied to image transmission to verify the effectiveness
of the proposed DJSC technique. The results with the conventional P2P, the proposed
DJSC technique that only exploits source-relay correlation (DJSC/SR) and that only
exploits the source memory (DJSC/SM) are also provided for comparison. Two cases
were tested: (A) binary (black and white) image and (B) Grayscale image with 8-digits
pixel representations. In (A), each pixel of the image has only two possible values (0 or
1). Binary images are widely used in simple devices, such as laser printers, fax machines,
and bilevel computer displays. It is quite straightforward that the binary image can be
modeled as Markov source. For a binary image with 256×256 pixels, shown in Fig. 4.16(a)
as an example, the average state transition probabilities are found to be p1 = 0.9538
and p2 = 0.9480 through measurement. The image data is encoded column-by-column.
Figs. 4.16(b-e) show the estimates of the image obtained as the result of decoding at
Γsd = −10 dB with the conventional P2P technique, DJSC/SR, DJSC/SM and DJSC,
respectively. As can be seen from Fig. 4.16, with the conventional P2P transmission, the
estimated image quality is the worst containing 43.8% pixel errors (see the figure caption),
since neither source-relay correlation nor source memory is exploited. With DJSC/SR and
DJSC/SM, the estimated images contain 19.4% and 8.1% pixel errors, respectively. The
proposed DJSC that exploits both source-relay correlation and source memory achieves
perfect recovery of the image, with 0% pixel error.

Grayscale images are widely used in some special applications, such as medical imag-
ing, remote sensing and video monitoring. An example of a grayscale image with 256×256
pixels is shown in Fig. 4.17(a), which is used in the simulation for (B). There are 8 bit
planes in this image: the first bit plane contains the set of the most significant bits of each
pixel, and the 8th contains the least significant bits, where each bit plane is a binary im-
age. The image data is encoded plane-by-plane and column-by-column within each plane,
therefore the grayscale image can also be modeled as Markov source. The average state
transition probabilities are found to be p1 = 0.7167 and p2 = 0.6741 through measure-
ment. Figs. 4.17(b-e) show the estimates of the image, obtained as the result of decoding,
at Γsd = −7.5 dB with the conventional P2P, DJSC/SR, DJSC/SM and DJSC, respec-
tively. It can be observed that the performance with DJSC/SR (50.27% pixel errors) and
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(a)

(b) (c)

(d) (e)

Figure 4.16: Image transmission for a binary image with p1 = 0.9538 and p2 = 0.9480 at
Γsd = −10 dB, the relay location is B, (a) original transmitted image, (b) conventional
P2P (43.8% pixel errors), (c) DJSC/SR (19.4% pixel errors), (d) DJSC/SM (8.1% pixel
errors), (e) DJSC (0% pixel errors).
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(a)

(b) (c)

(d) (e)

Figure 4.17: Image transmission for a gray image with p1 = 0.7167 and p2 = 0.6741 at
Γsd = −7.5 dB, the relay location is B, (a) original transmitted image, (b) conventional
P2P (98.1% pixel errors), (c) DJSC/SR (50.27% pixel errors), (d) DJSC/SM (96.9% pixel
errors), (e) DJSC (0% pixel errors).
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DJSC/SM (96.9% pixel errors) are much better than that with conventional P2P (98.1%
pixel errors). However, by exploiting the source-relay correlation and the source memory
simultaneously, the proposed DJSC achieves perfect recovery of the image, with 0% pixel
error.

4.5.5 FER Performance in Rayleigh Fading Channels

The numerical results of the theoretical outage probability calculation and the FER per-
formance of the proposed DJSC technique for relay locations A, B and C are shown in
Fig. 4.18, 4.19 and 4.20, respectively. The frame length is set at 2000 bits, and in total
100, 000 different frames were transmitted from the source node to the destination node
over block Rayleigh fading channels. The theoretical outage curve of P2P transmission is
also provided in these figures for comparison. It should be emphasized here that the the-
oretical outage curves for the proposed DJSC technique is obtained by assuming pe = 0,
due to the reason presented in Subsection 4.5.3, and therefore, they are lower bound of
the outage probability, while in simulations, links Lsr, Lsd and Lrd all suffer from Rayleigh
fading. Moreover, instead of using static threshold for p̂e estimation, we use an adaptive
threshold algorithm proposed in [132] to improve the accuracy of estimation and hence
the FER performance in block Rayleigh fading channels.

It is found from these figures that, the theoretical outage probability decreases as the
time-domain correlation of the Markov source becomes stronger for all the three relay
location scenarios, since the memory structure of the Markov source can be exploited
at the destination node. Compared with P2P transmission, 2nd order diversity can be
observed in the theoretical outage curves, because the source-relay correlation is exploited
at the destination node with the assumption pe = 0. However, the theoretical outage
curves with different Markov sources are parallel to each other, which indicates that no
diversity gain can be achieve by exploiting the memory structure of the Markov sources
(the improvement is only a parallel shift of the outage curve). The FER curves exhibits
the same tendency as their corresponding theoretical outage curves, however, there are
still large gaps between them because the theoretical outage curves are just lower bound
obtained by assuming pe = 0. In all the three relay location scenarios, the gaps between
FER curves and their corresponding theoretical outage curves in location C are the largest,
which is because of the same reason that described in Subsection 4.5.3.

4.6 Summary

In this chapter, we have investigated the problem of transmitting binary Markov source
in a one-way relay system, where the ErF relay strategy is adopted. The relay does not
aim to completely eliminate the errors in the source-relay link. Instead, the relay only
extracts and forwards the source information sequence to the destination, even though
the extracted information sequence may contain some errors. The error probability of
the source-relay link is regarded as source-relay correlation. We aim at exploiting the
source-relay correlation and the memory structure of Markov source at the destination
node.

In the theoretical analyses, the achievable compression rate region of the system was
first determined, according to the Slepian-Wolf theorem, by assuming the source-relay
correlation is constant. Lower bound of the performance limits in AWGN channels and the
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Figure 4.18: FER performance of the proposed DJSC technique for relay location A, with
respect to Γsd, where all the links suffer form Rayleigh fading. Three different Markov
sources are considered. Dotted lines are lower bounds of outage probability, which are
obtained by assuming pe = 0.

69



−10 −5 0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

Average SNR of the source−destination link L
sd

(dB)

F
E

R
(O

u
ta

g
e

P
ro

b
a
b
ili

ty
)

P2P transmission

Theoretical P
out

, p
1
=p

2
=0.5

Theoretical P
out

, p
1
=p

2
=0.7

Theoretical P
out

, p
1
=p

2
=0.8

Theoretical P
out

, p
1
=p

2
=0.9

FER, p
1
=p

2
=0.5

FER, p
1
=p

2
=0.7

FER, p
1
=p

2
=0.8

FER, p
1
=p

2
=0.9

Location B

Figure 4.19: FER performance of the proposed DJSC technique for relay location B, with
respect to Γsd, where all the links suffer form Rayleigh fading. Three different Markov
sources are considered. Dotted lines are lower bounds of outage probability, which are
obtained by assuming pe = 0.

70



−10 −5 0 5 10 15
10

−4

10
−3

10
−2

10
−1

10
0

Average SNR of the source−destination link L
sd

(dB)

F
E

R
(O

u
ta

g
e

P
ro

b
a
b
ili

ty
)

P2P transmission

Theoretical P
out

, p
1
=p

2
=0.5

Theoretical P
out

, p
1
=p

2
=0.7

Theoretical P
out

, p
1
=p

2
=0.8

Theoretical P
out

, p
1
=p

2
=0.9FER, p

1
=p

2
=0.5

FER, p
1
=p

2
=0.7

FER, p
1
=p

2
=0.8

FER, p
1
=p

2
=0.9

Location C

Figure 4.20: FER performance of the proposed DJSC technique for relay location C, with
respect to Γsd, where all the links suffer form Rayleigh fading. Three different Markov
sources are considered. Dotted lines are lower bounds of outage probability, which are
obtained by assuming pe = 0.
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outage probability in Rayleigh fading channels were then derived based on the achievable
compression rate region. The most important finding of asymptotic analysis is that with
the help of memory structure of Markov source, the outage probability of the system
will be reduced, but diversity order stays the same. Moreover, only if the information
transmitted from the source and relay nodes are fully correlated, 2nd order diversity can
be achieved. Otherwise, it converges to no diversity as the average SNR of the source-
destination link increases.

We also proposed a new DJSC decoding scheme for the problem considered. In our
proposed technique, the LLR updating function is adopted to estimate and exploit the
source-relay correlation. Furthermore, the JSC technique proposed in Chapter 3 is em-
ployed to exploit the memory structure of the Markov source. The convergence property
of the proposed DJSC decoding technique was evaluated through 3D EXIT chart analysis.

A series of simulations was conducted to evaluate the effectiveness of the proposed
DJSC decoding technique and the results obtained from the theoretical analyses. In the
simulations, three different relay location scenarios were considered. In location A, the
source and relay nodes keep the same distance to the destination node. In location B
and C, the relay node is located closer to the source node and closer to the destination
node, respectively. The BER and FER performance results showed that the proposed
DJSC technique achieves considerable gains over the techniques that only exploit the
source-relay correlation.
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Chapter 5

Correlated Sources Transmission in
Orthogonal Multiple Access Relay
Channel

In this chapter, the problem of transmitting two correlated binary sources over orthogonal
MARC, where two source nodes are communicating with a common destination node with
the assistance of a single relay node, is investigated.

First of all, the system model assumed in this chapter is briefly introduced. The achiev-
able compression rate region of this system is then derived based on the theorem for source
coding with side information. The performance limits in AWGN channels and the outage
probability in block Rayleigh fading channels are derived based on the achievable rate
region. The impact of source correlation and the quality of the relay-destination link on
the performance of the system is investigated through asymptotic analysis. Furthermore,
we propose a practical coding/decoding scheme for the system considered, where a novel
JSCN decoding technique is proposed to fully exploit the correlation between the sources,
as well as the benefit of network coding. Finally, the effectiveness of the proposed JSCN
decoding technique and the accuracy of the theoretical analysis are verified through a
series of computer simulations.

5.1 System Model

The abstract model for two correlated sources transmission over MARC is shown in
Fig. 5.1(a). The information sequence emitted from the two source nodes S1 and S2 are
correlated. It is assumed that S1 and S2 can not communicate with each other. Instead,
the relay node is used to help the two sources to improve the probability of successful
signal reception of the information sequences sent from the sources at the destination, by
performing network coding. Both the source correlation and benefit of network coding
can be exploited at the destination node.
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(a) The abstract MARC model considered in this chapter. The source nodes S1 and
S2 communicate with a common destination node D with the help of a single relay
node R.
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(b) The diagram of the simplified system model, assuming the source-relay links are
error free. Enc1, Enc2 and Encr are channel codes for S1, S2 and Sr, respectively.

Figure 5.1: System model for two correlated source transmission in MARC.
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5.1.1 Problem Simplification

We assume the source-relay links are error free and therefore the relay can always success-
fully retrieve the data sequences sent from the two source nodes.1 The system model can
be simplified with this assumption, as shown in Fig. 5.1(b). The binary data sequences
u1 and u2, emitted from the two source nodes S1 and S2, respectively, are correlated with
each other. The correlation between the sources can be described using the bit-flipping
model [133] as follows. u1 is generated from an i.i.d. binary source with equiprobability,
i.e., Pr(uk

1 = 0) = Pr(uk
1 = 1) = 0.5, where uk

1 denotes the k-th symbol of u1. u2 is then
defined as uk

2 = uk
1 ⊕ ek and Pr(ek = 1) = 1− Pr(ek = 0) = p, where ⊕ denotes modulo-2

addition and p is the bit-flipping probability. The source correlation can be characterized
by the bit-flipping probability p, and it is assumed that p in known to the destination
node. Moreover, the transmissions from the two sources are assumed to be orthogonal due
to time division transmission [134]. Consequently, three different time slots are assigned
to the two source and relay nodes, since the relay is assumed to work in half-duplex mode.

At the two source nodes, the data sequence u1 and u2 are first independently encoded
by the channel encoders Enc1 and Enc2, and then modulated by BPSK to obtain the
modulated sequences x1 and x2, respectively. Then, at their dedicated time slots, each
source node forwards the BPSK-modulated sequence, x1 or x2, to the relay node R and
the destination node D. R performs XOR operation on the perfectly recovered sequences
u1 and u2 as ur = u1 ⊕ u2. The XORed sequence, ur, is encoded by the channel encoder
Encr and then modulated by BPSK to generate the signal sequence xr to be transmitted.

After receiving signals from S1, S2 and R, joint decoding that exploits both the source
correlation and benefit of network coding is performed at D to retrieve u1 and u2. This
will be detailed in Subsection 5.3.2.

5.1.2 Channel Model

For notational simplicity, the link between S1 andD is referred to as L1. Similar definitions
are applied to the links from S2 and R to D by L2 and Lr, respectively, as shown in
Fig. 5.1(a). In this subsection, the source-destination and relay-destination links are
assumed to suffer from AWGN and frequency non-selective block Rayleigh fading. The
received signal sequence at the destination can be expressed as

yi = hi · xi + ni, (5.1)

where i = 1, 2, r corresponds to source nodes S1, S2 and relay node R, respectively. ni

and hi represent zero mean, variance σ2 i.i.d. complex Gaussian noise vector and the
complex block Rayleigh fading channel gain of Li, respectively.

We assume that the two source nodes both have the same distance to the destination.
Therefore, the average SNRs of both L1 and L2 are the same, i.e., Γ1 = Γ2 = Γ. The relay
node can be located with the same distance to the destination as the sources, or closer
to the destination. In this chapter, we consider two different cases of the relay location,
as shown in Fig. 5.2. In Case 1, the relay and two source nodes have identical distance
to the destination node. In Case 2, the relay node is closer to the destination node than

1Alternatively, the relay may perform detection and decoding over received signals to obtain estimates
of the source information, respectively, however, in this case, the source-relay links are assumed to be
error free after decoding.
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Case 1 Case 2

Figure 5.2: Two cases considered for the proposed MARC system . In case 1, the relay
and two source nodes keep the same distance to the destination node and thus the SNR of
the three links are the same. In case 2, the SNR of the relay-destination link is increased
by 3 dB.

the two source nodes. Due to the geometric gain [99], the average SNR of the Lr is larger
than that with L1 and L2. Here, we assume the average SNR of the relay-destination link
is 3 dB larger than Γ. Hence Γr = Γ for Case 1, and Γr = Γ + 3 dB for Case 2.

5.2 Theoretical Analysis

5.2.1 Theorem for Lossless Source Coding with Side Informa-
tion

Encoder 1

Encoder 2

Decoder

Figure 5.3: An example of source coding with side information.

Let {Xi, Vi}∞i=1 be a sequence of i.i.d. discrete random pairs with (Xi, Vi) ∼ p(x, v).
X and V are separately encoded at rate Rx and Rv, respectively. The encoded sequences
are jointly decoded at the decoder, however, only X is to be recovered, which is the main
difference with the Slepian-Wolf theorem. Therefore, V that is statistically dependent
on X is used as side information at the decoder. This problem is referred to as lossless
source coding with side information, which is depicted in Fig. 5.3. The achievable rate
pair (Rx, Rv) is specified by the following theorem [114,135].

Theorem 5.1 (Lossless Source Coding with Side Information) For a sequence
{Xi, Vi}∞i=1 of discrete random pairs (Xi, Vi) drawing i.i.d. ∼ p(x, v), where Xi ∈ X and
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Vi ∈ V . Then for any rate pair that satisfies{
Rx ≥ H(X|V̂ ),

Rv ≥ I(V ; V̂ ).
(5.2)

for some joint probability mass function p(x, v)p(v̂|v), there exists an integer n and map-
pings

f1 : X n → I = {1, 2, · · · , 2nRx},
f2 : V n → J = {1, 2, · · · , 2nRv},
g : I × J → X n × Y n,

(5.3)

such that

Pr{g(f1(X1, ·, Xn), f2(Y1, · · · , Yn)) 6= (Xi, · · · , Xn, Y1, · · · , Yn)} ≤ ε. (5.4)

The random variable V̂ can be regarded as the estimate of V at the decoder. According
to this theorem, we can use R2 = I(V ; V̂ ) bits per symbol to describe an approximate
version of V . Then X can be described at the rate of H(X|V̂ ) bits per symbol in the
presence of side information V̂ at the decoder. Moreover, as long as the rate pair satisfies
(5.2), the error probability after decoding can be made arbitrarily small.

5.2.2 Achievable Compression Rate Region

Due to the XOR operation at the relay node, the achievable compression rate for u1 and u2

may not only be determined by the Slepian-Wolf theorem. However, in MARC considered
in our system, the destination only aims to recover the data sequence u1 and u2, which
are sent from source node S1 and S2, respectively (we are not interested in the sequence
transmitted from the relay, but we only use it). The data sequence ur sent from the relay
can be regarded as additional redundancy and are used to enhance the performance of
the system. Therefore, the theorem for lossless source coding with side information can
be used for determining the achievable compression rate region for MARC with correlated
sources.

In the theorem for lossless source coding with side information [114, 135], only one
source is considered. It can be extended to two sources scenario [136] or even arbitrary
number of sources scenario [135, Theorem 10.4]. Therefore, according to the theorem for
lossless source coding with side information, the achievable compression rate region of the
MARC model described in Section 5.1 is given by

R1 ≥ H(u1|u2, ûr),
R2 ≥ H(u2|u1, ûr),

R1 +R2 ≥ H(u1,u2|ûr),
Rr ≥ I(ur; ûr),

(5.5)

where R1, R2 and Rr are the compression rates for u1, u2 and ur, respectively. ûr is the
estimate of ur at the final output. Since the destination node does not aim to successfully
decode ur, ûr may contain some errors. The relationship between ur and ûr can also be
expressed as a bit-flipping model with error probability α, α ∈ [0, 0.5].
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Derivation of I(ur; ûr), H(u1|u2, ûr), H(u2|u1, ûr), and H(u1,u2|ûr)

As described in Section. 5.1, the appearance probabilities of u1 and u2 are equiprobable,
which means Pr(uk

1 = 0) = Pr(uk
2 = 0) = 1

2
, then we have H(u1) = H(u2) = 1. Fur-

thermore, u1 and u2 are correlated and the correlation is modeled as bit-flipping with
probability p, which leads to

H(u1) = H(u2) = 1, (5.6)

H(u1|u2) = H(u2|u1) = Hb(p) (5.7)

H(u1,u2) = 1 +Hb(p). (5.8)

The information sent from the relay node is ur = u1 ⊕ u2, hence Pr(uk
r = 1) =

1−Pr(uk
r = 0) = p. The estimate of ur obtained at the destination node after decoding, ûr,

is a bit-flipped version of ur with probability α, and therefore Pr(ûk
r = 1) = 1−Pr(ûk

r) =
α+ p− 2αp.

The mutual information between ur and ûr can be expressed as

I(ur; ûr) = H(ûr)−H(ûr|ur)

= Hb(α+ p− 2αp)−Hb(α).
(5.9)

According to the chain rule for entropy, the joint entropy of u1, u2, ur and ûr can be
expressed as

H(u1,u2,ur, ûr) = H(u1) +H(u2|u1) +H(ur|u1,u2) +H(ûr|u1,u2,ur), (5.10)

where H(ur|u1,u2) = 0, and H(ûr|u1,u2,ur) = H(ûr|ur). H(u1,u2,ur, ûr) can also be
expressed in another way, as

H(u1,u2,ur, ûr) = H(ûr) +H(u1,u2|ûr) +H(ur|u1,u2, ûr), (5.11)

where H(ur|u1,u2, ûr) = 0.
By combining (5.10) and (5.11), we can get

H(u1,u2|ûr) = H(u1) +H(u2|u1)− [H(ûr)−H(ûr|ur)]

= 1 +Hb(p)− I(ur; ûr).
(5.12)

H(u1,u2|ûr) can be further expressed as

H(u1,u2|ûr) = H(u1|ûr) +H(u2|u1, ûr)

= H(u2|ûr) +H(u1|u2, ûr).
(5.13)

Given the fact that both u1 and u2 are independent of ûr and H(u1|ûr) = H(u2|ûr) = 1,
we have

H(u1|u2, ûr) = H(u2|u1, ûr) = Hb(p)− I(ur; ûr). (5.14)

Combining all the results above, now we have
H(u2|u1, ûr) = Hb(p)− I(ur; ûr),
H(u1|u2, ûr) = Hb(p)− I(ur; ûr),
H(u1,u2|ûr) = 1 +Hb(p)− I(ur; ûr),
I(ur; ûr) = Hb(α+ p− 2αp)−Hb(α).

(5.15)
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Illustration of the Achievable Compression Rate Region

According to (5.15), the achievable compression rate region is determined by the source
correlation p and the error probability α. For a given p value, the achievable compression
rate region is determined only by α. First we focus on the achievable compression rate
region of R1 and R2. If α = 0.5, the estimate ûr of ur after decoding does not contain
any information of ur and hence can not be utilized in the joint decoding process. In this
case, the achievable compression rate region for R1 and R2 is R1 ≥ Hb(p), R2 ≥ Hb(p) and
R1+R2 ≥ 1+Hb(p), which is the region surrounded by a polygon as shown in Fig. 5.4. It
can be seen that the region is the same as that determined by the Slepian-Wolf theorem
for two correlated sources. If α = 0, ur can be successfully decoded at the destination.
Hence, the achievable compression rate region for R1 and R2 becomes R1 ≥ 0, R2 ≥ 0
and R1 + R2 ≥ 1, as depicted in Fig 5.4. In this case, the achievable compression rate
region for R1 and R2 is the largest. If 0 < α < 0.5, the achievable compression rate region
for R1 and R2 is between these two extreme cases, which is also shown in the same figure.

Figure 5.4: The achievable compression rate region for R1 and R2. α is the error proba-
bility between ur and ûr.

The error probability α between ur and ûr, is determined by the quality of Lr. Since we
assume the channel encoders Enc1, Enc2 and Encr are close-limit achieving, obviously,
the minimum compression rate for Rr is Rr,min = I(ur; ûr). Taking Rr into the account,
the achievable compression rate region for the proposed system can be determined, which
is the 3-dimensional (3D) space surrounded by the polyhedron, as shown in Fig. 5.5.

It should be emphasized that, source coding for compression is performed at neither
S1, S2 nor R. Instead, the correlation knowledge among u1, u2 and ur are exploited at
the destination to enhance the error correction capability of the system.

79



Figure 5.5: The achievable compression rate region for the proposed system.
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5.2.3 Performance Limits in AWGN Channels

According to Shannon’s separation theorem, if the total information transmission rates
over independent channels satisfy [88]

R1Rc1 ≤ C1,
R2Rc2 ≤ C2,
RrRcr ≤ Cr,

(5.16)

message error probability can be infinitesimally reduced, where Rc1, Rc2 and Rcr are the
rates of the channel encoders Enc1, Enc2 and Encr, respectively. C1, C2 and Cr are
the channel capacity of the links L1, L2 and Lr, respectively. In AWGN channels with
one-dimensional modulation, the channel capacity is defined as

Ci =
1

2
log2(1 + 2Γi), (5.17)

where i = 1, 2, r corresponds to source nodes S1, S2 and relay node R, respectively. Γi

denote the SNR of Li.

Case 1

The instantaneous SNR of the source-relay and relay-destination links are the same in
the relay location Case 1, i.e., Γ1 = Γ2 = Γr. In this case, obviously R1 = R2 = Rr = R.
Then the compression rate R is determined by{

R ≥ 1
2
[1+H(α)+H(p)−H(α+p−2αp)] = f1(α, p),

R ≥ H(α+ p− 2αp)−H(α) = f2(α, p),
(5.18)

where f1(α, p) and f2(α, p) correspond to the compression rates for the two source nodes
and the relay node, respectively.

The minimum compression rate Rmin is achieved on the intersection of f1(α, p) and
f2(α, p), as shown in Fig. 5.6. It can be observed that for a certain p value, as α increases,
less bits are needed to describe ur while more bits are needed for describing u1 and u2. It
can also be seen from this figure that if H(p) ≤ 0.5, Rmin is only determined by f1(α, p).
By combining (5.16) and (5.18), we can obtain the performance limit of our system in
AWGN channels for Case 1.

Case 2

In the relay location Case 2, the instantaneous SNR of the relay-destination link is in-
creased by 3 dB, i.e., Γr = Γ1 + 3 dB. In this case, the relationship between R1, R2 and
Rr can not be explicitly identified. However, the performance limit of our system can be
calculated by combining (5.5), (5.15) and (5.16).

5.2.4 Outage Probability in Rayleigh Fading Channels

According to [99], the outage probability of the proposed system can be derived once
the achievable compression rate region is determined. The instantaneous SNR of Li is
denoted by γi = |hi|2Es,i/2σ

2, where Es,i represents the per-symbol signal power of Li and
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Figure 5.6: The minimum compression rate for our system in case 1. p denotes the bit-
flipping probability between the two sources. α denotes the error probability between ur

and ûr.

82



i = 1, 2, r corresponds to S1, S2 and D, respectively. Since the channel codes used for the
transmission over L1, L2 and Lr are assumed to be close-limit achieving, corresponding
to their rates, according to (5.16) and (5.17), the relationship between the threshold
instantaneous SNR of Li and its corresponding rate Ri is given by

Ri = Φi(γi) =
1

2Rci

log2(1 + 2γi), (5.19)

with its reverse function

γi = Φ−1
i (Ri) =

22RiRci − 1

2
. (5.20)

As shown in Fig. 5.5, the entire rate region for the proposed system can be divided
into 4 parts, with Pj, j = 1, 2, 3, 4, representing the probability that the rate combination
(R1, R2, Rr) falls into Part j. As mentioned in Subsection 5.2.2, α is determined by the
quality of Lr and the minimum value for Rr is Rr,min = I(ur; ûr). If the instantaneous
SNR of Lr, γr, falls under a certain threshold, then ûr 6= ur at D after decoding. In this
case, Rr,min ranges from 0 to Hb(p) and the achievable rate region is represented by P1

and P2. On the contrary, if γr is above this certain threshold, then ûr = ur at D after
decoding. In this case, Rr,min = H(p) and the achievable rate region is represented by P3

and P4.
If (R1, R2, Rr) falls into the achievable rate region, u1 and u2 can be successfully

decoded at D. Hence, the outage event happens when (R1, R2, Rr) falls outside the
achievable rate region, and the outage probability of the proposed system is expressed as

Pout = 1− P1 − P2 − P3 − P4, (5.21)

where

P1 = Pr{0 ≤ Rr ≤ Hb(p), Hb(p)− I(ur; ûr) ≤ R1 ≤ 1, R1 +R2 ≥ 1 +Hb(p)− I(ur; ûr)}
= Pr{Φ−1

r (0) ≤ γr ≤ Φ−1
r [Hb(p)],Φ

−1
1 [Hb(p)− Φr(γr)] ≤ γ1 ≤ Φ−1

1 (1),

γ2 ≥ Φ−1
2 [1 +Hb(p)− Φr(γr)− Φ1(γ1)]},

(5.22)

P2 = Pr{0 ≤ Rr ≤ Hb(p), R1 ≥ 1, R2 ≥ Hb(p)− I(ur; ûr)}
= Pr{Φ−1

r (0) ≤ γr ≤ Φ−1
r [Hb(p)], γ1 ≥ Φ−1

1 (1), γ2 ≥ Φ−1
2 [Hb(p)− Φr(γr)]},

(5.23)

P3 = Pr{Rr ≥ Hb(p), 0 ≤ R1 ≤ 1, R1 +R2 ≥ 1}
= Pr{γr ≥ Φ−1

r [Hb(p)],Φ
−1
1 (0) ≤ γ1 ≤ Φ−1

1 (1), γ2 ≥ Φ−1
2 [1− Φ1(γ1)]},

(5.24)

and

P4 = Pr{Rr ≥ Hb(p), R1 ≥ 1, R2 ≥ 0}
= Pr{γr ≥ Φ−1

r [Hb(p)], γ1 ≥ Φ−1
1 (1), γ2 ≥ Φ−1

2 (0)}.
(5.25)

Since L1, L2 and Lr are suffering from statistically independent block Rayleigh fading,
the joint pdf of the instantaneous SNRs can be expressed as p(γr, γ1, γ2) = p(γr) · p(γ1) ·
p(γ2), where

p(γi) =
1

Γi

exp(−γi
Γi

), i = 1, 2, r. (5.26)
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Here Γi = Es,i/2σ
2 represents the average SNR of Li. With (5.26), the probabilities P1,

P2, P3 and P4 can be further expressed as triple integrals, as:

P1 =

∫ Φ−1
r [Hb(p)]

Φ−1
r (0)

dγr

∫ Φ−1
1 (1)

Φ−1
1 [Hb(p)−Φr(γr)]

dγ1

∫ Φ−1
2 (∞)

Φ−1
2 [1+Hb(p)−Φr(γr)−Φ1(γ1)]

p(γr)p(γ1)p(γ2)dγ2

=

∫ Φ−1
r [Hb(p)]

Φ−1
r (0)

dγr

∫ Φ−1
1 (1)

Φ−1
1 [Hb(p)−Φr(γr)]

p(γr)p(γ1)

[
− exp(−γ2

Γ2

)

]Φ−1
2 (∞)

Φ−1
2 [1+Hb(p)−Φr(γr)−Φ1(γ1)]

dγ1

=
1

ΓrΓ1

∫ 2RcrHb(p)−1
2

0

dγr

∫ 1
2

2
2Rc1[Hb(p)−

1
2Rcr

log2(1+2γr)]−1
2

exp

{
−γr
Γr

− γ1
Γ1

− Φ−1
2 [1 +Hb(p)− Φr(γr)− Φ1(γ1)]

Γ2

}
dγ1,

(5.27)

P2 =

∫ Φ−1
r [Hb(p)]

Φ−1
r (0)

dγr

∫ Φ−1
1 (∞)

Φ−1
1 (1)

dγ1

∫ Φ−1
2 (∞)

Φ−1
2 [Hb(p)−Φr(γr)]

p(γr)p(γ1)p(γ2)dγ2

=

∫ Φ−1
r [Hb(p)]

Φ−1
r (0)

p(γr)

[
− exp(−γ1

Γ1

)

]Φ−1
1 (∞)

Φ−1
1 (1)

[
− exp(

γ2
Γ2

)

]Φ−1
2 (∞)

Φ−1
2 [Hb(p)−Φr(γr)]

dγr

=
1

Γr

exp(− 1

2Γ1

)

∫ 22RcrHb(p)−1
2

0

exp

{
−γr
Γr

− 22Rc2[Hb(p)− 1
2Rcr

log2(1+2γr)] − 1

2Γ2

}
dγr,

(5.28)

P3 =

∫ Φ−1
r (∞)

Φ−1
r [Hb(p)]

dγr

∫ Φ−1
1 (1)

Φ−1
1 (0)

dγ1

∫ Φ−1(∞)

Φ−1
2 [1−Φ1(γ1)]

p(γr)p(γ1)p(γ2)dγ2

=

∫ Φ−1
1 (1)

Φ−1
1 (0)

[
− exp(−γr

Γr

)

]Φ−1
r (∞)

Φ−1
r [Hb(p)]

· p(γ1) ·
[
− exp(

γ2
Γ2

)

]Φ−1
2 (∞)

Φ−1
2 [1−Φ1(γ1)]

dγ1

=
1

Γ1

exp

[
−22RcrHb(p) − 1

2Γr

]
·
∫ 1

2

0

exp

{
−γ1
Γ1

− 2
2Rc2[1− 1

2Rc1
log2(1+2γ1)] − 1

2Γ2

}
dγ1,

(5.29)

and

P4 =

∫ Φ−1
r (∞)

Φ−1
r [Hb(p)]

dγr

∫ Φ−1
1 (∞)

Φ−1
1 (1)

dγ1

∫ Φ−1
2 (∞)

Φ−1
2 (0)

p(γr)p(γ1)p(γ2)dγ2

=

[
− exp(−γr

Γr

)

]Φ−1
r (∞)

Φ−1
r [Hb(p)]

·
[
− exp(−γ1

Γ1

)

]Φ−1
1 (∞)

Φ−1
1 (1)

·
[
− exp(−γ2

Γ2

)

]Φ−1
2 (∞)

Φ−1
2 (0)

= exp(− 1

2Γ1

) exp

[
−22RcrHb(p) − 1

2Γr

]
.

(5.30)

Except for P4, the derivation for the explicit expressions of the integrals in (5.27),
(5.28) and (5.29) may not be possible. Instead, a numerical method [137] is used to
calculate the values of P1, P2 and P3.

84



5.2.5 Asymptotic Property

In this subsection, we evaluate the outage probability of the proposed system when the
two sources are fully correlated (p = 0). In this case, we have Hb(p) = 0. The integral
ranges of γr in (5.27) and (5.28) are both from 0 to 0, which means P1 = P2 = 0. Moreover,
we can have

exp

[
−22RcrHb(p) − 1

2Γr

]
= 1. (5.31)

and the outage probability becomes

Pout,p=0 = 1− P1 − P2 − P3 − P4

= 1− exp(− 1

2Γ1

)

− 1

Γ1

∫ 1
2

0

exp

{
−γ1
Γ1

− 2
2Rc2[1− 1

2Rc1
log2(1+2γ1)] − 1

2Γ2

}
dγ1.

(5.32)

It is found from (5.32) that if the two sources are fully correlated, the outage probability
is only determined by the quality of L1 and L2.

As mentioned in Subsection 5.1.2, we assume Γ1 = Γ2 and Γr is ∆ dB larger than Γ1,
i.e., Γr = Γ1 · 10∆/10. In this subsection, we only considered the case when ∆ = 0 (Case
1 ) and that when ∆ = 3 (Case 2 ). Next the outage probability of the proposed system
is evaluated when ∆ approaches infinity. For given Γ1, when ∆ → ∞, 1

Γr
= 1

Γ1·10∆/10 → 0.

According to (5.27) and (5.28), we have P1 = P2 = 0. Furthermore, as ∆ → ∞, it is
found that

exp

[
−22RcrHb(p) − 1

2Γr

]
= exp

[
−22RcrHb(p) − 1

2(Γ1 · 10∆/10)

]
→ 1. (5.33)

Obviously, the outage probability of the proposed system when ∆ → ∞ is the same as in
the case the two sources are fully correlated, as:

Pout,∆→∞ = Pout,p=0. (5.34)

5.3 Practical Code Design

In the theoretical analysis, we did not specify the coding structure for Enc1, Enc2 and
Encr and assume that they all have close-limit performance. In this section, we propose
a coding/decoding scheme that exploits the source correlation and the benefit of network
coding simultaneously.

5.3.1 Coding Structure

The block diagram of the coding structure of Enci, i = 1, 2, r is shown in Fig. 5.7, where
SCCC is used. The outer code in SCCC is a non-recursive non-systematic convolutional
(NRNSC) code, and the inner code is doped accumulator with doping rate Qi. The
NRNSC codes C1, C2 and Cr are all half-rate memory-1 code with generator polynomial
(3, 2)8, therefore Rc1 = Rc2 = Rcr = 1/2. It has been shown in [96] that even with this
simple SCCC code, still excellent performance can be achieved.
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Figure 5.7: Coding structure for Enci, i = 1, 2, r. Ci is convolutional code and Acc
denotes doped accumulator.

5.3.2 Joint Source-Channel-Network Decoding Structure

The block diagram of the proposed JSCN decoder for MARC is illustrated in Fig. 5.8.
As can be seen from the figure, the joint decoding process is divided into two constituent
function, operated iteratively. We refer to these two processes as Local Iteration (LI) and
Global Iteration (GI). To perform channel decoding for RSC codes C1, C2 and Cr as well
as ACC, we perform MAP-decoding using the BCJR algorithm.

+

++

Figure 5.8: The proposed JSCN decoder. D1, D2 and Dr denotes the decoders of the
NRNSC codes C1, C2 and Cr used by S1, S2 and R, respectively. ACC−1 denotes the
decoder for ACC.

The received signals at the destination are first converted into LLRs as

L(yki ) = ln
Pr(yki |xk

i = +1)

Pr(yki |xk
i = −1)

=
2

σ2
<{h∗

i · yki }, (5.35)

where i = 1, 2, r denotes S1, S2 and R, respectively. yki and xk
i are the k-th symbol of

yi and xi, respectively. h∗
i indicates the complex conjugation of hi and <{·} indicates

the real part of its arguments. The obtained LLR sequences L(y1), L(y2) and L(yr) are
then fed into three independent LIs. In the LI, the extrinsic LLRs are exchanged via
the corresponding interleaver/deinterleaver between the SISO decoder ACC−1 and SISO
decoder D1, D2 or Dr used by S1, S2 or R, respectively.
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After each LI step, the extrinsic LLRs generated from D1, D2 and Dr are further
exchanged via the GI. As depicted in Fig. 5.1(b), XOR network coding is applied at the
relay and the relationship among the data sequences transmitted from the two sources
and relay nodes can be expressed as ur = u1 ⊕ u2. In conventional MARC that does
not take into account the source correlation, joint network-channel (JNC) decoding is
performed at the destination where the GI can be performed as

LR
a (ur) = L1

e(u1)� L2
e(u2)

= ln
1 + exp[L1

e(u1) + L2
e(u2)]

exp[L1
e(u1)] + exp[L2

e(u2)]
,

(5.36)

with � denoting the boxplus operation which is equivalent to the XOR operation in the
LLR domain [138, 139]. Le(u1) and Le(u2) denote the extrinsic LLRs generated from
Dec1 and Dec2, respectively, and LR

a (ur) denotes the a priori LLRs fed into Decr.
The a priori LLRs fed into Dec1 and Dec2, which are denoted as La(u1) and La(u2),
respectively, can be obtained in the same way.

If the two correlated sources are transmitted to the destination node without the help
of the relay node, only the source correlation can be exploited at the destination. In this
case, joint source-channel (JSC) decoding can be performed at the destination to exploit
the source correlation. D1 and D2 can exchange their extrinsic information via the fc
function defined in (4.33).

In our proposed system, the two sources are correlated and XOR network coding is
performed at the relay node. In order to take into account the correlation knowledge
between u1 and u2, as well as with the assistance of network coding, modified versions of
the boxplus operation are derived to perform JSCN at the destination, which is detailed
in the next subsection. Finally, after sufficient iterations, hard decisions are made based
on the output of D1 and D2 to get the estimate of u1 and u2, respectively.

5.3.3 Modified Versions of Boxplus Operation

Modified Boxplus Operation for Relay Node

Since the correlation between u1 and u2 is modeled by the bit-flipping model, it is quite
straightforward to obtain the following equations, according to [88,133]:

Pr(uk
r =0)=Pr(uk

1=0, uk
2=0) + Pr(uk

1=1, uk
2=1)

=Pr(uk
1=0) · Pr(uk

2=0) · (1−p) + Pr(uk
1=1) · Pr(uk

2=1) · (1−p),
(5.37)

Pr(uk
r =1)=Pr(uk

1=0, uk
2=1) + Pr(uk

1=1, uk
2=0)

=Pr(uk
1=0) · Pr(uk

2=1) · p+ Pr(uk
1=1) · Pr(uk

2=0) · p,
(5.38)

where uk
1, u

k
2 and uk

r denote the k-th symbol of u1, u2 and ur, respectively. With (5.37)
and (5.38), the LLR for uk

r can be obtained as

L(uk
r) = L(uk

1)�r L(u
k
2) = ln

Pr(uk
r = 0)

Pr(uk
r = 1)

= ln
1− p

p
+ ln

1 + exp[L(uk
1) + L(uk

2)]

exp[L(uk
1)] + exp[L(uk

2)]
,

(5.39)
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where �r denotes the modified version of the boxplus operation for updating the LLR
values of ur, based on the LLR values of u1 and u2, which corresponds to the black square
in Fig. 5.8. It can be observed from (5.39) that the correlation between u1 and u2 has
now been exploited.

Modified Boxplus Operation for Source Node

Since the LLR updating rules for the source node is different from that of the relay node,
let us demonstrate the derivation process for the LLR updating function for the signal
transmitted from S1. In the same way as �r was derived, we can obtain the following
equations:

Pr(uk
1=0)=Pr(uk

r =0, uk
2=0) + Pr(uk

r =1, uk
2=1)

=Pr(uk
r =0) · Pr(uk

2=0) · (1−p) + Pr(uk
r =1) · Pr(uk

2=1) · p,
(5.40)

Pr(uk
1=1)=Pr(uk

r =0, uk
2=1) + Pr(uk

r =1, uk
2=0)

=Pr(uk
r =0) · Pr(uk

2=1) · (1−p) + Pr(uk
r =1) · Pr(uk

2=0) · p,
(5.41)

where uk
1, u

k
2 and uk

r denotes the k-th symbol of u1, u2 and ur, respectively. It can be
obtained from (5.40) and (5.41) that the LLR updating function for uk

1 is

L(uk
1) = L(uk

r)�s L(u
k
2) = ln

Pr(uk
1 = 0)

Pr(uk
1 = 1)

= ln
p+ (1− p) · exp[L(uk

r) + L(uk
2)]

(1− p) · exp[L(uk
r)] + p · exp[L(uk

2)]
,

(5.42)

where �s denotes the modified version of boxplus operation for updating the LLR values
of u1, which corresponds to the gray square in Fig. 5.8. The LLR updating function for
S2 can be derived in the same way.

In summary, the GI operation of the proposed decoder, as shown in Fig. 5.8, can be
expressed as: 

La(ur) = Le(u1)�r Le(u2),
La(u1) = Le(ur)�s Le(u2),
La(u2) = Le(ur)�s Le(u1).

(5.43)

By performing GI operations with the modified boxplus functions, the extrinsic LLRs
are updated, which take into account both the impact of the source correlation and XOR
network coding at the relay.

Extreme Cases Consideration

Note that in the case p = 0.5, indicating that the two sources being uncorrelated, the
modified boxplus operations, �r and �s, are both equivalent to the original boxplus
operation �. Furthermore, if the relay node does not help in the decoding process, which
is corresponding to the case LR

e (ur) = 0, the modified boxplus operation �s is equivalent
to the original fc function defined in (4.33).
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Figure 5.9: BER performance of the proposed JSCN technique for MARC with corre-
lated sources in Case 1, with respect to the SNR of L1. Different source correlation are
considered.

5.4 Numerical Results

5.4.1 BER Performance in AWGN Channels

In this subsection, we evaluate the BER performance of the proposed technique in AWGN
channels. Note that the BER performance is averaged over S1 and S2. In our simulations,
the doping rates were set as Q1 = Q2 = QR = 1. We performed GI after every LI, and
the whole process was repeated 20 times.

The frame length is set at 10, 000 bits, and 1000 different frames were transmitted from
each source node. To demonstrate the performance gains achieved by the exploitation of
correlation between the two sources, the BER curve of conventional XOR network coding
based MARC that does not exploit source correlation is also provided, which is denoted
by “NC”. In this conventional MARC, the original boxplus operation of (5.36) is used
for extrinsic information exchange during the joint channel-network decoding process. As
a reference, the BER performance of the system that does not utilize network coding
(without relay node) but only exploits the source correlation by using the fc function
defined in (4.33) is also provided in the same figure, which is denoted as “SC”.

The BER performance of the proposed system in Case 1 is depicted in Fig. 5.9. It can
be observed that the BER performance of our JSCN coding scheme provides significant
gain over both “SC” and “NC”. It should be emphasized here that as the source correlation
becomes larger, the gain over “NC” increases while the gain over “SC” decreases. However,
even with a relative small p value (p = 0.05), still considerable gains can be achieved
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Figure 5.10: BER performance of the proposed JSCN technique for MARC with corre-
lated sources in Case 2, with respect to the SNR of L1. Different source correlation are
considered.

over “SC”. If the two sources are fully correlated (p = 0), the BER performance of the
proposed JSCN technique and that of “SC” are the same. Because in this case, the
modified boxplus operation �s used in JSCN and the fc function used in “SC” become
equivalent, as described in Subsection 5.3.3.

Fig. 5.10 shows the BER performance of the proposed system in Case 2. As can be
seen from the figure, if p = 0, the BER performance of the proposed system is the same
as that in Case 1. This is because the modified boxplus operation �s becomes equivalent
to the fc function used in “SC” if p = 0, which means �s does not take any help from the
relay node. For p = 0.3, 0.2 and 0.1, the performance are quite close to that with p = 0.

The performance limits of our system in AWGN channels with some different source
correlations (different p value) are summarized in Table 5.1, for both Case 1 and Case 2.
It should be noted here that the limits for p = 0.1, 0.05 and 0 in Case 1 are the same (-6.84
dB). This is because the limit is dominated by the source-destination links for p ≤ 0.1, as
shown in Fig. 5.6. Similar phenomena can be observed in Case 2, and hence in this case
the limits for p = 0.2, 0.1, 0.05 and 0 are the same. The performance gains over “NC” and
“SC”, as well as the gaps to the theoretical limits with our proposed technique in both
Case 1 and Case 2 are also summarized in Table 5.1, at BER = 10−4. Note that the gaps
between the theoretical limits and the BER performance of our proposed JSCN technique
are roughly 1−2 dB. This is because we are not using very close-limit achieving codes for
per-link transmission in this subsection. As shown in [96,140], however, proper tuning of
the doping rates Q1, Q2 and Qr may result in even smaller gap to the limit.

90



Table 5.1: Performance Gains and Gaps to the Theoretical Limits for the Proposed JSCN
Coding Scheme, at the BER level of 10−4.

p Limits (dB)
Gains (dB)

Gaps (dB)
over NC over SC

NC 0.5 -5.32 - - 1.5

Case 1
JSCN

0.3 -5.65 0.25 1.96 1.58
0.2 -6.12 0.55 1.75 1.75
0.1 -6.84 1.06 1.32 1.96
0.05 -6.84 1.17 0.81 1.75
0 -6.84 1.31 0 1.71

NC 0.5 -6.47 - - 1.52

Case 2
JSCN

0.3 -6.80 0.1 2.94 1.75
0.2 -6.84 0.15 2.48 1.74
0.1 -6.84 0.16 1.55 1.73
0 -6.84 0.18 0 1.71

5.4.2 FER Performance in Rayleigh Fading Channels

In this subsection, the numerical results of the theoretical outage probability calculation
and the FER performance of the proposed JSCN technique obtained through simulations
are presented. The frame length is set at 2000 bits, and 100, 000 different frames were
transmitted from each source node.

Fig. 5.11 demonstrates the theoretical outage curves and the FER performance of the
proposed system in Case 1, with different source correlations. It is found that, as the
source correlation becomes stronger, the theoretical outage probability decreases, since
the source correlation can be exploited at the destination. Similarly, we can observe that
the larger the source correlation, the larger the FER performance improvement by using
the proposed JSCN technique. For the given p value, there is around 1−2 dB gap between
the FER curve obtained through simulations and the theoretical outage curve. This is
because the channel codes used for the three links L1, L2 and Lr can not achieve very
close limit performance, as indicated in Subsection 5.4.1. The theoretical outage curve
of the P2P transmission, of which decay corresponds to no-diversity, are also provided in
the same figure.

The theoretical outage curves and the FER performance of the proposed system in
Case 2 are illustrated in Fig. 5.12. The FER and theoretical outage curves exhibit the
same decay as the 2nd order diversity. The gaps between the FER simulation results and
their corresponding theoretical outage curves are around 1 − 2 dB. Note that if p = 0,
the theoretical outage curve in Case 2 is the same as that obtained in Case 1, which
is consistent to the mathematical proof presented in Subsection 5.2.5. Furthermore, the
FER curve for p = 0 in Case 2 is almost the same as that obtained in Case 1, which also
agrees with the results shown in Subsection 5.4.1.

The outage probability analysis of two correlated sources transmission without network
coding in block Rayleigh fading channels is presented in [99], where it is shown that the
2nd order diversity can be achieved only if the two sources are correlated, and the decay
asymptotically converges into no-diversity if the two sources are not fully correlated.
However, It can be seen from Figs. 5.11 and 5.12 that the 2nd order diversity can be
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Figure 5.11: FER performance of the proposed JSCN technique for MARC with correlated
sources in Case 1, with respect to the average SNR of L1. Different source correlation are
considered.
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Figure 5.12: FER performance of the proposed JSCN technique for MARC with correlated
sources in Case 2, with respect to the average SNR of L1. Different source correlation are
considered.
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always achieved, regardless of the p value.
It can also be observed from Figs. 5.11 and 5.12 that, as the quality of the Lr is

improved (∆ increases), the theoretical outage probability with p ∈ (0, 0.5] converges
into the theoretical outage probability with p = 0, which is consistent to the asymptotic
tendency analysis provided in Subsection 5.2.5. It is expected that if the quality of Lr is
good enough, the difference in theoretical outage curves due to different p values becomes
very minor. Similar tendency can be observed in the FER performance curves obtained
through simulations.

5.5 Summary

The problem of transmitting two correlated sources over orthogonal MARC has been
intensively investigated in this chapter, where the correlation between the two sources is
exploited at the destination node.

The achievable compression rate region has been studied according to the theorem for
source coding with side information. It is found that the compression rate region has a
three-dimensional structure, which is specified by the space surrounded by the polyhedron.
The theoretical limits for the BER performance and the outage probability of our system
in AWGN channels and Rayleigh fading channels, respectively, have been calculated based
on the achievable compression rate region. The asymptotic analysis shows that, the outage
probability is only determined by the quality of source-destination links if the two sources
are fully correlated. Moreover, if the two sources are not fully correlated, the outage
probability asymptotically converges into that obtained by assuming the two sources are
fully correlated, as the average SNR of the relay-destination link increases.

We then proposed a practical coding/decoding scheme for the problem considered.
In order to fully exploit the source correlation while still exploiting the benefit of XOR
network coding, an iterative JSCN decoding technique, which involves modified versions of
the boxplus operation, was proposed for extrinsic information exchange at the destination.

A series of simulations based on some practical channel codes was conducted to ver-
ify the effectiveness of the proposed JSCN decoding technique and the results obtained
from theoretical analyses. In the simulations, the two source nodes are located at the
same distance to the destination node. Two different cases about the relay location were
considered; in Case 1 the relay has the same distance to the destination node, and in
Case 2 the relay is located closer to the destination node. The BER and FER perfor-
mance results show that the proposed JSCN technique achieves considerable gains over
conventional MARC where the source correlation knowledge is not exploited. However,
since the quality of the relay-destination link in Case 2 is better than that in Case 1, the
gains in Case 2 is less than that achieved in Case 1. It is also found that the 2nd order
diversity can always be achieved, regardless of the strength of the source correlation. The
simulation results and the theoretical limit analysis are consistent with each other.

Besides XOR network coding, some other network cooperative strategies can also be
used at the relay node, such as superposition coding [141,142]. Even though we know that
there are a lot of pros-and-cons comparisons/discussions of those techniques [143–145], we
are not intended to be involved in such investigations, because the superiority/inferiority
is at large depending on the viewpoints.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this dissertation, we have investigated cooperative wireless communications by focusing
on exploiting the multi-dimensional correlation among multiple sources. The objective
of this research is to create theoretical bases and to develop practical coding/decoding
framework that best utilize the correlation knowledge among the distributed multiple
sources. In particular, we focused on three representative problems in cooperative wireless
communications to illustrate the impact of source correlation on the system performance
and how the correlation knowledge among the distributed multiple sources can be best
utilized. For each problem, the research is comprised of the following phases:

1. Information theoretical limits analysis.

2. Practical code design and decoding algorithm development that exploits the corre-
lation knowledge.

3. Performance evaluation of the proposed techniques through simulations.

4. Accuracy verification of the theoretical limits obtained in (1).

The first problem we considered was binary Markov source transmission in conven-
tional P2P communication systems. The design concepts and the algorithms are the basis
for solving similar problem that may arising in cooperative wireless communications. The
achievable compression rate region was determined by the source coding theorem, which
should be larger than the entropy of the Markov source. Then the performance limits
in AWGN channels and the outage probability in block Rayleigh fading channels were
derived. A new JSC decoding scheme based on SCCC was proposed to fully exploit the
source memory. A modified version of BCJR algorithm was derived to perform joint de-
coding of the Markov source and the outer code. To further approach the performance
limits, coding doping is employed for inner code. Furthermore, the code parameters, in-
cluding generator polynomials of the outer and inner codes, and the doping rate of the
inner code, were optimized based on EXIT chart analysis.

We then applied the results obtained from the first problem to the second problem that
we investigated, which is binary Markov source transmission in a one-way relay system.
The relay does not aim to complete eliminate the errors occurring in the source-relay
link. Instead, ErF relaying strategy is used for reducing the computational complexity
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of the relay. The error probability of the source-relay link is regarded as source-relay
correlation. Therefore, there are two dimensional correlation, one is the Markov source
memory and the other is the source-relay correlation. The achievable compression rate
region of this system was derived based on the Slepian-Wolf theorem. The lower bound of
the performance limits in AWGN channels and the outage probability in block Rayleigh
fading channels were derived based on the achievable compression rate region, by assuming
no error occurs in the source-relay link. We proposed a DJSC decoding scheme to exploit
the source-relay correlation and the source memory simultaneously. The JSC technique
proposed in the first problem is used to exploit the source memory, while the LLR updating
function is used to estimate and exploit the source-relay correlation. The convergence
property of the proposed DJSC technique was evaluated through 3D EXIT chart analysis.

The third problem we investigated was correlated source transmission over MARC,
where two source nodes are communicating with a common destination with the help of
a single relay node. The source-relay link was assumed to be error free and XOR network
coding was employed at the relay. The achievable compression rate region of this system
was derived based on the theorem for lossless source coding with side information. The
performance limits in AWGN channels and the outage probability in block Rayleigh fading
channels were derived based on the achievable compression rate region. A JSCN decoding
scheme was then proposed to fully exploit the correlation between the two sources, while
still maintain the benefit of network coding.

In the three problems, the effectiveness of the proposed JSC, DJSC and JSCN tech-
niques in terms of the BER performance in AWGN channels and the FER performance
in block Rayleigh fading channels were verified through a series of simulations. It has
been found from the simulation results that, the theoretical limits are consistent with the
BER and FER performance. The impacts of source correlation on the performance of
the corresponding systems were investigated through asymptotic tendency analysis, and
further verified through simulation results. By exploiting source correlations, the outage
probability of the three systems can be reduced significantly (FER performance are im-
proved). However, by exploiting the memory structure of Markov source, no diversity
gain can be achieved in the first and second problems. In the second problem, if the
information sent from the source and relay are fully correlated, 2nd order diversity can
be achieved; otherwise, the outage probability asymptotically converges into no diversity.
In the third problem, 2nd order diversity can always be achieved because of the network
coding, however no additional diversity gain can be achieved by exploiting the correlation
between the two sources.

The three problems considered in this thesis are quite simple, however, with the aim of
seeking for the mathematical strictness of the derivations. It is expected that the results
obtained in this research can be extended to more complicate forms of cooperative wireless
communications.

6.2 Future Work

To apply the results obtained from the investigation of the three problems to more general
cooperative wireless communications, there are several issues left as future work, which
are listed as follow.

• In the problem of Markov source transmission in P2P communications, the code op-
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timization was performed by manually examining the EXIT curve matching of the
outer and inner codes, yielding in sub-optimality of the code. Therefore, employing
more sophisticated optimization techniques, such as EXIT-constrained Switching
Algorithm (EBSA) [146], to obtain the best code parameters for this problem should
be an interesting extension. Moreover, in the problems of Markov source transmis-
sion in one-way relay system and correlated sources transmission over MARC, the
code parameters were chose empirically in this thesis. The code parameters opti-
mization in those two problems is also left as future study.

• In the problem of Markov source transmission in one-way relay system, only lower
bound of the theoretical limits were derived, where the error probability occurring
in the source-relay link was assumed to be 0, when deriving the theoretical limits.
However, in practice, the error probability varies with the quality of the source-
relay link. Tighter bound of the theoretical limits can be derived, if the relationship
between the error probability and the SNR of the source-relay link can be explicitly
defined.

• In the problem of correlated sources transmission over MARC, the source-relay
links are assumed to be error free. However, in practical applications, errors may
happen in the source-relay links. A technique that takes into account the errors
happening in the source-relay links is presented in [133]. The results presented
in [133] can straightforwardly be extended to the rate region analysis, as well as the
outage calculation. However, it requires multiple integrals with respect to the pdf
of multiple link’s variations. This is also left as future work.

• Extension to full-duplex relay and non-orthogonal channels scenarios is an interest-
ing and challenging topic. With full-duplex relay and non-orthogonal channels, the
channels are not independent and the channel capacity is specified by the multiple
Access Channel (MAC) capacity region [114]. Derivation of the theoretical limits in
this scenario is still an open research problem to be solved.

• In this thesis, we only consider the lossless source coding problem. Thus an in-
teresting research direction would be the extension to lossy source coding. Wyner
and Ziv have defined the rate-distortion function for lossy source coding with side
information [18], which can be used for deriving the theoretical limits at a given dis-
tortion level. However, based on the network information theory, the rate-distortion
function for more then two sources is still an open question.

• Another interesting extension is to consider more general network topologies and
other relay strategies. Based on different network topologies and cooperative strate-
gies, optimal resource allocation policies can be derived under the performance limits
criteria and rate-distortion constraints to achieve significant performance gains.
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Appendix A

Approximation for the Entropy Rate
of a Hidden Markov Process

Let X = {Xk}∞k=1 be a first-order stationary binary Markov process, with the state
transition probability πab = Pr{Xk+1=b|Xk = a}, a, b ∈ {0, 1}. The state transition
matrix of X can be expressed as

A =

[
1− π01 π01

π10 1− π10

]
, 0 ≤ π01, π10 ≤ 1. (A.1)

Define a random process Z = {Zk}∞k=1 with Zk = Xk⊕Ek, where ⊕ is modulus-2 addition,
and Ek is generated from a Bernoulli process which is independent of XK and satisfies
Pr{Ek = 1} = ε. Therefore, {Zk}∞k=1 can be regarded as the observation of {Xk}∞k=1

through a binary symmetric channel.
For the sake of simplicity, we only consider symmetric Markov process, i.e., π01 =

π10 = π. Since the entropy rate of X is symmetric on π, we assume that 0 ≤ π ≤ 0.5
without loss of generality. Define the log-likelihood process as

lk = log
Pr{Xk+1 = 1|Zk

1}
Pr{Xk+1 = 0|Zk

1}
, (A.2)

where Zk
1 denotes the sub-sequence of Z from the time index 1 to k. It has been proved

that lk can be derived by the standard forward recursions as

lk = (2Zk − 1) log
1− ε

ε
+ f(lk−1), (A.3)

where f(x) = log ex(1−π)+π
exπ+(1−π)

. Then the entropy rate of Z can be expressed as

H(Z) = H(π, ε) = lim
k→∞

H(Zk+1|Zk
1 ) = E

[
Hb

(
elk

1 + elk
∗ π ∗ ε

)]
, (A.4)

with Hb(x) = −x log2(x)− (1− x) log2(1− x) and ∗ denoting binary convolution defined
by p ∗ q = (1− p)q + p(1− q).

A derivation of the approximated entropy rate, which is based on approximating the
stationary distribution of lk, has been proposed in [129]. Consider a finite-state Markov
process with M states evolving according to

Yk = Q

[
rk log

1− ε

ε
+ skf(Yk−1)

]
, (A.5)
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where rk and sk are i.i.d. sequences independent of Y , with the property Pr{rk = −1} =
1 − Pr{rk = 1} = ε and Pr{sk = −1} = 1 − Pr{sk = 1} = π, respectively. Q denotes

a M -level uniform quantizer defined in the interval
[
− log (1−π)(1−ε)

πε
, log (1−π)(1−ε)

πε

]
. The

approximation algorithm is summarized in Algorithm 1.

Algorithm 1 Entropy rate approximation algorithm
Input:

The transition probability of Markov chain, π.
The observation error probability, ε.

A uniform quantizer Q defined in the interval
[
− log (1−π)(1−ε)

πε
, log (1−π)(1−ε)

πε

]
with M

levels. The quantization levels are q1, q2, · · · , qM .
Output: The estimate of the entropy rate, Ĥ.
1: Construct a M ×M stochastic matrix PM , of which the elements are defined as

PM(i, j) =


(1− π)(1− ε), if qj = Q

(
log 1−ε

ε
+ f(qi)

)
,

(1− π)ε, if qj = Q
(
− log 1−ε

ε
+ f(qi)

)
,

π(1− ε), if qj = Q
(
log 1−ε

ε
− f(qi)

)
,

πε, if qj = Q
(
− log 1−ε

ε
− f(qi)

)
,

0, otherwise,

1 ≤ i, j ≤ M.

(A.6)
2: Compute stationary distribution of PM , i.e., find a M -dimensional row vector that

satisfies aM · PM = aM .
3: Calculate the estimate of the entropy rate by

Ĥ =
M∑
i=1

aM(i) ·Hb

(
eqi

1 + eqi
∗ π ∗ ε

)
. (A.7)

4: return Ĥ.

Using Algorithm 1, we can numerically estimate the entropy rate of a hidden Markov
process, which is shown in Fig. A.1. It can be seen from the figure that the entropy rate
is a function of the transition probability π and observation error probability ε. Note that
increasing M can make the estimate of entropy rate more accurate, and M is set as 1000
in our simulations.
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Figure A.1: The entropy rate a hidden Markov process as a function of the transition
probability π and the observation error probability ε.
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