
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
ソフトウェア成果物間に発生する矛盾の管理法に関す

る研究

Author(s) Phan, Thi Thanh Huyen

Citation

Issue Date 2013-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/11552

Rights

Description Supervisor:落水　浩一郎, 情報科学研究科, 博士

Managing Inconsistency among Software Artifacts

by

PHAN Thi Thanh Huyen

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Koichiro Ochimizu

School of Information Science
Japan Advanced Institute of Science and Technology

September 2013

Abstract

In collaborative software development, many change requests, such as adding or mod-
ifying features, or fixing bugs, can be implemented by different workers within a time
interval. Each worker conducts his own change process that is a sequence of tasks apply-
ing changes to a set of artifacts. When a worker makes a change to an artifact, this change
may affect the artifacts connected to this artifact by dependencies. However, because of
communication problems and the complex and changeable nature of software, the workers
do not always have enough information about the work of the others. As a result of that,
a change to an artifact of a worker may unexpectedly affect the changes to other artifacts
of other workers. Therefore, inconsistencies may occur from the affected artifacts.

We define inconsistency as a situation in which some artifacts are assigned values that
are different from the intention of a worker, because he is unaware of the changes or the
impact of the changes made by other workers, to the artifacts to which his changes apply.
This situation leads to syntactic errors or semantic errors causing unexpected or unin-
tended behaviors of the constructed software system. The goal of this dissertation is to
build a Change Support Environment (CSE) that supports the workers in preventing, de-
tecting, and resolving inconsistencies in a collaborative software development environment
more effectively.

This dissertation takes into account the problems not addressed by the existing studies
in the area of inconsistency awareness. Differently from these studies that concentrated
only on concurrent changes and considered them separately, we pay attention to both
concurrent and non-concurrent changes, and the context of a change, i.e. the change
process containing the change, rather than the ongoing changes only. By considering the
inconsistency problem under the view of the change processes containing the changes:

1. We have defined the patterns of inconsistency with regard to the relationships be-
tween the affected artifacts, the time orders of the tasks applying the changes to
the artifacts, and the change processes of the changes.

2. We have proposed a context-based approach to solve the inconsistency problem
more effectively. The change processes in collaborative software development are
managed to provide the contexts of the changes in the system. Our inconsistency
awareness technique combines monitoring the workspaces of the workers (workspace
awareness) with managing the progress of the change processes executed in the sys-
tem (context awareness) to detect in advance (potential) inconsistencies in real time.
Information about the context of an inconsistency, the changes causing the inconsis-
tency and their change processes, is provided to help the workers fully comprehend
the inconsistency before resolving it.

3. Based on the above approach, we have developed an inconsistency management
support system that allows the workers to define, execute, and modify their change
processes easily, and to receive inconsistency warnings along with the contexts of
the inconsistencies to resolve the inconsistencies in advance.

i

4. We have also given a formal method for modeling the main behaviors of CSE in
Colored Petri Nets (CPN or CP-nets). CPN Tools is used to verify the generated
model to detect the patterns of inconsistency. Our method can be applied to model
and verify the data flows of other types of workflows.

The novelty of this dissertation lies in addressing the inconsistency problem by con-
sidering the contexts of changes, rather than just the changes themselves. By managing
the execution of the change processes, monitoring the ongoing changes in the workspaces
of the clients, and using the change history stored in the repositories of VCSs and the
planned changes specified by the workers, we can detect in advance emerging inconsisten-
cies that are not reported by the previous studies, and provide in detail the context of an
inconsistency to help the workers understand the situation and have a timely decision for
resolving the inconsistency before its effect goes further.

In summary, changes are inevitable in collaborative software development environ-
ments despite their high cost and risk. Our research, developing the model and the
environment able to detect the (potential) inconsistencies that the workspace awareness
approach can not detect and supply the workers with the contexts of the inconsisten-
cies, can help the workers implement changes more safely and efficiently in collaborative
environments.

ii

Acknowledgment

It has been a long and challenging journey from the shape of the first idea until the
forming of this dissertation. Besides many tears for disappointment and ambiguity when
getting lost in research, there is also a lot of happiness for achieving the desired results,
for challenging myself, and for being able to keep hoping. I would not have overcome the
obstacles in my road without the support of so many people around me, who help me
stand up after failures and make me firm with the road I have chosen.

First and foremost, I offer my sincerest gratitude to my supervisor, Professor Koichiro
Ochimizu, who has supported me throughout my study with his knowledge, guidance,
and encouragement. Without his consistent help, this dissertation would not have been
completed or written.

I would also like to express my thanks to Professor Motoshi Saeki of Tokyo Institute of
Technology, Professor Kunihiko Hiraishi, Associate Professor Masato Suzuki, Associate
Professor Toshiaki Aoki, and Associate Professor Kazuhiro Ogata of Japan Advanced
Institute of Science and Technology, for their valuable comments.

In addition, I would like to thank the Japanese Government (Monbukagakusho: MEXT)
Scholarship for financial support during my study in Japan.

Many thanks to numerous friends, especially those at Ochimizu Laboratory for their
willingness to participate in challenging discussions and give help to tackle the language
barrier in my daily life.

Last but not least, I thank my family, especially my husband, who has endured this
long journey with me, for always offering love, support, and understanding.

Phan Thi Thanh Huyen
September 2013

iii

Contents

Abstract i

Acknowledgment iii

1 Introduction 1
1.1 Research Contributions . 3
1.2 Dissertation Structure . 4
1.3 Summary . 5

2 Problem and Approach 7
2.1 Problem Formulation . 7
2.2 Illustrating Example . 10
2.3 Approach Overview . 13
2.4 Summary . 15

3 Patterns of Inconsistency 16
3.1 Overview . 16
3.2 Patterns of Inconsistency . 19

3.2.1 Intra-Direct-Conflict . 20
3.2.2 Inter-Direct-Conflict . 20
3.2.3 Intra-Indirect-Conflict . 21
3.2.4 Inter-Indirect-Conflict . 21
3.2.5 Direct-Revision-Inconsistency . 21
3.2.6 Indirect-Revision-Inconsistency . 23
3.2.7 RWR Interleaving-Inconsistency . 24
3.2.8 WWR Interleaving-Inconsistency 25

3.3 Summary . 27

4 Theoretical Model of Change Support Environment 28
4.1 Change Support Workflow (CSW) . 28
4.2 Change Support Environment (CSE) . 30
4.3 Inconsistency . 30

4.3.1 Intra-Direct-Conflict . 31
4.3.2 Inter-Direct-Conflict . 32
4.3.3 Intra-Indirect-Conflict . 32
4.3.4 Inter-Indirect-Conflict . 32
4.3.5 Direct-Revision-Inconsistency . 33
4.3.6 Indirect-Revision-Inconsistency . 33

iv

4.3.7 RWR Interleaving-Inconsistency . 33
4.3.8 WWR Interleaving-Inconsistency 34

4.4 Summary . 34

5 Inconsistency Awareness 35
5.1 Possibility of Inconsistency . 35

5.1.1 Potential Intra-Indirect-Conflict . 36
5.1.2 Potential Inter-Indirect-Conflict . 36
5.1.3 Potential Direct-Revision-Inconsistency 37
5.1.4 Potential Indirect-Revision-Inconsistency 37
5.1.5 Potential RWR Interleaving-Inconsistency 37
5.1.6 Potential WWR Interleaving-Inconsistency 38

5.2 Inconsistency Detection in Real Time . 38
5.2.1 Approach . 38
5.2.2 Information Preparation for Inconsistency Detection 39
5.2.3 Inconsistency Detection Procedure 40
5.2.4 Inconsistency Resolution . 45

5.3 A Formal Method to Detect Inconsistency 46
5.3.1 Overview . 46
5.3.2 Related Work in Data-Flow Modeling and Verification 47
5.3.3 Background . 48
5.3.4 CPN Model of CSE . 50
5.3.5 Detecting Abnormalities in CPN Model of CSE 54
5.3.6 Discussion . 59

5.4 Summary . 59

6 An Inconsistency Management Support System for Collaborative Soft-
ware Development 61
6.1 Requirements . 61
6.2 Static Model . 62
6.3 Architecture . 63
6.4 Dynamic Model . 64

6.4.1 Editing CSWs . 64
6.4.2 Executing a Change Activity . 65
6.4.3 Inconsistency Awareness . 65

6.5 CSWMS - Implementation . 66
6.5.1 CSW Management . 66
6.5.2 Workspace Monitoring . 67
6.5.3 Inconsistency Awareness . 69
6.5.4 Dependency Analysis . 69

6.6 CSWMS Prototype - Guideline . 70
6.7 How CSWMS Supports Workers in Inconsistency Awareness 75

6.7.1 Potential Indirect-Revision-Inconsistency and RWR Interleaving-
Inconsistency . 76

6.7.2 Potential Direct-Revision-Inconsistency andWWR Interleaving-Inconsistency 79
6.8 Summary . 82

v

7 Performance Evaluation and Discussion 84
7.1 Comparison with Related Studies . 84
7.2 Performance Evaluation of Inconsistency Detection Algorithm 84
7.3 Discussion . 92

7.3.1 Effectiveness of the proposed approach 92
7.3.2 Scalability of the proposed approach 93
7.3.3 How to evaluate exactly the effectiveness of the patterns of incon-

sistency and the proposed approach? 94

8 Related Work 96
8.1 Inconsistency Awareness . 96

8.1.1 Version Control Systems . 96
8.1.2 Workspace Awareness . 97

8.2 Context Awareness . 99
8.3 Process Centered Software Development Environment 100
8.4 Workflow Correctness . 101
8.5 Summary . 102

9 Conclusion 103
9.1 Contributions . 103
9.2 Limitations and Future Work . 104
9.3 Closing Words . 106

Publications 107

References 109

vi

List of Figures

1.1 Inconsistency in collaborative software development under the view of change
processes . 2

1.2 Research outline . 6

2.1 Collaborative software development with a large amount of artifacts and
the complex dependencies among them . 8

2.2 Are changes not executed concurrently always safe? 8
2.3 Are changes really separated? . 9
2.4 Motivating example . 11
2.5 The inconsistencies may happen in the motivating example 12
2.6 Approach to handling inconsistencies . 14

3.1 Categories of inconsistency . 18
3.2 Direct-Conflict patterns . 19
3.3 Example of Indirect-Conflict patterns . 20
3.4 An example of Direct-Revision-Inconsistency pattern 22
3.5 An example of Indirect-Revision-Inconsistency pattern 23
3.6 An example of RWR Interleaving-Inconsistency pattern 24
3.7 An example of WWR Interleaving-Inconsistency pattern 26

4.1 Basic control structures of a CSW . 29

5.1 Potential inconsistency . 36
5.2 Inconsistency awareness approach overview 38
5.3 A simplified structure of a Change Support Workflow 40
5.4 Illustration of inconsistency detection . 41
5.5 Illustration of inconsistency detection (con’t) 42
5.6 A CP-net modeling the behaviors of a simple elevator 49
5.7 Color sets and variables used in CPN Model of CSE 50
5.8 Modeling an artifact a as a simple VCS . 51
5.9 Modeling a change activity by CP-nets . 52
5.10 Modeling basic constructions of a CSW by CP-nets 53
5.11 An example of modeling and verifying a CSE with 3 CSWs and 5 artifacts

by CP-nets (Part 1) . 55
5.12 An example of modeling and verifying a CSE with 3 CSWs and 5 artifacts

by CP-nets (Part 2) . 56
5.13 The standard report generated for the state space analysis of the CPN

model described in Fig. 5.11 and Fig. 5.12 57

vii

5.14 Example of model checking and query on the CPN model described in Fig.
5.11 and Fig. 5.12 . 58

6.1 Static model of CSWMS . 62
6.2 CSWMS architecture . 63
6.3 CSW editing scenario . 65
6.4 Change activity execution scenario . 66
6.5 Inconsistency awareness scenario . 67
6.6 Technical architecture of the CSWMS prototype 68
6.7 CSWMS User Interface. A: Login window for CSW Manager. B: CSW

Manager window. C: New CSW Dialog. D: CSW graph editor window
showing CSW of user admin. E. Eclipse IDE with workspace wrapper
plugins. F1, F2, and F3: Inconsistency Viewer window on CSW Man-
ager and Eclipse with the warnings of (potential) inconsistencies. G1:
CSW graph editor window showing CSW of inconsistency-involved user,
admin2, viewed by admin. G2: Inconsistency Viewer windows in Eclipse
showing the contents of the changes causing a potential RWR Interleaving-
Inconsistency. 74

6.8 CSWMS effectiveness - Illustrating example for Indirect-Revision-Inconsistency
and RWR Interleaving-Inconsistency . 76

6.9 Example of a potential Indirect-Revision-Inconsistency detected by CSWMS.
A: CSW Manager window of admin2. B: The Display CSW of admin2.
C: admin2 is modifying the Display class using Eclipse IDE. D1 & D2:
Warning for Indirect-Revision-Inconsistency appears in CSW Manager and
Eclipse IDE of admin2. E1: Contents of the changes causing the potential
Indirect-Revision-Inconsistency are shown in Eclipse IDE of admin2. E2:
The ShowPoint CSW of admin is viewed by admin2 to understand the
context of the inconsistency. 77

6.10 Example of a potential RWR Interleaving-Inconsistency detected by CSWMS.
A: CSWManager window of admin. B: The ShowPoint CSW of admin. C:
admin is implementing the showPoint() method for the RegularCustomer
class using Eclipse IDE. D1 & D2 : Warning for WWR Interleaving-
Inconsistency appears in CSW Manager and Eclipse IDE of admin. E1:
Contents of the changes causing the potential RWR Interleaving-Inconsistency
are shown in Eclipse IDE of admin. E2: The Display CSW of admin2 is
viewed by admin to understand the context of the inconsistency. 78

6.11 CSWMS effectiveness - Illustrating example for the Direct-Revision-Inconsistency
and WWR Interleaving-Inconsistency patterns 79

6.12 Example of a potential Direct-Revision-Inconsistency detected by CSWMS.
A: CSW Manager window of admin2. B: The ShowBirdProperty CSW of
admin2. C: admin2 is modifying the Bird class using Eclipse IDE. D1 &
D2: Warning for Direct-Revision-Inconsistency appears in CSW Manager
and Eclipse IDE of admin2. E1: Contents of the changes causing the po-
tential Direct-Revision-Inconsistency are shown in Eclipse IDE of admin2.
E2: The FlyMethod CSW of admin is viewed by admin2 to understand
the context of the inconsistency. 80

viii

6.13 Example of a potential WWR Interleaving-Inconsistency detected by CSWMS.
A: CSW Manager window of admin. B: The FlyMethod CSW of admin.
C: admin is coding the Penguin class using Eclipse IDE. D1 & D2: Warn-
ing for WWR Interleaving-Inconsistency appears in CSW Manager and
Eclipse IDE of admin. E1: Contents of the changes causing the potential
WWR Interleaving-Inconsistency are shown in Eclipse IDE of admin. E2:
The ShowBirdProperty CSW of admin2 is viewed by admin to understand
the context of the inconsistency. 81

7.1 Inconsistency detection . 87
7.2 Execution time of queries on OngoingChanges for detecting conflicts . . 88
7.3 Execution time of queries on SVNChanges for detecting Direct-Revision-

Inconsistency, Indirect-Revision-Inconsistency, and RWR|WWR Interleaving-
Inconsistency . 90

ix

List of Tables

7.1 Summary of related works in inconsistency awareness 85
7.2 Number of queries to find an inconsistency 86
7.3 Execution time of queries on OngoingChanges for detecting conflicts . . 88
7.4 Execution time of queries on SVNChanges for detecting Direct-Revision-

Inconsistency, Indirect-Revision-Inconsistency, and RWR|WWR Interleaving-
Inconsistency . 89

7.5 Size of data in real projects [56] . 91

0

Chapter 1

Introduction

Software systems must be changed under various circumstances during development and
after delivery, such as for new requirements, error correction, and performance improve-
ment. However, software change is not an easy task, especially in a collaborative envi-
ronment, where software artifacts with very complex dependencies are created through
the collaboration of many workers. One common problem in a collaborative work is that
a worker misunderstands, or does not recognize or have sufficient information about the
changes or the impact of the changes made by other workers, even if they are in the same
team and have been explained about the task of each member, because of communication
problems, the large amount of related artifacts, the complicated dependencies among the
artifacts, and the intangible, complex, and changeable nature of software. As a result of
that, a change to an artifact of a worker may unexpectedly affect the changes to other
artifacts of other workers. Therefore, inconsistencies may occur from the affected arti-
facts. Inconsistencies increase in both size and severity along with the increase in the
number of workers, software scale, and software development duration. They can lead to
cost overruns, project delays, or even project failure.

We define inconsistency as a situation in which some artifacts are assigned values that
are different from the intention of a worker, because he is unaware of the changes or the
impact of the changes made by other workers, to the artifacts to which his changes apply.
This situation leads to syntactic errors or semantic errors causing unexpected or unin-
tended behaviors of the constructed software system. The goal of this dissertation is to
build a Change Support Environment (CSE) that supports the workers in preventing, de-
tecting, and resolving inconsistencies in a collaborative software development environment
more effectively.

Several attempts have been made to detect conflicts, a type of inconsistency caused by
concurrent changes to the same artifact (direct conflict), or to dependency-related artifacts
(indirect conflict) [21]. A traditional approach provided by version control systems (VCSs)
[7] is to detect conflicts when the workers commit their changes to the remote repository.
Because conflicts in this situation are just detected after changes have been finished, there
is a need for detecting conflicts earlier when the changes are being implemented. Recent
studies [21], [24], [18], [20], [25], [28], [26] have concentrated on workspace awareness
techniques that monitor the ongoing changes in the workspaces of workers, share this
information across the workspaces, and notify the workers of emerging conflicts caused
by the ongoing changes. A worker who is changing an artifact will receive a warning of a
(potential) conflict if another worker is also changing the same artifact, or a warning of a

1

Change
D3

Change
D4

Change
D6

Change
D7

Change
D1

Change
D5

Change
D4

Change
D7

Change
D2

Change
D8

Change Requests (CRs)

Change Processes (CPs)

D9

D1

D2

D3

D4

D5

D6

D7

D8

D10 D11

Dependency
RelationshipCR1

CR2

CP1 implementing CR1W1

W2

CP2 implementing CR2

D4 D7
(Potential)

Inconsistency

Figure 1.1: Inconsistency in collaborative software development under the view of change
processes

(potential) indirect conflict if a concurrent change to another artifact of another worker
may affect his ongoing change.

The previous studies concentrated only on concurrent changes that may cause a con-
flict, and treated the changes separately. However, even if the changes are not concurrent,
a worker may not recognize the impact of the previous changes, made before by other work-
ers, on his ongoing changes or the impact of his ongoing changes on the previous changes,
because of the large amount of artifacts and the complicated dependencies among them.
Moreover, a change to an artifact is often related to a number of changes that share
a common target of realizing a change request with this change. In addition, in these
studies, when a potential conflict is detected, the awareness of workers is limited to the
ongoing changes and related artifacts. Nevertheless, to resolve an inconsistency in general
and a conflict in particular, the workers involved may need to reconsider their change his-
tory and the planned changes in addition to the ongoing changes. The more information
about the inconsistency is provided, the more easily the inconsistency can be solved. Not
considering these problems could lead to some unexpected inconsistencies that may only
be detected much later in the development process. The later an inconsistency is found,
the higher the cost for resolving it is.

Differently from the previous works, the above-mentioned problems are taken into
account in this dissertation. We consider the inconsistency problem not at the view
of the individual changes but at the view of the context of the change. Because of
the dependencies among artifacts, a worker often makes more than one change to many
artifacts to implement a change request. We call a sequence of changes to fulfill a change
request a change process. A change process can reveal much information about a change
inside it, such as the preceding changes, the succeeding changes, and the change request
realized by the change process. Therefore, we use the change process containing a change
to denote the context of the change. From the view of change processes (Fig. 1.1), we:

• Identify and classify the patterns of inconsistency;

2

• Introduce the theoretical model of CSE that models each change process as a Change
Support Workflow;

• Propose an inconsistency awareness technique that detects emerging inconsistencies
in real-time by collecting and analyzing the latest information about the ongoing
changes before check-in in the workspaces of the workers, in addition to the progress
of the change processes in the system;

• Develop an inconsistency management support system based on the above theory;

• Present a method for modeling the main behaviors of CSE in Colored Petri Nets
(CPN or CP-nets) and verifying the CPN model to detect the patterns of incon-
sistency. This method provides an alternative solution suitable for small-size CSEs
with CSWs that need to be designed and verified carefully before execution.

The novelty of this dissertation lies in addressing the inconsistency problem by con-
sidering the contexts of changes, rather than just the changes themselves. By managing
the execution of the change processes, monitoring the ongoing changes in the workspaces
of the workers, and using the change history stored in the repositories of VCSs and the
planned changes specified by the workers, we can detect in advance emerging inconsisten-
cies that are not reported by the previous studies, and provide in detail the context of an
inconsistency to help the workers understand the situation and solve it easily.

In summary, our research can contribute to building a safer and more productive col-
laborative software development environment by detecting an inconsistency in advance
and supplying workers with the context of the inconsistency to help them have a timely
decision for resolving the inconsistency before its effect goes further. In addition, manag-
ing the change processes occurred during the development of a software system is useful
for the maintenance and evolution of the software system in the future.

1.1 Research Contributions

The major contributions of this research are:

• We have defined and categorized the patterns of inconsistency, including the conflict
patterns addressed in the previous studies, by considering the relationships between
the affected artifacts, same artifact or different artifacts, the time orders of the
tasks applying the changes to the artifacts, concurrent or not, and the contexts of
the changes that are the change processes containing the changes, in the same change
process or in different change processes. Each inconsistency pattern represents an
inconsistency problem in collaborative software development. Defining the patterns
aims to provide a common vocabulary among the workers about the inconsistency
situations to help them recognize and resolve the inconsistencies earlier and more
easily.

• We have proposed a context-based approach to deal with the inconsistency problem
in a collaborative environment more effectively. By representing the implicit change
processes as Change Support Workflows (CSWs) and managing their execution, we
can provide information about the contexts of the changes in the system. Regard-
ing inconsistency awareness, namely recognizing the existence of an inconsistency,

3

our technique is a combination of the workspace awareness technique and the con-
text awareness technique. Context awareness means sharing information about the
contexts of changes that are the change processes containing the changes. By mon-
itoring the progress of the change processes and the ongoing changes at the client
workspaces, we can obtain the latest information of the ongoing changes in the sys-
tem and their contexts. Therefore, a (potential) inconsistency can be recognized
in advance along with the context of the inconsistency, that is, the changes caus-
ing the inconsistency and the change processes containing these changes. Showing
the workers the context of an inconsistency apparently helps them understand and
resolve the inconsistency, or skip a wrong alarm of inconsistency, more easily and
quickly, compared to the previous works which show the workers the concurrent
changes causing a (potential) conflict only.

• Based on the proposed approach, we have developed a Change Support Workflow
Management System (CSWMS) in which each worker follows a CSW to implement a
change request. Complete descriptions of CSWMS, including system requirements,
static model, dynamic model, and architecture of CSWMS, have been presented. We
have also developed a prototype of CSWMS that allows workers to define, execute,
and modify CSWs easily, and to receive the warnings of inconsistencies along with
the contexts of the inconsistencies to resolve them in advance.

• We have presented a formal model of CSE that formalizes artifacts and both data
flow and control flow of CSWs in Colored Petri Nets. CPN Tools is used to edit,
simulate, and verify the CPN model to detect data abnormalities, specially the
patterns of inconsistency. Successful modeling and verification of CSE are the initial
achievements in proving the feasibility and correctness of the approach of CSE. Also,
the proposed modeling and verification method, with some advantages compared
to the previous works in data-flow verification, can be applied to other types of
workflow.

1.2 Dissertation Structure

This dissertation is organized into nine chapters.

• Chapter 1 - Introduction - (This chapter)

• Chapter 2 - Motivation and Approach - This chapter describes the problems
that are not handled by the existing works in inconsistency awareness, and an
overview of our approach.

• Chapter 3 - Patterns of Inconsistency - We define the patterns of inconsistency
with regard to the relationships between the affected artifacts, same or not, the time
orders of the tasks applying the changes to the artifacts, concurrent or not, and the
contexts of the changes, in the same change process or not.

• Chapter 4 - Theoretical Model of Change Support Environment - We
describe the theoretical model of Change Support Environment (CSE) that repre-
sents the implicit change processes in the system as Change Support Workflows and
manages their execution based on the patterns of inconsistency.

4

• Chapter 5 - Inconsistency Awareness - This chapter describes in detail the
technique to detect (potential) inconsistencies in real time, and some solutions to
the detected inconsistencies. In addition, we present a formal method for modeling
the main behaviors of CSE, especially the data aspect, using CP-nets. Then, the
generated model is verified to detect the patterns of inconsistency. Because of the
modeling cost and the state explosion problem in model checking, this alternative
method is suitable for small-size CSEs with important CSWs that take time to
design and verify before being executed.

• Chapter 6 - An Inconsistency Management Support System for Collab-
orative Software Development - We present a complete description of the de-
velopment and implementation of Change Support Workflow Management System,
based on the theoretical model of CSE and the technique to detect inconsistency in
real time, given in Chapter 4 and Chapter 5.

• Chapter 7 - Performance Evaluation and Discussion - We compare our work
with the related studies in the field of inconsistency awareness, and then evaluate
performance of the inconsistency detection algorithm. We also give some discus-
sions about the effectiveness of our research and the challenges in evaluating its
effectiveness.

• Chapter 8 - Related Work - This chapter provides an overview of related work
and the differences between our research and the related work.

• Chapter 9 - Conclusion - This chapter summarizes the major contributions of
the dissertation and describes some future directions, especially to overcome the
current limitations of our research.

1.3 Summary

In this section, we have introduced an overview of our research. Fig. 1.2 summaries the
main points of this dissertation.

5

Impact: A safer and more productive collaborative software development environmentGoal: A Change Support Environment (CSE) that supports the workers in preventing, detecting, and resolving inconsistencies in collaborative software development more effectivelyThe Patterns of Inconsistency (Chapter 3) Theoretical Model of CSEChange Support Workflow (CSW)(Change history + Ongoing changes + Change schedule)Change Support Environment (A collection of CSWs defined or executed within a time interval)(Chapter 4) A Formal Model of CSEModel essential behaviors of CSE in CP-nets & verify the generated model to detect the patterns of inconsistency(Chapter 5.3)

An Inconsistency Management Support System for Collaborative Software Development(Chapter 6)Inconsistency Detection in Real Time(Monitor the workspaces & the progress of CSWs)(Chapter 5.2)
Problem and Approach(Context-based approach: Ongoing changes + Change history + Change schedule) (Chapter 2)

An alternative solution
Figure 1.2: Research outline

6

Chapter 2

Problem and Approach

This chapter presents the motivations and an overview of our approach to managing
inconsistencies in collaborative software developments.

2.1 Problem Formulation

Collaboration is indispensable in software development along with the non-stop growth in
scale and complexity of software projects. In a collaborative work, software artifacts, such
as source codes, with complicated dependencies are created through the collaboration of
many workers. Dependency is a relationship between two artifacts in which a change to
one artifact may affect the other. When a worker makes a change to an artifact, this
change may affect the artifacts connected to this artifact by dependencies. However,
because of communication problems and the intangible, complex, and changeable nature
of software, the workers do not always have enough information about the work of the
others. These problems are more serious in current practices with parallel development
and distributed environment. Therefore, a change of a worker may unexpectedly affect
the changes of the others. These coordination breakdowns cause software inconsistencies
that, in turn, lead to cost overruns, project delays, or even project failure.

Version control systems (VCSs) [7] are used widely in collaborative software develop-
ment because of their support for collaboration, parallel development, and global software
development. However, using VCSs leads to a form of workspace isolation [21] in which
the workers could be aware of the changes of the others only if they check-in their changes
or synchronize their workspaces with the remote repository. Therefore, conflicts, a type
of inconsistency caused by concurrent changes to the same artifact (direct conflict) or to
dependency-related artifacts (indirect conflict) [21], are detected late after the workers
have finished their changes. To detect conflicts earlier, when changes are being imple-
mented, recent studies have concentrated on workspace awareness techniques that col-
lect information about the ongoing changes of the workers, share this information across
their workspaces, and alert them of the emerging conflicts. Palantir [21] monitors the
workspaces of workers to provide information of ongoing change, and notifies the involved
workers of potential conflicts. CASI [24] uses visualizations to show which source code
entities are being changed. CollabVS [20] enriches Visual Studio IDE with both conflict
notification and communication. Syde [25] uses a fine-grained change tracking mecha-
nism in which object-oriented systems are modeled as abstract syntax trees, and changes
are tree operations. To reduce false positives, Crystal [26] merges local repositories in

7

Artifact D9Artifact D2

Artifact D1

Artifact D3

Artifact D4

Artifact D5

Artifact D...

Artifact D...

Artifact D...

Artifact D...

Artifact D...

Dependency Relationship

Artifact D...

Artifact D800

Artifact D... Artifact D1111

Artifact D...

Artifact D1719

W1

W2

Figure 2.1: Collaborative software development with a large amount of artifacts and the
complex dependencies among them

Check-out

D1: v1.1

D800: v2.3 ...

...

Check-in

Mary’’’’s workspace –––– Modify D1

Check-out

Tom’’’’s workspace –––– Modify D800

Check-in

D1: v1.1

D800: v2.3 ...

... D1: v1.2

D800: v2.3 ...

...

D1: v1.2

D800: v2.3 ...

... D1: v1.2

D800: v2.4 ...

...
VCS

Consistent???

Figure 2.2: Are changes not executed concurrently always safe?

advance to detect pending conflicts rather than potential conflicts. Similarly to Crystal,
WeCode [27] computes, rather than predicts, the presence of merge conflicts, but by con-
tinuously integrating the changes in the workspaces of workers into a merge workspace
shared among the workers.
1. The previous works notified the workers of the concurrent changes that
may cause a conflict. However, are changes not executed concurrently always
safe?

Even when the changes are not concurrent, inconsistencies may still happen if a worker
does not recognize the impact of the previous changes, made by other workers, on his
ongoing changes or the impact of his ongoing changes on the previous changes, because
of the large amount of related artifacts and the complicated dependencies among them
(Fig. 2.1). Fig. 2.2 shows a simplified situation to illustrate this problem. Mary and Tom
change the artifacts D1 and D800, respectively, at different times. First, Mary checks-out
a working copy of the remote repository to her workspace, modifies D1, and checks-in her

8

Change
D3

Change
D4

Change
D6

Change
D7

Change
D1

Change
D5

Change
D4

Change
D7

Change
D2

Change
D8

Change Requests (CRs) Change Processes (CPs)

D9

D1

D2

D3

D4

D5

D6

D7

D8

D10 D11

Dependency
RelationshipCR1

CR2

CP1 implementing CR1

W1

W2
CP2 implementing CR2

Figure 2.3: Are changes really separated?

changes successfully. Later, Tom wants to change D800. We assume that he has changed
many artifacts but not D1 since the last commit. When he synchronizes his workspace
with the repository before starting modifying D800, VCS tells him that his merge on D1
is clean. As a result, he just focuses on other merge conflicts, and may overlook Mary’s
change of D1. However, D1 depends on D800. Modifying D800 without considering the
change history of D1 may lead to an inconsistency between the newly generated version
v2.4 of D800 and the version v1.2 of D1. Therefore, the change history of an artifact and
its dependency-related artifacts should be taken into consideration.
2. In the previous works, changes to artifacts are considered individually.
However, are changes really separated?

Because of the dependencies among software artifacts, a change to an artifact, called
root artifact, may affect many other artifacts. A change initiated from a root artifact
can spread to other artifacts, which in turn can reach the root artifact by dependency
relationships. This means that, a worker often needs a change process that is a sequence
of tasks applying the changes to many artifacts, to fulfill a change request. Although the
change processes are not shown explicitly in the software development environment, they
exist and are gradually constructed by the workers. In the example shown in Fig. 2.3, to
implement the change request CR1 with the root artifact D1, the worker W1 may need
to implement a change process CP1 including the changes to the artifacts D1, D3, D4,
D6, and D7. Similarly, from the change request CR2 on the artifact D2, the worker W2

may have to implement a change process CP2 including the changes to the artifacts D2,
D4, D5, D7, and D8. Therefore, the changes in a change process are not separated but
related to each other through their shared target of realizing the change request, and the
dependencies among the artifacts affected by the changes.

Because a change process can reveal much information about a change inside it, for
example, the preceding changes, the concurrent changes, and the succeeding changes, the
change process of a change can be considered as the context of the change. Ignoring
the context of a change, the change process containing the change, may lead to some
unexpected inconsistencies that may only be detected much later during the build process,
integration test, or even runtime failure. Following is our definition of change process.

Definition 2.1.1. (Change Process) A change process (CP) is a sequence of tasks that

9

apply changes to a set of artifacts to fulfill a change request.

3. The previous works just provided information about the current changes
causing a (potential) conflict. However, is the information about these changes
only enough for resolving an inconsistency?

To resolve an inconsistency, the workers need to consider the contexts of the changes
causing the inconsistency, including the change history, the ongoing changes, and the
planned changes, rather than just the changes themselves. Nevertheless, remembering all
the changes one has made, or investigating the change history of other workers by oneself
is not easy, especially with complex change requests.

Therefore, it is necessary to have a more effective approach to deal with the inconsis-
tency problem in collaborative software developments with regard to the above problems.

2.2 Illustrating Example

Mary and Tom are the developers of a hypothetical airline ticket-sales software system.
Fig. 2.4 shows an excerpt of the system in which VIPCustomer and RegularCustomer are
two classes implementing the Customer interface. Display is a class showing the display
screen of customers.

To implement a change request that shows the accumulated point of a customer,
the signature showPoint() is added to the Customer interface (Scenario A). Two empty
showPoint() methods are added to the VIPCustomer and RegularCustomer classes at the
beginning to avoid compilation errors. In Fig. 2.4, these methods are visible when their
implementations are already finished. Next, Mary implements the showPoint() methods
for the VIPCustomer and RegularCustomer classes.

First, Mary implements the showPoint() method of the VIPCustomer class. She
synchronizes her workspace before doing her changes to ensure that her workspace is
updated with the remote repository. Mary uses the showCustomerScreen() method of a
third-party class, the Display class, in the implementation of the showPoint() method
(Scenario B). In the morning, she finishes modifying the VIPCustomer class. Because
she has an urgent meeting with a customer, she checks-in her changes, leaves the office,
and delays the implementation of the showPoint() method for the RegularCustomer class
until that night at home.

In the afternoon, the author of the Display class, Tom, decides to distinguish the
display screen of VIP customers from that of regular customers, by modifying the show-
CustomerScreen() method, and adding a new method, showVIPCustomerScreen(), to
display the screen of VIP customers (Scenario C). After finishing modifying the Display
class, Tom checks-in his update successfully.

At night, Mary checks-out the project to her workspace, and also uses the showCus-
tomerScreen() method of the Display class in the implementation of the showPoint()
method for the RegularCustomer class. After she finishes updating the RegularCustomer
class, Mary also checks-in her changes successfully (Scenario D).

Because there are no syntax conflicts on the changed artifacts and these three changes
happen sequentially, VCSs and the conflict awareness techniques do not report any errors
in this situation. Unfortunately, there are some semantic inconsistencies here. First, there
is an Indirect-Revision-Inconsistency, in which the change of Tom on the showCus-
tomerScreen() method affects the earlier change of Mary on the showPoint() method of the

10

public void showPoint() {...
Display a = new Display();
a.showCustomerScreen ();

...}

public void showPoint () {...
Display a = new Display();
a.showCustomerScreen ();

...}

Mary

Mary

Tom

Implement a function that
sho ws t he accu mula ted
points of customers (Add
showPoint() method to the
Customer Interface)

- Modify showCustomerScreen ()
- Add showVIPCustomerScreen ()

Scenario C
(Afternoon)

Scenario D
(Night)

Scenario B
(Morning)

Scenario A
Change Request

Figure 2.4: Motivating example

11

Notation w: d (write d) - make a change to artifact d, r: d (read d): read d only
r: d, w: d’’’’ - artifact d’ is changed with reference to artifact d
S(A): Start time of Task A, F(A): Finish time of Task A

r: Display.showCustomerScreen(),
w: VIPCustomer.showPoint()

Task A

Task P

Tom ‘‘‘‘s CP

Time

w: Display.showCustomerScreen()

F(A)S(A) S(P) F(P)

Mary’’’’s CP

r: Display.showCustomerScreen(),
w: VIPCustomer.showPoint()

Task A

Task P

Tom ‘‘‘‘s CP w: Display.showCustomerScreen()

F(A)S(A) S(P) F(P)

Mary’’’’s CP
r: Display.showCustomerScreen(),
w: RegularCustomer.showPoint()

Task B

F(B)S(B)

Time

Morning

Morning NightAfternoon

Afternoon

a. An Indirect-Revision-Inconsistency

b. An RWR Interleaving-Inconsistency

Figure 2.5: The inconsistencies may happen in the motivating example

VIPCustomer class, because Mary implements this method with reference to the showCus-
tomerScreen() method. Another inconsistency is RWR Interleaving-Inconsistency,
in which Mary implements the showPoint() methods for the VIPCustomer and Regular-
Customer classes with the same view of the showCustomerScreen() method. However,
she does not recognize that Tom has modified this method in the interval between her
two changes. More explanations of these inconsistencies will be given in Section 3.2.

These inconsistencies could have been avoided or detected before it propagated further,
if:

• Tom had notified Mary of his change. However, a worker does not always have suffi-
cient information about the work of other workers to notify them of the change that
can affect their works. Performing all the required tasks, for instance, finding the
works impacted by his change, specifying the change, and sending to the impacted
workers, by himself is tricky and time-consuming. Also, if the VCSs tell a worker
that a merge is clean, he will often not suspect the new changes.

• Mary had recognized the changes of Tom and the impact of his changes on her
work, and had revised the implementation of the showPoint() method in the VIP-
Customer and RegularCustomer classes, with regard to the updated version of the
showCustomerScreen() method and the new method, showVIPCustomerScreen(),
of the Display class. Nonetheless, a worker does not always pay attention to the
changes of other workers, except for the changes causing merge conflicts, when she
synchronizes her workspace with the remote repository. In addition, it is difficult for
her to remember in detail the contents of all the changes she has made before. It will
be more difficult to recognize this situation, if the task of updating the VIPCustomer
class is assigned to a different worker, for example Peter.

• Mary had locked all the involved artifacts. However, because of her long-term change
process, locking the artifacts in use will affect the performance of other workers in

12

her team. In the database area, DBMS provides some concurrency control tech-
niques to ensure the noninterference or isolation property of concurrently executing
transactions. Nevertheless, the database transactions also require some critical data
to be locked during the transactions which take only a few seconds. Therefore, ap-
plying the concurrency control techniques of DBMS to this situation is unsuitable
because of the long-running nature of the change processes in collaborative software
development environment.

• Mary and Tom had been notified of the previous changes of other workers that
may affect their current work, along with the context of the changes, to help them
understand the situation easily and quickly.

Based on these considerations, if there is a system that supports workers to manage
their change processes, and provides the workers with the contexts of the changes that
may affect their work or be affected by their work, inconsistencies, including conflicts, can
be prevented, detected and resolved more effectively.

2.3 Approach Overview

VCSs can detect a direct conflict when a worker commits his changes or synchronizes his
workspace with the remote repository. The worker who checks-in later must resolve this
conflict by himself, or by negotiating with the previously check-in worker. In the case
of indirect conflict, VCSs cannot help, because the changes are implemented on different
artifacts. Recent studies [21, 24, 18, 20, 25, 28, 26] can detect emerging indirect and
direct conflicts, by monitoring the ongoing changes in the workspaces of the workers and
notifying them when there are concurrent changes to the same artifact or to dependency-
related artifacts.

The inconsistencies related to non-concurrent changes and the contexts of changes are
not mentioned in these studies. However, changing an existing artifact to fix an error or
to implement a new change request is done regularly during the development of a software
system. Changing an artifact without understanding its change history and the purpose
of the past changes on it can introduce other types of inconsistency. Therefore, we need to
control the changes to an artifact by managing who have made the changes to the artifact,
what changes they have made, and the purpose of their changes. Because a change process
can supply much information about the changes inside it, such as the change purpose,
current changes, past changes, and future changes, managing the change processes helps
the related workers have a global view of what is happening in the system to cooperate
with others in preventing, detecting, and resolving inconsistencies more effectively.

In summary, our approach is motivated by the following points.

• Besides conflicts mentioned in the previous studies, there are other inconsistencies
involving non-concurrent changes and the contexts of changes, and they are detected
much later during the build process, integration test, or even runtime failure.

• A change request is often implemented by a change process that includes many
changes applied to the artifacts connected by dependencies, and the changes in a
change process are often implemented in a consistent manner.

13

D1

D2

D3

D4

D5

D6

D7

D8

NegotiationMary Tom

Mary’’’’s
Workspace

Tom’’’’s
WorkspaceVCS

D1

D2

D3

D4

D5

D6

D7

D8

Mary’’’’s CP

Tom’’’’s CP

Inconsistency
Notification

Change
D3

Change
D4

Change
D6

Change
D7

Change
D1

Change
D5

Change
D4

Change
D7Change

D2

Change
D8

D4 D7
(Potential)

Inconsistency

ChangesChanges

•Change Process
management

•Inconsistency
detection and
notification

Inconsistency
Notification

Figure 2.6: Approach to handling inconsistencies

• To resolve an inconsistency, a worker needs to consider not only his changes in the
past, present, and future, but also the changes made by the workers involved.

• A worker can not always be aware of the changes or the impact of the changes made
by other workers, to his work because of the large number of software artifacts and
the complex dependencies among them. Also, it is difficult for a worker to remember
the contents of all the changes he has made and to guarantee the consistencies of
effects by his changes, specially if he works on multiple projects concurrently.

• Like other planning types, setting a change plan to fulfill a change request gives
the workers a path to follow and helps them understand their work more clearly. A
change plan can also be a good communication tool for the workers to understand
the goal and activities of each other.

Based on the above considerations, we propose an approach that deals with inconsis-
tency in collaborative software development more effectively as follows.

• Besides handling the conflicts like the previous works, we pay attention to other

14

types of inconsistencies by considering the non-concurrent changes and the contexts
of the changes that are the change processes containing the changes. We define
the patterns of inconsistency with regard to the relationships between the affected
artifacts, same artifact or different artifacts, the time orders of the tasks applying
the changes to the artifacts, concurrent or not, and the contexts of the changes.
Each pattern of inconsistency represents an inconsistency problem in collaborative
software development. Defining the patterns of inconsistency aims to provide a com-
mon vocabulary among the workers about the inconsistency situations, to help them
recognize and resolve the inconsistencies more easily. Also, the patterns themselves
are easier to be added, improved, or removed.

• Our approach is to represent the change processes in a collaborative software devel-
opment environment explicitly, manage their execution, and share information about
the change processes among the workers to handle inconsistencies more effectively.
Fig. 2.6 shows an overview of our approach. To detect and resolve inconsistencies
more effectively, we combine the workspace awareness technique and the context
awareness technique [29]. Context awareness means sharing information about the
context of a change that is the change process containing the change. By moni-
toring the progress of the change processes and the ongoing changes in the client
workspaces, we can obtain the latest information about the changes in the system
for inconsistency analysis, and notify the workers of a (potential) inconsistency in
advance along with the context of the inconsistency, that is, the changes causing
the inconsistency and the change processes containing these changes. The context
of an inconsistency will help the workers understand and resolve the inconsistency
more easily compared with the previous works that supply the changes causing the
inconsistency only.

Detail of the patterns of inconsistency and our approach will be presented in the next
chapters.

2.4 Summary

Our research is aimed at managing inconsistencies in collaborative software development
more effectively. Our approach is motivated by the problems that have not been ad-
dressed by the existing studies in this area. Neglecting the relationships among the
changes implemented to fulfill a change request, focusing only on the ongoing changes
that are concurrent, and revealing little information about the contexts of the detected
inconsistencies by these studies motivate us to deal with the inconsistency problem at the
level of the contexts of changes, which are the change processes containing the changes,
rather than just the changes themselves.

15

Chapter 3

Patterns of Inconsistency

In this chapter, we describes the patterns of inconsistency that we define and classify by
considering the change processes containing the changes and the non-concurrent changes
in addition to the relationships among the changed artifacts and the concurrent changes
like the related studies.

3.1 Overview

An inconsistency pattern represents an inconsistency problem in collaborative software
development. Defining the inconsistency situations in the form of patterns aims to pro-
vide a common vocabulary among the workers about the inconsistency situations to help
them recognize and resolve the inconsistencies in collaborative software development en-
vironments more easily. The patterns are themselves easier to be improved. When we
encounter an inconsistency that has not yet been described, we can create a new pat-
tern for dealing with this inconsistency, and add it to the collection of the patterns of
inconsistency. In addition, although solution to a pattern of inconsistency varies from
situation to situation, it should be described as a property of the pattern for reference in
the future. Similarly, when a problem arises with a specific pattern, we can track it back
to the pattern, and revise it accordingly to cover the problem better. Following is our
formal definition of inconsistency.

Definition 3.1.1. (Inconsistency) Inconsistency is a situation in which some artifacts
are assigned values that are different from the intention of a worker, because he is unaware
of the changes or the impact of the changes made by other workers, to the artifacts to which
his changes apply. This situation leads to syntactic errors or semantic errors causing
unexpected or unintended behaviors of the constructed software system.

The previous works in inconsistency awareness concentrated on the concurrent changes
and the relationships among the affected artifacts. They identified two patterns of incon-
sistency: direct conflict and indirect conflict. Direct conflicts are caused by concurrent
changes to the same artifact. Indirect conflicts are caused by changes to one artifact af-
fecting concurrent changes to another artifact. In this dissertation, besides handling the
conflicts like the previous works, we also pay attention to other types of inconsistency,
by considering not only the relationships among the affected artifacts and the concurrent
changes but also the non-concurrent changes and the contexts of the changes that are
the change processes containing the changes. In other words, we identify the patterns

16

of inconsistency with regard to three properties: the relationships between the affected
artifacts, same or not, the time orders of the tasks applying the changes to the artifacts,
concurrent or not, and the contexts of the changes, the changes in the same change process
or in different change processes.

• It is easy to understand why the relationships among the artifacts are the foremost
property that we must consider, because the artifacts are directly impacted by the
changes, and a change can affect other changes only if there are some relationships
among the artifacts they apply to. If the tasks apply changes to the same artifact,
the mutual influences among them are clear. However, if the tasks applying changes
to different artifacts, the mutual influences among them depend on the content of the
changes and the type of the dependencies among the affected artifacts. Therefore,
we must consider two cases: same artifact or different artifacts.

• Regarding the concurrency of the changes, paying attention to concurrent changes
like the previous studies is necessary but not enough. As we have discussed in Section
2.1, inconsistencies may still happen even when the changes are not concurrent, if
a worker does not recognize the impact of the previous changes, made before by
other workers, on his ongoing changes, or the impact of his ongoing changes on
the previous changes. This problem becomes common along with the increase in
the number of workers, software scale, and development duration. If the tasks are
happening concurrently, the changes they made have not been committed yet. In
other words, the effects of these changes to the constructed software system are
temporarily happening in their local workspaces only. In the case of non-concurrent
tasks, the previous tasks have committed their changes to the remote repository,
and everyone can access the updated version. Hence, we have distinguished the
concurrent tasks from non-concurrent tasks.

• The third property relates to the contexts of the changes that are the change pro-
cesses containing the changes. The changes in a change process are not separated
but related to each other, and are often implemented in a consistent manner to-
ward the share target of realizing the assigned change request (See Section 2.1).
Changes in different change processes will have weaker connection, compared with
the changes in the same change process. Therefore, we should take into account the
context of the changes, i.e. the changes in the same change process or in different
change processes.

Although an inconsistency may involve many changes, we can decompose this multi-
relationship (multi-tier relationship) into many pairwise-relationships (two-tier relation-
ships). Therefore, to identify the patterns of inconsistency, we examine the situations that
can lead to inconsistencies between two changes first. Then, the patterns of inconsistency
are identified by generalizing these basic situations. As a worker can understand earlier
changes made before by other workers in the same change process shared among them,
we assume that later changes are made considering their impacts on the previous changes
to ensure their consistency. This means that in the same change process, even if the later
changes to an artifact contradict the earlier changes to the artifact, they are still under
control and no need to worry about them. This dissertation focuses more on unexpected
influences caused by a task in a change process on tasks in different change processes.

17

Concurrent

Non-Concurrent

Same ArtifactDifferent Artifacts

Same CP

Different CPsSame CPs

Different CPs

Different CP

Different CPsSame CP

Same CP

Inter-
Direct-

ConflictInter-
Indirect-
Conflict

Direct-

Revision-

Inconsistency

In
d

ir
ec

t-
R

ev
is

io
n

-
In

co
n

si
st

en
cy

RW
R/ W

W
R-

In
te

rle
av

in
g-

In
co

nsis
te

ncy

Intra-
Indirect-
Conflict

Intra-
Direct-

Conflict

Figure 3.1: Categories of inconsistency

Currently, we have identified eight patterns categorized based on the three mentioned
properties, as shown in Fig. 3.1.

• Intra-Direct-Conflict is an inconsistency in which concurrent tasks in the same
change process change the same artifact.

• Inter-Direct-Conflict is an inconsistency in which concurrent tasks in different
change processes change the same artifact.

• Intra-Indirect-Conflict is an inconsistency in which a change to an artifact affects
the concurrent changes to other artifacts by tasks in the same change process.

• Inter-Indirect-Conflict is an inconsistency in which a change to an artifact affects
the concurrent changes to other artifacts by tasks in different change processes.

• Direct-Revision-Inconsistency is an inconsistency in which there are contradic-
tory intentions in revising the same artifact at different times by tasks in different
change processes.

• Indirect-Revision-Inconsistency is an inconsistency in which a later change to
an artifact affects earlier changes to other artifacts by tasks in different change
processes.

• Interleaving-Inconsistency is an inconsistency in which there are inconsistent
views of using a shared artifact by two tasks in the same change process, because
the shared artifact is modified by a task in another change process at sometime
during the interval between these two tasks.

In Fig. 3.1, the combination relating to non-concurrent tasks applying changes to the
same artifact in the same change process is left empty because of our above assumption
about the consistency among non-concurrent tasks in the same change process.

18

w: d

Task A

Task B
Time

w: d

F(A)S(A) S(B) F(B)

(a) Intra-Direct-Conflict

......

w: d
Task A

Task B Time
w: d

(b) Inter-Direct-Conflict

CP1

CP2

F(A)S(A) S(B) F(B)

Notation w: d (write d) Make a change to Artifact d
S(A): Start time of Task A, F(A): Finish time of Task A

Figure 3.2: Direct-Conflict patterns

We expect that our patterns of inconsistency are completed in the scope of the
three properties that we use to classify them. However, we can identify more spe-
cific cases of each type of inconsistency. For example, we have identified the RWR
Interleaving-Inconsistency and WWR Interleaving-Inconsistency patterns as two specific
cases of Interleaving-Inconsistency. Exploring other specific cases of each type of incon-
sistency is our future work.

3.2 Patterns of Inconsistency

We assume that each task applying changes to artifacts belongs to a change process. For
each task in a change process, the worker will check-out the latest versions of the artifacts
in the remote repository to his workspace when he starts the task, and will check-in the
changed artifacts when he finishes the task. The following notations are used in our
definitions of the patterns of inconsistency:

• w: d Make a change (write) to Artifact d

• r: d Artifact d is read -only

• r: d, w: d’ Artifact d′ is changed with reference to d

• S(A), F(A) Start time and Finish time of Task A

• [S(A),F(A)] Execution Time of Task A

• d’ - - > d Artifact d′ depends on Artifact d (dependency relationship)

• CO(A,d) Version of Artifact d when it is checked-out at the beginning of Task A

• CI(A,d) Updated version of Artifact d when it is checked-in at the end of Task A

19

w: d

Task A

Task B Time

r:d, w: d’CP1

CP2

F(A)S(A) S(B) F(B)

(b) Inter-Indirect-Conflict

w: d

Task A

Task B
Time

r:d, w: d’
F(A)S(A) S(B) F(B)

(a) Intra-Indirect-Conflict

......

public Class Customer {
...
void showBonus() {...

Display a = new Display();
a.showCustomerScreen();…}

...
}

public Class Display {
...
void showCustomerScreen(int type) {
...
}

}

Task B

Task A

Notation w: d (write d) Make a change to Artifact d, r: d (read d) Read d only
r: d, w: d’’’’ Artifact d’ is changed with reference to Artifact d
S(A): Start time of Task A, F(A): Finish time of Task A

public Class Customer {
...
...

}

public Class Display {
...
void showCustomerScreen() {
...
}

}

Latest State in VCS

d d’’’’

Figure 3.3: Example of Indirect-Conflict patterns

3.2.1 Intra-Direct-Conflict

A situation in which the tasks in the same change process concurrently change (write)
the same version of an artifact, and create new conflicting versions.

Fig. 3.2a describes an Intra-Direct-Conflict relating to two concurrent tasks, A and
B, in the same change process:

• A and B are concurrent: [S(A), F (A)] ∩ [S(B), F (B)] ̸= ∅.

• Check-in conflict: CO(A, d) = CO(B, d) and CI(A, d) ̸= CI(B, d).

3.2.2 Inter-Direct-Conflict

A situation in which the tasks in different change processes concurrently change (write)
the same version of an artifact, and create new conflicting versions.

Fig. 3.2b describes an Inter-Direct-Conflict relating two concurrent tasks, A and B,
in different change processes:

• A and B are concurrent: [S(A), F (A)] ∩ [S(B), F (B)] ̸= ∅.

• Check-in conflict: CO(A, d) = CO(B, d) and CI(A, d) ̸= CI(B, d).

20

3.2.3 Intra-Indirect-Conflict

A situation in which an artifact d′ is assigned a value different from the intention of a
worker, because he does not recognize that a concurrent task, made by another worker in
the same change process, is applying changes to the same version of an artifact d that he
is using (reading) to change (write) d′.

Fig. 3.3a describes an example of an Inter-Indirect-Conflict in which:

• Task A and Task B are concurrent tasks in the same change process.

• Task A is modifying the signature and the content of the showCustomerScreen()
method in the Display class, while Task B is adding a new method showBonus(),
which invokes the showCustomerScreen() method, into the Customer class.

3.2.4 Inter-Indirect-Conflict

A situation in which an artifact d′ is assigned a value different from the intention of a
worker, because he does not recognize a concurrent change, made by a task in a different
change process, is applying changes to the same version of an artifact d that he is using
(reading) to change (write) d′.

Fig. 3.3b describes an example of an Inter-Indirect-Conflict in which:

• Task A and Task B are concurrent tasks in different change processes.

• Task A is modifying the signature and the content of the showCustomerScreen()
method in the Display class, while Task B is adding a new method showBonus(),
which invokes the showCustomerScreen() method, into the Customer class.

3.2.5 Direct-Revision-Inconsistency

A situation in which an artifact is assigned an unexpected or unintended value because
some later workers, who do not understand correctly the purpose of the previous changes
made by other workers, make contradictory changes (writing) with the previous changes
while executing their tasks in different change processes.

Please note that this pattern does not imply revisions that are performed carefully
considering the impact of their changes on the previous works, to fix a bug or add some
new features during the software development and evolution.

Also, Direct-Revision-Inconsistency can be considered as the cause of the Indirect-
Revision-Inconsistency and Interleaving-Inconsistency patterns, in the case the workers
do not pay attention to the changes between two revisions, or do not understand correctly
the purpose of the previous changes.

Fig. 3.4 describes an example of a Direct-Revision-Inconsistency in which:

• Task A and Task B are non-concurrent tasks in different change processes. A
happens before B, F (A) < S(B).

• The worker performing Task A added a fly() method to the Bird class. She used a
field canF ly to denote the ability to fly of birds. In the constructor of Bird, she set
the value of canF ly to false, because she thought that this helps specify the flying
ability of the bird species more conveniently. With flying birds, for example Eagle,

21

w: d
Task A

Task B
CP2

Time

w: d

F(A)S(A) S(B) F(B)

CP1

Task B

Notation
w: d (write d) Make a
change to Artifact d
S(A) Start time of Task A
F(A) Finish time of Task A

Intention of the worker
performing Task A

public class Bird {
boolean canFly;

Bird(){
canFly = false;
...

}
public boolean fly(){
return canFly;

}…
}

public class Bird {
boolean canFly;

Bird(){
canFly = true;
...

}
public boolean fly(){
return canFly;

}……
}

public class Eagle extends Bird{
Eagle(){
canFly= true;
...

}
public boolean fly(){
...
return canFly;

}
...
}

Task A

public class Penguin extends Bird
{
Penguin(){

...
}
...

}

d d

Figure 3.4: An example of Direct-Revision-Inconsistency pattern

one should change the value of canF ly to true in the constructor, and override the
fly() method to provide more information about this ability. With flightless birds,
for example Penguin, this function can be ignored.

• Later, another worker performing Task B changed the default value of the field
canF ly to true, because he thought that most birds can fly.

In this example, the later worker did contradictory changes with the previous changes
without carefully considering the purpose and the work of the previous worker.

22

r: d, w: d’
Task A

Task B
CP2

Time

w: d

F(A)S(A) S(B) F(B)

CP1

Task B

Task A

public class Penguin extends Bird
{
Penguin(){

...
}
...

}

public class Bird {
boolean canFly;

Bird(){
canFly = true;
...

}
public boolean fly(){
return canFly;

}……
}

public class Bird {
boolean canFly;

Bird(){
canFly = false;
...

}
public boolean fly(){
return canFly;

}…
}

Notation
w: d (write d) Make a change to Artifact d
r: d (read d) Read d only
r: d, w: d’’’’ Artifact d’ is changed with reference to
Artifact d
S(A): Start time of Task A, F(A): Finish time of Task A

d’’’’
d d

Figure 3.5: An example of Indirect-Revision-Inconsistency pattern

3.2.6 Indirect-Revision-Inconsistency

A situation in which an artifact d′ is assigned a value different from the intention of a
worker who made the latest changes (writing) to d′, because some later workers change
(write) an artifact d, which he used (read) to change (write) d′, without considering the
effect of their changes to d′.

Fig. 3.5 describes a simple example of an Indirect-Revision-Inconsistency in which:

• Task A and Task B are non-concurrent tasks in different change processes. A
happens before B, F (A) < S(B).

• The worker performing Task A implemented a new class Penguin extending the
class Bird. Because Penguin can not fly and the default value of the field canF ly
in the superclass Bird is false, changing the value of this field in the constructor
of Penguin and overriding the fly() method are not necessary.

• Later, another worker executing Task B modified the default value of the field
canF ly to true, because he thought that most birds can fly.

23

Task B

Task A

r: d, w: d’
Task A

Task P Time

w: d

r: d, w: d”
Task B

CP1

CP2

F(A)S(A) S(P) F(P) F(B)S(B)

Notation
w: d (write d) Make a change to Artifact d
r: d (read d) Read d only
r: d, w: d’’’’ Artifact d’ is changed with reference to Artifact d
S(A): Start time of Task A, F(A): Finish time of Task A

Task P

public class Eagle
extends Bird{
Eagle(){
canFly= true;
...

}
public boolean fly(){
...
return canFly;

}
...
}

d’’’’
d””””d

d

d

public class Bird {
boolean canFly;

Bird(){
canFly = false;
...

}
public boolean fly(){
return canFly;

}…
}

public class Bird {
boolean canFly;

Bird(){
canFly = true;
...

}
public boolean fly(){
return canFly;

}……
}

public class Bird {
boolean canFly;

Bird(){
canFly = true;
...

}
public boolean fly(){

return canFly;
}……

}

public class Penguin
extends Bird {

Penguin(){
...

}
...

}

Figure 3.6: An example of RWR Interleaving-Inconsistency pattern

In this example, the later worker did not recognize the impact of his change on the
behavior of Penguin. As a result, Penguin.fly() will unexpectedly return true that
should be false.

3.2.7 RWR Interleaving-Inconsistency

A situation in which some artifacts are assigned values different from the intention of a
worker who performs two tasks A and B in the same change process to change (write)
these artifacts, because he does not recognize that a task in a different change process
changed (wrote) an artifact d, that is used (read) by both A and B to change (write)
these artifacts, at sometime during the interval between A and B.

Fig. 3.6 describes an example of an RWR Interleaving-Inconsistency in which:

• Task A and Task B are in the same change process, CP1, that is different from the
change process of Task P , CP2. P happens after A and before B, [S(P), F (P)] ⊂
[F (A), S(B)].

24

• The first worker, performing Task A and Task B, implemented the Eagle class
inheriting the Bird class first. Examining the Bird class, she recognized that the
fly() method always returns the value of the canF ly field that is set to false by
default. Therefore, when implementing the Eagle class, which represents Eagle, a
flying bird, she changed the value of canF ly to true in the constructor, and overrode
the fly() method to provide more information about this ability. After finishing the
Eagle class, she intended to implement the Penguin class. With flightless birds
like Penguin, this function can be ignored. However, because she had an urgent
meeting, she delayed implementing the Penguin class later, checked-in her changes,
and left the office.

• When the first worker was away, another worker performing Task P modified the
default value of the canF ly field in the Bird class to true, because he thought that
most birds can fly.

• Later, when the first worker came back from the meeting, she performed Task B
that implemented the Penguin class with her original intention, without considering
the new changes on the Bird class. Because Penguin is a flightless bird, she ignored
implementing and testing functions related to the flying ability.

In this example, the first worker did not recognize the interleaving changes made by
the second worker to the Bird class. As a result, Penguin.fly() will unexpectedly return
true that should be false. If she had recognized the changes of the Bird class, she could
have set the value of canF ly to false in the constructor of the Penguin class. Also,
she might have implemented the Eagle class in a different way, for example, she would
have removed the statement that sets the value of canF ly to true from the constructor
of Eagle.

3.2.8 WWR Interleaving-Inconsistency

A situation in which some artifacts are assigned values different from the intention of a
worker who performs two tasks A and B in the same change process to change (write)
these artifacts, because he does not recognize that another task in a different change
process changed (wrote) the value of the artifact d, that was assigned (written) earlier by
Task A and was intended to be used (read) by Task B, at sometime during the interval
between A and B.

Fig. 3.7 describes an example of a WWR Interleaving-Inconsistency in which:

• Task A and Task B are in the same change process that is different from the change
process of Task P . P happens after A and before B, [S(P), F (P)] ⊂ [F (A), S(B)].

• The worker performing Task A added a fly() method to the Bird class. She used
a field canF ly to denote the ability to fly of birds. In the constructor of Bird,
she set the default value of canF ly to false, because she thought that this helps
specify the flying ability of the bird species more conveniently. With flying birds, for
example Eagle, one should change the value of canF ly to true in the constructor,
and override the fly() method to provide more information about this ability. With
flightless birds, for example Penguin, this function can be ignored. She intended

25

Task B

Task A

public class Bird {
boolean canFly;

Bird(){
canFly = false;
...

}
public boolean fly(){
return canFly;

}…
}

public class Bird {
boolean canFly;

Bird(){
canFly = true;
...

}
public boolean fly(){
return canFly;

}……
}

public class Penguin
extends Bird {

Penguin(){
...

}
...

}

w: d
Task A

Task P Time

w: d

r: d, w: d’
Task B

CP1

CP2

F(A)S(A) S(P) F(P) F(B)S(B)

Notation
w: d (write d) Make a change to Artifact d
r: d (read d) Read d only
r: d, w: d’’’’ Artifact d’ is changed with reference to Artifact d
S(A): Start time of Task A, F(A): Finish time of Task A

Task P

d

public class Bird {
boolean canFly;

Bird(){
canFly = true;
...

}
public boolean fly(){
return canFly;

}……
}

public class Eagle extends Bird{
Eagle(){
canFly= true;
...

}
public boolean fly(){
...
return canFly;

}
...
}

public class Penguin extends Bird
{
Penguin(){

...
}
...

}

Intention of the worker
performing Task A

d d d’’’’
Figure 3.7: An example of WWR Interleaving-Inconsistency pattern

to implement the Penguin class, a subclass of Bird. However, because she had an
urgent meeting, she checked-in her changes and left the office.

• When the first worker was away, another worker performing Task P modified the
default value of the canF ly field in the Bird class to true, because he thought that
most birds can fly.

• Later, when the first worker came back from the meeting, she performed Task B
which implemented the Penguin class with her original intention, without consid-
ering the new changes on the Bird class. Also, Penguin is a flightless bird, she
skipped testing the functions related to the flying ability.

In this example, the first worker did not recognize the interleaving changes made by

26

the second worker to the Bird class. As a result, Penguin.fly() will unexpectedly return
true that should be false. Also, the behavior of the Bird class has been changed different
from the intention of the first worker.

3.3 Summary

We have defined the patterns of inconsistency classified based on three properties: the
relationships between the changed artifacts, same or different, the time order of tasks
applying the changes to the artifacts, concurrent or not, and the context of the changes,
in the same or different change processes. These patterns are used as the foundation for
recognizing inconsistencies in collaborative software development.

27

Chapter 4

Theoretical Model of Change
Support Environment

In this chapter, we present the theoretical model of Change Support Environment that
represents the change processes in the system explicitly as Change Support Workflows
and manages their execution based on the patterns of inconsistency.

4.1 Change Support Workflow (CSW)

A CSW is a sequence of activities defined to carry out a change request. The activities in
a CSW take care of creating new artifacts, modifying, or deleting existing ones. A CSW
contains information about the change activities, change orders, artifacts accessed by the
change activities, change types, change workers, and the execution times of the change
activities. Following is the formal definition of a CSW.

Definition 4.1.1. (Change Support Workflow)
A CSW is a tuple < id,A,AT,E,D,C,CT,W,GDT,GD,GC,GW,GT > where:

• id is the workflow identifier.

• A is a set of change activities.

• AT = {AND-split, AND-join, OR-Split, OR-join} is a set of types of change activ-
ities. An AND-split activity allows its outgoing activities to be performed simulta-
neously. An AND-join activity can be started only if all its incoming activities have
been finished. An OR-split activity allows only one of its outgoing activities to be
performed. An OR-join activity can be started if one of its incoming activities has
been finished.

• E ⊆ (A × A) is a set of directed edges that represent the orders of the change
activities.

• D is a set of artifacts accessed by the activities of the CSW.

• C is a set of changes applied to artifacts by the activities in the CSW.

• CT = {r, w} is a set of types of change to artifacts (r: read, w: write). read means
that this artifact is for reference only. write means that this artifact is changed.

28

......

...

...

...

...

...

...

......

loopcondition = true

loopcondition
= false

b. Parallel Structure
AND-join

d. Iterative Structure

a. Sequential Structure

b. Selective Structure

AND-split

...

...

...

...

...

... OR-joinOR-split

OR-splitOR-join

...

Ai

Aj Am

Ap

An

Ai

Ai

Ai

Aj

Aj

Aj

Am

Am An

Ap

Ap

Ao

Ao

Ao

Figure 4.1: Basic control structures of a CSW

• W is a set of workers who execute the activities of the CSW.

• GDT : C × CT → 2D is a function that returns a set of artifacts associated with a
change and a change type.

• GD : C → 2D is a function that returns a set of artifacts read/written by a change.

• GC : A → 2C is a function that returns a set of changes made by an activity.

• GW : A → W is a function that returns the worker performing a change activity of
the CSW.

• GT : A → R+ × R+ is a time interval function that returns the Start Time (S)
and the Finish Time (F) of an activity. R+ is the set of positive real numbers.
0 denotes an undecided start time or finish time. The interval between S and F is
called Execution Time, E = F - S.

Fig. 4.1 shows the basic control structures of a CSW. In a sequential structure,
activities need to be carried out sequentially. Fig. 4.1a shows an example of a sequential
structure. Regarding a parallel structure, there is more than one activity that can be
carried out at the same time. A parallel structure begins with an AND-split activity and
often ends with an AND-join activity. Fig. 4.1b is an example of a parallel structure.
As shown in Fig. 4.1c, a selective structure begins with an OR-split activity and often
ends with an OR-join activity. In an iterative structure, some activities can be performed
more than once. An OR-split activity and OR-join activity are used to control the loop.
Fig. 4.1d shows an example of this structure.

29

4.2 Change Support Environment (CSE)

A Change Support Environment is a collection of CSWs defined or executed within a time
interval.

Definition 4.2.1. (Change Support Environment)
A CSE is a tuple < CSW , EST, LFT, CR,A,GCSW ,GCR > where:

• CSW = {csw1, csw2, ..., cswn} is a set of CSWs where cswi =< idi, Ai, Ei, Di, Ci,Wi,
GDi, GCi, GWi, GTi >.

• EST is the earliest time a CSW is defined or executed.

• LFT is the latest time a CSW is defined or executed.

• CR is a set of change requests implemented by the CSWs.

• A = A1 ∪ A2 ∪ ... ∪ An is a set of change activities of the CSWs. For each activity
aij in A, GT (aij) = [S(aij, F (aij] ⊆ [EST,LFT]. aij is an activity of a CSW cswi.

• GCSW : CR → CSW is a function that returns the CSW implementing a change
request.

• GCR : CSW → CR is a function that returns the change request implemented by a
CSW.

4.3 Inconsistency

In a software development environment, many change requests to a software system, such
as adding or modifying a feature, or correcting an error, need to be carried out as soon
as possible. Therefore, in a given time interval, there are always many CSWs applying
changes to the same software system or to the same part or related parts of a software
system, to implement the change requests, and some of them may be executed at the
same time.

Let CR be the set of the change requests implemented by the CSWs in a CSE: CR =
{..., cri, ...}.

Each change request cri is associated with a cswi in the CSE: cswi = GCSW (cri) =<
idi, Ai, Ei, Di, Ci,Wi, GDi, GCi, GWi, GTi >, in which Ai is the set of change activities of
cswi: Ai = {..., aik, ...}.

An activity aik inAi can apply many changes to many artifacts: GCi(aik) = {cik1, cik2, ...}.
A change of an activity will write (add, delete, or modify) an artifact with refer to

some other artifacts, read artifacts.
For example, GDi(cik1) = {dik11, dik12, dik13} means that the change cik1 of the ac-

tivity aik uses, reads, the artifacts dik12, dik13 to write the artifact dik11. In other words,
GDi(cik1) = GDTi(cik1, w) ∪GDTi(cik1, r). For the ease of understand, we writeGDi(cik1) =
{w(dik11), r(dik12, dik13)} (r: read, w: write).

Because artifacts in a software system are not separated but may be connected by
dependency relationships, changes to some artifacts in a CSW can unexpectedly affect to
changes in other CSWs.

Let us consider two CSWs cswi and cswj in the CSE.

30

• GCSW(cri) = cswi =< idi, Ai, Ei, Di, Ci,Wi, GDi, GCi, GWi, GTi > with

Ai = {..., aik, ...}, GCi(aik) = {..., cikm, ...}, GDi(cikm) = {w(dikm1), r(dikm2, ...)}.

• GCSW(crj) = cswj =< idj, Aj, Ej, Dj, Cj,Wj, GDj, GCj, GWj, GTj > with

Aj = {..., ajl, ...}, GCj(ajl) = {..., cjln, ...}, GDj(cjln) = {w(djln1), r(djln2, ...)}.

In the case of dik... = djl... or dik... depending on djl..., an inconsistency may happen if
the worker wik = GW (aik), who applies changes to dik..., does not recognize the changes
or the impact of the changes on djl... of another worker wjl = GW (ajl), or the worker wjl

does not recognize the changes on dik... of the worker wik, or the impact of his changes on
the changes on dik... of the worker wik.

Assuming that a worker will synchronize his workspace with the remote repository
when he starts an activity, and will commit his changes when he finishes the activity.
CO(aik, d) denotes the version of the artifact d when it is checked-out at the beginning
of the activity aik. CI(aik, d) denotes the updated version of the artifact d when it is
checked-in at the end of the activity aik.

Previous work monitored the ongoing changes and reported a (potential) conflict, a
type of inconsistencies, if cik.. and cjl... are the concurrent changes and dik... = djl... or dik...
depends on djl..., with GDi(cik..) = {w(dik...), r(...)} and GDj(cjl..) = {w(djl...), r(...)}.

Differently from the previous work, we pay attention to both concurrent and non-
concurrent changes and the context of a change. A CSW provides the details of the
change history, current changes, and likely changes of a change inside it. Therefore, the
CSW containing a change is considered as the context of the change. For example, the
context of the change cik... is the CSW cswi containing the activity aik with GCi(aik) =
{cik..., ...}. The context of the change cjl... is the CSW cswj containing the activity ajl
with GCj(ajl) = {cjl..., ...}.

• Context(aik) = cswi, Context(cik...) = {aik, wik, cswi}

• Context(ajl) = cswj, Context(cjl...) = {ajl, wjl, cswj}

We can add or remove some information from the change context according to the
user’s customization.

For example, Context(aik) = {cr, cri, cswi}, Context(cik...) = {aik, wik, cswi, cri}.
When the previous work reported a conflict, they just provided the workers with the

information of the involved changes only. On the other hand, we report an inconsistency
with the information about the contexts of the related changes. For instance, to report a
conflict Conflict1 relating to the changes cik... and cjl...:

• The previous works provided Context(Conflict1) = {cik..., wik, cjl..., wjl}.

• We provide Context(Conflict1) = {cik..., aik, wik, cswi, cjl..., ajl, wjl, cswj}.

4.3.1 Intra-Direct-Conflict

An Intra-Direct-Conflict happens if there exist two activities, aik and ait, in the same
CSW, cswi, where:

• aik happens concurrently with ait: [S(aik), F (aik)] ∩ [S(ait), F (ait)] ̸= ∅.

31

• GCi(aik) = {..., cikm, ...} with GDi(cikm) = {w(d), r(...)}.

• GCi(ait) = {..., citn, ...} with GDi(citn) = {w(d), r(...)}.

• aik and ait change the same version of d: CO(aik, d) = CO(ait, d).

Context(Intra-Direct-Conflict) = {cikm, aik, wik, citn, ait, wit, cswi}.

4.3.2 Inter-Direct-Conflict

An Inter-Direct-Conflict happens if there exist two activities, aik and ajl, in different
CSWs, cswi and cswj, where:

• aik happens concurrently with ajl: [S(aik), F (aik)] ∩ [S(ajl), F (ajl)] ̸= ∅.

• GCi(aik) = {..., cikm, ...} with GDi(cikm) = {w(d), r(...)}.

• GCj(ajl) = {..., cjln, ...} with GDj(cjln) = {w(d), r(...)}.

• aik and ajl change the same version of d: CO(aik, d) = CO(ajl, d).

Context(Inter-Direct-Conflict) = {cikm, aik, wik, cswi, cjln, ajl, wjl, cswj}.

4.3.3 Intra-Indirect-Conflict

An Intra-Indirect-Conflict happens if there exist two activities, aik and ait, in the same
CSW, cswi, where:

• aik happens concurrently with ait: [S(aik), F (aik)] ∩ [S(ait), F (ait)] ̸= ∅.

• GCi(aik) = {..., cikm, ...} with GDi(cikm) = {w(d), r(...)}.

• GCi(ait) = {..., citn, ...} with GDi(citn) = {w(d′), r(d, ...)}.

• aik changes a version of d that is read by ait to change d′: CO(aik, d) = CO(ait, d).

• The change cikm on d of aik affects the change citn on d′ of ait.

Context(Intra-Indirect-Conflict) = {cikm, aik, wik, citn, ait, wit, cswi}.

4.3.4 Inter-Indirect-Conflict

An Inter-Indirect-Conflict happens if there exist two activities, aik and ajl, in different
CSWs, cswi and cswj, where:

• aik happens concurrently with ajl: [S(aik), F (aik)] ∩ [S(ajl), F (ajl)] ̸= ∅.

• GCi(aik) = {..., cikm, ...} with GDi(cikm) = {w(d), r(...)}.

• GCj(ajl) = {..., cjln, ...} with GDj(cjln) = {w(d′), r(d, ...)}.

• aik changes a version of d that is read by ajl to change d′: CO(aik, d) = CO(ajl, d).

• The change cikm on d of aik affects the change cjln on d′ of ajl.

Context(Inter-Indirect-Conflict) = {cikm, aik, wik, cswi, cjln, ajl, wjl, cswj}.

32

4.3.5 Direct-Revision-Inconsistency

A Direct-Revision-Inconsistency happens if there exist two activities, aik and ajl, in dif-
ferent CSWs, cswi and cswj, where:

• aik precedes ajl: F (aik) < S(ajl).

• GCi(aik) = {..., cikm, ...} with GDi(cikm) = {w(d), r(...)}.

• GCj(ajl) = {..., cjln, ...} with GDj(cjln) = {w(d), r(...)}.

• ajl changes the version of d created before by aik: CI(aik, d) = CO(ajl, d).

• The change cjln on d of ajl contradicts the change cikm on d of aik. The worker wjl

misunderstands the purpose of the worker wik in making the change cikm.

Context(Direct-Revision-Inconsistency) = {cikm, aik, wik, cswi, cjln, ajl, wjl, cswj}.

4.3.6 Indirect-Revision-Inconsistency

An Indirect-Revision-Inconsistency happens if there exist two activities, aik and ajl, in
different CSWs, cswi and cswj, where:

• aik precedes ajl: F (aik) < S(ajl).

• GCi(aik) = {..., cikm, ...} with GDi(cikm) = {w(d′), r(d, ...)}.

• GCj(ajl) = {..., cjln, ...} with GDj(cjln) = {w(d), r(...)}.

• ajl changes a version of d that is read by aik to change d′: CO(aik, d) = CO(ajl, d).

• The change cjln on d of ajl affects the change cikm on d′ of aik.

• The worker wjl does not recognize the impact of his change, cjln, on the previous
change, cikm, of wik: ̸ ∃ cjl... ∈ GCj(ajl) so that GDj(cjl...) = {w(d′), r(d, ...)}.

Context(Indirect-Revision-Inconsistency) = {cikm, aik, wik, cswi, cjln, ajl, wjl, cswj}.

4.3.7 RWR Interleaving-Inconsistency

A RWR Interleaving-Inconsistency happens if there exist three activities, aik, ajl, and ait,
where:

• aik and ait are in the same CSW, cswi, and ajl is in a different CSW, cswj.

• ajl happens before ait but after aik: [S(ajl), F (ajl)] ⊂ [F (aik), S(ait)].

• GCi(aik) = {..., cikm, ...} with GDi(cikm) = {w(d′), r(d, ...)}.

• GCj(ajl) = {..., cjln, ...} with GDj(cjln) = {w(d), r(...)}.

• GCi(ait) = {..., cito, ...} with GDi(cito) = {w(d”), r(d, ...)}.

33

• ajl changes a version of d that is read by aik to change d′, CO(aik, d) = CO(ajl, d).

• The version of d used by ait to change d” is the version created by ajl, CI(ajl, d) =
CO(ait, d). However, the worker wit does not recognize the change cjln of ajl. He
treats the new version in the same way as the old version used by aik.

• The change cjln on d of ajl affects the change cikm on d′ of aik and the change cito
on d” of ait through the change on semantics or syntax of d.

Context(RWR Interleaving-Inconsistency) = {cikm, aik, wik, cito, ait, wit, cswi, cjln, ajl, wjl,
cswj}.

4.3.8 WWR Interleaving-Inconsistency

A WWR Interleaving-Inconsistency happens if there exist three activities, aik, ajl, and
ait, where:

• aik and ait are in the same CSW, cswi, and ajl is in a different CSW, cswj.

• ajl happens before ait but after aik: [S(ajl), F (ajl)] ⊂ [F (aik), S(ait)].

• GCi(aik) = {..., cikm, ...} with GDi(cikm) = {w(d), r(d, ...)}.

• GCj(ajl) = {..., cjln, ...} with GDj(cjln) = {w(d), r(...)}.

• GCi(ait) = {..., cito, ...} with GD(cito) = {w(d′), r(d, ...)}.

• ajl changes the version of d that is created by aik, CI(aik, d) = CO(ajl, d).

• The version of d used by ait to change d′ is the version created by ajl, CI(ajl, d) =
CO(ait, d). However, the worker wit does not recognize the change cjln of ajl. He
treats the new version in the same way as the old version created by aik.

• The change cjln on d of ajl contradicts the change cikm on d of aik, and affects the
change cito on d′ of ait through the change on semantics or syntax of d.

Context(WWR Interleaving-Inconsistency) = {cikm, aik, wik, cito, ait, wit, cswi, cjln, ajl, wjl,
cswj}.

4.4 Summary

Presenting in a formal way the main concepts used in our approach, such as CSW, CSE,
and the patterns of inconsistency, lays the foundation for our research, and enhances
further developments based on this theoretical model.

34

Chapter 5

Inconsistency Awareness

This chapter describes in detail our approach to detecting the inconsistencies in collab-
orative software development in real time, and how to implement it. We also suggest
some solutions to the detected inconsistencies. In addition, we present a formal method
for modeling the main behaviors of CSE in CP-nets and verifying the generated model to
detect inconsistencies.

5.1 Possibility of Inconsistency

To detect an inconsistency, we need to identify the necessary condition and sufficient
condition of an inconsistency based on the patterns of inconsistency. The explicit prop-
erties relating to the relationships between the artifacts, the time orders of the activities
applying the changes to the artifacts, and the contexts of the changes, can be considered
as the necessary conditions for the occurrence of an inconsistency. In other words, these
properties may, not must, lead to an inconsistency. Except for the inconsistencies related
to syntactic errors, for example the change of a method’s signature that another method
calls in the case of an indirect-conflict, the sufficient condition of an inconsistency depends
on the consistency between the semantics of the changes and the intention of the workers
who made the changes. Because this consistency can only be decided by the workers,
their decisions are the final judge.

Therefore, we can detect exactly the situations that may lead to an inconsistency,
namely potential inconsistency, by using the mentioned explicit properties of the patterns
of inconsistency. Regarding inconsistency relating to syntactic errors, we can determine
whether the detected potential inconsistency will result in a real inconsistency or not by
analyzing more deeply the syntactic properties of the detected potential inconsistency.
In the case of semantic errors, the workers, who implement the changes with their own
intention, will decide if the reported potential inconsistency will actually lead to an in-
consistency.

To support inconsistency detection, we specify the potential cases of the patterns
of inconsistency based on the necessary conditions of the pattern of inconsistency (the
relationships of the artifacts, the time orders of the activities applying the changes to the
artifacts, and the contexts of the changes). In the case of Intra-Direct-Conflict and Inter-
Direct-Conflict, these necessary conditions are also the sufficient conditions. Therefore,
there are no potential cases of these patterns.

35

w: d

Activity A

Activity B Time

w: d’CSW1

CSW2

F(A)S(A) S(B) F(B)

d di dj
d’

b. Potential Inter-Indirect-Conflict

d. Potential Indirect-Revision-Inconsistency

w: d’
Activity A

Activity B Time
w: d

CSW1

CSW2

F(A)S(A) S(B) F(B)

d di dj d’

f. Potential WWR Interleaving-Inconsistency

w: d
Activity A

Activity P Time

w: d

w: d’
Activity B

CSW1

F(A)S(A) S(P) F(P) F(B)S(B)

d di dj d’e. Potential RWR Interleaving-Inconsistency

w: d’
Activity A

Activity P Time

w: d

w: d”
Activity B

CSW1

CSW2

F(A)S(A) S(P) F(P) F(B)S(B)

d di dj d’dm dn d”w: d
Activity A

Activity B Time

w: d’
F(A)S(A) S(B) F(B)

d di dj
d’

a. Potential Intra-Indirect-Conflict

......

w: d
Activity A

Activity B
CSW2

Time

w: d

F(A)S(A) S(B) F(B)

c. Potential Direct-Revision-Inconsistency

CSW1

Notation w: d (write d) Make a change to Artifact d
d’’’’ - - - - > d Artifact d’depends on Artifact d (dependency relationship)
S(A): Start time of Activity A, F(A): Finish time of Activity A
CO(A,d): Version of Artifact d when it is checked-out at the beginning of Activity A
CI(A,d): Updated version of Artifact d when it is checked-in at the end of Activity A

CSW2

Figure 5.1: Potential inconsistency

5.1.1 Potential Intra-Indirect-Conflict

A situation in which concurrent activities in the same CSW change (write) different
artifacts that are connected by dependency relationships.

Fig. 5.1a describes a potential Intra-Indirect-Conflict in which two concurrent activi-
ties A and B in the same CSW change the artifacts d and d′, respectively:

• A and B are concurrent: [S(A), F (A)] ∩ [S(B), F (B)] ̸= ∅;

• d′ can reach d by dependency relationships.

5.1.2 Potential Inter-Indirect-Conflict

A situation in which concurrent activities in different CSWs change (write) different
artifacts that are connected by dependency relationships.

36

Fig. 5.1b describes a potential Inter-Indirect-Conflict in which two concurrent activi-
ties A and B in different CSWs change the artifacts d and d′, respectively:

• A and B are concurrent: [S(A), F (A)] ∩ [S(B), F (B)] ̸= ∅;

• d′ can reach d by dependency relationships.

5.1.3 Potential Direct-Revision-Inconsistency

A situation in which a later change to an artifact contradicts with the previous changes
to the same artifact, made by tasks in different CSWs.

Fig. 5.1c describes a potential Direct-Revision-Inconsistency in which two non-concurrent
activities A and B in different CSWs change two successive versions of the artifact d re-
spectively:

• A happens before B: F (A) < S(B);

• B writes the version created by A: CO(B, d) = CI(A, d) and CI(B, d) ̸= CI(A, d).

5.1.4 Potential Indirect-Revision-Inconsistency

A situation in which an activity changes (writes) an artifact d which some artifacts,
that were changed (writen) before by the earlier tasks in different CSWs, can reach by
dependency relationships.

Fig. 5.1d describes a potential Indirect-Revision-Inconsistency in which two non-
concurrent activities A and B in different CSWs change the artifacts d and d′, respectively:

• A happens before B: F (A) < S(B);

• d′ can reach d by dependency relationships.

5.1.5 Potential RWR Interleaving-Inconsistency

A situation in which two activities A and B in the same CSW sequentially change (write)
the artifacts d′ and d”, respectively, and an activity P in another change process changes
(writes) an artifact d, which d′ and d” can reach by dependency relationships, at sometime
during the interval between A and B.

Fig. 5.1e describes a potential RWR Interleaving-Inconsistency in which three activi-
ties A, P , and B change the artifacts d′, d, and d”, respectively, and two tasks A and B
are in the same CSW that is different from the CSW of P .

• P happens after A and before B: [S(P), F (P)] ⊂ [F (A), S(B)];

• d′ and d” can reach d by dependency relationships.

37

5.1.6 Potential WWR Interleaving-Inconsistency

A situation in which two activities A and B in the same CSW sequentially change (write)
the artifacts d and d′, respectively, and an activity P in a different CSW changes (writes)
d at sometime during the interval between A and B. d′ can reach d by dependency rela-
tionships.

Fig. 5.1f describes a potential WWR Interleaving-Inconsistency in which three activ-
ities A, P , and B change the artifacts d, d, and d′, respectively, and two activities A and
B are in the same CSW that is different from the CSW of P :

• P happens after A and before B: [S(P), F (P)] ⊂ [F (A), S(B)];

• P writes the version created by A: CO(P, d) = CI(A, d) and CI(P, d) ̸= CI(A, d).

• d′ can reach d by dependency relationships.

5.2 Inconsistency Detection in Real Time

5.2.1 Approach

Our approach is based on two hypotheses:

• Although detecting emerging inconsistency can produce false warnings, the cost of
examining these warnings is still much lower than the cost of fixing the defects that
are caused by the inconsistencies detected late in the software life cycle.

• Information about the preceding changes, succeeding changes, and concurrent changes
of the changes causing a (potential) inconsistency reminds the workers involved of
the contexts in which their changes were made. This helps them understand the
inconsistency easily and correctly, and resolve it more effectively.

•Analyze the progress of CSWs & the ongoing changes at the
workspaces of the workers to detect (potential) inconsistencies

•Inform workers of (potential) inconsistencies

Inconsistency
Notification

A11 A12 A13 A21 A22 A23

Negotiation

Inconsistency Awareness

Tom’’’’s CSW
A12 is executing

Mary’’’’s CSW

changeschanges
Mary Tom

Mary’’’’s
Workspace

Tom’’’’s
Workspace

D1 is
being
changed

D3 is
being
changed

A23 is executing

VCS

D1

D2 D4

D3 D1

D2 D4

D3

Figure 5.2: Inconsistency awareness approach overview

38

To obtain the latest information about the ongoing changes in the system, we use
the workspace awareness technique to collect information about the ongoing changes in
the workspaces of the workers, share this information across their workspaces, and alert
them of emerging conflicts. To reduce false warnings, we apply the fine-grained analysis
to identify structured changes at the client workspaces at the level of program entities.
However, because the changes between a check-out and a check-in may be applied to
the same program entity or negate each other, we transform the textual changes in each
commit to a VCS into the structured changes, and consider the output as the compact
set of the changes made in the workspace of a worker between a check-out and a check-in
associated with the commit.

In order to detect other types of inconsistency besides conflicts and resolve incon-
sistency more easily, we combine the workspace awareness technique with the context
awareness technique. Context awareness in the scope of this dissertation means sharing
information about the context of a change. As a change process can reveal much informa-
tion about a change inside it, for example, the preceding changes, the concurrent changes,
the succeeding changes, and the change purpose, we consider the CSW representing the
change process as the context of that change.

Fig. 5.2 shows an overview of our inconsistency awareness approach. Monitoring the
progress of CSWs (context awareness), such as the start time and finish time of an activity
in a CSW, helps obtain the context of a change in the system. Monitoring the changes at
client workspaces (workspace awareness), such as renaming an existing method or adding
a new method, helps detect new changes immediately. Analyzing the latest information
about the changes in the system and their contexts allows us to notify the workers of a
(potential) inconsistency in advance, along with the context of the inconsistency that is
the changes causing the inconsistency and the CSWs containing these changes. Showing
the workers the context of inconsistency apparently helps them understand and resolve the
inconsistency, or skip a wrong alarm of inconsistency, more easily and quickly, compared to
the previous works which showed the workers the concurrent changes causing a (potential)
conflict only.

5.2.2 Information Preparation for Inconsistency Detection

Fig. 5.3 shows the structure of a CSW with the necessary information to detect (potential)
inconsistencies. There may be many atomic changes happening in the workspace of a
worker during the execution time [S(A), F (A)] of an activity A in his CSW, CSWn. S(A)
and F (A) denote the start time, S, and the finish time, F , of the activity A. An atomic
change adds, deletes, or modifies an artifact that is named as the main artifact. In order
to detect other types of inconsistency besides the direct inconsistencies, we identify the
artifacts that depend on the main artifact, namely inbound artifacts, and the artifacts on
which the main artifact depends, namely outbound artifacts. In short, an atomic change
includes the information about the main artifact, the being changed artifact, inbound
artifacts, the artifacts depending on the main artifact, and the outbound artifacts, the
artifacts on which the main artifact depends.

The inbound and outbound artifacts of a main artifact are found by examining the
dependency relationships starting from or ending at the main artifact. Dependency is a
relationship that states that an artifact A uses the information and service of another
artifact B, but not necessarily the reverse [4]. We say that A depends on B.

39

Activity A
Activity B

CSWn

Main Artifact (w): d1a

Outbound Artifacts (r): o1a, o2a

Inbound Artifacts : i1a, i2a

Main Artifact (w): d2a

Outbound Artifacts (r): o1a, o2a

Inbound Artifacts : i1a, i2a

Main Artifact (w): d1b

Outbound Artifacts (r): o1b, o2b

Inbound Artifacts : i1b, i2b

Time

F(A)S(A) F(B)S(B)

Atomic Change

Outbound
Artifact oi

Main
Artifact d

Inbound
Artifact i

Dependency Relationship

Outbound
Artifact oj

Figure 5.3: A simplified structure of a Change Support Workflow

Artifacts are packages, classes, and features that can be class attributes, constructors,
and methods. There are two main types of the relationship [35]:

• The first type of relationship is composition. Packages have classes, which themselves
have features.

• The second type of relationship is dependency. Classes refer to each other, features
refer to each other, and features refer to classes.

A dependency can be either direct or indirect dependency. If A depends on B, then
A has a direct dependency with B. If A depends on B, B depends on C, then A has an
indirect dependency with C. In other words, A has an N -level dependency with B where
N is the number of intermediate dependencies between A and B. N -level dependency is
a direct dependency if N = 1, and is an indirect dependency if N > 1.

5.2.3 Inconsistency Detection Procedure

As we have mentioned in Section 5.1, it is very difficult to represent the semantic aspect of
an inconsistency in a formal way. Here we present the procedure to detect the situations
that may lead to the patterns of inconsistency, presented in Chapter 3.2, based on the
Intra-Direct-Conflict and Inter-Direct-Conflict patterns and the potential cases of the
remaining patterns (Section 5.1). Except for direct conflicts and the inconsistencies related
to syntactic errors, the workers need to confirm the correctness of the detected situation.

Upon receiving a new atomic change C, the following steps are taken:

1. Obtain the following information from C: artifact (the main artifact), inbounds
(the inbound artifact list), outbounds (the outbound artifact list), activity (the
change activity containing C), csw (the CSW containing the activity), project
(the project containing the artifacts), author (the worker making the change), and
version (the version of the main artifact assigned by a VCS).

40

b. Potential Intra|Inter-Indirect-Conflict

Activity A

Activity B Time

F(A)S(A) S(B) F(B)

Artifact (w): d’
Outbounds (r): ...d...
Inbounds : ...

Artifact (w): d
Outbounds (r): ...
Inbounds : ...d’...

C’’’’
d. Potential Indirect-Revision-Inconsistency

Activity A

Activity B Time

CSW1

CSW2

F(A)S(A) S(B) F(B)

Artifact (w): d’
Outbounds (r): ...d...
Inbounds : ...

Artifact (w): d
Outbounds (r): ...
Inbounds : ...d’...

C

C’’’’
Activity A

Activity B Time

F(A)S(A) S(B) F(B)

Artifact (w): d
Outbounds (r): ...
Inbounds : ...

Artifact (w): d
Outbounds (r): ...
Inbounds : ...

C

C’’’’
a. Potential Intra|Inter-Direct-Conflict

c. Potential Direct-Revision-Inconsistency

Activity A
Activity B

Time

CSW1

CSW2

F(A)S(A) S(B) F(B)

Artifact (w): d
Outbounds (r): ...
Inbounds : ...

Artifact (w): d
Outbounds (r): ...
Inbounds : ...

C

C’’’’

e. Potential RWR Interleaving-Inconsistency

Activity A

Activity A’’’’ Time

CSW1

CSW2

F(A”)S(A”) S(A’) F(A’)

Artifact (w): d’
Outbounds (r): ...d...
Inbounds : ...

Artifact (w): d
Outbounds (r): ...
Inbounds : ...d’...

C’’’’C”””” Artifact (w): d”
Outbounds (r): ...d...
Inbounds : ...

C

F(B) S(B)

Activity B

f. Potential WWR Interleaving-Inconsistency

Activity A

Activity A’’’’ Time

CSW1

CSW2

F(A”)S(A”) S(A’) F(A’)

Artifact (w): d
Outbounds (r): ...
Inbounds : ...

Artifact (w): d
Outbounds (r): ...
Inbounds : ...

C’’’’C”””” Artifact (w): d”
Outbounds (r): ...d...
Inbounds : ...

C

F(B) S(B)

Activity B

Activity A

Activity B Time

F(A)S(A) S(B) F(B)

Artifact (w): d’
Outbounds (r): ...
Inbounds : ...(d)...

Artifact (w): d
Outbounds (r): ...d’...
Inbounds : ...

C

C’’’’
b. Potential Intra|Inter-Indirect-Conflict

C

Figure 5.4: Illustration of inconsistency detection

41

f’’’’. Potential WWR Interleaving-Inconsistency in plan

Activity A’’’’
Activity B Time

CSW1

CSW2

F(A’)S(A’) S(B) F(B)

Artifact (w): d
Outbounds (r): ...
Inbounds : ...

Artifact (w): d
Outbounds (r): ...
Inbounds : ...

C

C’’’’ Artifact (w): d”
Outbounds (r): ...d...
Inbounds : ...

C”’”’”’”’
F(B’) S(B’)

Activity B’’’’e’’’’. Potential RWR Interleaving-Inconsistency in plan

Activity A’’’’
Activity B Time

F(A’)S(A’) S(B) F(B)

Artifact (w): d’
Outbounds (r): ...d...
Inbounds : ...

Artifact (w): d
Outbounds (r): ...
Inbounds : ...d’...

C

C’’’’ Artifact (w): d”
Outbounds (r): ...d...
Inbounds : ...

C”’”’”’”’
F(B’) S(B’)

Activity B’’’’CSW1

CSW2

Figure 5.5: Illustration of inconsistency detection (con’t)

2. Search the database for the atomic changes C ′ applied to the artifacts in the same
project with C but made by other workers, i.e. C ′.project = C.project, C ′.author ̸=
C.author, and the progress of their CSWs.

3. Analyze the collected data and report a (potential) inconsistency if one of the fol-
lowing conditions holds:

• Report a Direct-Conflict between C and C ′, if C ′ has the same main artifact
as well as the version of the main artifact with C, and C ′.activity happens
concurrently with C.activity (Fig. 5.4a):

(C ′.artifact = C.artifact) AND

(C ′.version = C.version) AND

([C.activity.startT ime, C.activity.finishT ime]∩
[C ′.activity.startT ime, C ′.activity.finishT ime] ̸= ∅)
- If C ′ and C are in the same CSW (C ′.csw = C.csw), report an Intra-Direct-
Conflict.

- If C ′ and C are in different CSWs (C ′.csw ̸= C.csw), report an Inter-Direct-
Conflict.

- If C ′ is a change that has not been made yet, i.e. a planned change, report
to the worker of C ′ a potential Intra-Direct-Conflict in plan, if C ′ and C
are in the same CSW, or a potential Inter-Direct-Conflict in plan, if C ′

and C are in different CSWs.

• Report a potential Indirect-Conflict between C and C ′, if C ′ has the main
artifact d′ depending on the main artifact d of C or depended by d, and
C ′.activity happens concurrently with C.activity (Fig. 5.4b):

42

((C.inbounds ⊃ C ′.artifact) OR (C.outbounds ⊃ C ′.artifact)) AND

([C.activity.startT ime, C.activity.finishT ime]∩
[C ′.activity.startT ime, C ′.activity.finishT ime] ̸= ∅)
- If C ′ and C are in the same CSW (C ′.csw = C.csw), report a potential
Intra-Indirect-Conflict.

- If C ′ and C are in different CSWs (C ′.csw ̸= C.csw), report a potential
Inter-Indirect-Conflict.

- If C ′ is a change that has not been made yet, i.e. a planned change, report
to the worker of C ′ an Intra-Indirect-Conflict in plan, if C ′ and C are in
the same CSW, or an Inter-Indirect-Conflict in plan, if C ′ and C are in
different CSWs.

• Report a potential Direct-Revision-Inconsistency between C and C ′, if
C ′ is in a different CSW and has the same main artifact d with C, the version
of d used by C is not older than the version of d used by C ′, and C ′.activity
happens before C.activity (Fig. 5.4c):

(C ′.csw ̸= C.csw) AND

(C ′.artifact = C.artifact) AND

(C ′.version ≤ C.version) AND

(C ′.activity.finishT ime < C.activity.startT ime)

• Report a potential Indirect-Revision-Inconsistency between C and C ′, if
C ′ is in a different CSW and has the main artifact d′ depending on the main
artifact d of C, and C ′.activity happens before C.activity (Fig. 5.4d):

(C ′.csw ̸= C.csw) AND

(C ′.outbounds ⊃ C.artifact) AND

(C ′.activity.finishT ime < C.activity.startT ime)

• Potential RWR Interleaving-Inconsistency (Fig. 5.4e)

For each artifact d in C.outbounds:

- Find an atomic change C ′ that is in a CSW different from that of C and has
d as the main artifact. C ′.activity happens before C.activity:

(C ′.csw ̸= C.csw) AND

(C ′.artifact = d) AND

(C ′.activity.finishT ime < C.activity.startT ime)

- Find an atomic change C” that is in the same CSW with C and has the main
artifact depending on d. C”.activity happens before C.activity:

(C”.csw = C.csw) AND

(C”.outbounds ⊃ d) AND

(C”.activity.finishT ime < C.activity.startT ime)

- If C”.activity happens before C ′.activity (C”.activity.finishT ime < C ′.activity.

startT ime), report a potential RWR Interleaving-Inconsistency among
C”, C ′, C on d.

• Potential WWR Interleaving-Inconsistency (Fig. 5.4f)

For each artifact d in C.outbounds:

43

- Find an atomic change C ′ that is in a CSW different from that of C and has
d as the main artifact. C ′.activity happens before C.activity:

(C ′.csw ̸= C.csw) AND

(C ′.artifact = d) AND

(C ′.activity.finishT ime < C.activity.startT ime)

- Find an atomic change C” that is in the same CSW with C and has d as the
main artifact. C”.activity happens before C.activity:

(C”.csw = C.csw) AND

(C”.artifact = d) AND

(C”.activity.finishT ime < C.activity.startT ime)

- If C”.activity happens before C ′.activity (C”.activity.finishT ime < C ′.activity.

startT ime), report a potential WWR Interleaving-Inconsistency among
C”, C ′, C on d.

• Potential RWR Interleaving-Inconsistency in plan (Fig. 5.5e’)

- Find an atomic change C ′ that is in a CSW different from that of C and
has the main artifact d′ depending on the main artifact d of C. C ′.activity
happens before C.activity:

(C ′.csw ̸= C.csw) AND

(C ′.outbounds ⊃ C.artifact) AND

(C ′.activity.finishT ime < C.activity.startT ime)

- Find an atomic change C”′, which is a planned change in the same CSW with
C ′ and depends on d. C”′.activity has not been executed yet:

(C”′.csw = C ′.csw) AND

((C”′.outbounds ⊃ d) OR (C.inbounds ⊃ C”′.artifact)) AND

(C”′.activity.startT ime = 0)

- Report a potential RWR Interleaving-Inconsistency in plan among
C ′, C, C”′ on d.

• Potential WWR Interleaving-Inconsistency in plan (Fig. 5.5f’)

- Find an atomic change C ′ that is in a CSW different from that of C and has
d as the main artifact. d is the main artifact of C too. C ′.activity happens
before C.activity:

(C ′.csw ̸= C.csw) AND

(C ′.artifact = d) AND

(C ′.activity.finishT ime < C.activity.startT ime)

- Find an atomic change C”′, which is a planned change in the same CSW with
C ′ and depends on d. C”′.activity has not been executed yet:

(C”′.csw = C ′.csw) AND

((C”′.outbounds ⊃ d) OR (C.inbounds ⊃ C”′.artifact)) AND

(C”′.activity.startT ime = 0)

- Report a potential WWR Interleaving-Inconsistency in plan among
C ′, C, C”′ on d.

44

5.2.4 Inconsistency Resolution

Upon receiving a warning of a (potential) inconsistency, one should examine the context
of the reported inconsistency to solve it or skip it in the case of a false warning.

Resolving (potential) inconsistencies relating to semantic errors is challenging, because
different workers design different CSWs for different change requests with their own in-
tentions. If a worker is not sure about the purpose of other workers after examining their
CSWs and the contents of their changes, he should contact them to conduct a negotiation.
In this case, the cooperation of the workers is the most important factor. Face-to-face
discussion, email, phone, instant messenger, etc. can be their communication means.

Regarding inconsistency relating to planned CSWs, the following methods can be
considered:

• If potential inconsistencies are reported between a planned CSW and executing
CSWs, the planned CSW can reorder its activities so that its inconsistency-related
activities can be delayed until the inconsistency-related activities of the executing
CSWs are finished.

• If potential inconsistencies are reported between the planned CSWs or the planned
part of CSWs, their change requests should be combined and redivided to reduce
the coupling among the artifacts affected by these CSWs.

As for inconsistency relating to executing CSWs, the worker who makes the later
changes leading to a potential inconsistency should reconsider the relevance of his changes
first. In case he still keeps his opinion, he should contact the workers involved to persuade
them to update their affected artifacts to adapt to his changes.

• Intra|Inter-Direct-Conflict: The later worker can delay his current changes until
the first worker finishes her changes to the artifact. Then he can obtain the updated
version and change it. If he thinks that his intention contradicts hers, he should
contact the first worker, rather than waiting or switching to other activity.

• Intra|Inter-Indirect-Conflict: The first worker, whose artifact depends on the
artifact changed by the second worker, should delay her current changes or not
commit her changes, until the second worker finishes his changes. Then, she can
obtain the updated version, examine the differences, and use it. The second worker
should support the first worker by notifying her of his intention when making these
changes directly, or through the comment part of his corresponding activity.

• Direct-Revision-Inconsistency: The second worker should examine the context
of the inconsistency carefully to make sure that he understands the intention of the
first worker correctly. He can contact her in case the information supplied by our
system is not clear enough. The second worker should also execute the test suit of
the first worker, if he still conducts his change.

• Indirect-Revision-Inconsistency: If the second worker keeps his opinion, he can
conduct his changes and then, updates the changes of the first worker impacted by
his changes to ensure the consistency of the effects by his changes. He can also send
some extra messages to the first worker, or describes more detail his change purpose
in the comment part of the corresponding activity.

45

• RWR Interleaving-Inconsistency: This warning only appears if the warning
about Indirect-Revision-Inconsistency before is not viewed by both workers. The
first worker should examine the changes of the second worker, and adjusts her
current changes and her past changes to fit his changes.

• WWR Interleaving-Inconsistency: This warning only appears if the warning
about Direct-Revision-Inconsistency before is not viewed by both workers. The first
worker should adapt her current changes to the changes of the second worker. In
case she does not agree with the changes of the second worker, a negotiation should
be conducted.

5.3 A Formal Method to Detect Inconsistency

This section presents a method for modeling the essential behaviors of CSE and analyzing
the formal model to detect data abnormalities, specially the patterns of inconsistency.
First, we give an overview of the method. Next we introduce the related work in workflow
modeling and verification, followed by an explanation of the basic concepts of Colored
Petri Nets that are used to model CSE. Finally, we describe our modeling and verification
method along with the illustrating examples.

5.3.1 Overview

As described in the previous chapter, inconsistencies are directly related to data, there-
fore, data-flow verification is required in CSE. However, most previous works in workflow
verification concentrated on structure verification, temporal verification, and resource
verification. Although data is an important aspect of workflows, only little research in
data-flow verification can be observed and they focused on data-flow errors in a single
workflow instance. Unlike previous work, we make the following contributions:

• Using Colored Petri Nets (CP-nets or CPN) to model workflows instead of extending
existing languages to represent the data factor like the works in [49, 50, 52, 53].

• Being able to represent data and changes on the properties of data explicitly.

• Being able to represent both control flow and data flow in one single model.

• Considering the data-flow errors caused by mutual influences among the data-related
workflows, in addition to the interactions among concurrent activities in a single
workflow.

• Our method can be applied to model and verify data-related abnormalities of other
types of workflows.

We use CP-nets to model the necessary behaviors of CSE because:

1. CP-nets combine the capabilities of Petri Net, a basic model widely used for mod-
eling and analyzing control-flow of workflows, with the high-level language.

2. We can use CPN Tools [42] to edit, simulate, and analyze the CPN model of CSE.

46

3. We can avoid defining a new language by extending the existing languages to rep-
resent unsupported factors like [49, 50, 52, 53], and avoid the need of proving the
correctness of the new language like [55] as well.

4. Aspects of a CSW including control (activity, edge), data (artifact), resource (worker),
and time (Execution time) can be represented by CP-nets. However, because mod-
eling resources were mentioned in some previous studies [44, 45, 46, 47], we ignore
modeling resources to reduce the complexity of the generated model.

• Allowing tokens to be associated with colors in CP-nets helps us represent the
changes on the properties of data, for example, version and content, during the
execution of CSWs easily.

• CP-nets include the time concept which helps us specify the execution time of
activities in a CSW.

• CP-nets support the hierarchy concept which allows us to model large systems
easily.

5.3.2 Related Work in Data-Flow Modeling and Verification

Workflow verification has received a lot of attention, specially structure verification, re-
source verification, and temporal verification [44, 45, 46, 47]. However, most verification
techniques ignore data aspect and there is little support for data-flow verification. In addi-
tion, although there are many ways to model a workflow, such as directed graph, Business
Process Model and Notation (BPMN), WF-Net [43], UML activity diagram, they do not
specify data flow formally or their specifications do not help with data-flow verification.
Therefore, suitable data modeling must be conducted before data verification.

Reference [48] was one of the first studies, which mentioned the importance of data-
flow verification, and identified possible errors in data flow, for instance, missing data,
redundant data, and conflicting data. Some general discussions on data-flow modeling,
specifications and verifications were given, but without any detailed solution. In [49],
the authors used a data-flow matrix and an extension of the UML activity diagram that
incorporates data input and output, to specify data. Then, a dependency-based algorithm
was proposed to detect three basic types of data-flow anomalies: missing data, redundant
data, and conflicting data. Reference [50] proposed another workflow modeling technique,
named Dual Workflow Nets, which enabled describing both data flow and control flow
by introducing new types of nodes and distinguishing data token from control token.
A formal verification method for detecting the control/data-flow inconsistencies was also
presented. A graph traversal approach was used in [51] to build an algorithm for detecting
lost data, missing data, and redundant data. Another approach for modeling the data
flow of BPMN was given in [52]. The authors formalized the basic data object processing
in BPMN using Petri nets, and presented a technique for repairing some data anomalies
corresponding to deadlocks in the composed Petri nets. WorkFlow net with Data (WFD-
net) was introduced in [53] as an extension of WF-Net in which a transition can have a
guard, and can read from, write to, or delete data elements. Based on this net, data-flow
anti-patterns comprising missing data, redundant data, lost data, conflicting data, never
destroyed, twice destroyed, not deleted on time, were defined in terms of temporal logic
CTL.

47

Differently from the previous work, we exploit the modeling power of CP-nets to
provide a method for representing many aspects of a workflow, including data flow, control
structure, and execution time, in one single model. Using CP-nets, we can avoid extending
existing languages to represent the data factor, unlike the previous works. Data and
changes on the properties of data can be represented explicitly too. We also show how to
analyze the generated model to detect data abnormalities concerning the mutual influences
among the data-related workflows instead of the interactions among the activities in a
single workflow only. The method we use to model CSWs can be applied to model business
workflows effectively.

5.3.3 Background

This section introduces the basic concepts of Colored Petri Nets [41, 54] that are used for
modeling the essential behaviors of CSE in Sec. 5.3.4.

Definition 5.3.3.1. (Petri Net) A PN is a triple (P, T,A):

• P is a finite set of places.

• T is a finite set of transitions such that P ∩ T = ∅.

• A ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation).

Definition 5.3.3.2. (Multi-set) Let S = {s1, s2, s3, ...} be a non-empty set. A multi-
set over S is a function m : S → N that maps each element s ∈ S into a non-negative
integer m(s) ∈ N called the number of appearances (coefficient) of s in m. The set of all
multisets over S, i.e. the multiset type over S, is denoted SMS.

Definition 5.3.3.3. (Colored Petri Nets) A CP-net is a tuple (P, T, A, Σ, N, C,
G, E, I), where

1. P is a finite set of places.

2. T is a finite set of transitions such that P ∩ T = ∅.

3. A ⊆ (P × T) ∪ (T × P) is a set of directed arcs.

4. Σ is a finite set of non-empty types, called color sets.

5. V is a finite set of typed variables such that Type[v] ∈ Σ for all variables v ∈ V .

6. C : P → Σ is a color set function that assigns a color set to each place.

7. G : T → EXPRV is a guard function that assigns a guard to each transition t
such that Type[G(t)] = Bool.

8. E : A → EXPRV is an arc expression function that assigns an arc expression
to each arc a such that Type[E(a)] = C(p)MS, where p is the place connected to the
arc a.

9. I : P → EXPR∅ is an initialization function that assigns an initialization
expression to each place p such that Type[I(p)] = C(p)MS.

48

Figure 5.6: A CP-net modeling the behaviors of a simple elevator

Definition 5.3.3.4. For a Colored Petri Net CPN = (P, T, A, Σ, N, C, G, E, I), we
have the following concepts:

1. A marking is a function M that maps each place p ∈ P into a multiset of tokens
M(p) ∈ C(p)MS.

2. The initial marking M0 is defined by M0(p) = I(p)() for all p ∈ P .

Definition 5.3.3.5. (Binding) Let t be a transition of a CP-net.

• A binding of transition t allocates a concrete value to the variables that occur in
the arc expressions of arcs surrounding t. These values should be of the correspond-
ing type.

• Transition t is enabled at a binding if there are tokens that matching the values
of the arc expressions and the guard of t evaluates to true.

• An enable transition fires while consuming and producing the corresponding tokens

Fig. 5.6 shows an example of using CP-nets to model the behavior of a simple elevator.
The elevator moves between twenty floors and can stop at any of these floors. At each
floor, the elevator can go up or go down. We use the place floor with Integer type to
model the floor. The token in this place has a color that denotes the floor number of the
elevator. Because the elevator can travel up or down one floor, we model these events as
transitions up and down. Transition up is enabled if the elevator is not at the top floor
(i.e., the twentieth floor). Transition down is enabled if the elevator is not at the ground
floor.

A CP-net can be extended with a time concept. A token in a CP-net has a concrete
value, color, and in a timed CP-net, it may, in addition, carry a time stamp telling when
it can be used (See the initial markings of the places p11, p21, and p31 in the subpages
csw1, csw2, csw3 described in Fig. 5.12). Also, a transition may produce tokens with a
delay (See Fig. 5.9a). To model tokens carrying a time stamp, the corresponding color
set must be made a timed color set by adding the term timed (See the declaration of color
set CSW in Fig. 5.7).

In addition to the time concept, a CP-net is also extended with a hierarchy concept.
The idea is to decompose a CP-net into modules, CP-net modules. A module has an
interface, port place, and is replaced by a substitution transition. A module is also referred
to as a page. A substitution transition refers to a subpage that corresponds to a module

49

Color set

Timed Color set

Variable

Figure 5.7: Color sets and variables used in CPN Model of CSE

contained in another module, named superpage. To connect a subpage with its superpage,
each port place in the subpage is linked with a place in the superpage, named socket. By
relating a socket to a port, the two places are semantically merged into one place. The
basic concepts of a hierarchy CP-net are illustrated in Fig. 5.11. Following is the formal
definition of a CP-net module.

Definition 5.3.3.6. (CP-net Module) A CP-net Module is a four-tuple (CPN, Tsub,
Pport, PT), where

1. CPN =(P, T, A, Σ, N, C, G, E, I) is a non-hierarchical CP-net.

2. Tsub ⊆ T is a set of substitution transitions.

3. Pport ⊆ P is a set of port places.

4. Pport → {IN,OUT, I/O} is a port type function that assigns a port type to
each port place.

5.3.4 CPN Model of CSE

Color Set

Fig. 5.7 summarizes the color sets and variables used in modeling CSE by CP-nets. We
represent the sets of artifacts and CSWs as color sets ARTIFACT, and CSW respectively.
Other color sets are composed from the basic ones.

• The color set ARTIFACT is a product type representing the artifacts in CSE. The
first element of the color set ARTIFACT, NAME, is an enumeration type that
enumerates the artifact names. The second element, VERSION, is an integer type
that denotes the version of an artifact. The third element, CONTENT, is a string
type that denotes the content of an artifact. Value (A b, 1, ”b1”) is an example of a
color belonging to the color set ARTIFACT in which A b, 1, and ”b1” are colors of
the color sets NAME, VERSION, and CONTENT, respectively.

• The color set CSW is an enumeration type that enumerates the identifications of
CSWs. To represent the execution times E of the change activities, CSW is declared
as a timed color set by adding the term timed at the end of its declaration.

50

Port place

Transition

Place name

Transition
name

Guard

Arc
expression

Initialization
expression

Place type
(color set)

Arc

One token
with value 2

Number of
token at the
place: 1

2 tokens Port type Place

Figure 5.8: Modeling an artifact a as a simple VCS

Modeling Artifacts

In software development environments, VCSs are fundamental tools for enabling workers
to work together in parallel on a single data repository. Based on this observation, we
model each artifact as a simplified VCS to allow CSWs to access the artifacts concurrently
(see Fig. 5.8). Each artifact is represented by a CP-net module with four port places:
ReadReq, ReadRes, WriteReq, and WriteRes that represent a read (check-out) request,
read response, write (check-in) request, and write response, respectively. CSWs will
connect to these port places to access the corresponding artifacts. The state of an artifact
is modeled by a place Artifact. This place contains tokens that represent all versions of
the artifact created during the execution of CSWs involved. Tokens in the place Artifact
will have the same name, but different version number. We assume that all CSWs will
access the latest version of the artifact. Therefore, we use another place, Highest Version,
containing only one token, to denote the highest version number of the artifact. When
there is a read request, the transition Read will return the version that has the highest
version number. When there is a write request, the transition Write will update the
highest version number, and store and return the new version with the updated version
number.

Fig. 5.8 shows a marking of the CP-net module modeling the artifact a. A marking
represents a state of a CP-net and is determined by the number of tokens present in
each place. In this marking, the place Artifact contains two tokens: one token with color
(A a,1,”a1”), denoted by 1‘(A a,1,”a1”), and one token with color (A a,2,”a1b1c1”),
denoted by 1‘(A a,2,”a1b1c1”). Therefore, the place Highest Version will contain one
token with value 2, denoted by 1‘2, which indicates that the latest version of the artifact
a has the version number 2. The markings of the places Artifact and Highest Version are
different from their initial markings which are represented by the corresponding initial
expressions. In the initial marking, the place Artifact contains only one token with value
(A a,1,”a1”), 1‘(A a,1,”a1”), hence the token in the place Highest Version has value 1,
1‘1.

To model other artifacts, for example the artifact b having only one version in which the

51

Ai [Ei]

Data-Ignored Activity

(a)

Delay at transition T i is Ei

(Activity A i with Execution Time
Ei = Fi – Si)

r: b, c
w: a

Ai [Ei]

Data-Related

Activity

(b)

Figure 5.9: Modeling a change activity by CP-nets

version number is 1 and the content is ”b1”, we just need to change the initial expressions
of the places Artifact and Highest Version to 1‘(A b, 1, ”b1”) and 1‘1 respectively (See
Subpage:Accessb in Fig. 5.11). If we want to represent an artifact that has not been
created yet, we set the initial marking of the place Highest Version to 0 and do not set
the initial marking for the place Artifact.

Modeling CSWs

Ignoring the data factor, each activity Ai can be modeled by a transition Ti. The execution
time of Ai, Ei = F (Ai) − S(Ai), is modeled by the delay time of transition Ti: @+Ei

(Fig. 5.9a).
In the case of data-related activities (Fig. 5.9b), each activity Ai in a CSW is modeled

by four transitions: preTi (sending read requests), rcvdTi (receiving read responses), Ti

(changing data and sending write requests), and postTi (receiving write responses). First,
the transition preTi sends read requests by specifying the names of the data needed to be
read, including the data in the read data set and the data in the write data set (except
for the data not yet created), as the inscriptions of the arcs connecting preTi to the port
places ReadReq of the read artifacts. Next, the transition rcvdTi receives the tokens
returned from the port places ReadRes and stores them as local artifacts in some specific
places, for example the place Pi RA. Pi RA means a place used for modeling an activity
Ai, Pi, and containing the read value of an artifact a, RA. Then, the transition Ti

sends tokens representing the updated versions of the changed artifacts to the port places
WriteReq of the corresponding artifacts. In this paper, we do not focus on the contents
of artifacts, and we assume that the content of a written artifact is a concatenation of
the contents of its read artifacts. Finally, the transition postTi receives tokens from the
port places WriteRes and stores them as local written artifacts in some specific places,
for example the place Pi WA. Pi WA means a place used for modeling an activity Ai,
Pi, and containing the write value of an artifact a, WA. The identification of the CSW
containing the activity is also included in read/write requests and read/write responses

52

Aj [Ej]Ai [Ei]

Aj [Ej]

Ai [Ei]

Am [Em]

Aj [Ej]

Ai [Ei]

Am [Em]

Ai [Ei]

Am [Em]

Aj [Ej]

Ai [Ei]

Am [Em]

Aj [Ej]

Aj [Ej]Ai [Ei] Ap [Ep]Am [Em]

loopcondition = true

loopcondition = false

AND-split

AND-join

OR-split

OR-join

(b)

(c)

(d)

(e)

(f)

(a)

OR-join OR-split

Figure 5.10: Modeling basic constructions of a CSW by CP-nets

to ensure responses are delivered correctly. The execution time Ei of Ai is modeled by
the delay time of the transition rcvdTi: @+Ei.

Fig. 5.10 shows how the basic constructions of a CSW are modeled by CP-nets:
sequential structure (Fig. 5.10a), parallel structure with an AND-split activity (Fig.
5.10b), parallel structure with an AND-join activity (5.10c), selective structure with an
OR-split activity (Fig. 5.10d), selective structure with an OR-join activity (Fig. 5.10e),
and iterative structure (Fig. 5.10f). Based on these structures, we can develop more
complicated structures using inscriptions and expressions supplied by CP-nets to specify
the conditions of route choices, type and quantity of tokens (resources, data) transmitted,

53

and execution condition of transitions, etc. For simplicity, we only represent the control
flow and time factor in these structures. Therefore, when representing a CSW in CP-nets,
one should model the control flow first using the above structures. Then, one can model
the data factor of each data-related activity by replacing its corresponding transition by
the four transitions as described in Fig. 5.9b.

Fig. 5.11 and Fig. 5.12 give an example of modeling a CSE with three CSWs,
CSW1, CSW2, CSW3, connected by five artifacts, a, b, c, d, e, in terms of CP-net. In
this CSE, CSW2 and CSW3 represent the CSWs of Tom and Mary presented in Moti-
vating Example of Sec. 2.2. The artifacts d, e, b represent the showPoint() method of the
V IPCustomer class, the showPoint() method of the RegularCustomer class, and the
showCustomerScreen() method of the Display class, respectively.

The hierarchical structure is used in this example. The superpage contains eight
subpages: csw1, csw2, csw3, Accessa, Accessb, Accessc, Accessd, and Accesse that
represent CSW1, CSW2, CSW3, a, b, c, d, and e, respectively. As described in Sec.
5.3.3, the port places of the subpages will be linked to the sockets of their superpages. In
this example, the sockets RCReq, RCRes, WCReq, and WCRes of the superpage will link
to the port places ReadReq, ReadRes, WriteReq, and WriteRes of the subpage AccessC,
respectively. And so are the remaining sockets.

5.3.5 Detecting Abnormalities in CPN Model of CSE

In the CPN model of CSE, data-related CSWs are connected and create a synthesized
CSW-net (See the Superpage in Fig. 5.11). We can simulate and analyze the synthesized
CSW-net using the simulation tools, and state space tools with state space querying
functions, CTL (Computation Tree Logic) state formula operators, and model checking
functions, supplied by CPN Tools [42], to detect abnormalities.

Missing Data and Direct Conflict

Missing data is the situation in which an artifact needs to be read, but either it has never
been created or it has been deleted. In CSE, missing data happens on an artifact a if the
place Artifact corresponding with it contains no token. Therefore, there is a deadlock at
a transition rcvdTi that is waiting for a read response from a.

A direct conflict happens on an artifact a if there is a deadlock at a transition postTi

that is waiting for a write response from a. This deadlock happens because a write re-
sponse is returned only if the version number in the write request is equal to the number
stored in the place Highest Version corresponding to the artifact a (See the guard of the
transition Write in Fig. 5.8 or Fig. 5.11). This condition simulates the check-in condition
of VCSs. Our modeling method can detect conflicts caused by not only concurrent ac-
tivities in different CSWs (Inter-Direct-Conflict) but also concurrent activities in the
same CSW (Intra-Direct-Conflict).

Using the simulation tools or state space analysis report of CPN Tools, we can detect
missing data and direct conflict easily. For instance, Fig. 5.13 shows the standard
report generated for the state space analysis of the CPN model described in Fig. 5.11 and
Fig. 5.12. We observe the absence of the home markings. There are no infinite occurrence
sequences and the CSW-net terminates at the dead marking 49. The Accessc′Write
transition is dead because there is no write request for the artifact c. Standard reports can

54

Figure 5.11: An example of modeling and verifying a CSE with 3 CSWs and 5 artifacts
by CP-nets (Part 1)

55

Figure 5.12: An example of modeling and verifying a CSE with 3 CSWs and 5 artifacts
by CP-nets (Part 2)

56

Figure 5.13: The standard report generated for the state space analysis of the CPN model
described in Fig. 5.11 and Fig. 5.12

help us detect abnormalities easily, especially by observing dead markings, or boundedness
properties. In this case, no abnormalities are detected through the standard report. This
means that there are no errors relating to missing data or direct conflicts.

Potential Direct-Revision-Inconsistency

Potential Direct-Revision-Inconsistency can be recognized by observing the superpage of
the CPN model of CSE. If there is more than one connection to a socket WAReq linking
with a port place WriteReq of a subpage Accessa that models an artifact a, there may
be a direct conflict or a potential Direct-Revision-Inconsistency related to the artifact a.
If no deadlock happens, we can eliminate the direct conflict case. For example, in the
Superpage of the CPN model described in Fig. 5.11, there is at most one connection to
the sockets WAReq, WBReq, WCReq, WDReq, WEReq. Therefore, a Direct-Revision-
Inconsistency does not happen.

57

Figure 5.14: Example of model checking and query on the CPN model described in Fig.
5.11 and Fig. 5.12

Other Potential Inconsistencies

State space querying and model checking are necessary to detect the remaining patterns
of inconsistency. We will show a concrete example of applying state space queries and
CTL model checking functions on the CPN model in Fig. 5.11 and Fig. 5.11 to detect
these patterns.

The Superpage in Fig. 5.11 reveals that the artifact b is read by CSW1 and CSW3,
and read/written by CSW2. Hence, we will do some verifications with b.

As shown in Fig. 5.14, we first check the possibility of an Indirect-Conflict. The
function IsConcurrentRW checks whether the artifact b is concurrently read and writ-
ten by the activities A12 and A22 respectively. Because IndirectConflict is evaluated as
true, we conclude that a potential Indirect-Conflict happens between A12 and A22 at
some states. We can find these states by a query function, IndirectConflictStates, that
traverses the entire state space to find the states satisfying the IsConcurrentRW func-
tion. Also, a potential Indirect-Conflict between A12 and A22 means that a potential
Indirect-Revision-Inconsistency does not happen between these two activities.

Similarity to the function IsConcurrentRW, the function IsConcurrentRW23 checks
whether the activities A32 and A22 concurrently read and write the artifact b. Because
IndirectConflict23 is evaluated as false, we conclude that a potential Indirect-Revision-

58

Inconsistency happens between A32 and A22.
Next, we check the possibility of a potential RWR Interleaving-Inconsistency.

The function IsRWR checks whether the activities A32 and A34 read the same value of b.
Similar to the previous case, RWR Interleaving-Inconsistency happens because of the true
value of RWRInconsistency. RWRIncosistencyStates returns a list of states that make the
function IsRWR true.

Although a potential WWR Interleaving-Inconsistency does not appear in this
example, we can imitate the method checking potential RWR Interleaving-Inconsistency
to detect this inconsistency. We will define a function IsWWR for checking whether
an activity Aj in a CSW csw reads the value created before by an activity Ai in the
same CSW. The remaining functions are defined similarly to those of RWR Interleaving-
Inconsistency except that RWR is replaced with WWR.

fun isWWR n = ((Mark.csw’Pi WB 1 n) <><> (Mark.csw’Pj RB 1 n))
and also (Mark.csw’Pi WB 1 n) <><> empty)
andalso ((Mark.csw’Pj RB 1 n) <><> empty);

5.3.6 Discussion

We have presented a formal model of our proposed Change Support Environment (CSE)
which represents the change processes as Change Support Workflows (CSWs) and man-
ages their execution for dealing with inconsistencies in collaborative environments more
effectively. CP-nets are used to model the necessary behaviors of CSE, in particular the
data flows of CSWs. CPN Tools is then used to edit, simulate, and verify the CPN model
of CSE to detect data abnormalities, specially the patterns of inconsistency.

Although our approach can successfully model and verify CSE, this modeling approach
could not take into account all aspects of a real CSE to reduce the complexity of the
generated model. Also, due to the modeling cost and the state explosion problem in
model checking, this approach is suitable for small-size CSEs with CSWs that need to
be designed carefully and to verify data-flow related errors in advance, before executing
them. Despite the limitations, successful modeling and verification of CSE are the initial
achievements in proving the feasibility and correctness of the approach of CSE. In addition,
this modeling and verification method with some advantages compared to the previous
works in data-flow verification can be applied to other types of workflows, such as business
worfkflow.

In future work, we will continue improving the formal model of CSE with regard
to modeling other common operations on artifacts such as branching and merging, and
representing the indirect dependencies among artifacts. Automating the inconsistency
analysis is also worth considering. Moreover, how to derive the correct CSWs from the
inconsistency-involved CSWs is under consideration.

5.4 Summary

This chapter has gone into detail our inconsistency awareness technique that is a combina-
tion of the workspace awareness technique and context awareness technique. By analyzing
the latest changes in the workspaces of the workers and the progress of the change pro-
cesses in the system, we can notify the workers of a (potential) inconsistency in advance
and its context, which supplies not only the contents of the changes involved but also the

59

change processes containing these changes, to help them comprehend the situation and
have suitable decisions to resolve the inconsistency. The alternative method for modeling
and verifying CSE to detect the patterns of inconsistency is also a promising solution
useful for small size CSEs with important CSWs. Because our goal is to support collabo-
rative software development in practice, we adopt the inconsistency awareness technique
to develop an inconsistency management support system presented in the next chapter.

60

Chapter 6

An Inconsistency Management
Support System for Collaborative
Software Development

This chapter presents a Change Support Workflow Management System (CSWMS) de-
veloped based on the theoretical model of CSE and the inconsistency awareness tech-
nique presented in Section 5.2. A brief description of development and implementation
of CSWMS is given.

6.1 Requirements

In CSWMS, each change process is represented by a CSW, and workers follow CSWs to
implement their change requests.

In collaborative software developments, a change process is different in nature from
business processes as follows:

• A change process structure is simpler and data-oriented.

• A change process could not be known entirely at the beginning, and will evolve
during its execution, because a worker cannot estimate all the impacted elements
of a change request until the change is implemented.

Because of the above differences and the need for inconsistency awareness support,
there are some specific requirements for CSWMS:

• CSWs must be easy to define and execute. Workers can define CSWs from scratch
or by cloning existing CSWs.

• CSWs can be modified during execution. Workers can add, remove, or change
activities in their CSWs anytime.

• CSWMS supports the workers in detecting and resolving inconsistencies among the
CSWs defined or executed within a given time interval, by notifying them in advance
of a (potential) inconsistency and its context. Workers should examine the context
of an inconsistency, including the contents of the related changes and their CSWs,
to fully understand the situation and decide if the reported inconsistency will lead
to a real inconsistency.

61

*

*

*

1

1

1

CSWChangeActivityComplexCR CR User
Artifact CSWRoleInconsistencyAtomicChangeExecutedChange

1..*

*

1..*

*

1..*

1

*

*

*

*

*

1
*

1

11

1

structured

implementeddivided

type
of ArtifactType

*
1

type of

head
2..*

*

involve

Edge
1

inbound

tail

1..** AuthRolePlannedChange *

0..1
parent

outbound

ChangeType
w: write
a: add
d: delete
m: modify

r: read FieldMethodClass
Figure 6.1: Static model of CSWMS

6.2 Static Model

Fig. 6.1 describes the static model of CSWMS.

• Each change request, CR, is implemented by a CSW, CSW. A complex CR, Com-
plexCR, can be divided into many CRs.

• A CSW is a sequence of change activities, ChangeActivities, that apply atomic
changes, AtomicChanges, to artifacts, Artifacts. A CSW can take part in another
more complicated CSW, parent CSW.

• Each edge, Edge, will connect two ChangeActivities.

• An Artifact, can depend on many artifacts, outbound artifacts, and can also be
depended by many artifacts, inbound artifacts. The type of an Artifact is specified
by ArtifactType that can be a field, a method, or a class.

• A ChangeActivity can apply many changes, AtomicChanges, to an Artifact, and an
Artifact can be changed by many ChangeActivities. We distinguish two types of
AtomicChange: ExecutedChange is a change made at runtime, and PlannedChange
is a change specified by a worker at build time. Each AtomicChange makes a
ChangeType to an Artifact, which can be add, delete, or modify.

• An inconsistency, Inconsistency, involves at least two AtomicChanges.

• A ChangeActivity is executed by a CSWMS user, User. A User of CSWMS is associ-
ated with some authentication role, AuthRole, for example, admin or designer. Also,
a CSW defines its specific roles, CSWRoles. A User can execute a ChangeActivity
if a CSWRole is associated with both the ChangeActivity and the User.

62

CSWMS- Client

CSW Control
Engine

CSWMS - Server

Workspace
Wrapper

CSW Editor
& Executor

(Planned + Executing + Finished) CSWs
Change Requests , Roles, Users, Inconsistencies

CSWMS DB

User
Management

Dependency
Analysis

Software
Artifacts

VCS

Check-in

Inconsistency
Viewer

Workspace

Inconsistency
Analysis

Check-out
Dependency

Analysis

Figure 6.2: CSWMS architecture

6.3 Architecture

To realize the inconsistency awareness mechanism presented in Section 5.2.3, we develop
the CSWMS with three main functions: CSW management, workspace monitoring, and
inconsistency awareness. The first and second functions supply the necessary information
to the third function to analyze inconsistencies. Fig. 6.2 shows the client-server architec-
ture of CSWMS. The first function is implemented by the CSW Editor & Executor,
CSW Control Engine, CSWMS DB, and User Management components. The
second function is implemented by the Workspace Wrapper component. The third
function is implemented by the Inconsistency Analysis and Inconsistency Viewer
components. In addition, we have the Dependency Analysis component that supports
the Workspace Wrapper and Inconsistency Analysis components.

A VCS is used to manage the artifacts in the system. Workers will implement change
requests in their workspaces.

CSWMS Server includes:

• CSWMS DB: contains information of the planned, executing, and finished CSWs
in the system, Change Request, Roles, Users, and Inconsistencies.

User Management: manages Users and Roles in the system. Level of detail in
showing the states of CSWs in the system and (potential) inconsistencies will vary
depending on the assigned roles of workers.

• CSW Control Engine: controls the execution of CSWs in the system.

63

• Inconsistency Analysis: notifies the workers of (potential) inconsistencies by
analyzing the information received from clients, including the changes to the CSWs
and ongoing changes in the workspaces of users, information stored in CSWMS DB,
and information about the dependencies among the software artifacts provided by
Dependency Analysis.

CSWMS Client includes:

• CSW Editor & Executor: allows a worker to edit a CSW. He can also execute
a CSW and modify it during the execution. A worker can control the outgoing
information by setting up the level of detail in broadcasting the CSW Progress that
includes the changes in his workspace and the changes to his CSWs.

• Inconsistency Viewer: shows the contexts of the inconsistencies reported by the
CSWMS server, including the changes causing the inconsistencies and their CSWs.
A worker can set up the level of detail of the incoming information and register for
favorite information depending on his roles in CSWMS.

• Workspace Wrapper: tracks activities in the workspaces of workers to extract
the information necessary for inconsistency analysis, and sends some commands to
the Workspace.

The Dependency Analysis component appears on both client and server. It helps
Workspace Wrapper and Inconsistency Analysis analyze the dependencies among
the software artifacts.

6.4 Dynamic Model

This section explains three main scenarios in a CSWMS: editing a CSW, executing a
change activity, and inconsistency awareness.

6.4.1 Editing CSWs

CSWMS users use CSW Editor & Executor to define a CSW for implementing a
change request. They can use impact analysis [36] tools to identify the impact of the
change request with the start impact set as a root artifact (1, 1.1, 1.2). Because the result
of impact analysis is just potential changes, one should revise the returned set to increase
the precision of their CSWs. However, impact analysis techniques are outside the scope
of this dissertation.

CSWMS users can still modify their CSWs at runtime, such as by adding or removing
a change activity and the corresponding artifacts, reassigning workers for executing ac-
tivities, and modifying the orders of the activities. All the changes to CSWs of the users
will be sent to CSW Control Engine, and CSW Editor & Executor will operate
depending on CSW Progress Response. (2, 2.1, 2.2)

64

1: Change
Request (CR)

:CSWMS
User

:CSW Editor
& Executor

:CSW Control
Engine

1.2: Potential
Changes for

revise

2. Edit CSW

:Workspace :Impact
Analysis

1.1: Analyze
Impact of CR
with a root

artifact

2.1: CSW Progress

2.2: CSW Progress
Response

Figure 6.3: CSW editing scenario

6.4.2 Executing a Change Activity

When a CSWMS user starts a change activity (3), his workspace will be synchronized with
the remote repository (3.3, 3.3.1, 3.3.2). Workspace Wrapper monitors the workspace
of the user to obtain the ongoing changes (4, 4.1, 4.1.1, 4.1.2), and reports the atomic
changes to CSW Editor & Executor (4.2). When the user finishes the change activity
(5), the changed artifacts will be checked-in if no inconsistency is detected (5.1, 5.2, 5.3,
5.4, 5.5, 5.5.1, 5.5.2). During activity execution, CSW Editor & Executor will send
CSW Progress, including the atomic changes and the changes to CSW, to CSW Control
Engine, and have suitable actions depending on CSW Progress Response returned from
CSW Control Engine (3.1 and 3.2, 4.3 and 4.4, 5.3 and 5.4).

6.4.3 Inconsistency Awareness

Inconsistency awareness of CSWMS is a combination of workspace awareness (recognizing
the ongoing changes in the workspaces) and context awareness (recognizing the changes
to CSWs). Based on the patterns of inconsistency, Inconsistency Analysis detects
(potential) inconsistencies (6.1, 6.1.1 and 6.1.2, 6.1.1a and 6.1.1a.1, 6.2) by analyzing
CSW Progress (6), including the ongoing changes in the workspaces and the changes to
CSWs, received from the clients, the dependency relationships among the artifacts (6.1.1,
6.1.2), and the involved activities of the (planned, executing or finished) CSWs defined
or executed within a given time interval (6.1.1a, 6.1.1a.1).

Inconsistencies will be sent to the users involved (6.3a, 6.3a.1). Upon receiving a
warning of (potential) inconsistencies from CSWMS, one should examine the context of
the reported inconsistency to solve it or ignore it in case of a false warning.

65

:CSWMS
User

:CSW Editor
& Executor

:CSW Control
Engine

4.3: CSW
Progress

:Workspace
:Workspace

Wrapper:VCS

3: Start a
Change Activity

3.3: Check-out 3.3.1:
Check-out

3.3.2: Latest
versions of

Artifacts
4: Change
Artifacts 4.1: Change

events

4.2: Atomic
Changes

5: Finish a
Change Activity

5.5: [Consistent]
Check-in

5.5.1:
Check-in

5.1: Get all
changed artifacts

5.3: CSW
Progress

5.4: CSW
Progress
Response

5.2: Changed
artifacts

5.5.2:
Check-in

3.1: CSW Progress

3.2: CSW Progress
Response

4.4: CSW
Progress
Response

:Dependency Analysis
4.1.1: Get inbound

& outbound
artifacts of the

changed artifacts

4.1..2:
Inbound &
Outbound
artifacts

Figure 6.4: Change activity execution scenario

6.5 CSWMS - Implementation

Bonita 3.1 [33] is a WFMS that supports collaborative process, a workflow process allow-
ing definition and execution operations just after the process is created, which satisfies
the above requirements of CSWs for being modified and executed easily and dynami-
cally. Therefore, we do not develop CSWMS from scratch, but extend and customize this
open source package with functions relating to artifact management and inconsistency
awareness. Fig. 6.6 shows the technical architecture of the CSWMS prototype.

6.5.1 CSW Management

CSW Editor & Executor allows a CSWMS user to edit and execute a CSW, or modify
it during its execution. We develop it as a standalone application by customizing the
Activity Manager and Workflow Graph Editor of Bonita 3.1 Client [33], and using the
open source JGraph 5.14.0 [34].

CSW Control Engine, User Management, and CSWMS DB, common compo-

66

:CSWMS
USer

:CSW Editor
& Executor

:CSW Control
Engine

:Inconsistency
Analysis

:Inconsistency
Viewer

:CSWMS
DB

:Dependency
Analysis

6.1a: Update
CSW

Progress

6.1: Check
Inconsistency

6.1.1: Get
Dependency

Graph

6.1.2
Dependency

Graph

6.1.1a: Get
involved
CSWs

6.1.1a.1:
Involved
CSWs

6.2:
Inconsistency

Response

6.3a: [Inconsistent]
Show

Inconsistency

6.3: CSW
Progress
Response

6.3a.1:
Resolution

Method
Selection

6: CSW
Progress

Figure 6.5: Inconsistency awareness scenario

nents of a WFMS, are developed by customizing and extending Bonita Engine 3.1 [33]
to fit the requirements of CSWMS. For example, new data, such as atomic changes and
inconsistencies, are added to CSWMS DB.

6.5.2 Workspace Monitoring

The Workspace Wrapper component monitors the workspaces of the CSWMS users
to find out about the atomic changes that are being made in the workspaces by the
users, and then send them to server for inconsistency analysis. In the current prototype,
this component is implemented as Eclipse plugins to automatically collect the atomic
changes to Java source codes on Eclipse workspaces of the users, Executed Changes (Fig.
6.7-E). Using Eclipse JDT (Java Development Tools), Eclipse AST (Abstract Syntax
Tree), and Resource Change Tracking techniques (org.eclipse.core.resources.IResource-
ChangeListener) of Eclipse, we can identify which type of change (add, delete, modify, or
Subversion Synchronize) applied to a Java element, the main artifact of an atomic change.
Dependency Analysis is then used to identify the other elements of an atomic change
including the inbound artifacts, the Java elements that depend on the main artifact, and
the outbound artifacts, the Java elements on which the main artifact depends (Fig. 5.3).
To increase the accuracy of inconsistency analysis, we capture the changes at the client
workspaces at the level of program entities. Currently, the type of an artifact in CSWMS
can be a field, a method, or a class.

The reported atomic changes vary depending on the type of change, add, delete, or
modify, and which Java elements, class, method, or field, are affected.

• If a field is added to a class, report two atomic changes that are the addition of the

67

CSW Control Engine

(Planned + Executing + Finished) CSWs
Change Requests , Roles, Users, Inconsistencies

CSWMS DB

User Management

+ Customize Bonita 3.1 Engine

CSW Editor & Executor
- Design a new CSW or revise an existing CSW
- Execute CSWs
- Modify an executing CSW
+ Customize Activity Manager & Workflow
Graph Editor of Bonita 3.1
+ Use Jgraph 5.14.0

Eclipse Plugins

Workspace Wrapper
- Collect Atomic Changes (Add,
Delete, Change, SVN Synchronize)
+ Use Eclipse JDT,
IResourceChangeListener, etc.

Inconsistency Viewer –––– CSW Editor &
Executor

- Show Inconsistency Warning &
inconsistency-involved CSWs

Inconsistency Viewer - Eclipse
- Show Inconsistency Warning &
Atomic Changes causing
inconsistencies
+ Use org.eclipse.core.resources:
builders, markers, nature, org.eclipse.ui.views, etc. Inconsistency Viewer

Inconsistency Analysis
+ Analyze Atomic Changes & their
dependency relationships + progress
of CSWs involved based on the
Patterns of Inconsistency

CSWMS - Server

CSWMS - Client

Dependency Analysis
+ Use DependencyFinder

+ Use Enterprise JavaBeans (EJB)

Dependency Analysis
+ Use DependencyFinder

Figure 6.6: Technical architecture of the CSWMS prototype

new field and the modification of the containing class.

• If a field is removed from a class, report two atomic changes that are the deletion
of the field and the modification of the containing class.

• If a field is modified, report two atomic changes that are the modification of the
field and the modification of the containing class.

• If a method is added to a class, report two atomic changes that are the addition of
the new method and the modification of the containing class.

• If a method is removed from a class, report two atomic changes that are the deletion
of the method and the modification of the containing class.

68

• If a method is modified, report two atomic changes that are the modification of the
method and the modification of the containing class.

• If a class is added or deleted, report an atomic change involving with the addition
or deletion of the class.

• Besides the addition of a new field|method and the deletion of a field|method, if
there is a change on other properties of a class, such as adding or removing an
import statement, or modifying the access modifier of the class, report an atomic
change involving with the modification of the class.

• If a class|method|field is renamed, it is considered as the deletion of the class|method|field
with the old name and the addition of the class|method|field with the new name.

6.5.3 Inconsistency Awareness

The Inconsistency Analysis component analyzes the atomic changes received from the
clients and the progress of CSWs involved by implementing the mechanism presented in
Section 5.2.3. Algorithm 1 shows the pseudocode of the inconsistency detection algorithm
of CSWMS. This algorithm is triggered by the arrival of a new atomic change C sent from a
CSWMS client. It then calls the AnalyzeInconsistencyonAtomicChangeswithSameArtifact
function, which finds the atomic changes C ′ stored inCSWMS DB having the same main
artifact with C, and theAnalyzeInconsistencyonAtomicChangeswithDependencyRelatedArtifacts
function, which finds the atomic changes C ′ having the main artifact depending on or
depended by the main artifact of C. Further analyses are performed to identify the po-
tential inconsistencies based on the necessary conditions of the inconsistency. The first
function detects Intra|Inter-Direct-Conflict, potential Direct-Revision-Inconsistency, and
potential WWR Interleaving-Inconsistency in Plan. The second function detects poten-
tial Indirect-Conflict, Indirect-Revision-Inconsistency, RWR Interleaving-Inconsistency in
Plan, and RWR|WWR Interleaving-Inconsistency. Finally, the algorithm returns a list of
potential inconsistencies. In the current prototype, we concentrate on analyzing inconsis-
tency relating with the changes to methods or fields of a class to increase the possibility
that the detected situations will lead to real inconsistencies.

The Inconsistency Viewer component shows the contexts of the inconsistencies
reported by the CSWMS server. It is implemented as a component integrated in CSW
Editor & Executor and Eclipse plugins. Inconsistency Viewer part in CSW Editor
& Executor supplies the information about the inconsistency-involved CSWs (Fig. 6.7-
F1,G1). Inconsistency Viewer plugins show the inconsistency warnings directly in Eclipse
IDE (Fig. 6.7-F2,F3), together with the contents of the changes (source codes) causing
the inconsistencies (Fig. 6.7-G2), using Eclipse Builders, Markers, Nature, Views, etc.

6.5.4 Dependency Analysis

The Dependency Analysis component appears on both client and server. It uses De-
pendencyFinder [35], a third party tool for creating a dependency graph from compiled
Java code, to analyze the dependencies among the software artifacts. We apply the
functions provided by DependencyFinder to find the inbound artifacts and outbound ar-
tifacts of the main artifact in an atomic change. Firstly, we generate the dependency

69

Algorithm 1: Detect Potential Inconsistencies

input : C.artifact (the main artifact of C),C.inbounds (the inbound artifact list of
C), C.outbounds (the outbound artifact list of C), C.activity (the change
activity containing C), C.csw (the CSW containing the activity), C.project
(the Java project containing the artifacts), C.author (the worker making
the change C), and C.version (version of the main artifact of C assigned by
a VCS)

output: inconsistencies (set of all potential inconsistencies generating by the
change)

1 begin

2 inconsistencies = Initialize()
3 inconsistencies =

AnalyzeInconsistencyonAtomicChangeswithSameArtifact(C.artifact,
C.activity, C.csw, C.project, C.author, C.version, C.inbounds)

4 inconsistencies = inconsistencies ∪
AnalyzeInconsistencyonAtomicChangeswithDependencyRelatedArtifacts(C.artifact,
C.activity, C.csw, C.project, C.author, C.outbounds, C.inbounds)

5 end

graph of the software system with a NodeFactory. The factory keeps track of the package
nodes at the top of the graph and all their subordinate nodes. Individual nodes keep
track of their outbound and inbound dependencies. Secondly, we traverse the graph to
identify the node in the graph corresponding with the changed artifact using the Cod-
eDependencyCollector class. Finally, we call the node.getOutboundDependencies() and
node.getInboundboundDependencies() methods to obtain the list of the outbound arti-
facts and the list of the inbound artifacts, respectively.

6.6 CSWMS Prototype - Guideline

To use CSWMS, a worker must be a CSWMS user, that is he is supplied with an account
that stores his information such as username, password, real name, and email address.
The username may be different from the real name of the worker. A user must login to
the CSW Manager to do his tasks (Fig. 6.7-A).

CSW Manager (Fig. 6.7-B) shows the CSWs of the current user (CSW List) and
the states of the activities in these CSWs (Todo List and Executing Activity List). Todo
List contains the activities which he is assigned to, but has not executed yet. Executing
Activity List shows the activities he is executing. From the menu of CSW Manager, a
user can create a new CSW from scratch (collaborative workflow or model workflow [33])
(Fig. 6.7-C), or as a copy of an existing CSW (collaborative workflow or model workflow),
or as an instance of an existing CSW (model workflow).

CSW is edited with CSW graph editor (Fig. 6.7-D). Impact Analysis [36] tools can be
used to support CSWMS users to identify the impact of a change request to define CSWs
more easily and accurately. One does not need to specify all the activities of a CSW at the
beginning. He can add new activities to a CSW, or modify an existing activity except the
finished activities during the execution of a CSW. For each activity in a CSW, one needs

70

Function AnalyzeInconsistencyonAtomicChangeswithSameArtifact(C.artifact,
C.activity, C.csw, C.project, C.author, C.version, C.inbounds)

1 /* Analyze the atomic changes C’ having the same main artifact with

the atomic change C: C.artifact = C’.artifact. */

2 begin
3 inconsistencies = Initialize()
4 i = 0
5 /* Query database to get the atomic changes C’ having the same

artifact, same project, but made by different worker with C */

6 C ′Set = SelectC’SameArtifact(C.artifact,C.project,C.author)
7 foreach C’ in C’Set do
8 if C’.activity and C.activity are concurrent then
9 if C.revision < C’.revision then

10 // C.author is changing an outdated version of C.artifact

11 inconsistencies[i] = createNewPotentialInconsistency(Severe
Direct-Conflict, C, C’, C.artifact)

12 i++

13 else if C.revision = C’.revision then
14 // C.author and C’.author have not yet checked-in C & C’

15 inconsistencies[i] = createNewPotentialInconsistency(Light
Direct-Conflict, C, C’, C.artifact)

16 i++

17 end

18 else if C’.activity happens before C.activity and C’.csw ̸= C.csw then
19 inconsistencies[i] =

createNewPotentialInconsistency(Direct-Revision-Inconsistency, C,
C’, C.artifact)

20 i++
21 // find WWR Interleaving-Inconsistency in Plan

22 /* Query database to find planned change C"’. C"’.csw =

C’.csw. C"’.artifact --> C.artifact (C"’.outbounds ⊃
C.artifact OR C.inbounds ⊃ C"’.artifact). C"’.activity

has not been executed yet. */

23 C”’Set = SelectPlannedChangeC"’WWR(C.artifact, C.project,
C.inbounds, C’.csw).

24 foreach C”’ in C”’Set do
25 inconsistencies[i] = createNewPotentialInconsistency(WWR

Interleaving-Inconsistency in Plan , C’, C, C”’, C.artifact,
C”’.artifact)

26 i++

27 end

28 end

29 end

30 end

71

Function AnalyzeInconsistencyonAtomicChangeswithDependencyRelatedArti-
facts(C.artifact, C.activity, C.csw, C.project, C.author, C.outbounds, C.inbounds)

1 /* Analyze the atomic changes C’ that have the main artifact

depending on or depended by the main artifact of the atomic change

C: C.artifact --> C’.artifact or C’.artifact --> C.artifact */

2 begin
3 inconsistencies = Initialize()
4 i = 0
5 /* Query database to get the atomic changes C’ in the same

project, but made by different worker with C. C.artifact -->

C’.artifact (C.outbounds ⊃ C’.artifact) or C’.artifact -->

C.artifact (C.inbounds ⊃ C’.artifact) */

6 C ′Set = SelectC’DependencyRelatedArtifacts(C.artifact, C.project,
C.author, C.outbounds, C.inbounds)

7 foreach C’ in C’Set do
8 if C’.activity and C.activity are concurrent then
9 inconsistencies[i] =

createNewPotentialInconsistency(Indirect-Conflict, C, C’,
C.artifact, C’.artifact)

10 i++

11 else if C’.activity happens before C.activity and C’.csw ̸= C.csw then
12 if C’.artifact −− > C.artifact then
13 inconsistencies[i] = createNewPotentialInconsistency(Indirect-

Revision-Inconsistency, C, C’, C.artifact, C’.artifact)

14 i++
15 // find RWR Interleaving-Inconsistency in Plan

16 /* Query database to find planned changes C"’. C"’.csw =

C’.csw. C"’.artifact --> C.artifact (C"’.outbounds ⊃
C.artifact OR C.inbounds ⊃ C"’.artifact).

C"’.activity has not been executed yet. */

17 C”’Set = SelectPlannedChangeC"’RWR(C.artifact,C.project,
C.inbounds, C’.csw).

18 foreach C”’ in C”’Set do
19 inconsistencies[i] = createNewPotentialInconsistency(RWR

Interleaving-Inconsistency in Plan , C’, C, C”’, C’.artifact,
C.artifact, C”’.artifact)

20 i++

21 end

22 else if (C.artifact −− > C’.artifact) AND (C’.creationTime >
C.csw.startTime) then

23 // Check WWR|RWR Interleaving-Inconsistency

24 end

25 end

26 end

27 end

72

Function AnalyzeInconsistencyonAtomicChangeswithDependencyRelatedArti-
facts(C.artifact, C.activity, C.csw, C.project, C.author, C.outbounds, C.inbounds)
(cont.)

1 begin
2 inconsistencies = Initialize()
3 i = 0
4 /* Query database to get the atomic changes C’ in the same

project, but made by different worker with C. C.artifact -->

C’.artifact or C’.artifact --> C.artifact */

5 C ′Set = SelectC’DependencyRelatedArtifacts(C.artifact, C.project,
C.author, C.outbounds, C.inbounds)

6 foreach C’ in C’Set do
7 if C’.activity and C.activity are concurrent then
8 ...
9 else if C’.activity happens before C.activity and C’.csw ̸= C.csw then

10 if C’.artifact −− > C.artifact then
11 ...
12 else if (C.artifact −− > C’.artifact) AND (C’.creationTime >

C.csw.startTime) then
13 // Check WWR|RWR Interleaving-Inconsistency

14 /* Query database to find atomic changes C" so that

C".csw = C.csw, C".activity happens before

C’.activity, and C".artifact --> C’.artifact

(C".outbounds ⊃ C’.artifact OR C’.inbounds ⊃
C".artifact) or C".artifact = C’.artifact. */

15 C”Set = SelectChangeC"(C.csw, C.project, C’.artifact, C’.csw,
C’.inbounds)

16 foreach C” in C”Set do
17 if C”.artifact = C’.artifact then
18 inconsistencies[i] =

createNewPotentialInconsistency(WWR
Interleaving-Inconsistency, C”, C’, C, C”.artifact, C.artifact)

19 i++

20 else if C.artifact −− > C’.artifact then
21 inconsistencies[i] =

createNewPotentialInconsistency(RWR
Interleaving-Inconsistency, C”, C’, C, C”.artifact, C’.artifact,
C.artifact)

22 i++

23 end

24 end

25 end

26 end

27 end

28 end

73

A

B

C

F1

G1 Planned Planned Planned Planned Changes Changes Changes Changes
Executed Changes Executed Changes Executed Changes Executed Changes

G2

E

Executing Activity in Red Executing Activity in Red Executing Activity in Red Executing Activity in Red Finished Finished Finished Finished Activity in Activity in Activity in Activity in Blue Blue Blue Blue
D

F2

F3

Figure 6.7: CSWMS User Interface. A: Login window for CSW Manager. B: CSW Man-
ager window. C: New CSW Dialog. D: CSW graph editor window showing CSW of user
admin. E. Eclipse IDE with workspace wrapper plugins. F1, F2, and F3: Inconsistency
Viewer window on CSW Manager and Eclipse with the warnings of (potential) incon-
sistencies. G1: CSW graph editor window showing CSW of inconsistency-involved user,
admin2, viewed by admin. G2: Inconsistency Viewer windows in Eclipse showing the
contents of the changes causing a potential RWR Interleaving-Inconsistency.

74

to specify the name of the activity. If the user wants, he can also specify the changes
he intends to do in an activity, i.e. planned changes. The information will be used to
predict potential inconsistencies in plan before these changes are done. The changes that
really happen to the artifacts in a user’s workspace during the execution of an activity,
i.e. executed changes, will be collected automatically by the Workspace Wrapper that
is implemented as the plugins of Eclipse (Fig. 6.7-E), and sent to the CSWMS server for
inconsistency analysis.

In short, to fulfill a change request, the user first composes a CSW, and then assigns
the executors to the activities in the CSW. Each assigned activity will appear in Todo
List of the worker who is assigned to execute the activity. If a user wants to execute an
activity in his Todo List, he will select the activity, right click, and choose the Execute
Activity function. The chosen activity will appear in Executing Activity List. When he
finishes all the necessary changes, he will select the activity, right click, and choose the
Terminate Activity function. One must notify the system when he starts and finishes an
activity to help the system identify the activity that a change belongs to.

When an inconsistency notification appears in Potentially Inconsistent CSW List of
the CSW Manager window (Fig. 6.7-F1) or Eclipse IDE (Fig. 6.7-F2), one should open
it to understand the situation. He can ignore by choosing the Ignore function, or choose
the Detail function to learn more about the inconsistency. Currently, we do not give a
solution to the detected inconsistency, but support the users in solving the inconsistency
by supplying them as much as possible the information about the context of the incon-
sistency, including the contents of the changes causing the inconsistency (Fig. 6.7-G2)
and the CSWs of these changes (Fig. 6.7-D,G1). After finishing inconsistency resolution,
the user should update the state of the inconsistency to Solved. Updating the progress of
inconsistency resolution helps reduce false warnings from the system.

6.7 How CSWMS Supports Workers in Inconsistency

Awareness

The previous works support the workers in detecting emerging inconsistencies caused by
the ongoing changes in the workspaces, namely the conflicts, only. Regarding the changes
committed to the repository, a worker must recognize the new changes of other workers
and their impact to his work, by regularly synchronizing his workspace with the remote
repository, or reading tons of emails automatically sent by the VCSs for new check-in
notifications, and then investigating all the new changes. On the other hand, the solution
in which the worker must guarantee the consistency of the effects by his changes by
notifying his changes to an artifact to the current and potential users of the artifact by
himself to avoid inconsistencies is also tricky.

CSWMS aims to reduce the load of the workers and to handle inconsistencies more
effectively. We notify the workers of the contexts of the changes causing the (potential)
inconsistencies rather than just the changes themselves. The contexts of the changes can
help them understand the problem more easily to have more proper and timely decisions.
Instead of finding the related workers, specifying the changes, and notifying them of his
changes by himself, a worker only needs to specify his change process, i.e. the CSW, using
CSW graph editor supported by CSWMS. Managing the execution of CSWs, collecting
and analyzing information to detect (potential) inconsistency, and notifying the workers

75

public void showPoint() {...
Display a = new Display();
a.showCustomerScreen();
...}

public void showPoint() {...
Display a = new Display();
a.showCustomerScreen();
...}

1Mary

3Mary

Change
Request

- Modify showCustomerScreen()
- Add ShowVIPCustomerScreen() 2Tom

Figure 6.8: CSWMS effectiveness - Illustrating example for Indirect-Revision-
Inconsistency and RWR Interleaving-Inconsistency

of (potential) inconsistencies along with their contexts, including the changes causing the
inconsistencies and the CSWs of these changes, are automatically handled by our system.
Hence, CSWMS can help the workers detect and resolve many types of inconsistency
rather than conflicts only, more quickly and efficiently.

To illustrate the effectiveness of CSWMS that combines the workspace awareness
and context awareness techniques, as opposed to other approaches using the workspace
awareness technique only [21, 24, 20, 25, 26, 28], we will show some examples of getting
benefits from CSWMS that were not provided by the previous studies. We simulate the
situations, which were described in the previous chapters as the illustrating examples for
the patterns of inconsistency (Section 3.2) and the motivating example for our approach
(Section 2.2), to contrast a traditional system with CSWMS.

6.7.1 Potential Indirect-Revision-Inconsistency and RWR Interleaving-
Inconsistency

Fig. 6.8 shows the situation that was described as the motivating example in Section 2.2.
In the morning, Mary, whose username in CSWMS is admin, uses CSW Manager

and CSW graph editor to define a CSW ShowPoint for implementing the change request
adding the showPoint() method to the Customer interface. The ShowPoint CSW has
two activities, Implement showPoint() in VIPCustomer and Implement showPoint() in
RegularCustomer. She executes the activity Implement showPoint() in VIPCustomer
first. Although she does not specify any planned changes, thanks to the Workspace
Wrapper plugin in Eclipse, the atomic changes in Mary’s workspace during the execution
of the first activity are still sent to the server automatically (executed changes of the first
activity in Fig. 6.9-E2). When the first activity finishes, she delays the execution of the
second activity until that night, because she has an urgent meeting with a customer.

Indirect-Revision-Inconsistency warning for Tom: In the afternoon, Tom, whose
username is admin2, starts modifying the Display class by defining a Display CSW with
one activity. When he specifies the planned changes, he receives a warning of potential
Indirect-Revision-Inconsistency about the change context of Mary, the ShowPoint CSW.

76

B

C

D1

D2

E1

E2

A

Figure 6.9: Example of a potential Indirect-Revision-Inconsistency detected by CSWMS.
A: CSW Manager window of admin2. B: The Display CSW of admin2. C: admin2 is
modifying the Display class using Eclipse IDE. D1 & D2: Warning for Indirect-Revision-
Inconsistency appears in CSW Manager and Eclipse IDE of admin2. E1: Contents of the
changes causing the potential Indirect-Revision-Inconsistency are shown in Eclipse IDE
of admin2. E2: The ShowPoint CSW of admin is viewed by admin2 to understand the
context of the inconsistency.

77

A B

C

D1

D2

E1

E2

Figure 6.10: Example of a potential RWR Interleaving-Inconsistency detected by
CSWMS. A: CSW Manager window of admin. B: The ShowPoint CSW of admin. C:
admin is implementing the showPoint() method for the RegularCustomer class using
Eclipse IDE. D1 & D2 : Warning for WWR Interleaving-Inconsistency appears in CSW
Manager and Eclipse IDE of admin. E1: Contents of the changes causing the potential
RWR Interleaving-Inconsistency are shown in Eclipse IDE of admin. E2: The Display
CSW of admin2 is viewed by admin to understand the context of the inconsistency.

78

public class Bird {
boolean canFly;

Bird(){
canFly = false;
...

}
public boolean fly(){
return canFly;

}…
}

public class Bird {
boolean canFly;

Bird(){
canFly = true;
...

}
public boolean fly(){
return canFly;

}……
}

public class Penguin
extends Bird {

Penguin(){

}
...

}

Time

Mary MaryTom
Figure 6.11: CSWMS effectiveness - Illustrating example for the Direct-Revision-
Inconsistency and WWR Interleaving-Inconsistency patterns

Assuming that he ignores the warning and continues executing the activity by modifying
the Display class. A warning of Indirect-Revision-Inconsistency replacing the previous
warning is shown. If he opens the warning, CSWMS will show him the context of the
potential inconsistency which includes the Display CSW of Tom, the ShowPoint CSW
of Mary, and the source codes of the changes causing the potential inconsistency (Fig.
6.9). By examining it, Tom can recognize that his change affects the finished work of
Mary, implementing the showPoint() method in the V IPCustomer class, and may affect
her future work, Implement showPoint() for RegularCustomer. Assuming that Tom again
ignores it.

Indirect-Revision-Inconsistency and RWR Interleaving-Inconsistency warn-
ings for Mary: At night, when Mary logs-in to CSWMS, there is a warning about
Indirect-Revision-Inconsistency at the bottom of her CSW Manager. Assuming that she
ignores the warning and starts the second activity, Implement showPoint() for Regular-
Customer. When she begins coding the showPoint() method of the RegularCustomer
class using Eclipse IDE, another warning of RWR Interleaving-Inconsistency is shown in
the Potentially Inconsistent Project List window and Eclipse (6.10-D1,D2), and the CSW
of Tom, Display, which is the cause of this inconsistency, is opened (6.10-E2). When
she double-clicks on the latest warning in her inconsistency list in Eclipse, the window
that compares the source codes of the atomic changes causing the inconsistency is shown
(Fig. 6.10-E1). With the supplied information of the inconsistency context, Mary could
recognize the modification of the showCustomerScreen() method and the appearance of
the showV IPCustomerScreen() method. By understanding the change context of each
other, she could coordinate with Tom to solve the inconsistency quickly and easily.

6.7.2 Potential Direct-Revision-Inconsistency andWWR Interleaving-
Inconsistency

Fig. 6.11 shows the situation that is similar to the illustrating example for the WWR
Interleaving-Inconsistency pattern in Section 3.2.8.

79

C

D2

E1

E2

B

A

D1

Figure 6.12: Example of a potential Direct-Revision-Inconsistency detected by CSWMS.
A: CSW Manager window of admin2. B: The ShowBirdProperty CSW of admin2. C:
admin2 is modifying the Bird class using Eclipse IDE. D1 & D2: Warning for Direct-
Revision-Inconsistency appears in CSW Manager and Eclipse IDE of admin2. E1: Con-
tents of the changes causing the potential Direct-Revision-Inconsistency are shown in
Eclipse IDE of admin2. E2: The FlyMethod CSW of admin is viewed by admin2 to
understand the context of the inconsistency.

80

A

C

B

D1

D2

E2

E1

Figure 6.13: Example of a potential WWR Interleaving-Inconsistency detected by
CSWMS. A: CSW Manager window of admin. B: The FlyMethod CSW of admin.
C: admin is coding the Penguin class using Eclipse IDE. D1 & D2: Warning for WWR
Interleaving-Inconsistency appears in CSW Manager and Eclipse IDE of admin. E1: Con-
tents of the changes causing the potential WWR Interleaving-Inconsistency are shown in
Eclipse IDE of admin. E2: The ShowBirdProperty CSW of admin2 is viewed by admin
to understand the context of the inconsistency.

81

First, Mary, whose username is admin, defines the FlyMethod CSW for implementing
the change request that represents the ability to fly of birds. Because she does not have a
clear plan for what she will do, she defines FlyMethod with one activity only, the FlyofBird
activity, and executes it. She adds the field canF ly to denote the ability to fly of birds. In
the constructor of the Bird class, she sets the default value of canF ly to false, because
she thinks that this helps specify the bird species more conveniently. With flying birds, for
example Eagle, one needs to describe more information about this ability such as speed.
Therefore, one can change the value of canF ly to true in the constructor, and override
the fly() method to add more information. With flightless birds, for example Penguin,
one can ignore this function. Because she has an appointment with a customer for lunch,
she finishes the current activity. To not forget the ongoing work after coming back from
lunch, Mary adds to the FlyMethod CSW a new activity, the Penguin&Fly activity, as
a successor of the FlyofBird activity, before leaving the office.

Direct-Revision-Inconsistency warning for Tom: While Mary is having lunch
with the customer, Tom, whose username is admin2, implements the change request for
displaying the common properties of birds. He defines the ShowBirdProperty CSW with
one activity, the View Common Properties of Bird activity, first and starts it. When he
adds the new methods to the Bird class, for example the printBirdProperty() method, he
recognizes that the fly() method returns the false value, because the canFly field is set to
false in the constructor of Bird. In his opinion, most birds can fly. Therefore, he changes
the value of canFly to true. As a result, a warning of Direct-Revision-Inconsistency is
shown. If he opens the warning, CSWMS will show him the context of the potential
inconsistency which includes the ShowBirdProperty CSW of his, the FlyMethod CSW
of Mary, and the source codes of the changes causing the potential inconsistency (Fig.
6.12). By examining it, Tom can recognize that his changes may affect Mary’s work.
He can delay his changes after discussing with Mary, or keep his opinion but add more
explanations about his work to his CSW to help Mary understand his intention. Assuming
that Tom ignores the warning. He finishes his activity before Mary returns to the office.

Direct-Revision-Inconsistency and WWR Interleaving-Inconsistency warn-
ings for Mary: Coming back from lunch, Mary continues her work. There is a warning
about Indirect-Revision-Inconsistency at the bottom of her CSW Manager. If she inves-
tigates the warning, she can realize that the change of Tom affects her work, and she
can adjust her implementation plans to make the system work correctly. Assuming that
she continues her work without paying attention to the warning. Persisting with her
original intention, she starts the Penguin&Fly activity and begins coding the Penguin
class. When she is editing its constructor, a warning of WWR Interleaving-Inconsistency
appears. If she does not ignore it again, she could understand what is happening by
examining the context of the potential inconsistency (Fig. 6.13). She can solve the sit-
uation by setting the value of the field canFly to false in the constructor of Penguin, or
negotiating with Tom to change the value of canFly in the constructor of Bird to false as
her original intention.

6.8 Summary

We have presented the development and implementation of CSWMS that realizes our
approach to solve the inconsistency problem in collaborative software development.

82

CSWMS has the advantage of warning workers as early as possible (potential) in-
consistencies to help the workers prevent or solve them before their effects go further.
CSWMS can detect exactly Intra|Inter-Direct-Conflicts and the potential cases of the re-
maining patterns of the patterns of inconsistency. However, in the case of the semantic
inconsistencies, CSWMS cannot ensure the detected potential inconsistencies will lead to
real inconsistencies or not. Since the semantics of the changes are difficult to express in a
formal way, the detection of such problems is challenging and requires the intervention of
the workers involved. In the case of a false warning, it interrupts the workers from their
work and takes time to examine the falsely reported inconsistency. However, by applying
the fine-grained analysis, we can reduce the false warnings. Moreover, by supplying the
workers with the CSWs of the changes that cause the reported inconsistency, we can help
them understand the context of the inconsistency and skip the false alarm quickly and
easily. In addition, even if an inconsistency does not happen, the warnings of potential
inconsistencies still contribute to increasing the awareness of a worker about the works
of his co-workers. This directs the worker to make correct changes and avoid unexpected
impacts on the changes of other workers.

83

Chapter 7

Performance Evaluation and
Discussion

In this chapter, we first make a comparison between our work and the related studies
toward the inconsistency problem in collaborative software development. We then evalu-
ate performance of the inconsistency detection algorithm to examine its scalability. Some
discussions about the effectiveness of our research and the challenges in evaluating its
effectiveness are also given.

7.1 Comparison with Related Studies

The novelty of our approach lies in addressing the inconsistency at the view of the change
processes containing the changes rather than the individual changes. Our inconsistency
awareness is an extension of the related studies in this field that used the workspace
awareness technique only. By combining the workspace awareness technique with the
context awareness technique, we can recognize many types of inconsistencies, in addition
to conflicts. We can also supply much information about the context of the changes caus-
ing a (potential) inconsistency to the workers, rather than the changes causing (potential)
conflicts only like the previous studies. Table 7.1 summarizes the main features of the
related works, and shows the relationships between them and our study.

7.2 Performance Evaluation of Inconsistency Detec-

tion Algorithm

In this section, we conduct performance evaluation to examine the scalability of our
inconsistency detection algorithm.

In the current prototype, to reduce unnecessary atomic changes, the executed changes,
i.e. the atomic changes collected by monitoring the workspaces of workers, are used only
when the workers have not yet checked-in their changes. If the workers have checked-in
their changes, we transform the textual changes in these revisions into the structured
changes, and use these atomic changes, named committed changes, instead of the exe-
cuted changes happened in the workspaces of the workers in the time intervals before
these commits were made. In other words, the executed changes reflect the interim
states of the changed artifacts, and the committed changes show the final states of the

84

Table 7.1: Summary of related works in inconsistency awarenessReferences Approach Detected Inconsistency Change Granularity Supplied Information about Inconsistency Crystal [26] Merge local repositories of distributed VCSs Pending conflicts Coarse Type of conflicts WeCode [27] Continuously merge Eclipse workspaces Emerging conflicts Fine Changes causing conflicts TUKAN [19] Build a spatial model for the shared source code under development Emerging conflicts Fine Changes causing conflicts CollabVS [20] Monitor Visual Studio workspaces Emerging conflicts Fine Changes causing conflicts Palantir [21] Monitor Eclipse workspaces Emerging conflicts Medium Changes causing conflicts Lighthouse [23] Show emerging designs that update changes on the workspaces of workers - Fine Which source code entities are modified and by whom CASI [24] Show emerging designs that update changes on the workspaces of workers + Sphere of influence - Fine Which source code entities are modified and by whom + Which source code entities are influenced by their changes Syde [25] Monitor Eclipse workspaces Emerging conflicts Fine Changes causing conflicts CSWMS Monitor Eclipse workspaces + Manage execution of change processes + Transform textual revisions in VCS into structured changes Emerging conflicts + Direct|Indirect- Revision-Inconsistency + RWR|WWR Interleaving- Inconsistency Fine Changes causing inconsistencies + Change processes of these changes
85

Table 7.2: Number of queries to find an inconsistencyInconsistency Type Number of Queries Intra|Inter-Direct-Conflict 1 Intra|Inter-Direct-Conflict 1 Direct-Revision-Inconsistency 1 Indirect-Revision-Inconsistency 1 RWR-Interleaving-Inconsistency 1 + t WWR-Interleaving-Inconsistency 1 + t Total number of queries: 1 + 1 + 1 + 1 + t = 4 + t - Indirect-Revision-Inconsistency, RWR Interleaving-Inconsistency, and WWR Interleaving-Inconsistency share the query for finding the atomic changes C’ whose main artifacts depend on or are depended by the main artifact of C. - t is the number of the atomic changes C’ with the creation time later than the start time of C’s CSW and the main artifacts depended by the main artifact of C. - RWR Interleaving-Inconsistency and WWR Interleaving-Inconsistency share t queries to find the atomic changes C” whose main artifacts are depended by or the same with the main artifact of one among the t atomic changes C’.
artifacts. Currently, we store the atomic changes of each Java project in two tables:
WorkspaceChanges and SVNChanges. WorkspaceChanges contains the executed
changes, and SVNChanges contains the committed changes. We also use another table,
OngoingChanges, for storing the executed changes that have not been committed yet,
named ongoing changes. Upon receiving an executed change C, we search the Ongo-
ingChanges table to detect Intra|Inter-Direct-Conflict and Intra|Inter-Indirect-Conflict.
The changes stored in OngoingChanges are also stored in WorkspaceChanges, how-
ever storing only ongoing changes helps reduce the search space. SVNChanges is used for
detecting Direct-Revision-Inconsistency, Indirect-Revision-Inconsistency, and RWR|WWR
Interleaving-Inconsistency.

Since querying the database accounts for most of the execution time of the inconsis-
tency detection algorithm, the performance evaluation is focused on the execution time
of each type of query for searching the patterns of inconsistency in the SVNChanges
and OngoingChanges tables. We assume that there is a team of eight workers working
on a Java project. We generate the data for the experiments based on the source code of
the SVNKit1 project. SVNkit is chosen because it is a well-known open source Java API
library for Subversion [9], a leading and fast growing open source version control system.
We convert 87 revisions of svnkit2 committed by four developers from June 2012 to June

1http://svnkit.com/index.html
2http://svn.svnkit.com/repos/svnkit/trunk/svnkit/

86

OngoingChanges Arrival of Atomic Change C Analyze Found Atomic Changes C’(C’.artifact C.artifact) OR (C.artifact C’.artifact) Direct-Conflict(C’.artifact = C.artifact) Indirect-Conflict (C’.artifact C.artifact) OR (C.artifact C.artifact) Indirect-Revision-Inconsistency(C’.artifact C.artifact)
SVNChanges(committed changes)

RWR Interleaving-Inconsistency(C’’.artifact C’.artifact) WWR Interleaving-Inconsistency(C’’.artifact = C’.artifact)
OngoingChanges SVNChanges(committed changes)Direct-Revision-Inconsistency (C’.artifact = C.artifact) C’.artifact C.artifacttruefalseFind Atomic Changes C” corresponding with t found C’ (C.artifact C’.artifact AND C’.creationTime > C.csw.startTime) SVNChanges(committed changes)

1 query1 query1 query 1 query
t queries C”.artifact = C.artifactAnalyze Found Atomic Changes C”(C”.artifact C’.artifact) OR (C”.artifact = C’.artifact) false

Figure 7.1: Inconsistency detection

2013, and 66 revisions of svnkit-test3 committed by four developers from June 2012 to
June 2013, to atomic changes. In so doing, we have 1043 and 751 atomic changes from
svnkit and svnkit-test, respectively. Then, we add essential information, such as CSWs
and change activities, and scale up the generated data to fit the specific requirements
of each experiment. The experiments are conducted with an Intel Core i7-2600K CPU
3.4GHz machine with 8 GB memory, and MySql Workbench 5.2 CE.

Table 7.2 shows the number of queries on the database to find the patterns of in-
consistency, and Fig. 7.1 explains how the queries are used to detect the patterns of
inconsistency. Because we use the OngoingChanges table for detecting conflicts and
the SVNChanges table for detecting the remaining patterns, we need one query on
OngoingChanges for Direct-Conflict, one query on OngoingChanges for Indirect-
Conflict, and one query on SVNChanges for Direct-Revision-Inconsistency. To reduce
the cost, Indirect-Revision-Inconsistency, RWR-Interleaving-Inconsistency, and WWR-
Interleaving-Inconsistency share the query for finding the atomic changes whose main ar-
tifacts depend on or are depended by the main artifact of C. Among the atomic changes
returned by this query, let t be the number of the atomic changes with the creation time
later than the start time of C’s CSW and the main artifacts depended by the main arti-
fact of C. Then, RWR Interleaving-Inconsistency and WWR Interleaving-Inconsistency
also share t queries to find C” corresponding with these t atomic changes. Therefore, the
cost for finding RWR|WWR Interleaving-Inconsistency depends on the value of t.

3http://svn.svnkit.com/repos/svnkit/trunk/svnkit-test/

87

Table 7.3: Execution time of queries on OngoingChanges for detecting conflictsNumber of Ongoing Changes Time for One Query (Millisecond) Find Direct-Conflict Find Indirect-Conflict 2086 22 (Not found: 10) 43 (Not found: 18) 4172 32 (Not found: 15) 68 (Not found: 31) 8344 52 (Not found: 22) 119 (Not found: 55) 16688 101 (Not found: 41) 245 (Not found: 108) 33376 185 (Not found: 76) 465 (Not found: 206)

�

�

��

���

���

���

���

���

���

���

���

���

���	 ��
� ���� �		�� ���
	

�
��

�
��
�
��
��
��
	

�
�

�������
����
��	��������

�������������� ��������������������������

���������������� ����������������������������

Figure 7.2: Execution time of queries on OngoingChanges for detecting conflicts

Regarding Intra|Inter-Direct-Conflict and Intra|Inter-Direct-Conflict, the search space
is the OngoingChanges table, with the atomic changes that are made by the executing
activities and have not yet committed. Because the number of activities that are executing
at the same time by the team members is usually small, our experiments are set up with
16 executing activities. Table 7.3 and Fig. 7.2 show the execution time of each type of
query that is proportional to the number of ongoing changes made by these activities.

With the remaining patterns, Direct-Revision-Inconsistency, Indirect-Revision-Inconsistency,
and RWR|WWR Interleaving-Inconsistency, the search space is the SVNChanges table
containing the committed changes. The execution time of the queries depends on the
number of CSWs that have been finished or are being executed within a predefined time

88

Table 7.4: Execution time of queries on SVNChanges for detecting Direct-
Revision-Inconsistency, Indirect-Revision-Inconsistency, and RWR|WWR Interleaving-
InconsistencyNumber of CSWs Time for One Query (Millisecond) Find Direct- Revision- Inconsistency Find C’ of Indirect-Revision- Inconsistency and RWR|WWR Interleaving- Inconsistency Find C” of RWR|WWR- Interleaving- Inconsistency 8 (1043 atomic changes, 87 revisions) 19 (Not found: 8) 32 (Not found: 15) 13 (Not found: 9) 16 (2086 atomic changes, 174 revisions) 22 (Not found: 10) 43 (Not found: 18) 18 (Not found: 13) 20 (2837 atomic changes, 240 revisions) 25 (Not found: 11) 55 (Not found: 22) 21 (Not found: 16) 40 (5674 atomic changes, 480 revisions) 42 (Not found: 18) 105 (Not found: 38) 35 (Not found: 24) 60 (8511 atomic changes, 720 revisions) 56 (Not found: 25) 146 (Not found: 54) 46 (Not found: 34) 80 (11348 atomic changes, 960 revisions) 67 (Not found: 28) 182 (Not found: 64) 59 (Not found: 41) 100 (14185 atomic changes, 1200 revisions) 80 (Not found: 34) 220 (Not found: 80) 71 (Not found: 50) 200 (28370 atomic changes, 2400 revisions) 148 (Not found: 58) 424 (Not found: 151) 131 (Not found: 91) 300 (42555 atomic changes, 3600 revisions) 218 (Not found: 85) 629 (Not found: 225) 190 (Not found: 135)

89

�

�

���

���

���

���

���

���

	��

 �� �� �� ��
� ��� ��� ���

�
��

�
��
�
��
��
��
	

�
�

��������
������

����������������������������

��

� �����������������������������������!�����"�#""������$�!���%��������������

� �����������������������������������!�����"�#""������$�!���%��������������������������

�&�����"�#""������$�!���%��������������

�&�����"�#""������$�!���%��������������������������

Figure 7.3: Execution time of queries on SVNChanges for detecting Direct-
Revision-Inconsistency, Indirect-Revision-Inconsistency, and RWR|WWR Interleaving-
Inconsistency

90

Table 7.5: Size of data in real projects [56]Project Number of Files Number of Revisions Number of atomic changes Examined Time Interval Compare 154 2953 17263 May 2001 – Sep 2010 jFace 378 5809 22203 Sep 2002 – Sep 2010 JDT DB Jdi 144 1936 6121 May 2001 – July 2010 JDT DB Eval 105 1610 6091 May 2001 – July 2010 JDT DB Model 98 2546 12566 May 2001 – July 2010 Resource 274 6558 28946 May 2001 – Sep 2010 Team Core 169 1995 4607 Nov 2001 – Aug 2010 CVS Core 188 5448 23301 Nov 2001 – Aug 2010 DB Core 187 3033 12342 May 2001 – Sep 2010 jFaceText 312 4980 23633 Sep 2002 – Oct 2010 Update Core 275 6379 27465 Oct 2001 – Jun 2010 DB UI 788 10909 57075 May 2001 – Oct 2010 JDT DB UI 381 5395 28956 Nov 2001 – Sep 2010 Help 110 999 5919 May 2001 – May 2010 JDT Compiler 322 19466 171965 Jun 2001 – Sep 2010 JDT Dom 157 6608 32699 Jun 2001 – Sep 2010 JDT Model 420 16892 90128 Jun 2001 – Sep 2010 JDT Search 115 5475 44372 Jun 2001 – Sep 2010 OGSI 395 6455 38203 Nov 2003 – Oct 2010
interval. We assume that the average number of the activities of each CSW is about 12,
corresponding with 12 revisions. Table 7.4 and Fig. 7.2 show the execution time of each
type of query that is proportional to the number of CSWs.

Based on the results of the experiments, with 33376 ongoing changes in the Ongo-
ingChanges table and 42555 committed changes of 300 CSWs in the SVNChanges ta-
ble, the time for detecting the patterns of inconsistency is 185 + 465 + 218 + 629 + 190*t
= 1497 + 190*t milliseconds. Because t ≤ (number of CSWs concurrent with the CSW of
C) * length(C.outbounds), in the worst case, the execution time of the algorithm is 1497
+ 190*(number of CSWs concurrent with the CSW of C)*length(C.outbounds) ≤ 1497 +
190*(number of CSWs)*length(C.outbounds) = 1497 + 190*300*length(C.outbounds) =
1497 + 57000*length(C.outbounds). As low coupling is required in software development,
we expect that the number of outbound artifacts of an artifact is not too large, for ex-
ample under 10, and rarely over 100. If length(C.outbounds) is 100, the execution time
is 5701497 milliseconds, which is about 95 minutes. In this case, more powerful machine
and DBMS are necessary. Fortunately, this situation is thought to rarely happen in prac-
tice, because both the number of concurrent CSWs in a Java project and the number of

91

outbound artifacts of an atomic change are not large. For example, in the case of our
experimental setting, a team of eight workers will have less than 20 concurrent CSWs.
With the number of outbound artifacts of C under 10, we expect that t is smaller than
100 in most cases. In this case, the execution time is under 20497 millisecond, or about
20.5 seconds, which is acceptable. We can also set an upper bound of t to ensure that the
execution time of the algorithm is always reasonable.

In order to have a comparative view on the data size, we use the data published in [56]
to compare the size of data used in our experiments with that of the real projects. Table
4 describes the sizes of 19 plugin projects of the Eclipse platform. In ten years, 16/19
projects have the number of revisions below 7000, as against 3600, the highest number of
revisions used in our experiments, and 15/19 projects have the number of atomic changes
below 40000, compared with 42555, the highest number of atomic changes used in our
experiments. Because we limit the search space to CSWs executed within a predefined
time interval, for example 3 months, we expect that our experiments can reflect the real
state of typical projects in practice, and our inconsistency detection algorithm can be
applied to practical situations.

7.3 Discussion

7.3.1 Effectiveness of the proposed approach

We have developed the model and the tool to realize a Change Support Environment
able to detect in advance the (potential) inconsistencies that could not be detected by
the previous works, and provide the contexts of the changes causing the inconsistencies
rather than the changes only like the previous work. Therefore, our work can help the
workers in preventing, detecting, and resolving inconsistencies in collaborative software
development more effectively.

Due to time and resource constraints, the current prototype of CSWMS is still a simple
laboratory prototype. However, basically, it can represent the effectiveness of our work.

• Accuracy of inconsistency detection: Regarding the accuracy of the warnings
of inconsistency, i.e. whether the reported situation will lead to a real inconsistency
or not,

– If the warnings of inconsistency are correct, namely the reported situation leads
to a real inconsistency, it is clear that our work is effective.

– If the warnings of inconsistency are incorrect, namely the reported situation
does not lead to a real inconsistency, it interrupts the workers from their work
and takes time to examine the falsely reported inconsistency. This problem
is also faced by the previous studies [20, 21, 23, 24, 25]. To reduce the side-
effects, we apply the fine-grained analysis that captures and analyzes changes
at the level of program entity (structured changes), for instance, class, field,
and method. Moreover, we supply the workers with the CSWs of the changes
that cause the reported inconsistency, to help them understand the context of
the inconsistency and skip the false alarm quickly and easily. Therefore, the
cost of examining the false warnings is expected to be much lower than the
cost of fixing the defects that are caused by the inconsistencies detected late
in the software life cycle.

92

• Permanent benefits: Regardless of the accuracy of the warnings of inconsistency,
through the warnings of potential inconsistencies and showing the CSWs of the
workers involved, our study can contribute to increasing the awareness of a worker
about the works of his co-workers. This awareness helps the worker make correct
changes and avoid unexpected impacts on the changes of other workers. Also, the
stored CSWs are useful for the workers when they need to recall the purposes of
their past changes for bug fixes or system maintenance and evolution.

To sum up, our research, which notifies the worker in advance of (potential) inconsis-
tencies along with the context of an inconsistency, including the contents of the changes
causing the inconsistency and their CSWs, helps the workers understand and resolve
the inconsistency, or skip it in the case of a false warning, more effectively. In addition,
providing information about the change processes of the related workers makes the collab-
orations among the workers easier. Therefore, the advantages of our approach outweigh
its disadvantages.

7.3.2 Scalability of the proposed approach

We have tested the current prototype of CSWMS with the small projects simulating
the situations given in the motivating example and demonstrations of the patterns of
inconsistency. In practice, the number of software artifacts and workers is much larger,
and the complexity of software artifacts and their dependencies also increases. Despite
the differences in the scale of the tested projects and real software systems, our approach
and the CSWMS are still applicable to practice, because the problems we must solve are
basically the same.

• The first problem is to monitor the workspaces of the workers to find out the on-
going changes. Because most workers develop software on integrated development
environments (IDEs), and these IDEs support tracking the interactions of users with
the environments themselves, the monitoring problem is feasible and not affected
much by the scale of the monitored software. For example, the current prototype
develops the workspace monitoring component as plugins of Eclipse development
environment. By registering the resource change events describing the specifics of
the changes (or set of changes) that have occurred in the workspace, and using li-
braries and tools supplied by Eclipse, for example Eclipse JDT and Eclipse AST, we
can detect ongoing changes with a fine granularity. As this component is developed
based on the functions provided by Eclipse, there should be no concern about the
scale of the developed software.

• The second problem is about analyzing atomic changes and the CSWs to detect
inconsistencies. The inconsistency detection algorithm will be affected by the size
of the data it examines and the number of patterns of inconsistency. In the current
prototype, we use the search function of the database management system (DBMS),
MySQL, to find the matching patterns. Therefore, updating the database system
to a more powerful DBMS, for example Oracle, can speed up the searching process.
We also limit the search space to the CSWs and atomic changes defined or executed
within a predefined time interval. Moreover, by transforming SVN textual revisions
into committed changes, and using these atomic changes in addition to the ongoing

93

changes, we can reduce the search space to an acceptable number. As we have
presented in Section 7.2, our inconsistency detection algorithm is feasible to most
practical situations. In the worse cases, more powerful machine and DBMS can
solve the performance problem.

In summary, with more investments, we can develop a mature version of CSWMS that
satisfies the requirements of real software developments.

7.3.3 How to evaluate exactly the effectiveness of the patterns
of inconsistency and the proposed approach?

Using the current prototype of CSWMS, we can detect the patterns of inconsistency,
which the previous works could not detect, from the situations described in this disser-
tation, such as the motivating example and examples of the patterns of inconsistency,
and other similar situations. However, evaluating exactly the effectiveness of our work
by traditional evaluation methods, such as measuring the precision and accuracy of the
detected inconsistency, is very difficult because:

• Lacking a standard benchmark.

We do not have data of a collaborative software development in industry. In the case
of open source software, they do not supply information about their development
processes that are very important to identify the existences of real inconsistencies.
Except for direct-conflict, which can be recognized by examining the history merges
[37], [26], information about other types of inconsistency does not appear in the log
file of VCSs. Therefore, extracting information about the other types of inconsis-
tency from the VCSs is still an open research question.

• It is difficult to represent the semantics of a change in a formal way.

The sufficient condition of an inconsistency varies from case to case, and depends
on the consistency among the semantics of the changes and the intentions of the
worker making the changes. This consistency can only be decided by the workers
who make the changes. As a result, it is very difficult to apply conventional accuracy
measurement techniques in this study. The related studies in inconsistency aware-
ness such as [25, 27, 21] did not measure the precision and accuracy of their conflict
detection method either. They evaluated the effectiveness of their methods based
on the feedbacks of a few students attending their experiments about the usefulness
of their tools. The participants were given some tasks, and were told to follow the
task orders so that the conflicts can happen following their predefined scenarios. Af-
ter the experiments, the students answered the questionnaires containing the Likert
scale and free questions. The questions concentrated on how the participants felt
about the usefulness of their tools and which was better, with or without the tools
supplying the conflict warnings. The conclusions of these experiments are that it is
better to have systems supporting the workers in detecting the (potential) conflicts
in advance despite their side effects like false warnings.

Because our work is an extension of the mentioned studies, the results of the experi-
ments conducted by these studies demonstrate that our approach in general and CSWMS
in specific are also expected to be useful for collaborative software development.

94

As these types of evaluation are conducted with the simple applications and make the
participants follow the predefined situations, they do not cover the aspects concerning
the complexity of the real collaborative software development environment, the scale of
the project, and the human factors, etc. Hence, developing a mature version of CSWMS,
deploying it into practice, and then analyzing its impact on real collaborative software
development based on the feedbacks of the developers are necessary to evaluate exactly
the effectiveness of our patterns and the proposed approach. In other words, our research
is promising but a longitudinal study in the industry is indispensable for a thorough
evaluation, which is unfortunately not feasible in our current conditions.

95

Chapter 8

Related Work

This dissertation is about the inconsistency problem in a collaborative environment. To
detect emerging inconsistencies in real time and providing workers much useful informa-
tion for inconsistency resolution, we have combined the workspace awareness technique
with context awareness technique. The change processes are managed to provide the
information about the contexts of the changes in the system. In this section, we dis-
cuss relevant contributions in the related areas. In addition, we present some existing
studies handling the correctness of workflow, especially structure, resource, and temporal
verifications, that can be applied to our study for developing a more mature CSWMS.

8.1 Inconsistency Awareness

Most studies on inconsistency in collaborative environments are about conflicts, a type of
inconsistency caused by the concurrent changes of different workers to the same artifact
or dependency-related artifacts.

Traditional approach uses VCSs [7] in conjunction with the software development
environment to address the problem of concurrent access. Workers regularly check-in
their changes, and conflicts are detected at the check-in time after workers have finished
their work. To catch conflicts earlier, many workspace awareness techniques were proposed
to detect conflicts caused by the local changes in the workspaces of the workers before
these changes are committed to the remote repository. These techniques can be classified
into two categories: pending conflict detection and emerging conflict detection.

8.1.1 Version Control Systems

Version Control Systems are indispensable in collaborative software development because
of the ability to maintain different versions of software artifacts that enhances collabora-
tion, parallel development, and global software development. Version control or revision
control is the management of changes to a file. Changes are usually identified by a number
or letter code, termed the revision number. Each revision is associated with a timestamp
and the person making the change. Revisions can be compared, restored, and with some
types of files, merged.

Traditional VCSs, for example, Concurrent Version System (CVS) [8] and Subversion
[9], use a centralized model where all the revision control functions take place on a shared
server. If two developers try to change the same file at the same time, without some

96

method of managing access, the developers may end up overwriting each other’s work.
Centralized VCSs solve this problem by file locking or version merging methods.

File locking or pessimistic locking is the simplest method in which only one worker
has write access to a resource in the central repository at a time. Once one checks-out
a file, the others can read that file, but not change that file until that worker checks-in
the updated version or cancels the checkout. This technique can provide some protection
against difficult merge conflicts when a user is making radical changes to many sections of
a large file or group of files. However, if the files are locked for too long, other developers
may tend to ignore the VCSs and change the files locally, leading to more serious conflicts
in future.

Optimistic locking allows multiple workers to edit the same file at the same time.
The first worker can always check-in his changes to the central repository successfully.
However, a conflict will occur when the second worker checks-in his update if the system
could not reconcile the change. In this case, the later check-in worker will need to resolve
the conflict by merging the changes, or by selecting one change in favor of the other.

In the modern distributed VCSs (DVCSs), such as Git [10] and Mercurial [11], there
is a master repository and several local repositories. Each worker makes his own local
repository by cloning the master. The workers will commit their changes to the local
repository. Local commits only become visible when the workers push their changeset
to the master. DVCSs keep track of software revisions and allow many workers to work
on a given project without necessarily being connected to a common network. However,
they lower user awareness of what is being changed in the system. To compensate this,
DVCSs provide more advanced support for visioning and merging than centralized VCSs.
According to [12], DVCSs like Mercurial have absolutely different storage structure than
old centralized VCSs. They save not whole file snapshot, but changes within file which
one makes between commits to the local repository.

8.1.2 Workspace Awareness

Detect Pending Conflicts

Crystal [26], which detects conflicts in Mercurial, merges pairs of repositories, including
two local repositories of two workers or the local repository of a worker with the remote
repository, to detect pending conflicts rather than potential conflicts. The reported con-
flicts can be textual conflicts, build conflicts, or test conflicts. However, Crystal does not
tell the workers which conflicts are exactly happening but one must perform a pull to
investigate the conflicts.

Detect Emerging Conflicts on Ongoing Changes

TUKAN [19] is a spatial-model based system integrated in the VisualWorks/ENVY
Smalltalk environment. It provides presence awareness and conflict awareness by sig-
naling a worker with the presence of other workers and their changes on the artifacts that
are related to the artifact on which he focuses. An artifact-relation model is built to sup-
port conflict awareness. This model is a graph in which software artifacts are represented
as nodes and weighted directed relations state semantic dependencies between two nodes.
The weight expresses the distance between these two artifacts. The lower the weight
of a relation is, the higher the dependency between two connected artifacts is. Change

97

signals that help prevent direct and indirect conflicts are ranked based on the weight of
relations in the artifact-relation model. However, TUKAN only provides the signal when
a particular artifact is being focused, so the workers should contact the workers involved
or investigate the concurrent changes once they see the signal of interest; otherwise they
may forget it.

CollabVS [20] enriches Visual Studio IDE with both conflict notification and commu-
nication. It notifies workers of both direct and indirect conflicts involving the artifacts
connected by an unlimited dependency path. The workers can choose the granularity
of program elements for which dependency checking is done, for instance method, class,
or file. A communication section, including chat, audio, or video sections, is shown in-
place within the programming environment to help a worker contact the involved workers
conveniently. A worker can also set a watch on the related artifacts, which are being
changed by other workers, to remind them to check for conflicts after some time or after
the workers remove focus from the artifacts. However, this may produce side effects on
the collaboration of the workers involved since they are compelled to solve the problem
instead of solving it willingly.

Palantir [21] monitors the Eclipse workspaces of workers to provide the information
about the ongoing changes, and notifies the workers of potential conflicts. Although
Palantir informs the workers of conflicts at the code entity level, it captures ongoing
changes in the workspaces at the file level. Palantir reports a direct conflict if there are
concurrent changes to a single file or an indirect conflict when a file modified by a worker
depends on a file that has its public APIs modified by another worker. Palantir adds
visual cues on the package explorer to show which files might be conflicting and supplying
details of the potential conflict such as the workers involved, location, and severity of
conflict in the case of direct conflict. The severity of conflict is measured quite simply
by dividing the number of lines that have been added, removed, or changed by the total
number of lines in an artifact.

Lighthouse [23] and its extension CASI [24] do not explicitly detect emerging conflicts
but prevent them from happening by showing in an emerging design, an up-to-date design
representation of the code on the workspaces of workers, which source code entities are
being changed and by whom. CASI introduces the Sphere Influence that shows workers
which source code entities are influenced by their changes. Using this information, the
workers can avoid a direct conflict by not modifying the same source code entities or avoid
a potential indirect conflict by not modifying the entities in the Sphere Influence of other
workers.

To reduce false positives, Syde [25] uses a fine-grained change tracking mechanism in
which object-oriented systems are modeled as abstract syntax trees (AST), and changes
are tree operations. Every time a worker saves a file in his workspace, the change objects
are captured and sent to the server. On the server, Syde keeps many ASTs in which each
AST represents the latest state of the system in each worker’s workspace. Every time a
new change operation is received from a client, ASTs of the related workers are compared
to detect direct conflicts or syntactic indirect conflicts. The conflicts in Syde are classified
into two categories: ”yellow” if two workers have inserted, deleted, or changed the same
method, and ”red” if one of them has committed his change to a VCS. In the current
model of Syde, a conflict never involves more than two developers. Therefore, the cost of
storing and comparing ASTs is acceptable. However, with more than two workers in the
same projects, the current mechanism should be reconsidered.

98

Similarly to Crystal [26], WeCode [27] computes the presence of merge conflicts,
but by continuously integrating all committed changes and uncommitted changes in the
workspaces of related workers into a merge workspace shared among them. This merged
workspace is then analyzed, compiled, and tested to detect conflicts on behalf of the
workers before check-in. WeCode classifies detected conflicts into many types: structural
conflicts, language conflicts, behavior conflicts, and test conflicts. Structural conflicts
(direct conflicts) are reported when parallel revisions of the same elements cannot be
merged; and other conflicts are detected every time the merged workspace is recompiled
(language conflicts) and retested (test conflicts) or a conflicts pattern is matched on the
merge system.

Like the studies in this category, our research aims to detect emerging inconsistencies
by applying the workspace awareness techniques. But unlike them, we consider the incon-
sistencies at the view of the contexts of changes rather than individual changes. Our tool,
CSWMS, which combines the workspace awareness and context awareness techniques, is
an extension of these studies. Besides the latest information about the ongoing changes
in the workspace of the workers obtained by monitoring their workspaces, we also use the
information about the change history and future changes of the ongoing changes supplied
by the change processes containing the changes, to detect not only emerging conflicts like
these above studies but also other types of inconsistency, and supply the workers with the
context of an inconsistency rather than concurrent changes causing a (potential) conflict
only, to help them resolve the inconsistency or ignore it in the case of a wrong warning,
more easily and accurately.

8.2 Context Awareness

Context awareness is a rather generic concept [29] in which context is the situation within
which something exists or happens, and that can help explain it (Cambridge Advanced
Learner’s Dictionary). Many interpretations of the notion of context have emerged in
various fields of research. In this section, we will present some representative related
works in the area of context awareness in software development.

Mylyn [31] is a very popular task and application lifecycle management framework
for Eclipse. Mylyn provides a Task-Focused Interface for Eclipse to reduce overloaded
information and make multi-tasking easy. Users can use Mylyn to define and view their
tasks, select a task to work, and identify the resources associated with that task. The
context of a task in Mylyn is the interaction of a worker with the system’s elements and
relations, including all the files, search results, and other relevant information a worker
needs to refer to while working on the task. It uses a degree-of-interest (DOI) to represent
the relevance of a resource for the task context. Mylyn considers two types of interaction:
direct interactions including selection (editor and view selection via mouse or keyboard),
edition (textual and graphical edits), and command (operations such as saving, building,
preference setting and interest manipulation), and indirect interaction including propaga-
tion (interaction propagates to structurally related elements) and prediction (capture of
potential future interaction events). The more a user interacts with a resource, the higher
DOI value of the resource is, and vice versa. A resource is removed from the task context
if its DOI is below a predefined threshold.

[30] proposes a shared awareness model, continuum of relevance (CRI) model, in which

99

information collected automatically from developer IDE interactions is used to identify
explicit orderings of tasks, artifacts, and developers that are relevant to particular work
contexts in collaborative software development projects. The CRI model focuses on four
interaction types that influence the changing state of a software project: create, update,
view, and delete. Each interaction event is also assigned a weight like Mylyn. Although
there are many similarities between the approach of Mylyn and [30], Mylyn does not
currently focus on distributed software development but its main objective is to reduce
information overload and make multi-tasking easier for an individual, while the model of
[30] aims to enhance the coordination among workers.

There are some similarities between Mylyn and CSWMS where a worker must also
define a CSW, start his assigned activity, and finish it. A CSW can be transformed into a
sequence of Mylyn tasks and vice versa. However, the context concept of our research is
different from of Mylyn. We consider the CSW of a change as the context of the change.
Also, Mylyn does not pay attention to the inconsistency problem. Although the primary
purpose of CSWMS is different from that of Mylyn, CSWMS could become more powerful
if we integrate Mylyn into the current system.

Regarding [30], by enhancing coordination among worker, its proposed CRI model
may be helpful for our future work relating to automatic generation of CSWs.

8.3 Process Centered Software Development Envi-

ronment

In a process centered software development environment, workers follow a sequence of
steps given by predefined structures. The environment manages the assignment of tasks
to workers, monitors their execution, and invokes appropriate tools. By allowing a worker
to follow a CSW for implementing a change request, our approach is close to the approach
of process support tools. However, because the change process concept considered in our
research is different from business processes that are considered by most process centered
environments but is close to the cooperative process concept given in [33], we introduce
only [33] in this section.

[33] presents a set of requirements for a workflow management system that aims to
support cooperative workflows, specially the requirements for high flexibility and dynam-
icity. These requirements are implemented by a Bonita workflow management system.
Besides providing the same kind of support as a traditional workflow management system
(WFMS) for business processes, Bonita supports the cooperative processes that can be
created, executed, and modified during its execution easily and dynamically. In Bonita,
processes can be executed flexibly due to the ability to start an activity in advance,
namely anticipation. The main idea is that an activity can be executed even when all its
activation conditions are not met at the beginning but at some time before the termina-
tion of the activity. Therefore, besides common states of an activity in a WFMS such as
initial, executable, executing, aborted, and terminated, an activity in Bonita can be in
the state of anticipable or anticipating canceled. An activity can be executed as soon as
it is created. It is then in the state Executable.

Although there are many similarities between CSW and the cooperative process de-
fined in [33], especially the need for dynamic change during execution, CSW extends the
cooperative process with information about artifacts and atomic changes. CSWMS is also

100

distinguished from Bonita model because we consider a specific situation, change process
in collaborative environment, but Bonita model considers cooperative process in general.
Also, inconsistency awareness is not mentioned in Bonita but a key issue of CSWMS.

8.4 Workflow Correctness

In this dissertation, we pay attention to the data aspect of CSWs to detect (potential)
data-related inconsistencies. Because verifying other aspects of CSWs, such as control
structure, resource constraints, and temporal constraints, is important to the development
of a mature version of CSWMS, this section describes some related studies that can be
useful for further development of CSWMS.

Structure verification verifies the consistency of a workflow’s structure, for example,
deadlock, livelock, and lack of synchronization. Temporal verification aims to verify the
temporal consistency of a workflow specification. Resource verification verifies the exis-
tences of any resource conflicts among activities in a workflow. Existing studies solved
these problems separately or together.

To analyze the properties of a workflow, it must be able to specify the workflow and its
expected behaviors using a formalism with well-defined semantics. Among the popular
formalisms in this area, Petri-net may be the most frequently used process modeling
technique in workflow verification. Graph theory, logic, and set theory are also used
rather widely.

[57] used directed graphs to specify a workflow and then analyzed the generated di-
rected graph to detect deadlocks or lack of synchronizations. In [58], temporal logic was
employed to describe workflows and the corresponding logic expressions were analyzed to
verify the structural correctness of a workflow specification. [43, 59] modeled workflows
as Petri-nets where activities are mapped by transitions, and dependencies between ac-
tivities are mapped by places and arcs. Then, the structural correctness of a workflow
specification could be verified through analyzing the corresponding Petri-net.

Regarding temporal verification, [60] defined a timed workflow graph in which each
activity node is augmented with the earliest end time and the latest end time. Temporal
constraints can be calculated using the modified critical path method at build-time and
process instantiation time, and then enforced at run-time. [61] assigned a time interval
to each workflow activity as duration constraints and verified temporal requirements and
inconsistencies of workflow systems. [62] proposed a timed workflow process model in-
corporating the time constraints, the duration of activities, the duration of flows, and
the activity distribution with respect to the multiple time axes, into the conventional
workflow processes. The model provided an approach to temporal consistency checking
during both build-time and run-time. In [63], temporal constraint Petri-nets were em-
ployed to specify workflows, and then the temporal feasibility of a workflow at build-time
was tested. [64] proposed a timing constraint workflow net (TCWF-net), extending WF-
Net [43] with time information, to specify the timing constraints. A directed network
graph (DNG) based workflow model is converted into a TCWF-net first. Then schedula-
bility and boundedness of the TCWF-net are analyzed. [65] applied Time Petri-nets to
model the temporal behavior of workflow systems using TINA as a tool to support the
verification of the activities deadlines.

[44] discussed the analysis of resource constraints of a workflow specification and pre-

101

sented an approach with corresponding algorithms to the resource consistency of the
workflow specification. [66] introduced Resource-Constrained Workflow Nets (RCWF-
nets) and adapted the soundness from WF-nets for RCWF-nets. The analysis method
is based on flow structure and only one resource type assumption, and it deals with the
instances of the same workflow model. [45] defined the Time Constraint Workflow Net
and mapped the workflow concepts into this net to model workflows. Then, the resource
constraints on concurrent workflows were analyzed. [46] used hybrid automata to model
the influences between concurrent workflows, and adopted a model checking technique
to detect resource conflicts. [47] proposed RND WF Net to model a kind of workflow
constrained by resources and non-determined duration. A verification approach and res-
olution strategies for resource conflicts between activities were also presented.

In short, we have presented some existing approaches to the workflow correctness
problem. These studies are good references when the workflow correctness problem is
considered more completely in the mature version of CSWMS.

8.5 Summary

We have provided an overview of the existing works relating to our research. Our in-
consistency awareness using both workspace awareness technique and context awareness
technique can recognize many types of inconsistency rather than conflicts only. In addi-
tion, our approach can provide much more information about the context of an inconsis-
tency compared with the existing works. We also discussed related works in the field of
workflow verification, including structure verification, temporal verification, and resource
verification, that can be employed in further development of CSWMS.

102

Chapter 9

Conclusion

In collaborative software development, many change requests, such as adding or modifying
a feature, or fixing bugs, can be implemented by different workers within a time interval.
Each worker conducts his own change process that is a sequence of tasks applying changes
to a set of artifacts to fulfill a change request. However, because of communication
problems and the complex and changeable nature of software, the workers could not have
enough information about the work of the others. These problems are more serious in
current practices with parallel development and distributed environment. Therefore, a
change of a worker may unexpectedly affect the changes of the others. As a result of that,
inconsistencies originated from the affected artifacts may happen.

In this dissertation, we take into account the problems not addressed by the existing
studies in the area of inconsistency awareness. Differently from these studies that concen-
trated only on concurrent changes and considered them separately, we pay attention to
both concurrent and non-concurrent changes, and the context of a change, i.e. the change
process containing the change, rather than the ongoing changes only. By considering the
inconsistency problem under the view of the change processes containing the changes, we
have first identified the patterns of inconsistency that are not mentioned in the previous
studies. Then we have proposed an environment, where the change processes are repre-
sented explicitly and are managed with regard to the patterns of inconsistency. In order
to detect these inconsistencies in advance, we have collected the latest information about
the ongoing changes at the workspaces of the workers and the progress of the change
processes to notify the workers in advance emerging inconsistencies along with their con-
texts. The context of an inconsistency, including the contents of the changes causing the
inconsistency and the change processes of the changes, can help the workers resolve the
inconsistency easily.

In summary, we have developed the model and the tool toward a Change Support
Environment (CSE) able to detect in advance the (potential) inconsistencies that pre-
vious works can not detect, and to supply the contexts of these inconsistencies, rather
than just the involved changes themselves like the previous works. Therefore, our work
can contribute to building a safer and more efficient collaborative software development
environment.

9.1 Contributions

In this dissertation, we have made the following contributions.

103

1. We have defined the patterns of inconsistency classified based on the relationships
between the changed artifacts, the time orders of the tasks applying the changes to
the artifacts, and the change processes of the changes.

2. We have proposed a context-based approach to solve the inconsistency problem more
effectively. The change processes in collaborative software development are managed
and are used to provide the contexts of the changes in the system. Our inconsistency
awareness technique combines monitoring the workspaces of the workers (workspace
awareness) with managing the progress of the change processes (context awareness)
to detect in advance (potential) inconsistencies in real time. Information about the
changes causing an inconsistency and their change processes, namely the context of
the inconsistency, is provided to help the workers fully comprehend the inconsistency
before resolving it.

3. Based on the proposed approach, we have developed a Change Support Workflow
Management System that allows the workers to define, execute, and modify their
change processes easily, and to receive inconsistency warnings along with the con-
texts of the inconsistencies to resolve the inconsistencies in advance.

4. We have also given a formal method for modeling the main behaviors of CSE in
CP-nets. CPN Tools is used in verifying the generated model to detect the patterns
of inconsistency. Our method can be applied to model and verify the data-flows of
other types of workflows.

These achievements have demonstrated the feasibility of our proposed approach and
open up chances to apply it into real software development environments.

9.2 Limitations and Future Work

In this section, we present potential future work and discuss the shortcomings of our work,
from which some of the future work is originated.

1. CSW Generation Support. In the current prototype of CSWMS, workers must
define a CSW representing a change process by themselves. Although we have
minimized the compulsory information a worker must provide (names of activities
and their orders), defining CSWs is still a barrier to evaluating the effectiveness
of our approach, because in simple laboratory examples, it is difficult for the users
to compare the cost of defining CSWs with the benefits of defining CSWs, such
as having a plan to follow, reviewing their change history easily, understanding
the works of other workers more exactly without contacting them, and resolving
inconsistency more easily. Also, forcing the users to change their usual coding
behaviors, for instance defining a CSW before implementing a change request, and
starting and stopping an activity, can make them have a bias in favor of not defining
CSWs.

To deal with this problem, we are considering two following possibilities:

• Generating CSWs automatically by extracting the necessary infor-
mation for reconstructing CSWs from the repositories of VCSs. We

104

can try to automatically generate CSWs in which each activity corresponds
to a commit of a worker. If the workers are working on different branches
sharing the same root, each branch will be considered as a CSW. In the case
the workers are working on the same branch, we can automatically generate
a CSW of a worker by connecting his current changes, not yet committed,
with his committed changes. Some heuristics can be considered such as au-
thor, same committer, time, within a time interval, or keyword. Mining the
compact set of changes committed to the repository, we can suggest a worker
the likely changes based on the coupling between the likely changes and his
ongoing changes in the past. To handle the new features, we need to extend
the CSWMS with some new components. The System State Management
component helps create, update, and manage access to Abstract Syntax Tree
(AST) representing the newest state of the system in VCS. The CSW Gener-
ation component generates CSWs associated with the inconsistency-involved
changes using the commit history and current changes of the workers. Finally,
the VCS Handler component supports other components in accessing VCS
and notifies System State Management and Inconsistency Analysis of
the arrival of a new commit.

• Developing CSWMS based on Mylyn [31] instead of the dynamic
WFMS Bonita [33]. Mylyn is the most popular IDE tool for task and
application lifecycle management (ALM) on Eclipse. The wide acceptance of
Mylyn promises that Mylyn users will not mind defining a CSW describing
their change progresses. A CSW can be mapped to a task and each activity in
a CSW to a subtask of Mylyn. Using Mylyn, Workspace Wrapper can analyze
the interaction events collected by Mylyn to predict likely changes following the
ongoing changes. Mylyn classifies interaction events into five types: selection,
edit, command, propagation, and prediction, among which the selection and edit
events are useful for inconsistency analysis. Artifacts associated with edit event
can be considered as writen artifacts. Artifacts associated with the selection
event can be referred to as potential read artifacts. Possibility to become a
read artifact is proportional to the frequency with which artifacts appear in
selection events.

2. Mining the bug repository and the source code repository of VCSs to find
the patterns of inconsistency. Our research does not provide empirical studies
for proving the popularity of our patterns of inconsistency, because this work requires
a lot of time and belongs to other research areas with some specific techniques, and
hence it is difficult to be solved in the scope of this dissertation. However, this
research direction will strengthen the current research, especially by discovering
new patterns of inconsistency or specific cases of the patterns of inconsistency to
help our system improve the accuracy of inconsistency detection.

3. Handling model artifacts

The current prototype of CSWMS focuses on artifacts that are source code elements
because of their importance as a fully executable description of a software system,
and the widely supports of IDEs and VCSs. Since source code is the output of
the coding phase where developers translate model artifacts, output of the design

105

phase in Software Development Life Cycle, into executable programming language
code, customizing the current system to handle not only source code but also model
artifacts will increase its usefulness and practicability. The method given by [39]
will be considered for automatically generating dependency relationships between
UML elements.

4. Extending the current system for maintaining purpose. In addition to
handling the inconsistencies, by managing the change processes, CSWMS can be
improved to help maintain and update software systems and increase the reusabil-
ity of the change processes. This can satisfy the questions about the overhead in
setting up and maintaining the change processes for the improved early detection
and resolution of (potential) inconsistencies.

9.3 Closing Words

In this dissertation, we have shown that managing change processes in a collaborative
software development environment can help deal with the inconsistency problem more
effectively. By supporting workers in planning their changes and collecting and analyzing
information about their change schedules, their change history, and their ongoing changes,
to prevent, detect, and resolve an inconsistency proactively, our research contributes to
building a safer and more effective collaborative software development environment.

106

Publications

[1] PHAN Thi Thanh Huyen and Koichiro Ochimizu, “An Inconsistency Management
Support System for Collaborative Software Development”, IEICE Transactions on
Information and Systems (accepted).

[2] PHAN Thi Thanh Huyen, Kunihiko Hiraishi, and Koichiro Ochimizu, “Modeling
and Verification of Change Processes in Collaborative Software Engineering”, Proc.
of the Workshops of the 13th International Conference on Computational Science
and Applications (SEPA 2013), LNCS, vol. 7973, pp. 17-32, Hochiminh, Vietnam,
June, 2013.

[3] Kazuhiro Ogata and PHAN Thi Thanh Huyen, “Specification and Model Checking
of the Chandy & Lamport Distributed Snapshot Algorithm in Rewriting Logic”,
Proc. of the 14th International Conference on Formal Engineering Methods (ICFEM
2012), LNCS, vol. 7635, pp. 87-102, Kyoto, Japan, October, 2012.

[4] PHAN Thi Thanh Huyen and Koichiro Ochimizu, “Toward Inconsistency Awareness
in Collaborative Software Development”, Proc. of the 18th Asia Pacific Software
Engineering Conference (APSEC 2011), IEEE, pp. 154-162, Hochiminh, Vietnam,
December, 2011.

[5] PHAN Thi Thanh Huyen, Kunihiko Hiraishi, and Koichiro Ochimizu, “A Workflow-
based Change Support Model for Collaborative Software Development”, Proc. of
the IEICE Society Conference, pp. S-23 - S-24, 2011.

[6] PHAN Thi Thanh Huyen and Koichiro Ochimizu, “A Change Support Model for
Distributed Collaborative Work”, JAIST Technical Report IS-RR-2011-003, pp. 1-
10, July, 2011.

[7] Koichiro Ochimizu, PHAN Thi Thanh Huyen, Masayuki Kotani, Saw Sand Aye,
“Towards Software Development Environments for Distributed Cooperative Works”,
Proc. of Japan-Vietnam Workshop on Software Verification: From Mathematical
Logic and Formal Language Theory to Software Engineering (JVSE10), 2010.

[8] PHAN Thi Thanh Huyen and Koichiro Ochimizu, “Detecting and Repairing Un-
intentional Change in In-use Data in Concurrent Workflow Management System”,
Proc. of the Workshops of the 31st International Conference on Application and
Theory of Petri Nets and Other Models of Concurrency (PETRI NETS 2010), pp.
331-351, Braga, Portugal, June, 2010.

[9] PHAN Thi Thanh Huyen and Koichiro Ochimizu, “Detection of Unintentional
Change on In-use Data for Concurrent Workflows”, Proc. of the 8th International

107

Conference on Software Engineering Research and Practice (SERP’10), pp 277-283,
Nevada, USA, July, 2010.

108

Bibliography

[1] K. Ochimizu, H. Murakosi, K. Fujieda, and M. Fujita, “Sharing Instability of a Dis-
tributed Cooperative Work”, Proc. of the international symposium on the principles
of software evolution (ISPSE 2000), IEEE Computer Society Press, pp. 36-45, 2000.

[2] J. Whitehead, “Collaboration in Software Engineering: A Roadmap”, Proc. of the
2007 Future of Software Engineering (FOSE 2007), IEEE Computer Society Press,
pp. 214-225, 2007.

[3] H. Murakosi, A.Shimazu, and K. Ochimizu, “Construction of Deliberation Structures
in E-mail Communications”, Computational Intelligence, vol.16, no.4, pp. 570-577,
2000.

[4] J. Rumbaugh, I. Jacobson, and G. Booth, “The Unified Modeling Language Reference
Manual”, Addison-Wesley, ISBN 0-201-30998-X, 1999.

[5] K. Ochimizu, “Software Process Model for Evolutionary Software Development - Co-
ordination Support for a Distributed Cooperative Software Development”, Computer
Software, vol. 15, no. 4, pp 73-77, 1998 (In Japanese).

[6] J. D. Herbsleb and A. Mockus, “An Empirical Study of Speed and Communication
in Globally Distributed Software Development”, IEEE Transactions on Software En-
gineering, vol.29, no. 6, pp. 481-494, 2003.

[7] K. Altmanninger, M. Seidl, and M. Wimmer, “A Survey on Model Versioning Ap-
proach”, International Journal of Web Information Systems, vol. 5, iss. 3, pp. 271-304,
2009.

[8] Concurrent Versions System, http://www.nongnu.org/cvs/

[9] Subversion, http://subversion.tigris.org/

[10] Git, http://git-scm.com/

[11] Mercurial, http://mercurial.selenic.com/

[12] ”Mercurial: The Definitive Guide”, http://hgbook.red-bean.com/

[13] Adaptable Model Versioning, http://modelversioning.org/

[14] SMoVer, www.smover.tk.uni-linz.ac.at/

109

[15] I. Barone, A.D. Lucia, F. Fasano, E. Rullo, G. Scanniello, and G. Tortora, “CO-
MOVER: Concurrent Model Versioning”, Proc. of the IEEE International Conference
on Software Maintenance, IEEE Computer Society Press, pp. 462-463, 2008.

[16] G. Fitzpatrick, P. Marshall, and A. Phillips, “CVS Integration with Notification and
Chat: Lightweight Software Team Collaboration”, Proc. of the 20th Anniversary
Conference on Computer Supported Cooperative Work (CSCW’06), pp. 49-58, 2006.

[17] Borland Together, http://www.borland.com/us/products/together/

[18] IBM’s Jazz.net platform, http://jazz.net/

[19] T. Schummer and J. M. Haake, “Supporting Distributed Software Development by
Modes of Collaboration”. Proc. of the 7th European Conference on Computer Sup-
ported Cooperative Work, pp. 79-98, 2001.

[20] P. Dewan and R. Hegde, “Semi-synchronous Conflict Detection and Resolution in
Asynchronous Software Development”, Proc. of the 10th European Conference on
Computer-Supported Cooperative Work, Springer, pp. 159-178, 2007.

[21] A. Sarma, G. Bortis, and A. van der Hoek, “Towards Supporting Awareness of In-
direct Conflicts across Software Configuration Management Workspaces,” Proc. of
the Twenty-Second IEEE/ACM International Conference on Automated Software
Engineering, pp. 94-103, 2007.

[22] L. Hattori and M. Lanza, “An Environment for Synchronous Software Development”,
Proc. of the 31st ACM/IEEE International Conference on Software Engineering -
New Ideas and Emerging Results Track (ICSE 2009), IEEE Computer Society Press,
pp. 223-226, 2009.

[23] I. da Silva, P. Chen, C. V. der Westhuizen, R. Ripley, and A. van der Hoek, “Light-
house: Coordination through Emerging Design”, Proc. of OOPSLA Workshop on
Eclipse Technology eXchange (ETX 2006), ACM Press, pp. 11-15, 2006.

[24] F. Servant, J.A. Jones, and A.V.D. Hoek, “CASI: Preventing Indirect Conflicts
through a Live Visualization”, Proc. of the Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE ’10), pp. 39-46, 2010.

[25] L. Hattori and M. Lanza, “Syde: A Tool for Collaborative Software Development”,
Proc. of the 2010 International Conference on Software Engineering (ICSE’10), pp.
235-238, 2010.

[26] Y. Brun, R. Holmes, M.l Ernst, and D. Notkin, “Proactive Detection of Collaboration
Conflicts”, Proc. Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering of ESEC/FSE, pp. 168-
178, 2011.

[27] M. L. Guimaraes and A. R. Silva, “Improve Early Detection of Software Merge
Conflicts”, Proc. of the 2012 International Conference on Software Engineering (ICSE
2012), pp. 342-352, 2012.

110

[28] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Fine-grained Management of
Software Artefacts: the ADAMS System”, Software Practice and Experience, vol.
40, no. 11, pp. 1007-1034, 2010.

[29] I. Omoronyia1, J. Ferguson, M. Roper, and M. Wood, “A Review of Awareness in
Distributed Collaborative Software Engineering”, Software Practice and Experience,
vol. 40, pp. 1107-1133, 2010

[30] I. Omoronyia1, J. Ferguson, M. Roper, and M. Wood, “Using Developer Activity
Data to Enhance Awareness during Collaborative Software Development”, Journal
Computer Supported Cooperative Work archive, vol.18, iss. 5-6, pp. 509-558, 2009.

[31] M. Kersten and G.C. Murphy, “Using Task Context to Improve Programmer Produc-
tivity”, Proc. of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 1-11, 2006.

[32] R. Robbes and M. Lanza, “Spyware: A Change-Aware Development Toolset”, Proc.
of the 2008 International Conference on Software Engineering (ICSE 2008), ACM
Press, pp. 847-850, 2008.

[33] F.C. Charoy, A. Guabtni, and M.V. Faura, “A Dynamic Workflow Management
System for Coordination of Cooperative Activities”, Proc. of Business Process Man-
agement (DPM ’06), pp. 205-216, 2006.

[34] JGraph, http://www.jgraph.com

[35] Dependency Finder, http://depfind.sourceforge.net/

[36] S.A. Bohner and R.S. Arnold, ”Software Change Impact Analysis”, IEEE Computer
Society Press, ISBN 0-818-67384-2, 1996.

[37] T. Zimmermann, “Mining Workspace Updates in CVS”, Proc. of the Fourth Inter-
national Workshop on Mining Software Repositories (MSR’07), 2007.

[38] H. Gomaa, “Designing Concurrent, Distributed, and Real-Time Applications with
UML”, Addison-Wesley, ISBN 0-201-65793-7, 2000.

[39] M. Kotani and K. Ochimizu, “Automatic Generation of Dependency Relationships
between UML Elements for Change Impact Analysis”, Journal of Information Pro-
cessing Society of Japan, vol.49, no.7, pp 2265-2291, 2008 (In Japanese).

[40] PatternWeaver, http://pw.tech-arts.co.jp/

[41] K. Jensen and L.M. Kristensen, “Colored Petri Nets - Modeling and Validation of
Concurrent Systems”, Springer, 2009.

[42] CPN Tools, http://cpntools.org/

[43] W.v.d Aalst and K.M.v. Hee, “Workflow Management: Models, Methods, and Sys-
tems”, MIT press, Cambridge, MA, 2004.

[44] H.Li, Y. Yang, and T.Y. Chen, “Resource Constraints Analysis of Workflow Specifi-
cations”, Journal of Systems and Software, vol.73, iss.2, pp. 271-285, 2004.

111

[45] J. Zhong and B. Song, “Verification of Resource Constraints for Concurrent Work-
flows”, Proc. of the Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SNASC 2005), pp. 253-261, 2005.

[46] S. Kikuchi, S. Tsuchiya, M. Adachi, and T. Katsuyama, “Constraint Verification for
Concurrent System Management Workflows Sharing Resources”, Proc. of the Third
International Conference on Autonomic and Autonomous Systems (ICAS07), 2007.

[47] Q. Zeng, H. Wang, D. Xu,H. Duan, and Y. Han, “Conflict Detection and Resolution
for Workflows Constrained by Resources and Non-determined Duration”, Journal of
Systems and Software, vol.81, iss.9, pp 1491-1504, 2008.

[48] S. Sadiq, M. Orlowska, and W. Sadiq, “Data Flow and Validation in Workflow Mod-
eling”, Proc. of the 15th Australasian Database Conference (ADC ’04), pp. 207-214,
2004.

[49] S.X. Sun, J.L. Zhao, J.F. Nunamaker, “Formulating the Data Flow Perspective for
Business Process Management”, Information Systems Research, vol. 17, no. 4, pp
374–391, 2006.

[50] S. Fan, W.C. Dou, and J. Chen, “Dual Workflow Nets: Mixed Control/Data-
Flow Representation for Workflow Modeling and Verification”, Proc. of Advances
in Web and Network Technologies and Information Management (APWeb/WAIM
2007 Workshops), LNCS, vol. 4537, pp 433-444, Springer-Verlag, Berlin, 2007.

[51] H.S. Meda, A.K. Sen, and A. Bagchi, “Detecting Data Flow Errors in Work-flows: A
Systematic Graph Traversal Approach”, Proc. of the 17th Workshop on Information
Technology & Systems (WITS-2007), pp. 133-138, 2007.

[52] A. Awad, G. Decker, and N. Lohmann, “Diagnosing and Repairing Data Anomalies
in Process Models”, Proc. of International Workshop on Business Process Design,
LNBIP, pp 1-24. Springer, Heidelberg, 2009.

[53] N. Trcka, W.M.P. van der Aalst, and N. Sidorova, “Data-Flow Anti-Patterns: Discov-
ering Data-Flow Errors in Workflows”, Proc. of the 21st International Conference on
Advanced Information Systems (CAiSE’09), LNCS, vol. 5565, pp. 425-439, Springer-
Verlag Berlin Heidelberg, 2009.

[54] W.v.d Aalst and C. Stahl, “Modeling Business Processes: A Petri net-Oriented Ap-
proach”, The MIT Press, 2011.

[55] N. Sidorova, W.M.P. van der Aalst, and N. Trcka, “Soundness Verification for Con-
ceptual Workflow Nets with Data: Early Detection of Errors with the Most Precision
Possible”, Information Systems, vol. 37, no. 7, pp. 1026-1043, Springer-Verlag Berlin
Heidelberg, 2009.

[56] Emanuel Giger, Martin Pinzger, and Harald C. Gall, “Can We Predict Types of Code
Changes? An Empirical Analysis”, Proc. of Mining Software Repositories (MSR),
2012 9th IEEE Working Conference on, pp. 217-226, 2012.

[57] W. Sadiq and M.E. Orlowska,“Analyzing Process Models Using Graph Reduction
Techniques”, Information System, vol. 25, iss. 2, pp. 117-134, 2000.

112

[58] G. Greco, A. Guzzo, and D. Sacca, “A Logic-based Formalism to Model and Analyze
Workflow Executions”, Proc. of CEUR Workshop Proceedings, vol.74, 2003.

[59] J. Lee and L.F. Lai, “A High-level Petri-nets-based Approach to Verifying Task
Structures”, IEEE Transactions on Knowledge and Data Engineering, vol. 14 no. 2,
pp. 316-335, 2002.

[60] J. Eder, E. Panagos, and M. Rabinovich, “Time Constraints in Workflow Systems”,
Lecture Notes in Computer Science”, vol. 1626, pp. 286-300, 2000.

[61] O. Marjanovic, “Dynamic Verification of Temporal Constraints in Production Work-
flows”, Proc. of the AustralasianDatabase Conference, pp. 74-81, 2000.

[62] H. Zhuge, T.Y. Cheung, and H.K. Pung, “A Timed Workflow Process Model”, Jour-
nal of Systems and Software, vol. 55, iss.3, pp 231-243, 2001.

[63] N.R. Adam, V. Atluri, and W.K. Huang, “Modeling and Analysis of Workflows Using
Petri nets”, Journal of Intelligent Information Systems, vol. 10, iss.2, pp. 131-158,
1998.

[64] J. Li, Y. Fan, and M. Zhou, “Timing Constraint Workflow Nets for Workflow Anal-
ysis”, IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 33 iss. 2,
pp. 179-193, 2003.

[65] Pedro M. Gonzalez del Foyo and Jose Reinaldo Silva,“Using time petri nets for mod-
eling and verification of Timed constrained workflow systems”, ABCM Symposium
Series in Mechatronics, vol. 3, pp. 471-478, 2008.

[66] K.M van Hee, A. Serebrenik, N. Sidorova, and M. Voorhoeve, “Soundness of
Resource-constrained Workflow Nets”, Proc. of ICATPN, Lecture Notes in Com-
puter Science, vol. 3536. Springer, pp. 250-267, 2005.

113

