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Abstract

Topic modeling has been increasingly maturing to be an attractive research area.

Originally motivated from textual applications, it has been going beyond far from text

to touch upon many amazing applications in Computer Vision, Bioinformatics, Software

Engineering, Forensics, Cognitive Science, History, Politics, to name a few. It is believed

to be one of the keys to automatically understanding documents written by human, and

to uncovering how human knowledge is created and represented.

This thesis studies to model texts at a large scale. In other words, the thesis studies to

propose models that most appropriately generate documents, and then to derive efficient

methods for learning those models from a large number of available texts. To this end,

the thesis systematically elucidates the two fundamental issues to be resolved: inference

of topic mixtures and model complexity. The thesis then targets at developing provably

fast algorithms that can recover sparse topic mixtures for documents, and developing fast

algorithms to learn sparse topic models.

The first contribution is the introduction of a simple framework for inference of sparse

topic mixtures, called FW, which is general and flexible enough to be employed in admix-

ture models. The framework enjoys the following key theoretical properties: (1) inference

provably converges at a linear rate to the optimal solutions; (2) prior knowledge can be

easily incorporated into inference; (3) the sparsity level of topic mixtures can be directly

controlled; (4) it is easy to trade off sparsity against quality and runtime. Existing infer-

ence methods do not own these properties and often work slowly. Those properties are

attractive for large scale modeling.

We demonstrate the goodness and flexibility of FW by employing it to design novel

methods for supervised dimension reduction. When working with very high dimensional

problem, it is sometimes beneficial in efficiency and effectiveness to reduce the dimension-

ality of the problem, but keep or make better predictiveness of the response variable. The

main result of this study is a novel method that can reach state-of-the-art performance

while enjoying 30-450 times faster speed than existing methods.

The second contribution is the introduction of Fully Sparse Topic Model (FSTM) for

modeling large collections of documents. Three key properties of the model are: (i) the
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inference algorithm converges at a linear rate to the optimal solutions, (ii) it provides

a principled way to directly trade off sparsity of solutions against inference quality and

running time, (iii) the learning algorithm has low complexity which is near independent

of dimensionality. FSTM overcomes many limitations of existing topic models, and has

been demonstrated to work qualitatively on real data. The low computational complexity

and low model complexity can help us work with large text collections.

The third contribution is the introduction of a fast algorithm for learning Correlated

Topic Models (CTM), as well as a theory of probable convexity for analyzing convexity

of real functions. Previous studies show that posterior inference in nonconjugate models

such as CTM is intractable (NP-hard) in the worse case. However, we show that it

may not be true in practice. Indeed, by introducing the concept of probable convexity,

we show that inference of topic mixtures in CTM and many nonconjugate models is

tractable in practice. Based on these findings, a novel algorithm is proposed which is

surprisingly simple but is easily parallelizable or distributable. By extensive experiments,

the algorithm is shown to work significantly faster than existing expensive methods while

keeping comparable or better quality of the learned models.
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Chapter 1

Introduction

Humans are excellent at learning from text documents, and making inference on new

observations based on his/her knowledge. The ability to reason correctly from little and

noisy information is one of the long-standing mysteries that neuroscientists have been

trying to understand. It motivates researchers in Artificial Intelligence and Machine

Learning to make an intelligent computer that can mimic human abilities and behaviors.

In particular, the development of algorithms that enables computers to automatically

process text and natural language has always been one of the most challenges [51].

Such algorithms are even more necessary in the era of “Big Data”. A large amount of

valuable information are put on the web everyday, which are in various forms including

news, blogs, images, musics, videos, opinions, social networks, etc. The needs of intelligent

algorithms to manage, explore, and discover new knowledge from those huge data sources

are increasingly arising. Hence a significant progress in the development of intelligent

algorithms promises to have a strong impact on various applications ranging from infor-

mation retrieval, recommendation systems, human-machine interaction, to computational

social science, bioinformatics, forensics, history, and politics.

Topic modeling (TM) is a potential approach to helping organize, search, and under-

stand vast amounts of information. It is a relatively new field whose algorithms allow

us to uncover the underlying semantic structure (gists) of a document collection and

use them for various tasks. This literature has seen numerous successful applications

such as semantic representation [43, 58], information retrieval [32, 51], trends detection

[20, 44], understanding images and audios [52, 121], historic study [46, 49, 65], discov-

ery of hidden biological factors [36, 61, 78, 96], analysis of social networks [25, 87, 95],

analysis/prediction of political issues [41, 45].
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Figure 1.1: A historic illustration of the development of TM.

1.1 Topic modeling

Originated from information retrieval, the first work goes back at least to the proposal

of Latent Semantic Analysis (LSA) in 1990 by Deerwester et al. [32]. This work shows

that semantic structures hidden in text collections can be extracted by analyzing the

co-occurrences of terms in documents. The next remarkable results are the introduction

of probabilistic versions of LSA [51, 76] whose underlying foundation bases on Statistics.

Probabilistic Latent Semantic Analysis (pLSA) [51] and Latent Dirichlet Allocation (LDA)

[21] are two of the most successful developments in TM. Since then the literature has seen a

flourish in both theory and application. Figure 1.1 demonstrates the historic development

of TM.

The key assumption in TM is that each document exhibits multiple topics. For exam-

ple, a news which is titled “Rockets strike Kabul” may talk about a terrorist attack and

damage, but is unlikely about a scientific discovery. Figure 1.2 demonstrates this intuition

by drawing the composition of the news from some topics. The composition is uncovered

by an inference process, while the topics are automatically learned from a collection of

news articles. A model of topics (or semantic structures) which are hidden in documents

is known as a topic model. For an introduction to topic modeling, we refer the readers to

some excellent surveys such as [15, 19, 31, 92].

1.2 A brief of recent trends in TM

Due to the potential applicability in a wide range of areas, TM recently has attracted

significant attentions from academics and industry. Significant progresses have been made

in many aspects of TM after the introduction of probabilistic topic models. The followings

are some of the most attractive research directions.

Large scale learning: The popularity of the Internet opens an easy way to share and

2



2 10 18 31 38 40 42 50

police sinhalese contra fire shuttle gorbachev index beirut

students tamil sandinistas winds nasa soviet stock hezbollah

palestinians iranian chamorro firefighters space republics yen lebanon

curfew dam ortega mph launch politburo points aoun

sikh khomeini rebels blaze magellan yeltsin market syrian

gaza sri sandinista brush mars moscow shares militia

rangoon cemetery aid homes spacecraft tass trading lebanese

moslem accord nicaragua acres telescope party dow amal

israeli wppss managua water venus treaty unchanged troops

militants guerrillas ceasefire weather astronauts grigoryants volume wounded

Some topics previously learned from a collection of newsHow much topics contribute

 to the news?

Rockets strike Kabul -- AP, August 8, 1990.

More than a dozen rockets slammed into Afghanistan's capital of Kabul today, killing 14 

people and injuring 10, Afghan state radio reported. No one immediately claimed 

repsonsibility for the attack. But the Radio Kabul broadcast, monitored in Islamabad, blamed 

``extremists,'' presumably referring to U.S.-backed guerrillas headquartered in Pakistan. 

Moslem insurgents have been fighting for more than a decade to topple Afghanistan's 

Communist-style government. In the past year, hundreds of people have died and thousands 

more injured in rocket assaults on the Afghan capital.

2
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Figure 1.2: Topics and their roles in a news by Associated Press. The diagram in the
left-hand shows among 50 topics which may appear in and how significantly each con-
tributes to the news. Each column in the right-hand shows a latent topic, which is a
set of semantically related terms. The composition of topics in the news and the topics
themselves are automatically learned from a collection of news.

collect data by various ways. A large amount of texts are available online which are

in many forms including blogs, tweets, comments, opinions, reviews, etc. Hence many

studies in TM have tried to develop methods that can learn valuable knowledge from

those sources. State-of-the-art methods can work well with millions of documents [13, 48,

67, 71, 90, 109, 116] and collections with millions of terms (dimensions) [100, 116, 126].

Sparse modeling: This direction is motivated from both the nature of data and the need

of modeling at a large scale. In reality, the inherent structure of an object is often sparse

in the sense that only some components among many are sufficient to describe/generate

the object. For instance, a news often talks about 2 or 3 events (topics) among a large

amount of available events. Hence it is reasonable to develop models that respect the

sparseness hidden in data. Unfortunately, using dense distributions to describe topics

in models like pLSA and LDA seem to be unrealistic [112]. Many recent researches in

TM attack the two factors of wide interests, hidden topics [89, 100, 112, 116] and topic

mixtures in documents [89, 100, 120, 129]. Many of them exploit regularization techniques

and sparse approximation to model sparsity.

Nonparametric models: When working with a text collection, one often does not know

exactly the number of topics that collection contains. Parametric models such as pLSA

and LDA cannot give a satisfying answer to this situation. Hence a number of recent
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researches have tried to borrow techniques from nonparametric statistics. A significant

progress has been made with the introduction of Hierarchical Dirichlet Process (HDP)

[98] and Hierarchical LDA (hLDA) [22]. Various works follow this direction that can

model more complicated interactions between hidden variables [16, 23, 37, 63, 120, 126].

Theoretical foundation: Over two decades of development, researches in TM often

focus more on practical aspects of topic models but leave theoretical foundation open,

particularly for probabilistic topic models. The first theoretical work by Papadimitriou

et al. [76] explains why LSA often works well in practice. Recently, many open problems

have been fulfilled such as accuracy of recovering a model from data [7, 9, 10]. Some other

works concern on computational complexity such as [10, 68, 91]. Evaluation and model

checking [15] also gain significant interests, since reliable and interpretable models would

be very important for applications in other fields. Some pioneer works in this direction

include [26, 66, 72, 73].

Incorporating meta-data: In many situations, some texts may have side information

such as links, labels, tags, and weblogs. Those meta-data may contain very important

information about documents, and could help us model data better [15]. Hence various

works exploited meta-data to develop topic models for practical tasks including classifica-

tion [14, 63, 130], authorship and influence prediction [85, 93, 106, 118], personality study

[87], and community detection [83, 95].

1.3 Some challenges

Although topic modeling had an impressive development over the last two decades, there

remains many open problems that should be studied further. In particular, the rise of “Big

Data” poses various challenges that may require new breakthroughs in both methodology

and hardware architecture. The followings are some of the challenges.

C1. Large scale learning: Exploration of a huge text collection (e.g. a century of scientific

articles maintained by JSTOR, or the Google collection of more than 30 millions of books)

often requires us to learn a model with hundreds of thousands of hidden topics. Learning

such a model would necessarily involve billions of hidden variables and hence is very

expensive. This oversize model seem to be out of reach for the state-of-the-art learning

methods. More challengingly, the model and the text collection sometimes cannot fit in

the available storage capacity of a supercomputer, and can preclude traditional learning

methodology. Hence developing new models and scalable methods to learn semantic

structures hidden in huge text collections is an urgent task.
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C2. Fast inference of posteriors: The key concern when developing topic models (and

probabilistic graphical models in general) is posterior distributions. The posteriors of

wide interests are topic mixtures (latent representations). A topic mixture of a document

shows which topics appear and how significant they are in the document. Therefore,

topic mixtures are valuable sources for various applications such as thematic exploration

of individual documents, information retrieval, and text classification. The posteriors

provide us many advantages for making inference. In particular, posterior estimation

plays a crucial role in many learning algorithms since it is often the core step [21, 48,

100, 129, 130]. As a result, a scalable algorithm for posterior estimation would promise

a significant progress for TM. A pessimistic information is that posterior estimation is

often intractable for LDA and many topic models [9, 91].

C3. Sparse topic mixtures: As a natural property of texts, a document may exhibit only few

topics among infinite number of topics. This implies that topic mixtures for documents

should be sparse —most elements are zeros. Ideally, an inference method should accu-

rately respect this nature. However, many inference methods such as variational Bayesian

[21] and Gibbs sampling [44] are unlikely to recover sparse topic mixtures, meaning that

they seem not to obey the nature that each document contains only few topics. For those

reasons, it is an open task to develop methods that are able to accurately recover sparse

topic mixtures for documents.

C4. Theoretical guarantee: The TM literature has seen a flourish of development over the

last two decades. However, there remain many open theoretical aspects. First, the quality

of doing inference for a specific document is often unknown and is not theoretically guar-

anteed. Popular methods (e.g. variational Bayesian and Gibbs sampling) are empirically

observed to do inference well, but lack a guarantee on quality. Second, the quality of

the models learned is often not known. Some recent results [7, 9, 10] are very optimistic,

but are limited to some restricted models. A large number of models have no guarantee

on recovery quality, which as a consequence may cause some concerns when employed in

other fields.

C5. Scalability in nonparametric models: The ability of nonparametric models to automat-

ically grow their complexity with the data size is appealing. Nevertheless, it comes with

the cost of complication to design efficient algorithms for learning or estimating posteriors

[23, 42]. That may be the main reason of why existing learning methods often have high

computational complexity. Compared with parametric models, methods for nonparamet-

ric counterparts are often much more time-consuming. Hence working with collections

with millions/billions of documents is still challenging for the nonparametric approach.
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C6. Visualization and user interface: When exploring a large collection of documents, it is

very necessary to develop tools that enable easy navigation and interaction with users [15].

Topic models provides a new way to explore our data, at the semantic level. However,

organizing intuitively a large number of semantic components in a navigator/screen would

be itself challenging.

1.4 Overview of contributions

This thesis studies to model texts at a large scale. In other words, the thesis studies to

propose models that most appropriately generate documents, and then to derive efficient

methods for learning those models from a large number of available texts. To this end,

the thesis systematically elucidates the two fundamental issues to be resolved: inference

of topic mixtures and model complexity. The thesis then targets at seeking provably

fast algorithms that can recover sparse topic mixtures for documents, and seeking fast

algorithms to learn sparse topic models.

The first contribution is the introduction of a simple framework for inference of topic

mixtures, called FW, which is general and flexible enough to be employed in admixture

models. The framework enjoys the following key theoretical properties: (1) inference

converges at a linear rate to the optimal solutions; (2) prior knowledge can be easily

incorporated into inference; (3) the sparsity level of topic mixtures can be directly con-

trolled; (4) it is easy to trade off sparsity against quality and runtime. Existing inference

methods do not own these properties and often work slowly. Because of those attractive

properties, the proposed framework provides a good answer to the three challenges C1,

C2, and C3 as discussed in the last section.

We demonstrate goodness and flexibility of FW by employing it to design novel meth-

ods for supervised dimension reduction (SDR). When working with very high dimensional

problem, it is sometimes beneficial in efficiency and effectiveness to reduce the dimension-

ality of the problem, but keep or make better predictiveness of the response variable. The

main result of this study is a novel method that can reach state-of-the-art performance

while enjoying 30-450 times faster speed than existing methods for SDR.

The second contribution is the introduction of Fully Sparse Topic Model (FSTM) for

modeling large collections of documents. Three key properties of the model are: (i) the

inference algorithm converges at a linear rate to the optimal solutions, (ii) it provides

a principled way to directly trade off sparsity of solutions against inference quality and

running time, (iii) the learning algorithm has low complexity which is near independent
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of dimensionality. FSTM overcomes many limitations of existing topic models, and has

been demonstrated to work qualitatively on real data. The low computational complexity

and low model complexity can help us work with large text collections.

The third contribution is the introduction of a fast algorithm for learning Correlated

Topic Models (CTM), as well as a theory of probable convexity for analyzing convexity of

real functions. Modeling the interactions of hidden topics implies that we have to model

two levels of unknown factors (i.e. topics and their interactions). Hence derivation of

an efficient method for learning requires nontrivial efforts. Previous studies show that

posterior inference in nonconjugate models such as CTM is intractable (NP-hard) in

the worse case. However, we show that it may not be true in practice. Indeed, by

introducing the concept of probable convexity, we show that inference of topic mixtures in

CTM and many nonconjugate models is tractable in practice. Based on these findings,

a novel algorithm is proposed which is surprisingly simple but is easily parallelizable or

distributable. By extensive experiments, the algorithm is shown to work significantly

faster than existing expensive methods while keeping comparable or better quality of the

learned models.

As a minor contribution, the thesis introduces a new topic model in the Appendix

where variational methods are used to do fast inference.

Last but not least, the thesis contributes to the public some scalable implementations

of the developed models and methods. The codes are freely available at www.jaist.ac.

jp/~s1060203/codes.htm

1.5 Organization

The thesis is organized as follows. After presenting some necessary backgrounds in the

next chapter, the first contribution is presented in Chapter 3. Chapter 4 introduces the

new model FSTM and detailed analysis of its properties. Chapter 5 presents the third

contribution, the concept of probable convexity, analysis of nonconjugate topic models,

and a fast algorithm for learning CTM. Chapter 6 summarizes the main contributions,

open problems and future research.
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Chapter 2

Backgrounds

2.1 Notation

Throughout the thesis, we use the following conventions and notations. Bold faces de-

note vectors or matrices. xi denotes the ith element of vector x, and Aij denotes the

element at row i and column j of matrix A. Notation A ≤ 0 means that matrix A is

negative semidefinite. For a given vector x = (x1, ..., xV )t, we denote 1
x

= ( 1
x1

, ..., 1
xV

)t,

log x = (log x1, ..., log xV )t, and log x̃ = (log x1

xV
, ..., log xV −1

xV
)t. diag(x) denotes the diago-

nal matrix whose diagonal entries are x1, ..., xV , respectively. More notations are:

V: vocabulary of V terms, often written as {1, 2, ..., V }.

d: a document represented as a count vector of V dimensions,

d = (d1, d2, ..., dV ) where dj is the frequency of term j.

Id: set of terms that appear in document d, i.e., Id = {j : dj 6= 0}.

C: a corpus consisting of M documents, {d1, ..., dM}.

K: number of topics.

βk: a topic which is a distribution over the vocabulary V. It is written as

βk = (βk1, ..., βkV )t, where βkj ≥ 0,
∑V

j=1 βkj = 1.

R
K : the K-dimensional Euclidean space.

E: the expectation of a random variable.

∆K : the unit simplex in the K-dimensional space,

∆K = {x ∈ R
K :
∑K

k=1 xk = 1, xj ≥ 0, ∀j}.

∆K : the interior of ∆K , that is ∆K = {x ∈ R
K :
∑K

k=1 xk = 1, xj > 0, ∀j}.

ei: the ith unit vector in the Euclidean space, i.e, eii = 1 and eij = 0, ∀j 6= i.
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exp x: denotes ex.

log x: the natural logarithm of x such that log ex = x.

N (µ,Σ): the multivariate Gaussian distribution with mean µ and covariance Σ.

Mult(x): the multinomial distribution.

x ∼ A(·): means that the random variable x follows the distribution A(·).

Υ: denotes the parameters Υ = {β, µ,Σ−1}.

Tr A: the trace of matrix A.

λi(A) the ith largest eigenvalue of matrix A.

S
K : the set of all symmetric matrix of size K × K.

S
K
+ : the set of all positive definite matrices of S

K .

∇f or f ′: the gradient (first partial derivative) of the given function f .

f ′′: the Hessian matrix (second partial derivative) of the given function f .

n!: the factorial of the positive integer n. That is n! = 1.2.3....(n − 1)n.

det A: the determinant of the square matrix A.

2.2 Topic model

Loosely speaking, a topic is a set of semantically related words [58]. For examples,

{computer, information, software, memory, database} is a topic about “computer”; {jazz,

instrument, music, clarinet} may refer to “instruments for Jazz”; and {caesar, pompay,

roman, rome, carthage, crassus} may refer to a battle in history.

Formally, we define a topic to be a distribution over a fixed vocabulary. Let V be the

vocabulary of V terms, a topic βk = (βk1, ..., βkV ) satisfies
∑V

i=1 βki = 1 and βki ≥ 0 for

any i. Each component βki shows the probability that term i contributes to topic k. A

topic model is a model of the semantic structure (including topics) hidden in documents.

Each document is often assumed to be a mixture of the topics. In other words, a

document is assumed to be composed from some topics with different proportions. Hence

each document will have another representation, says θ = (θ1, ..., θK) where θk shows the

probability that topic k appears in that document. θ is often called topic proportion.

The goal of topic modeling is to automatically discover the topics from a collection of

documents [15]. In reality, we can only observe the documents, while the topic structure

including topics and topic proportions is hidden. The central problem for topic modeling

is to use the observed documents to infer the topic structure.

Definition 1 (Topic mixture). Consider a topic model M with K topics. Each document

d will be represented by θ = (θ1, ..., θK)t ∈ ∆K , where θk indicates the proportion that topic
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k contributes to d. θ is called topic mixture (or topic proportion or latent representation)

of d.

Inference essentially refers to the process of making inference for a new document,

given a topic model. The aim of inference may vary according to the specific task we are

concerning on. Since topic mixtures contain valuable information about documents and

have various applications, we will focus on inferring topic mixtures for documents from

now on.

Definition 2 (ML Inference). Consider a topic model M, and a given document d.

The ML inference problem is to find the topic mixture θ that maximizes the likelihood

P (d|θ, M).

Definition 3 (MAP Inference). Consider a topic model M, and a given document d.

The MAP inference problem is to find the topic mixture θ that maximizes the posterior

probability P (θ|d, M).

Note that topic mixtures are hidden in documents, and are defined as probability

distributions over topics. Hence ML inference and MAP inference are actually posterior

estimation problems.

Learning a topic model is the problem of estimating the parameters of the model from

a training corpus. Various schemes are employed for learning such as variational methods

[21], Gibbs sampling [44], and stochastic Gibbs sampling [67]. Hidden topics are often of

wide interests for the aim of understanding and exploring corpora.

When discussing about sparsity of a vector x, various interpretations can be made.

The most popular interpretation is that x is called sparse if many of its elements are 0.

We will use this interpretation throughout this thesis. Based on this interpretation, we

define concepts of sparsity for documents and topics as follows.

Definition 4 (Document sparsity). Consider a topic model M with K topics, and a

corpus C with M documents. Let θm be the topic proportion of document dm ∈ C. Then

the document sparsity of C under the model M is defined as the proportion of non-zero

entries of the new representation of C, i.e.,

document sparsity =
#non-zeros of (θ1, ..., θM)

M.K
.

Definition 5 (Topic sparsity). Consider a topic model M with K topics β = (β1, ..., βK).
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Algorithm 1 Frank-Wolfe algorithm

Input: objective function f(θ).
Output: θ that maximizes f(θ) over ∆K .
Pick as θ0 the vertex of ∆K with largest f value.
for ℓ = 0, ...,∞ do

i′ := arg maxi ∇f(θℓ)i;
α′ := arg maxα∈[0,1] f(αei′ + (1 − α)θℓ);
θℓ+1 := α′ei′ + (1 − α′)θℓ.

end for

Topic sparsity of M is defined as the proportion of non-zero entries in β, i.e.,

topic sparsity =
#non-zeros of β

V.K
.

2.3 Concave maximization over simplex and sparse

approximation

Consider a concave function f(θ) : R
K → R which is twice differentiable over the unit

simplex ∆K . We are interested in the following problem, concave maximization over

simplex,

θ∗ = arg max
θ∈∆K

f(θ) (2.1)

Convex optimization has been extensively studied in the optimization literature. There

has been various excellent results such as [57, 70]. However, we are interested in sparse

approximation algorithms specialized for problem (2.1). More specifically, we focus on

the Frank-Wolfe algorithm [28].

Loosely speaking, the Frank-Wolfe algorithm is an approximation one for problem

(2.1). Starting from a vertex of the simplex ∆K , it iteratively selects the most potential

vertex of ∆K to change the current solution closer to that vertex in order to maximize

f(θ). Details are presented in Algorithm 1 for optimization over the unit simplex ∆K .

It has been shown that the algorithm converges at a linear rate to the optimal solution.

Moreover, at each iteration, the algorithm finds a provably good approximate solution

lying in a face of ∆K .

Theorem 1. [28] Let f be a continuously differentiable, concave function over ∆K , and

denote Cf be the largest constant so that f(αx′ + (1− α)x) ≥ f(x) + α(x′ −x)t∇f(x)−
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α2Cf , ∀x, x′ ∈ ∆K , α ∈ [0, 1]. After ℓ iterations, the Frank-Wolfe algorithm finds a point

θℓ on an (ℓ + 1)−dimensional face of ∆K such that

max
θ∈∆K

f(θ) − f(θℓ) ≤
4Cf

(ℓ + 3)
. (2.2)

It is worth noting some observations about the algorithm:

- It achieves a linear rate of convergence, and has provably bounds on the goodness

of approximate solutions. These are crucial for practical applications.

- Overall running time mostly depends on how complicated f and ∇f are.

- It provides an explicit bound on the dimensionality of the face of ∆K in which an

approximate solution lies. After ℓ iterations, θℓ is a convex combination of at most

ℓ + 1 vertices of ∆K , i.e., at most ℓ + 1 out of K components of θℓ are non-zero.

This implies that we can find an approximate solution to the problem (2.1) which

are sparse.

- It is easy to directly control the sparsity level of such approximate solutions by

trading off sparsity against quality. The fewer the number of iterations, the sparser

the solution. This characteristic makes the algorithm more attractive for resolving

high dimensional problems.

- It is possible to accelerate the speed, but keep convergence rate of the algorithm. In

Algorithm 1, we have to repeatedly search for auxiliary variable α. Those searches

can be avoided by selecting a sequence of predefined values as suggested by [28].

We can choose α := 2/(ℓ+3) at iteration ℓ. Such a choice is capable of maintaining

the bound on approximation error (2.2), but reducing computations considerably.

Algorithm 1 presents the Frank-Wolfe algorithm in simple form for optimization over

the unit simplex. In fact, the algorithm is very general so that it can be extended easily

to the case that the domain is a simplex (convex hull). Indeed, let b1, ..., bK be vectors

in R
V and ∆ = conv(b1, ..., bK) be the convex hull of those vectors. Then the problem

x∗ = arg maxx∈∆ f(x) can be solved as follows: Starting from a vertex of the simplex ∆,

iteratively selects the most potential vertex of ∆ to change the current solution closer to

that vertex in order to maximize f(x). Results similar to Theorem 1 can be established.

Theorem 2. [28] Let f be a twice differentiable concave function over ∆, and denote

Cf = −1
2
supy,z∈∆;ỹ∈[y,z](y − z)t.∇2f(ỹ).(y − z). After ℓ iterations, the Frank-Wolfe
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algorithm finds a point xℓ on an (ℓ + 1)−dimensional face of ∆ such that

max
x∈∆

f(x) − f(xℓ) ≤
4Cf

ℓ + 3
. (2.3)

2.4 Random matrices

For a comprehensive introduction to matrix algebra and random matrices, we refer to the

book by [1] and the surveys by Izenman [53], Tracy and Widom [104], Tropp [105], Vershynin

[108]. Here we review some concepts and results that are most necessary for the following

chapters.

A matrix A is positive semidefinite if and only if the least eigenvalue λmin(A) is

nonnegative. If A has K eigenvalues, its trace satisfies Tr A =
∑K

i=1 Aii =
∑K

i=1 λi(A).

If A is a random matrix, we have trace-expectation relation Tr EA = E( Tr A).

Consider a function f : R → R. We define a map on a diagonal matrix A as f(A) =

diag(f(A11), ..., f(AKK)). Similarly, a function of a symmetric matrix A is defined by

using the eigenvalue decomposition:

f(A) = Q.f(Λ).Qt, where A = Q.Λ.Qt and Λ is a diagonal matrix.

The spectral mapping theorem states that each eigenvalue of f(A) is equal to f(λ)

for some eigenvalue λ of A. If f is nondecreasing, then λk(f(A)) = f(λk(A)) for any k

whenever λk(A) exists.

We will work with matrix exponential which is defined for an A ∈ S
K by

eA =

∞∑

i=0

Ai

i!
.

Note that λk(e
A) = eλk(A) for any k provided that λk(A) exists. The logarithm of a

matrix A ∈ S
K
+ is a matrix, denoted by log A, such that elog A = A.

Theorem 3 (Golden-Thompson inequality). For A, B ∈ S
K, we have

Tr eA+B ≤ Tr (eA.eB).

This is a standard result and can be found in [105, 119]. Note that eA and eB are
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positive definite which implies Tr (eA.eB) ≤ Tr eA. Tr eB, since according to Yang and

Feng [122], Tr (A.B) ≤ Tr A. Tr B if A, B ∈ S
K
+ . Hence we have the following.

Corollary 1. For A, B ∈ S
K , we have Tr eA+B ≤ Tr eA. Tr eB.

The next theorem was shown by Tropp [105].

Theorem 4 (Laplace transform method). Let B be a random matrix of S
K . For any real

t, we have

Pr(λ1(B) ≥ t) ≤ inf
a>0

{ea.t
E Tr ea.B}.

Lemma 1. Consider a matrix B ∈ S
K and a nonnegative real a. We have

E Tr ea.B ≤ KEeaλ1(B).

Proof. Since the trace of B equals the sum of its eigenvalues, we have TrB ≤ Kλ1(B).

Hence E Tr ea.B ≤ KEλ1(e
aB) ≤ KEeλ1(aB) = KEeaλ1(B), where the last inequality is

derived by using the spectral mapping theorem. (Q.E.D.)
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Chapter 3

Fast inference of sparse topic

mixtures

This chapter addresses the posterior estimation of topic mixtures, which is one of the key

problems when developing topic models. The framework introduced in this chapter was

employed in various works including those in the subsequent chapters.

3.1 Introduction

We are interested in the two important problems relating to recovery of topic mixtures for

documents:1 sparsity and time. The sparsity problem is to infer sparse topic mixtures,

while the second problem asks for an efficient algorithm for recovering topic mixtures.

The topic mixture of a document shows which topics appear and how significantly each

contributes to the document. This suggests that topic mixtures are valuable sources

for doing many tasks such as understanding individual documents, information retrieval

[51, 116, 117], dimensionality reduction [21], and text classification [21, 129, 130]. Fur-

ther estimation of topic mixtures plays as the core step in many algorithms for learning

topic models [21, 48, 51, 100, 129]. Therefore, these two problems have been attracting

significant interest in recent years, because of their significant impacts and non-trivial

nature.

Inference is an integral part of any topic models, and is often NP-hard [91]. Vari-

ous methods for efficient inference have been proposed such as folding-in [51], variational

1We will interchange the use of topic mixture, latent representation, and topic proportion. Those
terms are all about the θ of a document.
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Bayesian (VB) [21], collapsed variational Bayesian (CVB) [12, 99], collapsed Gibbs sam-

pling (CGS) [44]. Sampling-based methods are guaranteed to converge to the underlying

distributions, but with unknown rate. VB and CVB are much faster, and CVB0 [12]

often performs the best. Although these inference methods are significant developments

for topic models, they remain two common limitations. First, there has been no theoret-

ical upper bound on convergence rate and approximation quality of inference. Second,

the inferred latent representations of documents are often dense, which may consume

considerable memory for storage.2

Previous researches that have attacked the sparsity problem can be categorized into

two main directions. The first direction is probabilistic [120] for which probability dis-

tributions or stochastic processes are employed to control sparsity. The other direction

is non-probabilistic for which regularization techniques are employed to induce sparsity

[59, 89, 129]. Although those approaches have gained important successes, they suffer

from some drawbacks. Indeed, the probabilistic approach often requires extension of core

topic models to be more complex, thus complicating learning and inference. Meanwhile,

the non-probabilistic one often changes the objective functions of inference to be non-

smooth which complicates doing inference, and requires some more auxiliary parameters

associated with regularization terms. Such parameters necessarily require us to do model

selection to find an acceptable setting for a given dataset, which is sometimes expensive.

Furthermore, a common limitation of these two approaches is that the sparsity level of

the topic mixtures is a priori unpredictable, and cannot be directly controlled.

There is inherently a tension between sparsity and time in the previous inference ap-

proaches. Some approaches focusing on speeding up inference [12, 21, 99] often ignore

the sparsity problem. The main reason may be that a zero contribution of a topic to a

document is implicitly prohibited in some models, in which Dirichlet distributions [21] or

logistic-normal distributions [18] are employed to model latent representations of docu-

ments. Meanwhile, the approaches to the sparsity problem often result in time-consuming

methods, e.g., [59, 120].3 Note that in many practical applications, e.g., information re-

trieval and computer vision, fast inference of sparse latent representations of documents

is of substantial significance. Hence resolving this tension is necessary.

2Some attempts have been initiated to speed up inference time and to attack the sparsity problem
for Gibbs sampling [67, 123]. Sparsity in those methods does not lie in the latent representations of
documents, but lies in sufficient statistics of Gibbs samples. Two main limitations of those methods are
that we cannot directly control the sparsity level of sufficient statistics, and that there has been no theory
for inference quality and convergence rate.

3The model by Zhu and Xing [129] is an exception, for which inference is potentially fast. Nonetheless,
their inference method cannot be applied to probabilistic topic models, since unnormalization of latent
representations is required.
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In this work, we make the contributions as follows:

- First, we resolve both problems in a unified way. Particularly, we introduce a simple

framework for inference in topic models, called FW, which is general and flexible

enough to be employed in mixture models. Our framework enjoys the following

key theoretical properties: (1) inference converges at a linear rate to the optimal

solutions; (2) prior knowledge can be easily incorporated into inference; (3) the

sparsity level of topic mixtures can be directly controlled; (4) it is easy to trade

off sparsity against quality and time. We would like to remark that the last two

properties are unspecified for existing inference methods.4

- Second, we employ FW to design the two-phase framework for doing supervised

dimension reduction (SDR). The framework is (i) general and flexible so that it

can be easily adapted to unsupervised topic models, (ii) able to inherit scalability

of unsupervised topic models, and (iii) can exploit well label information and local

structure of data when searching for a new space. The main consequence of this

study is an effective method for SDR, namely FSTMc. From extensive experiments,

we find that FSTMc can reach the state-of-the-art performance while enjoying 30-

450 times faster speed than existing methods for SDR.

Organization: We introduce the FW framework for inference in Section 3.2. We also

discuss when inference by FW is equivalent to doing ML and MAP inference. Further,

we briefly discuss how FW can be applied to PLSA and LDA. Section 3.3 describes our

experiments to see practical behaviors of the FW framework. Section 3.4 describes the

application of FW to designing effective algorithms for doing dimensionality reduction

under the presence of supervised information (labels).

3.2 Framework for fast and sparse inference

Given a document d, we would like to find a desired topic proportion θ of d. The latent

representation θ depends heavily on the objective of inference. The most popular objective

is the likelihood of d. In many situations, our objective may differ far from the likelihood

4Regularization techniques [103] provide a way to impose sparsity on latent representations, by adding
a regularization term to the objective function f(x) to get g(x) = f(x)+λh(x), where h(x) plays a role as
a regularization inducing sparsity. Increasing the parameter, λ, associated with the regularization term
may result in sparser solutions. However, it is not always provably true. Further, one cannot a priori
decide a desired number of non-zero components of a solution. Hence regularization techniques provide
only an indirect control over sparsity. The same holds for the existing probabilistic inference approaches.
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Algorithm 2 The FW framework

Input: document d and topics β1, ..., βK .
Output: latent representation θ.
Step 1: select an appropriate objective function f(θ) which is continuously differen-
tiable, concave over ∆K .
Step 2: maximize f(θ) over ∆K by the Frank-Wolfe algorithm.

solely. One example is supervised dimension reduction for which the new representations

should be discriminative, i.e, the new representation of a document should remain the

most discriminative characteristics of the class to which the document belongs.

To serve various objectives of inference, we discuss the FW framework which is pre-

sented in Algorithm 2. Loosely speaking, to do inference for a given document d, one

first chooses an appropriate objective function f(θ) which is continuously differentiable,

concave over the unit simplex ∆K . Then one uses sparse approximation such as the

Frank-Wolfe algorithm [28] to find topic proportion θ. This algorithm follows the greedy

approach, and has been proven to converge at a linear rate to the optimal solutions (see

subsection 2.3). Moreover, at each iteration, the algorithm finds a provably good approx-

imate solution lying in a face of the simplex ∆K .

As inherited from the Frank-Wolfe algorithm, FW has many interesting properties:

- Inference by FW achieves a linear rate of convergence, and has provably bounds on

the goodness of approximate solutions. These are crucial for practical applications.

- There is an explicit bound on the dimensionality of the face of ∆K in which an

approximate solution lies. After ℓ iterations, θℓ is a convex combination of at most

ℓ + 1 vertices of ∆K , i.e., at most ℓ + 1 out of K components of θℓ are non-zero.

This implies that we can find an approximate solution to the problem (2.1) which

are sparse.

- It is easy to directly control the sparsity level of such approximate solutions by

trading off sparsity against quality. The fewer the number of iterations, the sparser

the solution. This characteristic makes FW more attractive for resolving high di-

mensional problems.

We would like to remark that the FW framework is very general and flexible. It can

be readily modified in various ways. For example, one can replace the second step by

using other approximation algorithms such as sequential greedy approximation [127] or

forward basis selection [125]. In addition, the first step offers us flexibility to customize

objectives of inference.
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Perhaps, the most difficult step in the FW framework is to choose a suitable objective

function which can serve our purpose well. Various ways can be considered, however we

appeal to the following principle for probabilistic topic models:

f(θ) = L(d|θ) + λ.h(θ), (3.1)

where L(d|θ) is the log likelihood function of a given document, and h(θ) is a function

of the latent representation θ, λ is a constant. This principle in turn bears resemblance

to regularization techniques [103] which are widely used for sparse modeling. In fact, this

principle is implicitly employed in some existing inference methods such as folding-in [51]

and VB [21], as shown later. We will discuss in details some applications of this principle

to PLSA, LDA and other models in the next subsections. The following states some key

properties of our framework for inference, which is a corollary of Theorem 1.

Corollary 2. Consider a topic model with K topics, and a document d. Let f(θ) be con-

tinuously differentiable, concave over the simplex ∆K. Let Cf be defined as in Theorem 1.

Then inference by FW converges to the optimal solution at a linear rate. In addition, after

ℓ iterations, the inference error is at most 4Cf/(ℓ + 3), and the topic proportion θ has at

most ℓ + 1 non-zero components.

Note that the convergence rate of inference by our framework is linear, i.e., O(1/ℓ).

It is possible to speed up convergence rate to sub-linear if the Frank-Wolfe algorithm is

replaced with forward basis selection [125]. In addition, if we do not want to work with

derivatives ∇f , replacing the Frank-Wolfe algorithm by sequential greedy algorithm [127]

is appropriate. Nonetheless, such extensions are left open for future research.

3.2.1 ML and MAP inference

Next we would like to discuss two of the most popular inference problems: ML inference

where there is no explicit prior over topic proportions; and MAP inference where topic

proportions are endowed with a prior distribution. Note that inference for PLSA is ML

inference whereas that for LDA and CTM is MAP inference [91]. We will show how our

framework is naturally applicable to ML and MAP inference. Besides, a suitable choice of

the objective function implies that inference by the framework is in fact MAP inference.

Before making analysis in details, we make the following assumptions on topic models

and corpus:

Bag-of-words assumption. the documents are represented as bag-of-words, meaning
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that the order of words in documents is ignored.

Mixture assumption. we assume that the occurrences of words in document d follow

the generative process, given topics β, as:

- Generate topic mixture θ from a distribution A (depending on a specific model)

- For the nth word in d:

1. Pick topic index zn from the multinomial distribution Mult(θ).

2. Generate the word wn from the multinomial distribution Mult(βzn
).

Most existing topic models take these two assumptions into account. Examples include

admixture models [18, 20, 21, 51, 80, 93, 129, 130] and nonparametric models [23, 98,

112, 120].

Lemma 2. Consider a topic model with K topics β1, ..., βK, and a given document d.

The ML inference problem can be reformulated as the following concave maximization

problem, over the simplex ∆K:

θ∗ = arg max
θ∈∆K

∑

j∈Id

dj log
K∑

k=1

θkβkj. (3.2)

Proof. Denote by P (wj|zk) = βkj the probability that the term wj appears in topic k,

and by P (zk|d) = θk the probability that topic k contributes to document d. For a

given document d, the probability that a term wj appears in d can be expressed as

P (wj|d, θ, β) =
∑K

k=1 P (wj|zk)P (zk|d) =
∑K

k=1 θkβkj. Hence the log likelihood of docu-

ment d is

log P (d|θ, β) = log
∏

j∈Id

P (wj|d, θ, β)dj =
∑

j∈Id

dj log P (wj|d, θ, β) =
∑

j∈Id

dj log

K∑

k=1

θkβkj.

Note that θ ∈ ∆K , since
∑

k θk = 1, θk ≥ 0, ∀k. As a result, the inference task is in turn

the problem of finding θ ∈ ∆K that maximizes the objective function
∑

j∈Id
dj log

∑K
k=1 θkβkj.

(Q.E.D.)

This lemma tells us that f(θ) =
∑

j∈Id
dj log

∑K
k=1 θkβkj is the objective of ML infer-

ence, which is concave w.r.t θ. So this objective follows the principle (3.1). For MAP

inference we need an employment of Bayes’ rule to see clearly the objective function.

Lemma 3. Consider a topic model with K topics β1, ..., βK, in which topic proportions

are assumed to be samples from a prior distribution. Assume further that the prior distri-

bution belongs to an exponential family, parameterized by α, whose density function can
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be expressed as p(θ|α) ∝ exp(α.t(θ)−G(α)). Then the MAP inference problem of a given

document d can be reformulated as

θ∗ = arg max
θ∈∆K

∑

j∈Id

dj log
K∑

k=1

θkβkj + α.t(θ). (3.3)

Proof. MAP inference is to maximize the posterior probability P (θ|d, β, α) given a doc-

ument d. Bayes’ rule says that P (θ|d, β, α) = P (d|θ, β)P (θ|α)/P (d). Hence

θ∗ = arg max
θ∈∆K

P (θ|d, β, α) = arg max
θ∈∆K

log P (θ|d, β, α)

= arg max
θ∈∆K

log P (d|θ, β) + log P (θ, α)

= arg max
θ∈∆K

log P (d|θ, β) + α.t(θ) − G(α).

Ignoring constants and rewriting the likelihood complete the proof. (Q.E.D.)

Essentially, this lemma reveals that f(θ) =
∑

j∈Id
dj log

∑K
k=1 θkβkj + α.t(θ) is the

objective function of MAP inference, which is exactly of the form (3.1), where t(θ) is the

sufficient statistics of the prior over θ. However such a function is not always concave.

An example is the MAP inference in LDA for which α.t(θ) =
∑K

k=1(αk − 1) log θk is not

concave if α < 1, as noted before by [91]. We next show that with an appropriate choice

of the objective function in the form (3.1), inference by FW is in fact MAP inference.

Theorem 5. Consider a topic model M, and a document d. Let f(θ) = L(d|θ)+λ.h(θ),

where L(d|θ) is the log likelihood of the document, h(θ) is a continuously differentiable,

concave function over ∆K , λ > 0. Then maximizing f(θ) over ∆K is an MAP inference

problem.

Proof. Consider the marginal distribution of the random variable θ whose density function

is of the form p(θ|λ) ∝ exp(λ.h(θ)). Then

θ∗ = arg max
θ∈∆K

P (θ|d,M) = arg max
θ∈∆K

log P (θ|d,M)

= arg max
θ∈∆K

log P (d|θ,M) + log P (θ|λ)

= arg max
θ∈∆K

log P (d|θ,M) + λ.h(θ).

The objective of this optimization problem is exactly the function f(θ), completing the

proof. (Q.E.D.)
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3.2.2 Application to PLSA and LDA

We now discussed how FW can be adapted to the two of the most influential topic models,

PLSA [51] and LDA [21]. Lemma 2 provides us a connection between ML inference and

concave optimization. As a consequence, inference in PLSA can be reformulated as an

easy optimization problem, and can be seamlessly resolved by FW. Combining this with

Corollary 2, we obtain the following.

Corollary 3. Consider PLSA with K topics, and a document d. Then there exists

an algorithm for inference that converges to the optimal solution at a linear rate, and

that allows us to efficiently find a sparse topic proportion θ with a guaranteed bound on

inference error.

Note that according to Lemma 2, the objective function of inference in PLSA is f(θ) =
∑

j∈Id
dj log

∑K
k=1 θkβkj. This objective turns out to be of the form (3.1) where h(θ) ≡ 0.

It is easy to check that this function is continuously differentiable, concave over the

simplex ∆K if β > 0. Hence, the Frank-Wolfe algorithm can be exploited for inference.

One can handily do MAP inference for PLSA by modifying the objective function to be

of the form (3.1). While MAP inference for PLSA has been studied by [89] and [59], their

methods result in concave-convex objective functions and thus have no guaranteed bound

for convergence.

We next turn our consideration to LDA [21]. It is known [91] that finding a topic

proportion for a given document in LDA is an MAP inference problem, where the objective

function is f(x) =
∑

j∈Id
dj log

∑K
k=1 θkβkj +

∑K
k=1(αk − 1) log θk. This objective is of the

same form with (3.1), where h(θ) = (log θ1, ..., log θK)t and λ = (α1 − 1, ..., αK − 1). h(θ)

and λ originally come from the Dirichlet prior over topic proportions. One can interpret

λ.h(θ) to be a regularization term which induces sparse solutions for λ < 1. However, such

a regularization does not always result in a concave objective function, and hence causes

the inference in LDA to be NP-hard [91]. Furthermore, such a regularization requires

all topics to have non-zero contributions to a specific document, since the function log θk

requires θk > 0 to be well-defined. Hence, LDA cannot infer latent representations which

are sparse in common sense.

To find sparse latent representations in LDA, some modifications are necessary. One

can readily apply the FW framework to LDA where the objective is the log likelihood

function. Other employments of the FW framework can yield MAP inference for LDA as

suggested by Theorem 5. In those cases, it amounts to endowing new priors other than

Dirichlet over topic proportions.
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3.3 Empirical evaluation

In this section, we explore how well the FW framework works compared with existing

inference methods. We first investigate some fundamental characteristics of FW, including

sparsity of the inferred topic proportions, inference time, and inference quality. In addition

to theoretical analysis and demonstration, we made a library for use in practice that is very

easy for researchers/users to incorporate our framework into their customized models, just

by writing their own objective functions. This may help substantially reduce complication

and time for researchers when designing new topic models. The library is general enough

to be applicable to inference in other literatures than topic modeling.5

The flexibility of the FW framework is evidenced by two specific applications. In

the first one, we successfully develop fully sparse topic models (FSTM) [100] which is a

simplified variant of PLSA and LDA. FSTM has been demonstrated to work well and

has various attractive properties for dealing with large data. In the second application,

we employ FW to design effective methods for supervised dimension reduction [101, 102]

which will be described in the next section.

3.3.1 Time, sparsity, and quality

Analyses in the previous section have shown that inference by our framework is both

fast and provably good, if provided a suitable choice of the objective function. In this

section, we demonstrate empirically that even with the modest choice, say likelihood, our

framework infers comparably well. Three inference methods were taken in comparison:

Folding-in [51], Variational Bayesian [21], denoted by VB, and FW.6 The objective function

for FW is the log likelihood function. Five corpora were used in the investigation, of which

some statistics are shown in Table 3.1.7 For each corpus, we first trained the LDA model

on the training part. We then did inference on the test set with the same criteria of

convergence.8

5The library is freely available at www.jaist.ac.jp/~s1060203/codes/FW/
6CVB, CVB0, and CGS were not included for some reasons. CVB is often slower than VB [68];

CVB0 is faster than VB but works on documents which are not in bag-of-words representation; CGS is
often slowest. Futhermore, these methods can achieve comparable quality as long as suitable parameter
settings are chosen [12]. Hence VB is selected to be a representative.

7AP was retrieved from http://www.cs.princeton.edu/~blei/lda-c/ap.tgz.
KOS, NIPS, and Enron were from http://archive.ics.uci.edu/ml/datasets/.
Grolier was from http://cs.nyu.edu/~roweis/data.html

8At most 1000 iterations are allowed for inference, and the algorithm will converge if the relative
change of the objective is less than 10−6.
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Table 3.1: Data for experiments.
Data Training size Testing size #Terms
AP 2021 225 10473
KOS 3087 343 6906
NIPS 1350 150 12419
Grolier 23044 6718 15276
Enron 35875 3986 28102
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Figure 3.1: Comparison of inference methods as the number of topics increases. Lower is
better.

Inference time: the first measure for comparison is inference time. Figure 3.1 depicts

the results of inference on 5 corpora. We observe that Folding-in did slowest. VB did much

more quickly than Folding-in. Each iteration of Folding-in took very few computations,

much less than that of VB. However, VB often reached convergence in much less steps

than Folding-in. That is why overall VB did more quickly. Compared with Folding-in

and VB, our framework did inference significantly faster. FW often reached convergence

in a few tens of iterations. Note that complexity of our framework heavily depends on

how complicated the objective is. In this case, the objective is the log likelihood which

needs few computations to be evaluated. One can realize that the inference time of FW

was not quickly scaled up as the number of topics K increases, while VB and Folding-in

increased much faster. This suggests that our framework is substantially more scalable

than Folding-in and VB.

Document sparsity: we next consider how sparse the inferred topic proportions are.
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Sparsity of a given document is the fraction of nonzero elements in the inferred latent

representation. It is averaged for each test set, and is depicted in the second row of

Figure 3.1. Note that inference by our framework always found very sparse topic propor-

tions. The sparsity level increases as we model with more topics. Surprisingly, inference

by Folding-in sometimes achieves sparse topic proportions. One possible reason is that

Folding-in may inherit sparsity of original data, since inference by Folding-in simply does

addition and multiplication on sparse data. Nevertheless, it is not always for Folding-in

to achieve sparse solutions without a principled mechanism. Unsurprisingly, VB did not

find any sparse latent representations of documents.

Perplexity: Corollary 2 suggests that inference by our framework theoretically finds

provably good solutions. This theoretical result is further supported by experiments.

The last row of Figure 3.1 shows the goodness of different inference methods in terms

of perplexity [18, 21]. Loosely speaking, perplexity is the inverse of the geometric mean

of the probabilities of words appearing in the testing documents, and is calculated on

the testing set D by Perplexity(D) = exp
(
−
∑

d∈D log P (d)/
∑

d∈D ||d||1
)
. Observing

Figure 3.1, we see that Folding-in and FW achieved comparably good predictive power.

They performed much better than VB even though they were given the same models

which had been trained before.

To explain this phenomenon, more thorough investigations are necessary. We observed

that in all cases, LDA learned very small parameters α of the Dirichlet priors. Remember

that when α < 1, inference in LDA is NP-hard [91]. The NP-hardness may prevent

the variational method from quickly inferring good solutions. This may be the main

reason for the inferior performance of VB. Note further that inference in LDA is MAP

inference, whose objective is different from the likelihood. But perplexity mainly relates

to likelihood. Therefore, asynchronous objective functions for inference is another reason

for inferior performance of VB in terms of perplexity.

Separability of documents in the topical space: topic models are often expected to

provide us a soft clustering of documents in the space of topics, i.e., clustering documents

into topical clusters. Hence we would like to see how well inference methods cluster the

testing documents. A good method should cluster documents into topics separately. In

other words, in the topical space, the documents should be separately clustered. To see

this, we use the inferred latent representations of documents, and visualize the first 3

dimensions. Figure 3.2 shows the distribution of documents in the topical space. One

can observe that the documents projected by VB spread around the axes, and they were

not separated clearly into clusters. Similar phenomenon can be observed for Folding-

in. Meanwhile, when projected by FW, each document focused more on few topics, and
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Figure 3.2: Separability of documents in the space of topics, inferred by different methods
on AP with K = 10. Folding-in and VB do not provide separate clusters of documents.
Meanwhile, FW separates documents explicitly into clusters associated with latent topics.
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Figure 3.3: Illustration of trading off sparsity against time and quality. FW is able to
reach convergence very quickly. After 20 iterations on average, its quality in terms of
perplexity was almost stable, even though the number of topics is much larger (K = 100).

the documents were separated into clusters explicitly. We observed that inference by our

framework often places very high probability on one topic, small probabilities on few more

topics, and zero on others. This may be why, in the topical space, the documents are

explicitly clustered. As a result, inference by our framework provides a better clustering

of documents in the topical space.

3.3.2 Convergence rate and trade-off

When facing with large-scale settings including large corpora, extremely high dimension-

ality, and large number of topics, fast algorithms and compact storage demands are highly

desired. Hence a principled way to trade off quality against time and storage requirement

is sometimes necessary. Fortunately, the Frank-Wolfe algorithm can fulfill those desires

for not only topic modeling but also other literatures. Indeed, it is provably fast and pro-

vides a simple way to decide the sparsity level of solutions, just by limiting the number

of iterations.

We investigated further how quick FW reaches convergence in practice. The experi-

ments were done with AP (small size) and Enron (average size), and on the learned LDA

with K = 100 topics. Results are shown in Figure 3.3. One can realize that FW reached

convergence very quickly. We found that in most cases, after 20 iterations on average the
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quality was almost stable. Note that the dimension of the inference problem is K = 100

which is much larger than 20. The sparsity level of solutions got stable almost after 30

iterations. The same phenomenon was observed on other corpora. These facts suggest

that FW can converge very quickly in practice despite of the loose bound in Corollary 2.

This property is attractive for practical applications.

3.4 Application to supervised dimension reduction

In this section, we provide another evidence for the flexibility of our framework by en-

coding prior knowledge (or side information) into inference. In particular, we use FW

to develop effective methods for supervised dimension reduction (SDR) for discrete data.

This section only summarizes the key ideas and experimental results. For more detailed

descriptions and analyses, we refer the readers to [102] (or [101] for brevity).

In SDR, we are asked to find a low-dimensional space which preserves the predictive

information of the response variable. Projection on that space should keep the discrim-

ination property of data in the original space. Existing methods for this problem often

try to find directly a low-dimensional space that preserves separation of the data classes

in the original space. For simplicity, we call that new space discriminative space.

3.4.1 The two-phase framework for SDR

We now describe our framework for SDR. Existing methods for this problem often try

to find directly a low-dimensional space that preserves separation of the data classes in

the original space. For simplicity, we call that new space discriminative space. Different

approaches have been employed such as maximizing the conditional likelihood [56], mini-

mizing the empirical loss by max-margin principle [130], or maximizing the joint likelihood

of documents and labels [14]. Those are one-phase algorithms to find the discriminative

space, and bear resemblance to existing methods for continuous data [77, 94]. Three re-

maining drawbacks are that learning is very slow, that scalability of unsupervised models

is not appropriately exploited, and more seriously, the inherent local structure of data is

not taken into consideration.

To overcome those limitations of supervised topic models, we propose a novel frame-

work which consists of two phases. Loosely speaking, the first phase tries to find an initial

topical space, while the second phase tries to utilize label information and local structure
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Figure 3.4: Sketch of approaches for SDR. Existing methods for SDR directly find the
discriminative space, which is known as supervised learning (c). Our framework consists
of two separate phases: (a) first find an initial space in an unsupervised manner; then (b)
utilize label information and local structure of data to derive the final space.

of the training data to find the discriminative space. The first phase can be done by

employing an unsupervised topic model [67, 100], and hence inherits scalability of unsu-

pervised models. Label information and local structure in the form of neighborhood will

be used to guide projection of documents onto the initial space, so that inner-class local

structure is preserved and inter-class margin is widen. As a consequence, the discrimina-

tion property is not only preserved, but likely made better in the final space.

Figure 3.4 depicts graphically this framework, and a comparison with other one-phase

methods. Note that we do not have to design entirely a learning algorithm as for existing

approaches, but instead do one further inference phase for the training documents. Details

of our framework are presented in Algorithm 3. Details for each step from (II.1) to (II.4)

can be found in [101, 102].

3.4.2 Why is the framework good?

We next theoretically elucidate the main reasons for why our proposed framework is

reasonable and can result in a good method for SDR. In our observations, the most

important reason comes from the choice of the objective (3.4) for inference. Inference

with that objective plays three crucial roles to preserve or make better the discrimination

property of data in the topical space.

Preserving inner-class local structure

The first role is to preserve inner-class local structure of data. This is a result of using

the additional term 1
|Nd|

∑
d′∈Nd

L(d̂′). Remember that projection of document d onto the

unit simplex ∆ is in fact a search for the point θd ∈ ∆ that is closest to d in a certain
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Algorithm 3 Two-phase framework for SDR

Phase I: learn an unsupervised model to get K topics β1, ..., βK .
Let A = span{β1, ..., βK} be the initial space.

Phase II: (finding discriminative space)

(II.1) for each class c, select a set Sc of topics that are potentially discriminative for c.

(II.2) for each document d, select a set Nd of its nearest neighbors which are in the
same class as d.

(II.3) infer new representation θ∗
d for each document d in class c using the Frank-Wolfe

algorithm with the objective function

f(θ) = λ.L(d̂) + (1 − λ).
1

|Nd|

∑

d′∈Nd

L(d̂′) + R.
∑

j∈Sc

sin(θj), (3.4)

where L(d̂) is the log likelihood of document d̂ = d/||d||1; λ ∈ [0, 1] and R are
nonnegative constants.

(II.4) compute new topics β∗
1, ..., β

∗
K from all d and θ∗

d. Finally, B = span{β∗
1, ..., β

∗
K}

is the discriminative space.

(a) (b) (c) (d)

Figure 3.5: Laplacian embedding in 2D space. (a) data in the original space, (b) unsuper-
vised projection, (c) projection when neighborhood is taken into account, (d) projection
when topics are promoted. These projections onto the 60-dimensional space were done
by FSTM and experimented on 20Newsgroups. The two black squares are documents in
the same class.
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sense.9 Hence if d′ is close to d, it is natural to expect that d′ is close to θd. To respect this

nature and to keep the discrimination property, projecting a document should take its local

neighborhood into account. As one can realize, the part λL(d̂)+ (1−λ) 1
|Nd|

∑
d′∈Nd

L(d̂′)

in the objective (3.4) serves well our needs. This part interplays goodness-of-fit and

neighborhood preservation. Increasing λ means goodness-of-fit L(d̂) can be improved, but

local structure around d is prone to be broken in the low-dimensional space. Decreasing λ

implies better preservation of local structure. Figure 3.5 demonstrates sharply these two

extremes, λ = 1 for (b), and λ = 0.1 for (c). Projection by unsupervised models (λ = 1)

often results in pretty overlapping classes in the topical space, whereas exploitation of

local structure significantly helps us separate classes.

Since nearest neighbors Nd are selected within-class only, doing projection for d in

step (II.3) is not intervened by documents from outside classes. Hence within-class local

structure would be better preserved.

Widening the inter-class margin

The second role is to widen the inter-class margin, owing to the term R
∑

j∈Sc
sin(θj). As

noted before, function sin(x) is monotonically increasing for x ∈ [0, 1]. It implies that the

term R
∑

j∈Sc
sin(θj) promotes contributions of the topics in Sc when projecting document

d. In other words, the projection of d is encouraged to be close to the topics which are

potentially discriminative for class c. Hence projection of class c is preferred to distributing

around the discriminative topics of c. Increasing the constant R implies forcing projections

to distribute more densely around the discriminative topics, and therefore making classes

farther from each other. Figure 3.5(d) illustrates the benefit of this second role.

Reducing overlap between classes

The third role is to reduce overlap between classes, owing to the term λL(d̂) + (1 −

λ) 1
|Nd|

∑
d′∈Nd

L(d̂′) in the objective function (3.4). This is a very crucial role that helps

the two-phase framework works effectively. Explanation for this role needs some insights

into inference of θ.

In step (II.3), we have to do inference for the training documents. Let u = λd̂ + (1−

λ) 1
|Nd|

∑
d′∈Nd

d̂′ be the convex combination of d and its within-class neighbors.10 Note

9More precisely, the vector
∑

k
θdkβ

k
is closest to d in terms of KL divergence.

10More precisely, u is the convex combination of those documents in ℓ1-normalized forms, since by
notation d̂ = d/||d||1.
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Figure 3.6: The effect of reducing overlap between classes. In Phase II, inferring d is
reduced to inferring u which is the convex combination of d and its within-class neighbors.
This means we are working in the U-space instead of the document space. Note that the
classes in the U-space are often less overlapping than those in the document space.

that

λL(d̂) + (1 − λ)
1

|Nd|

∑

d′∈Nd

L(d̂′) = λ

V∑

j=1

d̂j log

K∑

k=1

θkβkj +
(1 − λ)

|Nd|

∑

d′∈Nd

V∑

j=1

d̂′
j log

K∑

k=1

θkβkj

=
V∑

j=1



λd̂j + (1 − λ)
1

|Nd|

∑

d′∈Nd

d̂′
j



 log
K∑

k=1

θkβkj = L(u).

Hence, in fact we do inference for u by maximizing f(θ) = L(u) + R.
∑

j∈Sc
sin(θj). It

implies that we actually work with u in the U-space as depicted in Figure 3.6.

Those observations suggest that instead of working with the original documents in

the document space, we do work with {u1, ..., uM} in the U-space. Figure 3.6 shows that

the classes in the U-space is less overlapping than those in the document space. Further,

the overlap can sometimes be removed. Hence working in the U-space would be probably

more effective than in the document space, in the sense of supervised dimension reduction.

3.4.3 Evaluation

This section is dedicated to investigation of effectiveness and efficiency of the two-phase

framework in practice. We investigate three methods, PLSAc, LDAc, and FSTMc, which

are the results of adapting our framework to unsupervised models, PLSA [51], LDA [21],

and FSTM [100], respectively. MedLDA [130] is taken as the state-of-the-art method for

SDR into comparison.11 We use 10 benchmark datasets for investigation which span over

various domains including news in LA Times, biological articles, spam emails. Table 3.2

11MedLDA was retrieved from www.ml-thu.net/~jun/code/MedLDAc/medlda.zip

LDA was taken from www.cs.princeton.edu/~blei/lda-c/

FSTM was taken from www.jaist.ac.jp/~s1060203/codes/fstm/

PLSA was written by ourselves with the best effort.
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Table 3.2: Statistics of data for experiments

Data Training Testing Dimensions Classes
size size

LA1s 2566 638 13196 6
LA2s 2462 613 12433 6
News3s 7663 1895 26833 44
OH0 805 198 3183 10
OH5 739 179 3013 10
OH10 842 208 3239 10
OH15 735 178 3101 10
OHscal 8934 2228 11466 10
20Newsgroups 15935 3993 62061 20
Emailspam 3461 866 38729 2

shows some information about those data.12

In our experiments, we used the same criteria for topic models: relative improvement

of the log likelihood (or objective function) is less than 10−4 for learning, and 10−6 for

inference; at most 1000 iterations are allowed to do inference. The same criterion was

used to do inference by the Frank-Wolfe algorithm in Phase 2 of our framework. MedLDA

is a supervised topic model and is trained by minimizing a hinge loss. We used the best

setting as studied by [130] for some other parameters: cost parameter ℓ = 32, and 10-fold

cross-validation for finding the best choice of the regularization constant C in MedLDA.

These settings are chosen to avoid a possibly biased comparison.

It is worth noting that the two-phase framework plays the main role in searching for

the discriminative space B. Hence, other works aftermath such as projection/inference

new documents are done by unsupervised models. For instances, FSTMc works as follows:

we first train FSTM in an unsupervised manner to get an initial space A; we next do Phase

2 of Algorithm 3 to find the discriminative space B; projection of documents onto B then

is done by the inference method of FSTM which does not need label information.

Class separation and classification quality

Separation of classes in low-dimensional spaces is our first concern. A good method

for SDR should preserve inter-class separation of data in the original space. Figure 3.7

1220Newsgroups was taken from www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
Emailspam was taken from csmining.org/index.php/spam-email-datasets-.html. Other datasets
were retrieved from the UCI repository.
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(a) (b) (c)

Figure 3.7: Projection of three classes of 20newsgroups onto the topical space by (a)
FSTM, (b) FSTMc, and (c) MedLDA. FSTM did not provide a good projection in the
sense of class separation, since label information was ignored. FSTMc and MedLDA
actually found good discriminative topical spaces, and provided a good separation of
classes. These embeddings were done with t-SNE [107].

depicts an illustration of how good different methods are. In this experiment, 60 topics

were used to train FSTM and MedLDA.13 One can observe that projection by FSTM can

maintain separation between classes to some extent. Nonetheless, because of ignoring label

information, a large number of documents have been projected onto incorrect classes. On

the contrary, FSTMc and MedLDA exploited seriously label information for projection,

and hence the classes in the topical space separate very cleanly. The good preservation

of class separation by MedLDA is mainly due to the training algorithm by max margin

principle. Each iteration of the algorithm tries to widen the expected margin between

classes. Hence such an algorithm implicitly inherits the discrimination property in the

topical space. FSTMc can separate the classes well owing to the fact that projecting

documents has taken local neighborhood into account seriously, which very likely keeps

inter-class separation of the original data. Furthermore, it also tries to widen the margin

between classes as discussed in Section 3.4.2.

Classification quality: we next use classification as a means to quantify the goodness of

the considered methods. The main role of methods for SDR is to find a low-dimensional

space so that projection of data onto that space preserves or even makes better the

discrimination property of data in the original space. In other words, predictiveness of

the response variable is preserved or improved. Classification is a good way to see this

preservation or improvement.

For each method, we projected the training and testing data (d) onto the topical

space, and then used the associated projections (θ) as inputs for multi-class SVM [54]

to do classification.14 MedLDA does not need to be followed by SVM since it can do

13For our framework, we set Nd = 20, λ = 0.1, R = 1000. This setting basically says that local
neighborhood plays a heavy role when projecting documents, and that classes are very encouraged to be
far from each other in the topical space.

14This classification method is included in Liblinear package which is available at www.csie.ntu.edu.
tw/~cjlin/liblinear/
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classification itself. Keeping the same setting as described before and varying the number

of topics, the results are presented in Figure 3.8.

Observing the figure, one easily realizes that the supervised methods often performed

substantially better than the unsupervised ones. This suggests that FSTMc, LDAc, and

PLSAc exploited well label information when searching for a topical space. FSTMc, LDAc,

and PLSAc performed better than MedLDA when the number of topics is relatively large

(≥ 60). FSTMc consistently achieved the best performance amongst topic-model-based

methods, and sometimes reached 10% improvement over the-state-of-the-art MedLDA.

In our observations, this improvement is mainly due to the fact that FSTMc had taken

seriously local structure of data into account whereas MedLDA did not.

There is a surprising behavior of MedLDA. Though being a supervised method, it

performed comparably or even worse than unsupervised methods (PLSA, LDA, FSTM)

for many datasets including LA1s, LA2s, OH10, and OHscal. In particular, MedLDA

performed significantly worst for LA1s and LA2s. It seems that MedLDA lost considerable

information when searching for a low-dimensional space. One of the main reasons for

this surprising behavior could be that MedLDA ignores local structure. As evidenced by

various researches, ignoring the inherent structure when searching for a topical space could

harm or break the discrimination property of data. This could happen with MedLDA even

though learning by max margin principle is well-known to keep good classification quality.

Learning time

The final measure for comparison is how quickly the methods do? We mostly concern on

the methods for SDR including FSTMc, LDAc, PLSAc, and MedLDA. Note that the time

for learning a discriminative space by FSTMc is the time to do 2 phases of Algorithm 3

which includes time to learn an unsupervised model, FSTM. The same holds for PLSAc

and LDAc. Figure 3.9 summarizes the overall time for each method. Observing the figure,

we find that MedLDA and LDAc consumed intensive time, while FSTMc and PLSAc did

substantially more speedily. One of the main reasons for slow learning of MedLDA and

LDAc is that inference by variational methods of MedLDA and LDA is often very slow.

Inference in those models requires various evaluation of Digamma and gamma functions

which are expensive. Further, MedLDA requires a further step of learning a classifier at

each EM iteration, which is empirically slow in our observations. All of these contributed

to the slow learning of MedLDA and LDAc.

In contrast, FSTM has a linear time inference algorithm and requires simply a multi-
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Figure 3.8: Accuracy of 7 methods as the number K of topics increases. Relative improve-
ment is improvement of a method (A) over the-state-of-the-art MedLDA, and is defined

as accuracy(A)−accuracy(MedLDA)
accuracy(MedLDA)

.
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Figure 3.9: Necessary time to learn a discriminative space, as the number K of topics
increases. FSTMc and PLSAc often performed substantially faster than MedLDA. As an
example, for News3s and K = 120, MedLDA needed more than 50 hours to complete
learning, whereas FSTMc needed less than 8 minutes.

Table 3.3: Learning time in seconds when K = 120. For each dataset, the first line shows
the learning time and the second line shows the corresponding accuracy. The best learning
time is bold, while the best accuracy is italic.

Data PLSAc LDAc FSTMc MedLDA
LA1s 287.05 11,149.08 275.78 23,937.88

88.24 87.77 89.03 64.58
LA2s 219.39 9,175.08 238.87 25,464.44

89.89 89.07 90.86 63.78
News3s 494.72 32,566.27 462.10 194,055.74

82.01 82.59 84.64 82.01
OH0 39.21 816.33 16.56 2,823.64

85.35 86.36 87.37 82.32
OH5 34.08 955.77 17.03 2,693.26

80.45 78.77 84.36 76.54
OH10 37.38 911.33 18.81 2,834.40

72.60 71.63 76.92 64.42
OH15 38.54 769.46 15.46 2,877.69

79.78 78.09 80.90 78.65
OHscal 584.74 16,775.75 326.50 38,803.13

71.77 70.29 74.96 64.99
20Newsgroups 556.20 18,105.92 415.91 37,076.36

83.72 80.34 86.53 78.24
Emailspam 124.07 1,534.90 56.56 2,978.18

94.34 95.73 96.31 94.23
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plication of two sparse matrices for learning topics, while PLSA has a very simple learning

formulation. Hence learning in FSTM and PLSA is unsurprisingly very fast [100]. The

most time consuming part of FSTMc and PLSAc is to search nearest neighbors for each

document. A modest implementation would requires O(V.M2) arithmetic operations,

where M is the data size. Such a computational complexity will be problematic when

the data size is large. Nonetheless, as empirically shown in Figure 3.9, the overall time

of FSTMc and PLSAc was significantly less than that of MedLDA and LDAc. Table 3.3

supports further this observation. Even for 20Newsgroups and News3s of average size,

learning time of FSTMc and PLSAc is very competitive compared with MedLDA.

Summarizing, the above investigations demonstrate that the two-phase framework can

result in very competitive methods for supervised dimension reduction. Three adapted

methods, FSTMc, LDAc, and PLSAc, mostly outperform their corresponding unsuper-

vised models. LDAc and PLSAc often reached comparable performance with the state-of-

the-art method, MedLDA. Amongst those adaptations, FSTMc behaves superior in both

classification performance and learning speed. We observe it often does 30-450 times

faster than MedLDA.

3.4.4 Discussion

We have proposed the two-phase framework for doing dimension reduction of supervised

discrete data. The framework was demonstrated to exploit well label information and

local structure of the training data to find a discriminative low-dimensional space. Gen-

erality and flexibility of our framework was evidenced by adaptation to three unsupervised

topic models, resulted in PLSAc, LDAc, and FSTMc for supervised dimension reduction.

These methods can perform qualitatively comparably with the state-of-the-art method,

MedLDA. In particular, FSTMc performed significantly best and can often achieve more

than 10% improvement over MedLDA while enjoying 30-450 times faster speed. These

results show that our framework can inherit scalability of unsupervised models to yield

competitive methods for supervised dimension reduction.

The resulting methods (PLSAc, LDAc, and FSTMc) are not limited to discrete data.

They can work also on non-negative data, since their learning algorithms actually are

very general. Hence in this paper, we contributed methods for not only discrete data

but also non-negative real data. The code of these methods is freely available online at

www.jaist.ac.jp/~s1060203/codes/sdr/

There is a number of possible extensions to our framework. First, one can easily mod-
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ify the framework to deal with multilabel data. Second, the framework can be modified

to deal with semi-supervised data. A key to these extensions is an appropriate utilization

of labels to search for nearest neighbors, which is necessary for our framework. Other ex-

tensions can encode more prior knowledge into the objective function for inference. In our

framework, label information and local neighborhood are encoded into the objective func-

tion and have been observed to work well. Hence, we believe that other prior knowledge

can be used to derive good methods.

3.5 Summary

We make two contributions in this chapter. First, a framework (FW) for efficiently in-

ferring sparse latent representations of documents is introduced. From theoretical and

empirical analyses, the FW framework is shown to work significantly fast and always infer

sparse solutions. Second, we propose an effective and scalable methods for doing super-

vised dimension reduction. In particular, one of the methods can perform consistently

better in quality than the state-of-the-art methods, while enjoying 30-450 times faster

speed.
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Chapter 4

Fully Sparse Topic Models

Essentially, all models are wrong, but some are useful – George E. P. Box

In this chapter, a novel topic model is developed which has many interesting properties.

It overcomes some severe limitations of existing models to better model corpora at a large

scale. Inference in this model follows the framework discussed in Chapter 3.

4.1 Introduction

Topic modeling has been increasingly maturing to be an attractive research area. Origi-

nally motivated from textual applications, it has been going beyond far from text to touch

upon many amazing applications in Computer Vision, Bioinformatics, Software Engineer-

ing, Forensics, to name a few. Recently, much interest in this community has focused on

developing topic models for large-scale settings, e.g., [13, 48, 67, 71, 90, 115]. In our

observations, the most common large-scale settings are:

(a) the number of training documents is large;

(b) the number of topics to be learned is large;

(c) the vocabulary size (dimensionality) is large;

(d) a large number of documents need to be a posteriori inferred in a limited time budget.

There are two fundamental issues to be addressed when dealing with large-scale set-

tings: inference speed and model complexity. Scalable inference algorithms are highly
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desired to resolve the settings (a) and (d), since inference plays the key role in many

learning algorithms [21, 48]. Model complexity essentially refers to the number of effec-

tive parameters of a model. For a topic model like PLSA [51] or LDA [21], the hidden

topics dominate its complexity, because each topic is often a dense distribution over the

vocabulary. When dealing with the settings (b) and (c), the number of parameters in a

topic model easily reaches billions. Such a huge model poses severe challenges for both

learning and storage.

4.1.1 Our contribution

In this work, we present our initial step towards resolving the mentioned four large-scale

settings. Our attempts attack the two fundamental issues mentioned before by seeking

fast inference algorithms and sparse models.

Our first contribution is the introduction of Fully Sparse Topic Model (FSTM). Loosely

speaking, FSTM is a simplified variant of LDA when relaxing the Dirichlet priors over

hidden topics and over hidden topic proportions of documents. It is also a simplified

variant of PLSA when removing the observed variable associated with each document.

Nevertheless, FSTM has some following attractive properties:

- Inference is done by the Frank-Wolfe algorithm [28] which converges at a linear rate

to the optimal solutions. The inference algorithm allows us to swiftly recover sparse

topic proportions. Further, it provides a principled way to directly trade off sparsity

of solutions against inference quality and running time.1

- Learning of topics amounts to multiplication of two sparse matrices. Hence topics

are often very sparse. The sparsity level can be directly controlled.

- The complexity of the learning algorithm is near independent of dimensionality.2

- There is an implicit prior over topic proportions, though no explicit employment of

priors. Such a prior can help FSTM avoid overfitting.

1Note that our reformulation of inference for FSTM can be applied to many variants of PLSA and
LDA, and hence can help accelerate their inference. The reason is that such models often assume a
document to be a mixture of topics.

2More precisely, the independence holds without taking into account the necessary number r of EM
steps to reach convergence and an initial step which initiates necessary storage before learning. The
EM algorithm often converges to stationary points at a linear rate [33]. However, to the best of our
knowledge, there has been no rigorous analysis about relation between dimensionality and r. In practice,
we experience that r does not depend on dimensionality.
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Table 4.1: Theoretical comparison of 8 topic models: FSTM, PLSA, LDA, FTM [120],
SparseTM [112], STC [129], SRS [89], RLSI [115]. V is the vocabulary size, K is the
number of topics, n̄ is the average length of documents. K̄ is the average number of topics
to which a term has nonzero contributions, K̄ ≤ K. ‘-’ denotes ‘no’ or ‘unspecified’ ; ‘X’
means ‘yes’ or ‘taken in consideration’.

Model FSTM PLSA LDA FTM SparseTM STC SRS RLSI
Document sparsity X - - X - X X -
Topic sparsity X - - - X - X X

Sparsity control direct - - indirect indirect indirect indirect indirect
Trade-off:

sparsity vs. quality X - - - - - - -
sparsity vs. time X - - - - - - -

Dimension-free learning X - - - - - - -
Inference complexity O(n̄.K̄ + K) O(n̄.K) O(n̄.K) - - O(n̄.K) O(n̄.K) O(V.K̄2 + K3)
Storage for topics V.K̄ V.K V.K - - V.K V.K̄ V.K̄
Auxiliary parameters 0 0 0 0 0 3 2 2

For the first time in the topic modeling literature, FSTM is the model that couples

the two interesting properties: near dimension-free learning algorithm, and ability to

directly trade off sparsity of solutions against inference quality. The near independence of

dimensionality implies that FSTM provides an almost optimal answer to the setting (c).

It also implies that there exists a near dimension-free algorithm for doing dimensionality

reduction (DR), since topic modeling is an approach to DR. These properties are crucial

for dealing with data of extremely high dimensions. We hope that our results open a

motivation for future studies to seek dimension-free algorithms for other problems.

The ability of FSTM to learn sparse topics and to infer sparse latent representations

of documents allows us to save substantially memory for storage. Combined with a linear

inference algorithm, FSTM overcomes severe limitations of existing probabilistic models

and can deal well with the settings (b), (c), and (d). Fast learning of topics and fast

inference of documents also enable us to deal well with the setting (a). To see more

advantages of FSTM over existing models, we report some theoretical characteristics of

some closely related models in Table 4.1.1.

Our second contribution is a distributed architecture for learning FSTM from large

data. We employ both distributed scheme for data and task parallelism. Warm-start

is further used to speed up learning, while keeping comparable quality. All of these

provide a scalable learning algorithm that can handle very large corpora. In particular,

we successfully learned a topic model with more than 33 billions of latent variables, from

a large corpus with a vocabulary of 16 millions terms. This is the largest model that has

been learned in the literature up to now.

Extensive experiments show that FSTM works well in practice. It significantly out-

performs many models in terms of learning time, inference time, model complexity, and

sparsity of latent representations of documents. The predictive power is observed to be
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comparable with other models. In terms of generalization on unseen data, FSTM of-

ten does better. Qualitative performance of FSTM is also observed in application to

classification, for both small and very large data.

4.1.2 Related work

Most previous works dealing with large data have focused mainly on the settings (a) and

(b) by utilizing parallel/distributed/online architectures [13, 48, 67, 71, 90, 109]. Those

works are breakthrough developments for learning LDA [21]. Their learning algorithms

can work well with corpora of millions of documents and give an affirmative answer for the

setting (a). However they remain three limitations: first, the LDA model itself is dense,

which will consumes huge memory when vocabularies are very large. Second, the latent

representations of documents are dense. Such dense representations will be problematic

when stored for doing other tasks, e.g., information/image retrieval. The main reason is

that the Dirichlet distribution employed by LDA prevents any zero contributions of terms

to topics and of topics to documents. These limitations challenge deployment of LDA in

practical applications with the settings (b) and (c).3 Third, existing inference methods

for LDA do not have any theoretical guarantee of neither inference quality nor inference

time.

To reduce memory for efficient storage, some studies have introduced the notion of

sparsity for topic models. Some researches try to reduce model complexity by encoding a

spike-and-slap distribution [112] or using regularization [89, 115] to induce sparse topics.

Furthermore, sparsity of topic proportions is also considered by employing Indian buffet

processes [120] or by using regularization [89, 129]. Even though these models provide

elegant solutions to the sparsity problem, they remain some drawbacks when dealing with

large-scale settings. Indeed, the approaches by [112, 120] often result in much involved

models and thus complicates learning and inference. Learning by existing sampling meth-

ods [112, 120] seem to be far from a touch upon large-scale settings. SRS [89] has no

guarantee on convergence of inference/learning, and its scalability is unknown. STC [129]

is problematic with learning, because learning of topics is to solve a optimization problem

with a large number of variables which are inseparable. RLSI [115] has high complexity

for both learning and inference, see Table 4.1.1. Finally, there are two common limitations

of those non-probabilistic models (STC, SRS, RLSI): first, auxiliary parameters associ-

ated with regularization terms require us to do model selection, which is problematic in

3An example is topical exploration of huge corpora with extremely high dimensions, e.g. Google
n-gram books (http://aws.amazon.com/datasets/8172056142375670). This application may requires
learning tens of thousands of topics.
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dealing with large-scale settings; second, one cannot directly trade off sparsity of solutions

against time and quality.4

4.1.3 Roadmap

The main model will be presented in Section 4.2. Section 4.3 is devoted to analyzing some

theoretical characteristics of FSTM, and to revealing why there is an implicit prior over

latent representations. Evaluation and comparison on average corpora are discussed in de-

tails in Section 4.4. Section 4.5 presents a distributed architecture, and then experiments

on large data. Some conclusions are in the final section.

4.2 Fully sparse topic models

Fully Sparse Topic Model assumes that a corpus is composed from K topics, β1, ..., βK ,

and each document d is generated by the following process:

Generate the jth word in d by:

− First pick a latent topic zk with probability P (zk|d) = θk,

− Then generate a word wj with probability P (wj|zk) = βkj.

It is straightforward to see that FSTM is a simplified variant of LDA. The main differ-

ence is that FSTM does not employ Dirichet prior over topic proportions, and deliberately

allows only few topics to contribute to a document. This relaxation allows us to infer re-

ally sparse topic proportions of documents. No employment of Dirichlet prior over topics

enables us to learn models of low complexity, i.e., sparse models. Figure 4.1 depicts the

graphical representation of FSTM, accompanied by PLSA and LDA.

Motivated by large-scale settings, our focus is to design a fast inference algorithm

and a fast learning algorithm that can learn sparse models. This is a nontrivial task,

as evidenced in [112, 120, 129]. We tackle this task by first reformulating the inference

problem as a concave maximization problem over the simplex of topics. This reformulation

allows us to seamlessly employ the Frank-Wolfe algorithm to do inference and thus inherits

4For regularization techniques, one may expect to get sparser solutions by increasing the values of
the auxiliary parameters. However, it is not always provably true. Hence such a control over sparsity is
indirect.
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Figure 4.1: Graphical representations of three topic models.

its attractive properties. To obtain sparse topics, our idea is to exploit sparsity of original

documents and sparsity of topic proportions. Hence we propose an approach so that

learning topics amounts to multiplication of the original representation (d) with the new

representation (θ) of the corpus. Note that sparsity of topic proportions (θ) can be directly

controlled just by limiting the number of iterations in the Frank-Wolfe algorithm. As a

result, the learned topics are often very sparse and the sparsity level can be controlled.

In spite of no explicit prior over θ in the model description, we will see in Section 4.3

that in fact there exists an implicit prior having density function p(θ|λ) ∝ exp(−λ.||θ||0),

where ||θ||0 is the number of non-zero entries of θ. This property is a consequence of

sparse inference in FSTM. Note that this property of FSTM is intriguing.

4.2.1 Inference

Given a document d and topics β, the inference task in FSTM is to find which topics

contribute to d and how much they contribute to d. In other words, we have to infer

θ. Unlike existing inference approaches for topic models, we will not make effort to infer

directly θ. Instead, we reformulate the inference task as a concave maximization problem

over the simplex of topics.

Lemma 4. Consider FSTM with topics β1, ..., βK, and a given document d. The infer-

ence problem can be reformulated as the following concave maximization problem, over

the simplex ∆ = conv(β1, ..., βK),

x∗ = arg max
x∈∆

∑

j∈Id

dj log xj . (4.1)

Proof. For a given document d, the probability that a term wj appears in d can be

expressed as P (wj|d) =
∑K

k=1 P (wj|zk).P (zk|d) =
∑K

k=1 θkβkj . Hence the log likelihood
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Algorithm 4 Inference algorithm

Input: document d and topics β1, ..., βK .
Output: θ∗, for which

∑K
k=1 θ∗,kβk = x∗ maximizes f(x) =

∑
j∈Id

dj log xj .
Pick as βr the vertex of ∆ = conv(β1, ..., βK) with largest f value.
Set x0 := βr; θ0,r = 1; θ0,k = 0, ∀k 6= r;
for ℓ = 0, ...,∞ do

i′ := arg maxi β
t
i∇f(xℓ);

α′ := arg maxα∈[0,1] f(αβi′ + (1 − α)xℓ);
xℓ+1 := α′βi′ + (1 − α′)xℓ;
θℓ+1 := (1 − α′)θℓ; and then set θℓ+1,i′ := θℓ+1,i′ + α′.

end for

of d is

log P (d) = log
∏

j∈Id

P (wj|d)dj =
∑

j∈Id

dj log P (wj|d) =
∑

j∈Id

dj log

K∑

k=1

θkβkj.

The inference task is the problem of searching for θ to maximize the likelihood of d.

Denoting as xj =
∑K

k=1 θkβkj and x = (x1, ..., xV )t, we arrive at

log P (d) =
∑

j∈Id

dj log xj . (4.2)

Therefore optimization over θ now is translated into that over x. Note that x =

(x1, ..., xV )t =
∑K

k=1 θkβk. Combining this with the fact that
∑

k θk = 1, θk ≥ 0, ∀k,

one can easily realize that x is a convex combination of the K topics β1, ..., βK . It im-

plies x ∈ ∆. As a result, the inference task is in turn the problem of finding x ∈ ∆ that

maximizes the objective function (4.2). (Q.E.D.)

This lemma provides us a connection between inference and concave optimization,

and allows us to seamlessly use the Frank-Wolfe algorithm for inference. An appropriate

adaptation to the Frank-Wolfe algorithm results in an inference algorithm for FSTM, as

presented in Algorithm 4. In our implementation, we solve for α by the gradient ascent

approach.

4.2.2 Learning

The task of learning FSTM is to learn all topics β, given a corpus C. We use EM

scheme to iteratively learn the model. Specifically, we repeat the following two steps until

convergence:
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E-step: do inference for each document of C;

M-step: maximize the likelihood of C with respect to β.

Note that the E-step for each document is discussed in the previous subsection. The

remaining task is to solve for β. Denoting as θd the topic proportion of document d ∈ C

which has been inferred in the E-step, and the documents are i.i.d., we express the log

likelihood of C as

log P (C) =
∑

d∈C

log P (d) =
∑

d∈C

∑

j∈Id

dj log

K∑

k=1

θdkβkj ≥
∑

d∈C

∑

j∈Id

dj

K∑

k=1

θdk log βkj.

We have used Jensen’s inequality to derive the last term, owing to the fact
∑

k θdk =

1, θdk ≥ 0, ∀k.

Next we maximize the lower bound of log P (C) with respect to β. In other words, we

have to maximize

g(β) =
∑

d∈C

∑

j∈Id

dj

K∑

k=1

θdk log βkj =

K∑

k=1

∑

d∈C

∑

j∈Id

djθdk log βkj, (4.3)

s.t.
V∑

j=1

βkj = 1, βkj ≥ 0, ∀k, j.

It is worthwhile noticing that the vectors βk are separable from each other in the

objective function g(β). Hence we can solve for each individually. Taking the Lagrange

function into consideration and forcing its derivatives to be 0, we easily arrive at the

following solution

βkj ∝
∑

d∈C

djθdk. (4.4)

Up to this point, we can learn FSTM by iterating E-step and M-step until convergence.

In the E-step, each document is inferred by using the Frank-Wolfe algorithm, given the

objective function as in (4.1) and topics β. The M-step only does simple calculation

according to (4.4) to update all topics.
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4.3 Theoretical analysis

We will show that the inference algorithm for FSTM can provide provably good solutions.

It requires modestly few arithmetic operations, linear in the length of the document to

be inferred or in the number of topics. The learning algorithm has very low complexity

which does not depend on the dimensionality V . Further, we can easily trade off quality

of solution against sparsity and inference time. Existing topic models do not own these

interesting properties.

4.3.1 Complexity and goodness of inference

Theorem 6. Consider FSTM with K topics, and a document d. Let Cf be defined as in

Theorem 2 for the function f(x) =
∑

j∈Id
dj log xj. Then Algorithm 4 converges to the

optimal solution with a linear rate. In addition, after L iterations, the inference error is

at most 4Cf/(L + 3), and the topic proportion θ has at most L + 1 non-zero components.

Proof. Inference of FSTM is exactly the Frank-Wolfe algorithm for the function f(x) =
∑

j∈Id
dj log xj which is twice differentiable at all x satisfying xj > 0, ∀j ∈ Id. Hence this

theorem is a corollary of Theorem 2. (Q.E.D.)

Next we will analyze computational complexity of the inference algorithm. Common

technique to store a sparse matrix is row-wise, i.e., we store all non-zero elements in a

row of that matrix by an 1-dimensional array. This is beneficial to do multiplication of a

sparse matrix with a vector. Indeed, consider a matrix B of size m × n. Letting m̄ be

the average number of non-zero elements of a column of B, computing Bx requires only

O(n.m̄ + m) arithmetic operations.

Theorem 7. Each iteration of Algorithm 4 requires only O(n.K̄ + K) arithmetic opera-

tions, where K̄ is the average number of topics to which a term has non-zero contributions,

K̄ ≤ K, and n = |Id|. Overall, after L iterations, Algorithm 4 requires L.O(n.K̄ + K)

arithmetic operations.

Proof. Letting a = ∇f(x), we have βt∇f(x) = βta. Note that a is very sparse because

of ai = ∂f/∂xi = 0, for i /∈ Id. Hence only n columns of βt involve in computation

of βta. This implies that we need just O(n.K̄ + K) arithmetic operations to compute

βta and to find the index i′. O(n.K̄ + K) arithmetic operations are also sufficient to

do the initial step of choosing x0, since the most expensive computations are to evaluate
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f at the vertices of the simplex, which amounts to a multiplication of (log β)td, where

log β = (log βij)V ×K .

Searching for α can be done very quickly since the problem is concave in one variable.

Each evaluation of f(x) requires only O(n) operations. Moreover O(n.K̄ +K) arithmetic

operations are sufficient to update other variables. (Q.E.D.)

Theoretically, L can be large in order to find good solutions. In particular, if we want

to find an ǫ-approximate solution, the number of iterations should be L > 4Cf/ǫ − 3

due to Theorem 6. This implies the complexity of the inference algorithm depends on

the curvature constant Cf of the objective function. Cf shows how hard to maximize f

over the simplex, and can sometimes depend on the dimensionality K of the optimization

problem. However, L does not depends on V .

4.3.2 Complexity of learning

FSTM is learned by the EM scheme. Each EM iteration requires us to infer M training

documents, and update topics according to formula (4.4). Note that update of topics

simply does a multiplication of two very sparse matrices (one is the matrix representing

the training corpus, and the other is the new representation of that corpus), and then

does normalization. Hence it can be computed very fast. A simple implementation would

require O(M.n̄.s̄) arithmetic operations to compute multiplication of two sparse matrices

and then O(V.K) to do normalization, where n̄ is the average length of the original

documents, and s̄ is the average number of topics contributing to a document (average

length of topic proportions, s̄ ≤ K). Therefore, an EM iteration requires O(V.K +

M.n̄.s̄ + M.L̄.(n̄.K̄ + K)) operations, where L̄ is the average number of iterations for the

Frank-Wolfe algorithm to reach convergence. It is worth noticing that s̄ ≤ L̄.

Lemma 5. An update of β by (4.4) can be done in O(M.n̄.s̄.K̄) arithmetic operations.

Proof. Letting ak =
∑V

j=1

∑
d∈C djθdk =

∑
d∈C

∑
j∈Id

djθdk, we have βkj = a−1
k

∑
d∈C djθdk =

∑
d∈C a−1

k djθdk for each k and j. Note that a1, ..., aK can be computed in O(M.n̄.s̄ + K)

requiring only one scan over the corpus. Hence computing β requires at most O(M.n̄.s̄.K̄)

operations when all d, β, θ are represented in sparse format. (Q.E.D.)

Corollary 4. Each EM iteration of the learning algorithm for FSTM can be computed in

O(M.n̄.s̄.K̄ + M.L̄.(n̄.K̄ + K)) arithmetic operations.
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Learning FSTM requires only r.O(M.n̄.s̄.K̄ +M.L̄.(n̄.K̄ +K)) arithmetic operations,

where r is the necessary number of EM iterations to reach convergence. Theoretically,

the EM algorithm is known to have linear convergence rate [33]. Nevertheless, there

has been no rigorous analysis about its complexity. The same situation remains with

many other learning algorithms not only in topic modeling but also in Machine Learning.

A very recent result by [2] for convex optimization shows that in the worst case the

number of iterations for an algorithm to reach convergence depends on the dimension

of the optimization problem. This pessimistic result suggests that the EM algorithm

may have high complexity, and the necessary number of EM iterations may depend on

dimensionality, V . The reason is that the objective of learning is the likelihood which is

not concave, and thus likely harder than convex optimization in general.

If r does not depend on dimensionality, then so does the complexity of the learning

algorithm for FSTM.5 However, since r is not theoretically upper bounded, the learning

algorithm is near independent of dimensionality. In practice, we find that r and L̄ are

often less than 40, even for large K, V and M . Hence they are much less than the

vocabulary size V and corpus size M . Ignoring those constants, we loosely conclude that

M.O(n̄.s̄.K̄ + n̄.K̄ + K) is the complexity for learning FSTM.

The near independence of dimensionality is an intriguing property of FSTM, which is

crucial for dealing with large data of very high dimensions. To the best of our knowledge,

this is the first time a near dimension-free learning algorithm for topic models have been

proposed. Learning in other models such as PLSA, LDA, and RLSI is often linearly

dependent on the dimensionality V . For example, learning algorithms for PLSA [51] and

LDA [21] require O(V.K+M.K+M.K.n̄) arithmetic operations. Such a linear dependence

would cause some difficulties when working with data of extremely high dimensions.

4.3.3 Managing sparsity level and trade-off

Good solutions are often necessary for practical applications. In practice, we may have

to spend intensive time and huge memory to search such solutions. This sometimes is

not necessary or impossible in limited time/memory settings. Hence one would prefer to

trading off quality of solutions against time/memory.

Searching for sparse solutions is a common approach in Machine Learning to reduce

5In fact, when the average length n̄ of documents is large, i.e., documents are very long and dense,
such an independence may not be true. However, in practice, a document written by human often has
significantly few different terms compared to the vocabulary. For example, a news often has less than
1000 different terms; conversations on Facebook commonly have few tens of different terms.
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memory for storage and efficient processing. Most previous works have tried to learn

sparse solutions by imposing regularization which induces sparsity, e.g., L1 regularization

[115, 129] and entropic regularization [89]. Nevertheless, those techniques are severely

limited in the sense that we cannot directly control the sparsity level of solutions (e.g., one

cannot decide how many non-zero components solutions should have). In other words, the

sparsity level of solutions is a priori unpredictable. This limitation makes regularization

techniques inferior in memory limited settings. It is also the case with other works that

employ some probabilistic distributions to induce sparsity [112, 120] or that exploits

sparsity of sufficient statistics of Gibbs samples [67].

Unlike prior topic models, the inference algorithm for FSTM naturally provides a

principled way to control sparsity. Theorem 6 implies that if stopped at the Lth iteration,

the inferred solution has at most L + 1 non-zero components. Hence one can control

sparsity level of solutions by simply limiting the number of iterations. It means that we

can predict a priori how sparse and how good the inferred solutions are. Less iterations,

sparser (but probably worse) solutions of inference. Besides, we can trade off sparsity

against inference time. More iterations imply more time and probably denser solutions.

4.3.4 Implicit prior over θ

In Section 4.2 we describe FSTM without any specific prior over latent representations θ.

As well-known in the literature, no prior endowment may cause a model to be prone to

overfitting. Nonetheless, it seems not the case with FSTM. Indeed, we argue that there

is an implicit prior over θ in the model.

Note that the inference algorithm of FSTM allows us to easily trade off sparsity of

solutions against quality and time. If one insists on solutions with at most t nonzero

components, the inference algorithm can be modified accordingly. In this case, it mimics

that one is trying to find a solution to the problem maxθ∈∆K
{f(θ) : ||θ||0 ≤ t}. We

remark a well-known fact that the constraint ||θ||0 ≤ t is equivalent to addition of a

penalty term λ.||θ||0 to the objective function [69], for some constant λ. Therefore, one

is trying to solve for θ∗ = arg maxθ∈∆K
{f(θ) − λ.||θ||0} = arg maxθ∈∆K

P (d|θ).P (θ) =

arg maxθ∈∆K
P (θ|d), where p(θ) ∝ exp(−λ.||θ||0). Notice that the last problem, θ∗ =

arg maxθ∈∆K
P (θ|d), is an MAP inference problem. Hence, these observations basically

show that inference by Algorithm 4 for sparse solutions mimics MAP inference. As a

result, there exists an implicit prior, having density function p(θ; λ) ∝ exp(−λ.||θ||0),

over latent topic proportions. This is another characteristic that distinguishes FSTM

from existing topic models.
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4.3.5 The zero problem and solution

We have shown in Lemma 4 that the inference problem for FSTM can be reduced to that

of maximizing the function f(x) =
∑

j∈Id
dj log xj over the simplex ∆ = conv(β1, ..., βK).

Note that f(x) discourages solutions with zero entries, and encourages area inside ∆ that

ensures f(x) to be well-defined. Hence it seems to prefer dense topics. Nonetheless,

topics learned by (4.4) are likely very sparse, since the training documents (d) and their

new representations (θ) are often very sparse. These lead to a tension in which inference

prefers dense topics, but learning of topics often results in sparse ones. To overcome such

a situation, one possible way is to learn as sparse as possible topics while maintaining

quality of inference for the training documents. Nonetheless, such an approach can only

explain the given training data but forgets future ones, and thus is prone to overfitting.

This exactly happens with FSTM.

Solution: for each document d, instead of doing inference over ∆, we will do inference

over the simplex ∆′ = conv(λ1, ..., λK) where λki ∝ βki+ε for a very small constant ε > 0.

The constant ε ensures that the objective function f(x) is twice differentiable over ∆′.

Hence inference can be done smoothly.6 Such a simple modification really helps FSTM to

overcome overfitting and to perform well on real data, as investigated in the next section.

4.4 Experimental evaluation

This section is devoted to investigating practical behaviors of FSTM to see clearly its

characteristics. We will describe performance of our model on huge corpora in the next

section. The investigation focuses mostly on some fundamental properties of FSTM and

how good it is when applied to classification.

4.4.1 Sparsity and time

We first aim at answering the following questions: (1) how sparse are topics and latent

representations of documents? (2) how fast can the model infer/learn? To this end, we

chose 4 corpora for experiments: 2 small (AP, KOS), and 2 average (Grolier, Enron).

Table 4.2 contains some information about these corpora. Four models are included

6With this modification, the topics of our model are in fact λ1, ..., λK . However we do not have to
store all, but instead store the most meaningful parts (β). In our experiments, we set ε = 10−10.
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Table 4.2: Data for experiments. n̄ is the average number of different terms in a document.
Data M Testing size V Classes n̄
AP 2,021 225 10,473 0 135
KOS 3,087 343 6,906 0 103
Grolier 23,044 6,718 15,276 0 80
Enron 35,875 3,986 28,102 0 96
20Newsgroups 15,935 3,993 62,061 20 80
Webspam 350,000 350,000 16,609,143 2 3,728

for comparison: FSTM, PLSA, LDA, and STC.7 Despite of being a non-probabilistic

model, STC is included for comparison because it was intentionally designed to model

sparsity. In our experiments we used the same convergence criteria for these models:

relative improvement of log likelihood (or objective functions in STC) is less than 10−6

for inference, and 10−4 for learning; at most 1000 iterations are allowed to do inference. We

used default settings for some other auxiliary parameters of STC, relating to regularization

terms.

Document sparsity: Figure 4.2 presents the results of experiments on four corpora.

Document sparsity is used to see sparsity level of latent representations discovered by

those models. Observing the first two rows of Figure 4.2, one can see that all models,

except LDA, can discover sparse latent representations. PLSA interestingly can discover

very sparse latent representations for testing data. It even often outperformed STC, which

was intentionally designed for modeling sparsity. However, it seems that PLSA achieved

sparse solutions by incident. Indeed, we rarely observed sparse topic proportions in the

learning phase, but inference often resulted in sparse ones. One crucial reason for these

contrary behaviors is that information was lost when saving the learned models, as we

observed many nonzero elements of topics went to 0. STC can indeed discover sparse

latent representations as expected. Nonetheless, the discovered sparsity level was not

very high, i.e., new representations of documents were still pretty dense. Furthermore,

the sparsity level seems to be inconsistent as the number of topics increases

On contrary, FSTM can discover very sparse latent representations in both learning

and inference phases. The sparsity level consistently decreases as the number of topics

increases. This implies that despite modeling a corpus with many topics, few topics ac-

tually contributes to a specific document. For example, on average, only 3 topics have

non-zero contributions to a document of AP among 100 topics of the model; when mod-

7STC code was taken from www.cs.cmu.edu/~junzhu/stc/

PLSA was coded by ourselves with the best effort. SRS and RLSI were not included because of two
reasons. First, there is no available code for these models. More importantly, there is an inconsistence in
the update formula derived in [89] that prevents us from implementation; RLSI heavily needs involved
distributed architectures.

52



0 50 100
0

0.5

1

K

D
oc

um
en

t s
pa

rs
ity

(in
fe

re
nc

e)

AP

0 50 100
0

0.5

1

K

D
oc

um
en

t s
pa

rs
ity

(le
ar

ni
ng

)

0 50 100
0

0.5

1

K

T
op

ic
 s

pa
rs

ity

0 50 100
0

0.5

1

K

KOS

0 50 100
0

0.5

1

K

0 50 100
0.4

0.6

0.8

1

K

0 50 100
0

0.5

1

K

Enron

0 50 100
0

0.5

1

K

0 50 100
0.4

0.6

0.8

1

K

0 50 100
0

0.5

1

K

Grolier

0 50 100
0

0.5

1

K

0 50 100
0.7

0.8

0.9

1

K

0 50 100
0

20

40

60

K

In
fe

re
nc

e 
tim

e 
(s

)

0 50 100
0

2000

4000

6000

K

Le
ar

ni
ng

 ti
m

e 
(s

)

0 50 100
0

20

40

K

0 50 100
0

2000

4000

6000

K

 

 

0 50 100
0

200

400

600

K

0 50 100
0

5

10

15
x 10

4

K

0 50 100
0

500

1000

K

0 50 100
0

2

4

6
x 10

4

K

FSTM PLSA LDA STC

Figure 4.2: Experimental results as the number K of topics increases. Lower is better.
For STC, there was a memory problem when dealing with Enron and Grolier for large K
(e.g., when K = 70, STC has to solve a optimization problem with more than 20 millions
of variables, and hence cannot be handled in a personal PC with 6Gb memory.) Hence
we could not do experiments for such large K’s.
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eling with 10 topics, only 2 topics on average have non-zero contributions to a document.

This behavior of FSTM is consistent with the fact that a document often says about few

topics, independent of the number of topics a model is taking into account. Hence FSTM

can discover very compact representations.

Topic sparsity: observing Figure 4.2, one easily realizes that most models could not

discover sparse topics. LDA and STC are not surprising, because topics are assumed to be

samples of Dirichlet distributions which implicitly prevent any zero contribution of terms

to topics. PLSA could discover some sparse topics, but the sparsity level was insignificant.

FSTM outperformed other models in this aspect, having discovered very sparse topics.

The sparsity level of topics tends to increase as we model data with more topics. This

achievement can be explained by the facts that new representations of documents inferred

by FSTM are very sparse, that the original documents are sparse, and that topics are

simply a product of these two sparse representations (see equation 4.4). Therefore, the

learned models are often significantly compact.

Inference time: in Section 4.3, we have shown theoretically that inference of FSTM

is in linear time. This is further supported by our experiments, as depicted in Figure

4.2. Both FSTM and STC worked comparably in practice. PLSA inferred most slowly by

the folding-in technique. LDA can infer much more quickly by fast variational Bayesian

methods [21]. Nevertheless, it still worked much more slowly than FSTM, often tens of

times slower. There are at least two reasons for this slow inference: first, the inference

problem in LDA is inherently NP-hard [91] and thus may require much time to reach at

good solutions; second, the variational Bayesian algorithm has to do many computations

relating to logarithm, exponent, gamma, and digamma functions which are expensive.

In contrast, inference in FSTM can be done in linear time, and the objective function

(likelihood) is relatively cheap to compute. In addition, the learned topics are often very

sparse. All of these contribute to speeding up inference in FSTM.

Learning time: observing the last row of Figure 4.2, one can see that LDA and STC

learned really slowly, often hundreds/thousands of times slower than FSTM and PLSA.8

Slow learning of STC can be explained by the fact that learning of topics in this model is

very expensive, since we have to solve a optimization problem with a large number, K.V ,

of variables which are inseparable. LDA learned slowly because its inference algorithm is

slow, and it has to solve optimization problems requiring various evaluations of Gamma

and Digamma functions which are often expensive. PLSA learned fastest due to its

8At some settings, we observe that STC did stop learning very early after only 4 or 5 iterations, but
inference after that paid more time to do than usual. Otherwise, it needed many iterations (often more
than 30) to reach convergence. Hence we suppose that those early terminations were caused by some
internal issues.

54



Table 4.3: Example of topics learned by FSTM when K = 100. Shown for each topic are
words that have highest probabilities.

Enron
1 power, company, project, energy, india, government, electricity
2 corp, contract, message, party, review, offer, receive, prohibited
3 paper, pulp, mill, received, market, oct, story, office, press, release,
4 company, financial, stock, investor, partnership, billion, credit
5 energy, market, customer, wind, power, pjm, generation, prices
6 request, sap, approval, application, resource, security, data, access
7 travel, roundtrip, fares, hotel, city, visit, special, sheraton, sale
8 gas, contract, capacity, point, shipper, storage, firm, allocation
9 bill, michael, david, karen, mike, meeting, thomas, paul, mark

10 game, yard, fantasy, defense, allowed, against, point, updated
Grolier

1 tax, government, public, property, insurance, income, business
2 family, marriage, crime, children, united, law, social, people, divorce
3 philosophy, world, knowledge, human, god, theory, nature
4 mental, disorders, behavior, children, disorder, treatment, sexual
5 species, birds, animals, mammals, million, world, behavior, animal
6 ballet, dance, company, de, theater, dances, ballets, dancer, american
7 water, coal, oil, energy, gas, power, fuel, united, steel, production
8 food, world, united, production, land, agricultural, plant, corn, cattle
9 architecture, style, art, building, century, gothic, architect, buildings

10 century, music, children, folk, tales, literature, poetry, poems, written

simple learning formulations. There is a seemingly contrary behavior of PLSA, in which

learning is fastest but inference is slowest. The main reason is that inference by folding-in

[51] is an adaptation of learning, and more importantly learning does not require doing

separately inference of documents which differs from other models. FSTM can learn very

fast, comparably with PLSA. One reason for such a fast learning is the fast inference

algorithm. Another reason is that the inferred topic proportions and topics themselves

are very sparse, and hence help further speed up learning.

4.4.2 Quality and trade-off

We next consider how good FSTM is. Table 4.3 shows some random examples from

100 topics learned by FSTM on Enron and Grolier. We can observe that those learned

topics are very understandable and each indicates clearly a specific meaning. We further

observed that for the same setting of K and the same corpus, most topics learned by one

model can be learned by the others (among FSTM, LDA, and PLSA). These observations

suggests that FSTM can provide us qualitative topics.
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Figure 4.3: Quality of three models as the number of topics increases. Lower is better.

Next, we use three measures to quantify the quality: Bayesian Information Criterion

(BIC), Akaike Information Criterion (AIC) [39], and Perplexity [21]. BIC and AIC are

popular measures for model selection in Machine Learning.9 They measure both simplicity

and goodness-of-fit of the considered models; the simpler is preferred when two models

have comparable quality of fitting data. A model with larger BIC/AIC is more likely to

overfit the data [39]. Perplexity is also a common measure in topic modeling literature to

compare predictive power of different models.10

Figure 4.3 presents the quality of three models on four corpora. (STC was not included

in this investigation, because the objective function in learning is a regularized one, and

hence different in manner with probabilistic topic models.) Observing the first two rows of

the figure, one can easily realize that BIC and AIC of FSTM were significantly better than

those of LDA and PLSA for most experiments. Note that FSTM can learn very sparse

9AIC = (−2 logL + 2p)/M , and BIC = (−2 logL + p log M)/M , where L is the achieved likelihood,
and p is the number of free parameters of the model. Note that free parameters in the considered topic
models basically correspond to the entries of topics, and one more for LDA. Hence p = (V − 1)K + 1 for
LDA, while p − K for FSTM/PLSA is the number of non-zero entries of the learned topics.

10Perplexity of a model M is calculated on the testing set D by Perp(D|M) =
exp

(
−
∑

d∈D
log P (d|M)/

∑
d∈D

|d|
)
.
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Figure 4.4: Illustration of trading off sparsity against quality and time. More iterations
imply better quality, but probably denser topic proportions. Inference was done on AP,
where FSTM had been learned with 50 topics.

topics as previously discussed. In addition, we observed that the likelihoods achieved

by FSTM were often comparable with those by PLSA, while those by LDA were often

worst. Hence FSTM was evaluated better than other models according to BIC/AIC. For

PLSA and LDA, despite using more free parameters (dense topics) to model data, the

achieved likelihoods were not very significantly greater than those of FSTM. Therefore,

they are more likely prone to overfitting. The ability to avoid overfitting of FSTM in these

experiments supports further the theoretical analysis in Section 4.3, where an implicit

prior is argued to keep FSTM from overfitting.

The last row of Figure 4.3 shows perplexity obtained by three models. We observe that

PLSA consistently achieved better perplexity than LDA and FSTM. This seems unusual

since LDA is a Bayesian extension of PLSA and thus is often expected to have better

predictive power. Nonetheless, in our observations, at least two factors had contributed

to this inferior predictiveness: first, the variational Bayesian method [21] is not guaranteed

to find good solutions; second, the objective of inference in LDA is posterior probability

P (θ|d), not the likelihood P (d), while perplexity is mainly about likelihood. FSTM

achieved good predictive power. The inference algorithm of FSTM played a crucial role

in this good power, since it is guaranteed to find provably good solutions.

Trade-off: Figure 4.4 illustrates how FSTM trades off sparsity of solutions against

inference quality (measured by perplexity) and running time. Unsurprisingly, more iter-

ations means better quality but probably denser topic proportions. Note that the upper

bound on inference error in Theorem 6 is quite loose. However, in practice inference con-

verged very quickly, as observed in Figure 4.4. After 20 iterations on average, the quality

and sparsity level were almost stable. We rarely observed inference needed more than 100

iterations to reach convergence. This is an interesting behavior of FSTM and is appealing

to resolving large-scale settings.
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4.4.3 Classification

Next we investigate how well FSTM works in practical applications. Classification is a

traditional basic problem in Machine Learning. When applying topic models to classifi-

cation, it is common that unsupervised topic models often play the role as dimensionality

reduction. That is, we employ topic models to learn a new representation of data in the

topical space (of lower dimensions); then learning a classifier and classifying new docu-

ments are done on the reduced representation. We want to see how well FSTM keeps

important information of data for classification when doing dimensionality reduction.

To this end, we took 20Newsgroups and Webspam in consideration. Webspam is

a large dataset for large-scale classification, and hence we will deal with it later. For

comparison with PLSA and LDA, only 20Newsgroup was selected as it can be handled

by the learning algorithms of PLSA [51] and LDA [21]. With the same settings for topic

models as described before, and using the same classification algorithm [38], Figure 4.4.3

shows the accuracy as the number of topics increases.

Observing Figure 4.4.3, we realize that FSTM performed better than PLSA and LDA

in most cases. The achievement of FSTM was sometimes 6% improvement over those

of PLSA and LDA. Such a practical behavior demonstrates that FSTM can learn mean-

ingful representation of data. There are at least two reasons for the good performance

of FSTM. First, as investigated before, FSTM can generalize well on unseen data while

keeping low model complexity and comparable predictive power. Second, while inferring

topic proportions for documents, FSTM does simultaneously two nice jobs: feature ex-

traction and selection. Feature space here is the topical space, whereas selection relates

to sparse inference by the Frank-Wolfe algorithm. The ability to infer sparse solutions,

which are provably good, implies that inference in FSTM does feature selection. Such a

selection is local for each document. Figure 4.4.3 shows that FSTM always uses very few

features to represent documents whereas PLSA and LDA use most features. The bet-

ter performance in terms of classification accuracy illustrates that FSTM can do feature

selection considerably well.

4.5 Large-scale learning

We have seen that FSTM consistently inferred very sparse representations of documents

and learned sparse topics. It has a linear time inference algorithm, and learning of topics

amounts to multiplication of two sparse matrices. Therefore, those characteristics con-
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Figure 4.5: Classification on 20Newsgroups when topic models do dimensionality reduc-
tion. On the right shows how sparse the learned topic proportions are. We see that FSTM
used few features to represent documents while PLSA and LDA used most features. For
each number K of topics, document sparsity is averaged over 10 random runs.

tribute crucially to the scalability of FSTM. Moreover, we observe in Section 4.4 that

FSTM works qualitatively in practice. Therefore, we take a further step towards dealing

with very big models and large data.

In this section, we first describe a distributed architecture for learning large models

from large corpora. To further speed up learning for FSTM, we discuss the use of warm-

start for inference of documents. Empirical experiments in subsection 4.5.2 show that

such a technique boosts learning speed significantly while maintaining comparable quality.

Finally, we discuss some attractive results when learning FSTM with more than 33 billions

of variables from Webspam, and then doing large-scale classification.

4.5.1 A distributed architecture

We describe a distributed architecture, which is implemented using OpenMP, for large-

scale learning. Even though OpenMP is a shared memory model, we employ both data

parallelism and task parallelism schemes. This is possible because the learning algorithm

for FSTM is naturally distributable. Specifically,

- CPUs are grouped into clusters.

- There is a master which plays the key role as globally updating topics.

- Data is distributed across clusters.

- Each cluster c has its own subset Cc of data and subtopics. The cluster mainly does

inference for its data.

- Communication of a cluster with the master is only its subtopics.
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Figure 4.7: Workflow of the EM algorithm on the distributed architecture.

Here a subtopics refers to the parts of topics which are necessary to do inference for

documents of the associated cluster. Note that topics in FSTM are often very sparse.

Hence communication of subtopics are often compact. Figure 4.6 shows the proposed

architecture.

The workflow of the learning process is shown in Figure 4.7. Learning FSTM is to

repeat the EM iterations until convergence. Data is distributed to clusters before starting

learning. Each EM iteration consists of the following steps:

- All clusters retrieve necessary subtopics from the master.

- Each cluster c then does inference for its data, Cc, in parallel.
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- After inference, each cluster c computes the statistic ac
kj =

∑
d∈Cc

djθdk, and then

sends it to the master.

- The master collects statistics from all clusters and then reconstructs the global

topics as βkj ∝
∑

c ac
kj .

In our implementation, the number of clusters can be decided by the users. The more

clusters, the less data in each cluster and hence the faster inference. However, the overall

memory to store subtopics will increase consequently. Each cluster may have many CPUs

and thus parallel computation is exploited to do inference.

4.5.2 Boosting inference with warm-start

Warm-start is a popular technique for iterative algorithms. The core idea is to exploit

results of previous steps to improve computation/quality of the current step. A suit-

able exploitation can help us significantly reduce unnecessary computations in iterative

algorithms. We use this technique to further improve the learning speed for FSTM.

Our focus is on doing inference for documents. Note that for each EM iteration,

we have to do inference for each document individually. Hence a slight improvement

for the inference algorithm would be significant, especially for large data. Our idea to

reduce computations for inference is a novel replacement of the initial step of the inference

algorithm. For a document d, instead of choosing a vertex in the simplex of topics, we

select some of the topics appearing in θd, which has been inferred in the previous E-

step. Such an inheritance amounts to doing many steps in the inference algorithm. As a

consequence, we could save many computations for doing inference of a document. In our

implementation, at the initial step we remove all components of θd except ones which are

greater than a prescribed threshold ξ. From experiments, we find that ξ = 0.001 works

well.

Figure 4.8 shows some results when using warm-start. After 3 iterations, the time to

do an EM step decreases considerably as the number of iterations increases. Note that

the improvement over the original algorithm is often considerable. Meanwhile, the quality

in terms of likelihood is maintained comparably. Note further that the speed of reaching

convergence did not change even when warm-start is used. These phenomena were also

observed on other corpora. Besides, we find that when using warm-start, the affect on

sparsity of topics and topic proportions is negligible. Hence, those observations support

for the reliability of using warm-start to speed up learning.
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Figure 4.8: Quality and time as the number of EM iterations increase, when K = 100.
Bold lines show performance of the original learning algorithm. Dash lines show perfor-
mance when warm-start is used.

Table 4.4: Results of learning FSTM from Webspam.
Number of topics 1000 2000
Time per EM iteration 28 minutes 65 minutes
EM iterations to reach convergence 17 16
Topic sparsity 0.0165 0.0114
(compared with dense models) (60 times smaller) (87 times smaller)

Document sparsity 0.0054 0.0028
(compared with dense models) (185 times smaller) (357 times smaller)

Storage for the new representation (θ) 31.5 Mb 33.2 Mb
(compared with the original corpus) (757 times smaller) (718 times smaller)

Average length of topic proportions, s̄ 5.4 5.6
(compared with dense representations) (185 times smaller) (357 times smaller)

4.5.3 Large-scale experiments and classification

We now demonstrate the scalability of our implementation on large data of very high di-

mensions. Webspam is selected for experiments. This corpus consists of 350K documents

with more than 16 millions of terms, and hence serves well our purpose.

We learn FSTM with 1000 and 2000 topics, respectively. We emphasize that with

2000 topics, the model will consist of more than 33 billions of latent variables. Learning

such a model is really nontrivial. With the same setting, dense models such as LDA or

PLSA would pose various difficulties for storage, since all those 33 billions of variables

consume at least 130Gb of memory. Topics in FSTM are often very sparse, and thus is

manageable.

128 CPUs (each with 2.9 GHz) were used and grouped into 32 clusters. Each cluster

had to process about 11000 documents. Results of learning are presented in Table 4.4.

Observing the table, we find that learning reached convergence quickly. Topics and topic

proportions are very sparse. Note that the average number of topics contributing to
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Table 4.5: Large-scale classification on Webspam. Though reducing the dimensionality
drastically, the quality of classification is still comparably maintained.

Data Dimensions Storage Accuracy Classified by
Original Webspam 16609143 23.3 Gb 99.15% BMD [Yu et al. 2012]

When reducing dimensionality with FSTM
1000 topics 1000 31.5 Mb 98.877% FSTM + Liblinear
2000 topics 2000 33.2 Mb 99.146% FSTM + Liblinear

a documents changes insignificantly when increasing the number of topics from 1000 to

2000. This behavior is consistent with the fact that a document often talks about only few

topics, independent of how many topics the corpus is modeled. Since topic proportions

are very sparse, storage for the new representation of data is hundreds of times smaller

than the original one (23Gb).

Since Webspam is a supervised dataset, we conducted experiments for classification

either. We use the new representation of the corpus previously learned by FSTM to

be the input for Liblinear [38], resulting in FSTM + Liblinear method for classification

where FSTM plays the role as a dimensionality reduction subroutine. Using 5-folds cross-

validation and default settings for Liblinear, the results are shown in Table 4.5. One

can easily realize that in both cases, 1000 and 2000 topics, the average accuracy is very

good and is comparable with that by the most recent advanced method [124] which did

classification on the original data with dimensionality of 16 millions. These promising

results imply that information was not significantly lost when reducing dimensions from

16 millions to 2000. Note that FSTM used only few features to represent documents.

These observations suggest that FSTM can do well feature selection.

The promising result on large-scale classification and the good performance on average

data, investigated in Section 4.4, suggest that FSTM can work well in practice and can

infer very meaningful representations of documents. As a result, FSTM can provide us

a useful tool, not only a model of linguistic data but also a promising dimensionality

reduction approach, to efficiently deal with large-scale settings.

4.6 Summary

We have introduced fully sparse topic model (FSTM) for modeling large collections of

documents with very high dimensionality. FSTM overcomes many limitations of exist-

ing topic models, and has been demonstrated to work qualitatively on real data. The
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scalability of our model enables us to easily deal with large-scale settings.

Learning algorithms which are independent of dimensionality of the problems of inter-

est are highly desired. Those dimension-free algorithms are even much more crucial when

facing with data of extremely high dimensions. A discovery of such algorithms would be

of practically significant and would make a great progress for Machine Learning and Data

Mining. The near dimension-free learning algorithm, developed in this work, provides an

evidence for the existence of such dimension-free algorithms. Exploitation of sparsity of

data seems to be one of the keys when seeking such algorithms.

An implementation of FSTM is freely available at www.jaist.ac.jp/~s1060203/

codes/fstm.

64



Chapter 5

Probable convexity and application

to Correlated Topic Models

In this chapter we make a fresh view on posterior estimation in probabilistic models by

looking at the “practical properties” of the problem. Chapter 3 introduces the FW frame-

work for speedily doing a posteriori inference of topic mixtures. However, FW is limited to

models that the inference problem is naturally concave. For many topic models, posterior

estimation may not be concave and hence precludes the use of FW. This chapter intro-

duces a new framework for this situation, and then study CTM and related nonconjugate

models.

5.1 Introduction

Estimation of posterior distributions plays a central role when developing probabilistic

graphical models. With conjugate priors, we are likely able to derive efficient sampling

algorithms for estimation [44, 78]. When nonconjugate priors are used, the estimation

problem is much more difficult, as observed in the topic modeling literature by Ahmed

and Xing [4], Blei and Lafferty [18, 20], Putthividhya et al. [80, 81], Salomatin et al.

[86]. A popular approach is to cast estimation as an optimization problem. Nonetheless,

the resulting problems are often non-convex. Non-convexity poses various obstacles for

designing efficient algorithms, and does not allow us to directly exploit the nice theory of

convex optimization.

In this work, we introduce the framework of probable convexity that aims at two targets:

(1) to reveal how hard an optimization problem in practice is; (2) to support us smoothly
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employ efficient methods of convex optimization to deal with non-convex problems. The

probable convexity of a family F of real functions essentially says that most members of F

are convex. With such families, in practice we probably rarely meet non-convex functions

from F. We remark that in many situations (e.g., posterior estimation in graphical models)

we often has to deal with not only one but many members of a family at once. Hence

some appearances of non-convex members may not affect significantly the overall result.

Hence a direct employment of convex optimization is possible and beneficial. In other

words, we could do minimization efficiently for functions of F in practice.

We next use the framework to investigate estimation of posterior distributions in the

Correlated Topic Model (CTM) [18] and related non-conjugate models. In particular, we

study the problem of a posteriori estimating theta (topic mixture) for a given document:

θ∗ = arg maxθ Pr(θ|d). This is an MAP problem and is intractable for many models

in the worst case [91]. We show that under certain conditions, the objective function of

this MAP problem is in fact probably concave, i.e., concave with high probability. This

suggests that posterior estimation of theta may be tractable in practice. Similar results

are obtained for related nonconjugate topic models.

The cornerstone of our analyses of nonconjugate models is the logistic-normal function

which originates from the logistic-normal distribution [5]. We show in this work that

the logistic-normal function is probable concave under certain conditions. This result

may be of interest elsewhere and beneficial in practical applications, because the logistic-

normal distribution is used as an effective prior in many contexts including topic modeling

[18, 20, 64, 80, 81, 86] and grammar induction [29, 30].

As a consequence of our analysis, a novel algorithm for learning CTM is proposed.

This algorithm is surprisingly simple in which posterior estimation of theta is done by

Online Frank-Wolfe [47]. From empirical experiments we find that the new algorithm is

significantly faster than existing ones, while maintaining or making better the quality of

the learned models. This further suggests that even though MAP inference for CTM is

intractable in the worst case, most instances in practice may be resolved efficiently.

Organization: We present the concepts of probable convexity in Section 5.2.

Section 5.3 presents our analysis of the logistic-normal function. The study of CTM and

related nonconjugate models is presented in Section 5.4. The new algorithm for learning

CTM and experimental results are discussed in Section 5.5. The final section is for further

discussion and conclusion.
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5.2 Probable convexity

Let F(x; a) be a family of real functions defined on a set X ⊂ R
K , parameterized by a.

Each value of a determines a function f(x; a) of F(x; a).

Definition 6 (probable convexity). Let F(x; a) be a family of functions defined on a set

X ⊂ R
K, parameterized by a. Family F(x; a) is said to be probably convex if there exists

a positive constant p such that any element of F(x; a) is convex on X with probability at

least p. Equivalently, F(x; a) is said to be p-convex if any element of F(x; a) is convex on

X with probability at least p.

By definition, a family of convex functions is probably convex with probability 1. The

family F(x; a, b, c) = {ax2 + bx + c : a, b, c ∈ R} is probably convex with probability 1/2,

since convexity of this family is decided by the sign of a.

Definition 7 (almost sure convexity). Let F(x; a) be a family of functions defined on a

set X ⊂ R
K, parameterized by a. Family F(x; a) is said to be almost surely convex if any

element of F(x; a) is convex on X with probability 1.

It is easy to see that a family of convex functions is almost surely convex. By definition,

the family F(x; a, b, c) is not almost surely convex. If a family is almost surely convex,

almost all of its members are convex.

A family F(x; a) is said to be p-concave if the family −F(x; a) = {−f(x; a) : f(x; a) ∈

F(x; a)} is p-convex. One can easily realize that if F(x; a) is p-concave, then −F(x; a) is

p-convex and vice versa.

The concept of probable convexity applies equally to the cases of only one function. A

function f(x) is said to be p-convex in X if it is convex in X with probability at least p.

Similarly, function f(x) is said to be p-concave in X if it is concave in X with probability

at least p.

Convex optimization refers to minimizing a convex function over a convex domain. It is

also refers to maximizing a concave function over a convex domain. It has a long history

and has a rich foundation. Convex problems are often considered as being easy since

there exist various fast algorithms. The book by Boyd and Vandenberghe [24] provides

an excellent introduction to the field.
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5.3 Concavity of the logistic-normal function

We first consider probable convexity of the following function which is called logistic-

normal :

LN(x; µ,Σ) = −
1

2
(log x̃ − µ)tΣ−1(log x̃ − µ) −

K∑

k=1

log xk, (5.1)

where µ ∈ R
K−1,Σ ∈ S

K−1
+ ; x ∈ ∆K such that log x̃ ∼ N (µ,Σ). This function nat-

urally originates from the logistic-normal distribution [5], whose density is p(x; µ,Σ) ∝

exp(LN(x; µ,Σ)). Due to the broad use of this distribution in probabilistic modeling,

the logistic-normal function plays an important role in many contexts. Nonetheless, the

function itself is neither convex nor concave in ∆K . This is one of the main reasons for

why posterior estimation in nonconjugate models is often intractable.

By a thorough analysis of this function, we found the following property.

Theorem 8. Denote p = 1− e2 log(K−1)−0.5(λ−1)2/σ for λ = λK−1(Σ
−1) and σ = maxi Σ

−1
ii .

Function LN(x; µ,Σ) is p-concave over ∆K if λ ≥ 1.

This theorem essentially says that LN is in fact concave under some conditions. Note

that the quantity (λ − 1)2/σ is not always small. Indeed, letting λk(Σ
−1) be the kth

eigenvalue of Σ−1, we have Tr (Σ−1) =
∑K−1

k=1 λk(Σ
−1) =

∑K−1
k=1 Σ−1

kk . When the condition

number of Σ−1 is not large, λK−1(Σ
−1) and σ may be of the same order. This observation

suggests that the probability bound obtained in Theorem 8 is significant.

Corollary 5. With notations as in Theorem 8, function LN(x; µ,Σ) is almost surely

concave as λ2/σ → +∞.

In the case that the least eigenvalue λ is much larger than log(K − 1), function LN is

concave with high probability. More concretely, if λ2 = ω(σ log K), i.e., λ2/σ log K → +∞

as K → +∞, then exp {2 log(K − 1) − 0.5(λ − 1)2/σ} goes to 0. Hence the following

result holds.

Corollary 6. With notations as in Theorem 8, assume that λ2 = ω(σ log K). Function

LN(x; µ,Σ) is almost surely concave as K → +∞.
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5.3.1 Proof of Theorem 8

We will show probable concavity of LN by investigating concavity in common sense. Note

that the domain ∆K is convex, and function LN is twice differentiable over ∆K . Hence,

to see concavity, it suffices to show that the second derivative is negative semidefinite [24].

Let Σ−1
i be the ith row of Σ−1. The first and second partial derivatives of the function

w.r.t the variables are:

∂LN

∂xi

=

{
− 1

xi
Σ−1

i (log x̃ − µ) − 1
xi

, i < K
1

xK

∑K−1
h=1 Σ−1

h (log x̃ − µ) − 1
xK

, i = K

∂2LN

∂xi∂xj
=






−
Σ−1

ij

xixj
, i < K, i 6= j, j < K

1
x2

i

Σ−1
i (log x̃ − µ) −

Σ−1

ii

x2

i

+ 1
x2

i

, i < K, i = j
1

xixK

∑K−1
h=1 Σ−1

ih , i < K, j = K
1

xjxK

∑K−1
h=1 Σ−1

hj , i = K, j < K

− 1
x2

K

∑K−1
h=1 Σ−1

h (log x̃ − µ) − 1
x2

K

∑K−1
h=1

∑K−1
t=1 Σ−1

ht + 1
x2

K

, i = j = K.

Denote S =

(
Σ−1 st

K

sK sKK

)

; U =

(
Σ−1

sK

)

, where sK = −
∑K−1

t=1 Σ−1
t is the sum of

the rows of Σ−1, and sKK is the sum of all elements of Σ−1. We can express the second

derivative of LN as

LN ′′ = diag
1

x
.diag[U(log x̃ − µ)].diag

1

x
− diag

1

x
.S.diag

1

x
+ diag

1

x
.diag

1

x

= diag
1

x
. (IK − S + diag[U(log x̃ − µ)]) .diag

1

x
. (5.2)

A classical result in Algebra [1, exercise 8.28] says that for any symmetric A and

nonsingular Y , the product Y AY t is positive semidefinite if and only if A is positive

semidefinite. Consequently, the matrix IK − S + diag[U(log x̃ − µ)] decides negative

semidefiniteness of LN ′′.

Lemma 6. Denote z = Σ−1(log x̃−µ). LN ′′ is negative semidefinite if z1+· · ·+zK−1 ≥ 1

and IK−1 −Σ−1 + diag(z) ≤ 0.

Proof. As discussed before, matrix IK −S +diag[U(log x̃−µ)] decides negative definite-

ness of LN ′′. Letting zK = −z1 − · · · − zK−1 and 1 = (1, ..., 1)t ∈ R
K−1, we have
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A = IK − S + diag[U(log x̃ − µ)]

= IK − (IK−1 1)t
Σ−1 (IK−1 1) + diag(z1, ..., zK)

= (IK−1 1)t [
IK−1 −Σ−1 + diag(z)

]
(IK−1 1) +

(
0 −(z + 1)

−(z + 1)t zK + 1

)
(5.3)

Consider the last term C =

(
0 −(z + 1)

−(z + 1)t zK + 1

)

. This matrix is of size K ×K,

but has rank 2. It is not hard to see that all principle minors of C are 0, except the ones

which associate with the last two rows and columns. Those principle minors are zK + 1

and

∣∣∣∣∣
0 −zi − 1

−zi − 1 zK + 1

∣∣∣∣∣ = zK + 1 − (zi + 1)2 for i ∈ {1, ..., K − 1}. According to a

classical result in Algebra [1, exercise 8.32], C ≤ 0 if and only if all of its principle minors

are non-positive. Therefore C ≤ 0 if and only if zK + 1 ≤ 0.

If C and IK−1 − Σ−1 + diag(z) are negative semidefinite, so are A and LN ′′. This

suggests that if zK +1 ≤ 0 and IK−1−Σ−1 +diag(z) ≤ 0, then LN ′′ ≤ 0 which completes

the proof. (Q.E.D.)

Next we want to see under what conditions, matrix IK−1 − Σ−1 + diag(z) ≤ 0 with

the constraint of z1 + · · · + zK−1 ≥ 1. The following theorem reveals a property whose

detailed proof is presented in section 5.3.2.

Theorem 9. Let z be a Gaussian random variable with mean 0 and covariance matrix

A ∈ S
K−1
+ , and σ = maxi Aii. For a fixed S ∈ S

K−1
+ , consider B = IK−1 − S + diag(z).

Assuming λK−1(S) ≥ 1, we have

Pr(λ1(B) ≥ 0|z1 + · · ·+ zK−1 ≥ 1) ≤ exp
{
2 log(K − 1) − 0.5(1 − λK−1(S))2/σ

}
.

This theorem essentially says that under certain assumption, matrix B is negative

semidefinite with probability at least 1−exp
{
2 log(K − 1) − 0.5(1 − λK−1(S))2/σ

}
. Hence

we have enough tools to prove Theorem 8.

Proof of Theorem 8. Consider the logistic-normal function LN(x; µ,Σ), and denote λ =

λK−1(Σ
−1) and σ = maxi Σ

−1
ii . As discussed before, concavity of this function over ∆K

is decided by its second partial derivative LN ′′. Lemma 6 suggests that LN(x; µ,Σ) is

concave if z1 + · · ·+ zK−1 ≥ 1 and IK−1 −Σ−1 + diag(z) ≤ 0, where z = Σ−1(log x̃−µ).
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Note that Ez = 0 and cov(z) = Σ−1 since E log x̃ = µ and cov(log x̃) = Σ. Theorem

9 implies that with the constraint of z1 + · · · + zK−1 ≥ 1, IK−1 − Σ−1 + diag(z) ≤ 0

holds with probability at least 1 − exp
{
2 log(K − 1) − 0.5(1 − λ)2/σ

}
if λ ≥ 1. This

means assuming λ ≥ 1, function LN(x; µ,Σ) is concave with probability at least 1 −

exp
{
2 log(K − 1) − 0.5(1 − λ)2/σ

}
. (Q.E.D.)

5.3.2 Proof of Theorem 9

To prove this theorem we need the following result.

Lemma 7. Consider a Gaussian random vector z with mean 0 and covariance matrix

A ∈ S
K
+ . Let σi = Aii be the ith diagonal entry of A, and σ = maxi σi. Then for any real

a > 0, we have E Tr ea.diag(z) =
∑K

k=1 ea2σk/2 ≤ Kea2σ/2.

Proof. Note that

Tr ea.diag(z) = Tr

∞∑

i=0

ai

i!
diagi(z)

= Tr

∞∑

i=0

ai

i!
diag(zi

1, ..., z
i
K)

=
∞∑

i=0

ai

i!
Tr diag(zi

1, ..., z
i
K)

=
∞∑

i=0

ai

i!

K∑

k=1

zi
k =

K∑

k=1

∞∑

i=0

ai

i!
zi

k =
K∑

k=1

eazk

Hence E Tr ea.diag(z) = E
∑K

k=1 ea.zk =
∑K

k=1 Eea.zk .

By assumption, zk is a Gaussian variable with mean 0 and variance σk. Using the

generating function of Gaussian, we have Eea.zk = ea2σk/2. So substituting these quantities

into the expectation in the last paragraph completes the proof. (Q.E.D.)

Proof of Theorem 9. We have

Pr(λ1(B) ≥ 0|z1 + · · ·+ zK−1 ≥ 1) ≤ Pr(λ1(B) ≥ 0)

≤ inf
a>0

{
E Tr eaB

}

(Laplace transform method)

= inf
a>0

{
E Tr ea[IK−1−S+diag(z)]

}
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Pr(λ1(B) ≥ 0|z1 + · · ·+ zK−1 ≥ 1) ≤ inf
a>0

{
E
(
Tr ea[IK−1−S]. Tr ea.diag(z)

)}

(Corollary 1)

= inf
a>0

{
Tr ea[IK−1−S].E Tr ea.diag(z)

}

≤ inf
a>0

{
Tr ea[IK−1−S].(K − 1).ea2σ/2

}

(Lemma 7)

= inf
a>0

{
(K − 1).ea2σ/2. Tr ea[IK−1−S]

}

≤ inf
a>0

{
(K − 1).ea2σ/2.K.λ1(e

a[IK−1−S])
}

≤ inf
a>0

{
(K − 1)2.ea2σ/2.eλ1(a[IK−1−S])

}

(Spectral mapping theorem)

= inf
a>0

{
(K − 1)2.ea2σ/2.ea−aλK−1(S)

}

= inf
a>0

{
(K − 1)2.ea2σ/2+a−aλK−1(S)

}

= (K − 1)2 exp

{

−
(1 − λK−1(S))2

2σ

}

.

Note that the last equality is obtained by minimizing the function a2 σ
2

+ a − aλK−1(S)

for a > 0 conditioned on 1 ≤ λK−1(S). (Q.E.D.)

5.4 MAP inference of topic mixtures in CTM

We next study convexity of a family originated from the topic modeling literature. In

particular, we are interested in the problem of estimating topic mixtures (posterior distri-

butions) in correlated topic models (CTM) [18]. This problem is intractable by traditional

approaches [4, 18]. We will show that in fact this problem is tractable under some condi-

tions, by showing probable concavity of the objective function.

The correlated topic model assumes that a corpus is composed from K topics β1, ..., βK ,

and a document d arises from the following generative process:

1. Draw x|µ,Σ ∼ N (µ,Σ)

2. For the nth word of d:

• draw topic assignment zdn|x ∼ M(f(x))

• draw word wdn|zdn, β ∼ M(βzdn
).
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where N (µ,Σ) is the normal distribution with mean µ and covariance Σ; M(·) is the

multinomial distribution; f(x) maps a natural parameterization of the topic proportion

to the mean parameterization:

θ = f(x) =
ex

∑K
k=1 exk

. (5.4)

This logistic transformation maps a K-dimensional vector x to a (K−1)-dimensional vec-

tor θ. Hence various x’s can correspond to a single θ. Fixing xK = 0, the transformation

(5.4) means that θ follows the logistic-normal distribution [17]. According to Aitchison

and Shen [5], the density function of θ is thus

p(θ; µ, Σ) =
1√

det(2πΣ)
exp

(
−

1

2
(log θ̃ − µ)tΣ−1(log θ̃ − µ) −

K∑

k=1

log θk

)
, (5.5)

where µ ∈ R
K−1,Σ ∈ S

K−1
+ . Note that θ is derived from x by (5.4). Hence log θ̃ is a

normal random variable with mean µ and covariance Σ.

One of the most interesting tasks in this model is the posterior estimation of topic

mixtures for documents. More concretely, given the model parameters Υ = {β, µ,Σ}, we

are interested in the following problem for a given document d:

θ∗ = arg max
θ∈∆K

Pr(θ|d, Υ)

= arg max
θ∈∆K

Pr(θ, d|Υ) (5.6)

Lemma 8. Given a CTM model with parameters Υ = {β, µ,Σ} and a document d, the

MAP problem (5.6) can be reformulated as

θ∗ = arg max
θ∈∆K

∑

j

dj log

K∑

k=1

θkβkj −
1

2
(log θ̃ − µ)tΣ−1(log θ̃ − µ) −

K∑

k=1

log θk. (5.7)

Proof. We have

θ∗ = arg max
θ∈∆K

Pr(θ, d|Υ) = arg max
θ∈∆K

log Pr(θ, d|Υ) = arg max
θ∈∆K

log Pr(d|θ, Υ)+log Pr(θ|Υ).

Note that Pr(d|θ, Υ) =
∑

j dj log
∑K

k=1 θkβkj + c for some constant c, and the density of

the logistic-normal distribution is given in (5.5). Hence

θ∗ = arg max
θ∈∆K

∑

j

dj log
K∑

k=1

θkβkj−
1

2
(log θ̃−µ)tΣ−1(log θ̃−µ)−

K∑

k=1

log θk−
1

2
log det(2πΣ)+c.
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Since any point on the boundary of ∆K makes the objective function undefined and hence

is not optimal. Therefore, ignoring the boundary of ∆K and the constant in the objective

function completes the proof. (Q.E.D.)

Loosely speaking, Lemma 8 says that posterior estimation of topic mixtures in CTM

is in fact an optimization problem. The objective function is well-defined on ∆K . We

would like to remark that this function is neither concave nor convex in general. Hence

maximizing it over ∆K theoretically is intractable.

5.4.1 Some results

Let the model parameters Υ = {β, µ,Σ} be fixed, where βk ∈ ∆V , µ ∈ R
K−1,Σ ∈ S

K−1
+ .

Consider the following family, parameterized by d:

CTM(θ; d, Υ) = {f(θ; d, Υ) : θ ∈ ∆K , log θ̃ ∼ N (µ,Σ)}. (5.8)

where f(θ; d, Υ) =
∑

j dj log
∑K

k=1 θkβkj−
1
2
(log θ̃−µ)tΣ−1(log θ̃−µ)−

∑K
k=1 log θk. This

family contains all possible instances of the problem (5.7). Hence, analyzing this family

means analyzing the problem of estimating topic mixtures in CTM.

Consider a member f(θ; d, Υ). Note that d and β are always nonnegative in practices

of topic modeling. Hence the first term in f(θ; d, Υ) is always concave over ∆K . It

implies that concavity of f(θ; d, Υ) is heavily determined by the logistic-normal term

y = −1
2
(log θ̃ − µ)tΣ−1(log θ̃ − µ) −

∑K
k=1 log θk. If this term is concave, then f(θ; d, Υ)

is concave. Combining these observations with Theorem 8, Corollary 5, and Corollary 6,

we arrive at the following results for CTM.

Theorem 10. Let Υ be fixed, σ = maxi Σ
−1
ii , λ = λK−1(Σ

−1), and p = 1−e2 log(K−1)−0.5(λ−1)2/σ.

Assuming λ ≥ 1, family CTM(θ; d, Υ) is p-concave over ∆K .

Corollary 7. With notations as in Theorem 10, family CTM(θ; d, Υ) is almost surely

concave as λ2/σ → +∞.

Corollary 8. With notations as in Theorem 10, assume that λ2 = ω(σ log K). Family

CTM(θ; d, Υ) is almost surely concave as K → +∞.
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5.4.2 Implication to related models

Many nonconjugate models employ the Gaussian distribution to model correlation of

hidden topics, including those by Blei and Lafferty [20], Miao et al. [64], Putthividhya

et al. [80, 81], Salomatin et al. [86]. The analysis for CTM is very general for the case

of logistic-normal priors. Therefore, the results for CTM can be easily derived for other

nonconjugate topic models. Here we take DTM [20] and IFTM [80] into consideration as

two specific examples.

The Independent Factor Topic Model (IFTM) by Putthividhya et al. [80] is a variant

of CTM in which µ is replaced with µ′ = As + µ to model independent sources that

compose correlated topics. A slight modification to our analysis would yield interesting

results for the corresponding family, denoting Υ′ = {β, µ′,Σ},

IFTM(θ; d, Υ′) = {f(θ; d, Υ′) : θ ∈ ∆K , log θ̃ ∼ N (µ′,Σ)}.

Theorem 11. Let Υ′ be fixed, σ = maxi Σ
−1
ii , λ = λK−1(Σ

−1), and p = 1−e2 log(K−1)−0.5(λ−1)2/σ.

Assuming λ ≥ 1, family IFTM(θ; d, Υ′) is p-concave over ∆K .

The Dynamic Topic Model (DTM) by Blei and Lafferty [20] also employs Gaussian pri-

ors to model correlation. Those priors are separable, i.e., having diagonal covariance ma-

trices. Let DTM(θ; d, β, α, σ) be defined similarly with (5.8), where Σ−1 = diag(σ, ..., σ).

For this family, note that λK−1(Σ
−1) = σ. Hence, Theorem 10 implies

Theorem 12. For fixed {β, α, σ}, if σ ≥ 1 then family DTM(θ; d, β, α, σ) is probably

concave with probability at least 1 − e2 log(K−1)−0.5σ−0.5/σ+1.

5.5 A fast algorithm for learning CTM

In this section we discuss an application of the findings in Section 5.4 to designing an

efficient algorithm for learning CTM. Nonconjugacy of the prior over θ poses various

drawbacks and precludes using sampling techniques [18]. Hence Blei and Lafferty [18]

proposed to use variational Bayesian methods to approximate the posterior distributions

of latent variables. Variational Bayesian methods have been employed heavily for learning

many other nonconjugate models [20, 64, 80, 81, 86]. The use of simplified distributions

to approximate the true posterior often results in more parameters to be optimized when

learning a model. (For example, the method by Blei and Lafferty [18] maintains K
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Gaussian distributions for each document.) Hence it could be problematic when the

corpus is large.

Learning CTM and other related models can be made significantly simpler by using

our analysis. Indeed, to estimate the posterior (P (θ|d, Υ)) of topic mixtures, one can

exploit fast algorithms for convex optimization. The analysis in Section 5.4 provides a

theoretically reasonable justification for such an exploitation. Once θ had been inferred

for each document in the training data, one can follow the approach as in Chapter 4 to

estimate topics β. A Gaussian prior is also easily estimated when all θ of the training

documents are known.

5.5.1 Derivation of the algorithm

Our proposed algorithm for learning CTM is presented in Algorithm 5 which is an alterna-

tive algorithm similar to EM. This algorithm tries to maximize the following regularized

joint likelihood of the training corpus C:

L(β, µ,Σ) =
∑

d∈C

log Pr(θ, d|β, µ,Σ) −
M

2
α TrΣ−1

=
∑

d∈C

∑

j

dj log
K∑

k=1

θkβkj −
1

2

∑

d∈C

(log θ̃ − µ)tΣ−1(log θ̃ − µ)

−
M

2
log detΣ −

M

2
α TrΣ−1 + constant.

The main reason for imposing a regularization term α TrΣ−1 on the joint likelihood

is to control the eigenvalues of the learned Σ−1. Large α often prevents the eigenvalues

of Σ−1 from increasing. On the other hand, small values of α play the role as promoting

large eigenvalues of Σ−1. In the latter case, Corollary 7 and Corollary 8 suggest that

estimation of topic mixtures (θ) is more likely to be a concave problem, and thus can be

done efficiently.

In Step 1 which does posterior inference for each document, we use the Online Frank-

Wolfe algorithm [47] to maximize the joint probability Pr(θ, d|β, µ,Σ). This algorithm

theoretically converges to the optimal solutions, provided that the optimization problem

is concave.1

In Step 2, we fix θd which has been inferred for each document d ∈ C in Step 1,

1In practice we can approximate ∆K by ∆ǫ = {θ :
∑

K

k=1
θk = 1, θi ≥ ǫ, ∀i} for a very small constant

ǫ, says ǫ = 10−10. Hence the online Frank-Wolfe algorithm should be slightly modified accordingly.
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Algorithm 5 fCTM: a fast algorithm for learning correlated topic models

Input: a corpus C = {d1, ..., dM}, and a positive constant α.
Output: β, µ,Σ.
Initialize β, µ,Σ, and then alternate the following two steps until convergence.
Step 1: for each document d, use Algorithm 6 to solve for

θd = arg max
θ∈∆K

log Pr(θ, d|β, µ,Σ) (5.9)

Step 2: compute

βkj ∝
∑

d∈C

djθdk, (5.10)

µ =
1

M

∑

d∈C

log θ̃d, (5.11)

Σ = αIK−1 +
1

M

∑

d∈C

(log θ̃d − µ)(log θ̃d − µ)t. (5.12)

Algorithm 6 Online Frank-Wolfe

Input: document d, and model Υ = {β, µ,Σ}.
Output: θ that maximizes

f(θ) =
∑

j dj log
∑K

k=1 θkβkj −
1
2
(log θ̃ − µ)tΣ−1(log θ̃ − µ) −

∑K
k=1 log θk.

Initialize θ1 arbitrarily in ∆K .
for ℓ = 1, ...,∞ do

Pick fℓ uniformly from
{
∑

j dj log
∑K

k=1 θkβkj; −1
2
(log θ̃ − µ)tΣ−1(log θ̃ − µ) −

∑K
k=1 log θk}

F := 1
ℓ

∑ℓ
h=1 fh

i′ := arg maxi ∇F (θℓ)i; (maximal partial gradient)
α := 2/(ℓ + 2);
θℓ+1 := αei′ + (1 − α)θℓ.

end for

and maximize L(β, µ,Σ) to estimate the model parameters. Solving for β can be done

independently of µ,Σ. Hence by using the same argument as Than and Ho [100], we can

arrive at the formula (5.10) for updating topics. Maximizing the term relating to µ in

L(β, µ,Σ) will lead to (5.11) for updating µ.

Take Σ into consideration: Lα = −1
2

∑
d∈C(log θ̃d−µ)tΣ−1(log θ̃d−µ)−M

2
log det Σ−

M
2
α TrΣ−1. Its derivative with respect to Σ−1 is ∇Lα = −1

2

∑
d∈C(log θ̃d − µ)(log θ̃d −

µ)t + M
2
Σ − M

2
αIK−1. Solving ∇Lα = 0, one can derive (5.12) for updating Σ.
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Figure 5.1: Performance of fCTM and CTM on Grolier as the number of topics increases.
Lower is better for inference/learning time, whereas higher is better for likelihood and
coherence. For K = 100, CTM needed approximately 38 hours for learning, while fCTM
needed less than 19 minutes to complete learning.

5.5.2 Experiments

To see advantages of our algorithm (fCTM), we took the variational Bayesian method

(denoted as CTM) by Blei and Lafferty [18] into comparison. Four measures were used

for comparison: learning time, likelihood of the training data, inference time (Step 1) for

the testing data, and coherence [66] for measuring the quality of the learned topics.

The Grolier corpus was considered, for which 23024 documents were used for training,

and 6718 documents were held out for testing.2

Runtime. Figure 5.1 records some statistics from learning/inference results. We ob-

served that fCTM learn significantly faster than CTM. Similar behavior holds when doing

inference for each document. In our observations, fCTM often learns 65-135 times faster

than CTM. Speedy learning of fCTM can be explained by the fact that Step 1 is done

efficiently by the Online Frank-Wolfe algorithm. CTM did slowly because many auxiliary

parameters need to be optimized. Furthermore, the variational method for doing inference

is not guaranteed to converge quickly. Figure 5.1 shows that CTM often needs intensive

time to do inference.

Model quality. Likelihood and coherence are used to see the quality of models learned

from data. Coherence is used to assess quality (goodness and interpretability) of individual

topics. It has been observed to reflect well human assessment [66].

To calculate the coherence of a topic k, we first choose the set V k = {vk
1 , ..., v

k
t } of the

2We used the same convergence criteria for fCTM and CTM: relative improvement of objective func-
tions is less than 10−6 for inference of each document, and 10−3 for learning; at most 100 iterations are
allowed to do inference. We used default settings for some other parameters of CTM, and set α = 100 in
fCTM.
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Figure 5.2: Quality of individual topics learned by fCTM and CTM on Grolier for models
with 30 topics. Higher is better.

top t terms that have highest probabilities in that topic, and then compute

C(k, V k) =
M∑

m=2

m−1∑

l=1

log
D(vk

m, vk
l ) + 1

D(vk
l )

where D(v) is the document frequency of term v, D(u, v) is the number of documents

that contain both terms u and v. In our experiments, we chose top t = 20 terms for inves-

tigation, and coherence of individual topics is averaged: coherence = 1
K

∑K
k=1 C(k, V k).

Figure 5.1 shows the quality of the learned models. We observe that the two learning

methods performed comparably in terms of likelihood. However, the topic quality of

CTM is inferior to that of fCTM in terms of coherence. Note that topics learned by

fCTM consistently better than CTM. When investigating individual topics we find that

topics learned by CTM vary significantly in quality. Some topics seem not to be good

enough as depicted in Figure 5.2. In contrast, the quality of topics learned by fCTM does

not vary much.

Models of hidden interactions. Figure 5.3 and 5.4 shows parts of the full model with

100 topics learned by fCTM from Grolier. Figure 5.3 shows positive correlations between

topics, while Figure 5.4 shows negative correlations. We observe that the learned topics

are interpretable and the discovered correlations are reasonable. Those further support

that fCTM can learn qualitative models with a significantly faster speed than CTM.
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Figure 5.3: Illustration of the correlated topic model with 100 topics learned from Grolier articles. An edge connecting two topics
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Figure 5.4: Illustration of the correlated topic model with 100 topics learned from Grolier. An edge connecting two topics shows that
the two topics unlikely appear together in a document. This visualization was drawn with Graphviz [40]
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5.6 Summary

We have introduced a framework with the concept of probable convexity to analyze con-

vexity of real functions. The analysis can be used in many situations where the function

family of interest is not convex. It could help us to identify a subset of convex functions

from that non-convex family, and hence we could deal with the family efficiently in prac-

tice. Hence probable convexity provides a feasible way to deal with non-convexity of real

problems such as posterior estimation in probabilistic graphical models.

When applied to the problem of estimating topic mixtures in CTM [18], we found that

this problem is in fact concave with some probability. Hence in practice we can exploit

results from convex optimization to design efficient algorithms. The same results were

discussed with many nonconjugate models. Finally, we proposed a novel algorithm for

learning CTM which can work significantly faster than existing methods, while keeping

or making better the quality of the learned models.
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Chapter 6

Conclusion and future research

The thesis has systematically studied to model large collections of documents. To this

end, the thesis elucidated two fundamental problems that have to be resolved in order to

successfully develop scalable learning algorithms. The first problem is posterior inference

of topic mixtures, which essentially asks for uncovering what topics and how significantly

each contributes to a document. The second problem is model complexity which refers to

learn sparse topic models.

Chapter 3 introduces the FW framework for inferring sparse topic mixtures. The

framework has some properties that are attractive for large-scale modeling such as fast

convergence rate, a provable guarantee on inference quality, and the ability to directly

trade off sparsity of topic mixtures against quality. Goodness and flexibility of FW have

been demonstrated by two specific applications: designing effective methods for supervised

dimension reduction, and designing scalable learning algorithms for FSTM and CTM.

Chapter 5 discusses a novel theory of probable convexity to deal with the cases that

inference is inherently intractable. We have shown that posterior inference of topic mix-

tures in CTM and many nonconjugate models are tractable in practices, although the

problem is well-known intractable in the worse case. Benefits of this study is a novel

algorithm for learning correlated topic models. The scalability of this algorithm enables

us to easily make a large-scale analysis of hidden interactions of latent topics.

Chapter 4 introduces FSTM for modeling large corpora. The model overcomes many

limitations of existing topic models. More importantly, its learning algorithm is near

independent of the dimensionality of data. This property is very attractive as recent

applications often face with extremely high dimensional data. The distributed architecture

enables us to learn thousands of hidden topics from collections with millions of documents.
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Despite of significant achievements, the research remains some limitations and leaves

open many opportunities for future study. The followings are some of the limitations.

Fast inference of posteriors other than topic mixtures

The thesis has focused mostly on estimation of topic mixtures. However, for some models

and in some applications, it is necessary to estimate some other posterior distributions. We

left open the estimation of the z variable in topic models which are sometimes important

to know, because it shows what topic generates a specific occurrence of terms.

Incorporation of prior knowledge

FSTM is in a very initial form of topic models. It can be included as the core in more

complex models. Also there is no mechanism in FSTM to exploit domain (or prior)

knowledge to refine its quality. Hence it is an open direction for future research to include

prior knowledge into FSTM. An easy way is to encode prior knowledge into the objective

function of inference and then use the framework in Chapter 3 to do inference.

Learning when data and model do not fit in memory

Although the learning algorithm for FSTM is scalable, in its current form it is still hard to

manage oversize text collections as it requires data to be loaded into memory. Hence an

interesting research would be to propose online algorithms that can learn from sequential

data or extremely large collections.

From practical observations, we found that the learned topics in FSTM are pretty

dense. This would be problematic when we want to learn hundreds of thousands of topics

for the aim of topical exploration. Therefore, model sparsity should be studied further in

order to learn really big models from data.

84



Publications

[1] Khoat Than, Tu Bao Ho. Modeling the diversity and log-normality in data. Intel-

ligent Data Analysis: An International Journal, Vol. 18(6), 2014.

[2] Khoat Than, Tu Bao Ho, and Duy Khuong Nguyen. An effective framework for

supervised dimension reduction. Neurocomputing, accepted, 2013.

[3] Khoat Than and Tu Bao Ho. Fully sparse topic models. Journal of Machine

Learning Research, submitted, 2013.

[4] Khoat Than and Tu Bao Ho. Managing sparsity, time, and quality of inference in

topic models. arXiv:1210.7053 [stat.ML], 2013.

[5] Khoat Than and Tu Bao Ho. Probable convexity and its application to Correlated

Topic Models. Technical report, 2013.

[6] Khoat Than and Tu Bao Ho. A geometric interpretation of Bayesian classification

methods. Technical report, 2013.

[7] Khoat Than, Thi Nhan Le, Tatsuo Kanda, Tu Bao Ho. Classification and Discrim-

inative Analysis of Short Sequences using Topic Modeling. Tech. report, 2013.

[8] Duy Khuong Nguyen, Khoat Than, and Tu Bao Ho. Simplicial non-negative matrix

factorization. In Proceedings of the 10th IEEE RIVF, 2013.

[9] Khoat Than, Tu Bao Ho, Duy Khuong Nguyen, and Ngoc Khanh Pham. Supervised

dimension reduction with topic models. In ACML, volume 25 of Journal of Machine

Learning Research: W&CP, pages 395–410, 2012.

[10] Khoat Than and Tu Bao Ho. Fully sparse topic models. In ECML-PKDD, volume

7523 of Lecture Notes in Computer Science, pages 490–505. Springer, 2012.

[11] Khoat Than and Tu Bao Ho. Automatic construction of knowledge from large

unstructured data with topic modeling. In Proceedings of the 13th International

Symposium on Knowledge and System Sciences (KSS), Japan, 2012.

85



Bibliography

[1] Karim M. Abadir and Jan R. Magnus. Matrix Algebra. Cambridge University Press,

2005.

[2] Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, and Martin J. Wainwright.

Information-theoretic lower bounds on the oracle complexity of stochastic convex

optimization. Information Theory, IEEE Transactions on, 58(5):3235 –3249, may

2012. ISSN 0018-9448. doi: 10.1109/TIT.2011.2182178.

[3] Deepak Agarwal and Bee-Chung Chen. fLDA: matrix factorization through latent

dirichlet allocation. In The third ACM International Conference on Web Search

and Data Mining, pages 91–100. ACM, 2010.

[4] Amr Ahmed and Eric Xing. On tight approximate inference of the logistic-normal

topic admixture model. In AISTATS, volume 2 of Journal of Machine Learning

Research: W&CP, pages 19–26, 2007.

[5] J Aitchison and Sheng M Shen. Logistic-normal distributions: Some properties and

uses. Biometrika, 67(2):261–272, 1980.

[6] David Aldous. Exchangeability and related topics. In École d’Été de Probabilités de
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Appendix A

Modeling the diversity and

log-normality in data

This part presents a study to model two properties of data. The main result is a new topic

model for which posterior inference for documents is accelerated by employing variational

methods.

A.1 Introduction

Topic models often consider a given corpus to be composed of latent topics, each of which

turns out to be a distribution over words. A document in that corpus is a mixture of

these topics. These in some models imply that the order of the documents in a corpus

does not play an important role. Further, the order of the words in a specific document

is often discarded.

One of the most influential models having the above-mentioned assumptions is the

Latent Dirichlet Allocation model (LDA) [21]. LDA assumes that each latent topic is

a sample drawn from a Dirichlet distribution, and that the topic proportions in each

document are samples drawn from a Dirichlet distribution as well. This interpretation of

topic-word distributions has been utilized in many other models, such as the Correlated

Topic Model (CTM) [17], the Independent Factor Topic Model (IFTM) [79], DCMLDA

[35], Labeled LDA [82], and fLDA [3].
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A.1.1 Forgotten characteristics of data

Geologists have shown that the concentration of elements in the Earth’s crust distributes

very skewed and fits the lognormal distribution well. The latent periods of many infectious

diseases also follow lognormal distributions. Moreover, the occurrences of many real events

have been shown to be log-normally distributed, see [60] and [55] for more information.

In linguistics, the number of words per sentence, and the lengths of all words used in

common telephone conversations, fit lognormal distributions. Recently, the number of

different words per document in many collections has been observed to very likely follow

the lognormal distribution as well [34]. These observations suggest that log-normality is

present in many data types.

Another inherent property of data is the “diversity” of features (or attributes). Loosely

speaking, diversity of a feature in a dataset is essentially the number of different values

of that feature observed in the records of that dataset. For a text corpus, high diversity

of a word means a high number of different frequencies observed in the corpus.1 The

high diversity of a word in a corpus reveals that the word may play an important role

in that corpus. The diversity of a word varies significantly among different corpora with

respect to the importance of that word. Nonetheless, to the best of our knowledge, this

phenomenon has not been investigated previously in the machine learning literature.

In the topic modeling literature, log-normality and diversity have not been under con-

sideration up to now. We will see that despite the inherent importance of the diversity

of data, existing topic models are still far from appropriately capturing it. Indeed, in

our investigations, the most popular LDA behaved inconsistently with respect to diver-

sity. Higher diversity did not necessarily assure a consistently better performance or a

consistently worse performance. Beside, LDA tends to favor data of low diversity. This

phenomenon may be reasonably explained by the use of the Dirichlet distribution to gen-

erate topics. Such a distribution often generates samples of low diversity, see Section A.4

for detailed discussions. Hence the use of the Dirichlet distribution implicitly sets a severe

setback on LDA in modeling data with high diversity.

1For example, the word “learning” has 71 different frequencies observed in the NIPS corpus [11]. This
fact suggests that “learning” appears in many documents of the corpus, in fact 1153 documents, and that
many documents contain this word with very high frequencies, e.g. more than 50 occurrences. Hence,
this word would be important in the topics of NIPS.

99



A.1.2 Our contributions

In this work, we address those issues by using the lognormal distribution. A rationale for

our approach is that such distribution often allows its samples to have high variations,

and hence is able to capture well the diversity of data. For topic models, we posit that the

topics of a corpus are samples drawn from the lognormal distribution. Such an assumption

has two aspects: one is to capture the lognormal properties of data, the other is to better

model the diversity of data. Also, this treatment leads to a new topic model, named

Dirichlet-Lognormal topic model (DLN).

By extensive experiments, we found that the use of the lognormal distribution really

helps DLN to capture the log-normality and diversity of real data. The greater the

diversity of the data, the better prediction by DLN; the more log-normally distributed

the data is, the better the performance of DLN. Further, DLN worked consistently with

respect to diversity of data. For these reasons, the new model overcomes the above-

mentioned drawbacks of LDA. Summarizing, our contributions are as follows:

• We introduce and carefully investigate an inherent property of data, named “diver-

sity”. Diversity conveys many important characteristics of real data. In addition,

we extensively investigate the existence of log-normality in real datasets.

• We investigate the behaviors of LDA, and find that LDA behaves inconsistently

with respect to diversity. These investigations highlight the fact that “diversity” is

not captured well by existing topic models, and should be paid more attention.

• We propose a new variant of LDA, called DLN. The new model can capture well

the diversity and log-normality of data. It behaves much more consistently than

LDA does. This shows the benefits of the use of the lognormal distribution in topic

models.

Roadmap: In the next section, some notations and definitions will be introduced.

Some characteristics of some real datasets will be investigated in Section A.3. By those

investigations, we will see the necessity of more attention to diversity and log-normality of

data. Insights into the lognormal and Dirichlet distributions will be discussed in Section

A.4. Also we will see the rationales of using the lognormal distribution to cope with

diversity and log-normality. Section A.5 is dedicated to presenting the DLN model. Our

experimental results and comparisons will be described in Section A.6. Further discussions

are in Section A.7. Section A.8 is a brief review of the literature. The last section will

show our conclusions.
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A.2 Definitions

Each dataset D = {d1, d2, ..., dD} is a set of D records, composed from a set of features,

A = {A1, A2, ..., AV }; each record di = (di1, ..., diV ) is a tuple of which dij is a specific

value of the feature Aj .

Diversity is the main focus of this article. Here we define it formally in order to avoid

confusion with the other possible meanings of this word.

Definition 8 (Observed value set). Let D = {d1, d2, ..., dD} be a dataset, composed from

a set A of features. The observed value set of a feature A ∈ A, denoted OVD(A), is the

set of all values of A observed in D.

Note that the observed value set of a feature is very different from the domain that

covers all possible values of that feature.

Definition 9 (Diversity of feature). Let D be a dataset, and be composed from a set A

of features. The diversity of the feature A in the data set D is

DivD(A) =
|OVD(A)|

|D|

Clearly, diversity of a feature defined above is the normalized version of the number

of different values of that feature in the data set. This concept is introduced in order to

compare different datasets.

The diversity of a dataset is defined via averaging the diversities of the features of that

dataset. This number will provide us an idea about how variation a given dataset is.

Definition 10 (Diversity of dataset). Let D be a dataset, composed from a set A of

features. The diversity of the dataset D is

DivD = average{DivD(A) : A ∈ A}

Note that the concept of diversity defined here is completely different from the concept

of variance. Variance often relates to the variation of a random variable from the true sta-

tistical mean of that variable whereas diversity provides the extent of variation in general

of a variable. Furthermore, diversity only accounts for a given dataset, whereas vari-

ance does not. The diversity of the same feature may vary considerably among different

datasets.
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By means of averaging over all features, the diversity of a dataset surfers from outliers.

In other words, the diversity of a dataset may be overly dominated by very few features,

which have very high diversities. In this case, the diversity is not a good measure of the

variation of the considered dataset. Overcoming this situation will be our future work.

We will often deal with textual datasets in this work. Hence, for the aim of clarity, we

adapt the above definitions for text and discuss some important observations regarding

such a data type.

If the dataset D is a text corpus, then the observed value set is defined in terms of

frequency. We remark that in this work each document is represented by a sparse vector

of frequencies, each component of which is the number of occurrences of a word occurred

in that document.

Definition 11 (Observed frequency set). Let C = {d1, d2, ..., dM} be a text corpus of size

M , composed from a vocabulary V of V words. The observed frequency set of the word

w ∈ V, denoted OVC(w), is the set of all frequencies of w observed in the documents of C.

OVC(w) = {freq(w) : ∃di that contains exactly freq(w) occurrences of w}

In this definition, there is no information about how many documents have a certain

freq(w) ∈ OVC(w). Moreover, if a word w appears in many documents with the same

frequency, the frequency will be counted only once. The observed frequency set tells

much about the behavior and stability of a word in a corpus. If |OVC(w)| is large, w must

appear in many documents of C. Moreover, many documents must have high frequency

of w. For example, if |OVC(w)| = 30, w must occur in at least 30 documents, many of

which contain at least 20 occurrences of w.

Definition 12 (Diversity of word). Let C be a corpus, composed from a vocabulary V.

The diversity of the word w ∈ V in the corpus is

DivC(w) =
|OVC(w)|

|C|

Definition 13 (Diversity of corpus). Let C be a corpus, composed from a vocabulary V.

The diversity of the corpus is

DivC = average{DivC(w) : w ∈ V}

It is easy to see that if a corpus has high diversity, a large number of its words would

have a high number of different frequencies, and thus have high variations in the corpus.
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These facts imply that such kind of corpora seem to be hard to deal with. Moreover,

provided that the sizes are equal, a corpus with higher diversity has higher variation, and

hence may be more difficult to model than a corpus with lower diversity. Indeed, we will

see this phenomenon in the later analyses.

In this work, we will often mention lognormal and Dirichlet distributions. Hence we

include here their mathematical definitions. The lognormal distribution of a random

variable x = (x1, ..., xn)T , with parameters µ and Σ, has the following density function

LN(x; µ,Σ) =
1

(2π)
n
2

√
|Σ|x1...xn

exp {−
1

2
(log x − µ)TΣ−1(log x − µ)}.

Similarly, the density function of the Dirichlet distribution is

Dir(x; α1, . . . , αn) =
Γ
(∑n

i=1 αi

)
∏n

i=1 Γ(αi)

n∏

i=1

xαi−1
i ,

where
∑n

i=1 xi = 1, xi > 0. The constraint means that the Dirichlet distribution is in fact

in (n − 1)-dimensional space.

A.3 Diversity and Log-normality of real data

We first describe our initial investigations on 5 real datasets from the UCI Machine Learn-

ing Repository [11] and Blei’s webpage.2 Some information on these datasets is reported

in Table A.1, in which the last two rows have been averaged. In fact, the Communities

and Crime dataset (Comm-Crime for short) is not a usual text corpus. This data set

contains 1994 records each of which is the information of a US city. There are 123 at-

tributes, some of which are missing for some cities [84]. In our experiments, we removed

the attributes from all records if they are missing in some records. Also, we removed the

first 5 non-predictive attributes, and the remainings consist of only 100 real attributes

including crime.

Our initial investigations studied the diversity of the above data sets. These three

textual corpora, AP, NIPS, and KOS, were preprocessed to remove all function words

and stopwords, which are often assumed to be meaningless to the gists of the documents.

The remaining are content words. Some statistics are given in Table A.2.

2The AP corpus: http://www.cs.princeton.edu/∼blei/lda-c/ap.tgz
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Table A.1: Datasets for experiments.
Data set AP NIPS KOS SPAM Comm-Crime
Number of documents 2246 1500 3430 4601 1994
Vocabulary size 10473 12419 6906 58 100
Document length 194.05 1288.24 136.36
#unique words per doc 134.48 497.54 102.96

Table A.2: Statistics of the 3 corpora. Although NIPS has least documents among the
three corpora, all of its statistics here are much greater than those of the other two
corpora.

Data set AP KOS NIPS
Diversity 0.0012 0.0011 0.004
No. of words with |OV | ≥ 5 1267 1511 5900
No. of words with |OV | ≥ 10 99 106 1633
No. of words with |OV | ≥ 20 1 4 345
Three greatest |OV |’s {25; 19; 19} {26; 21; 21} {86; 80; 71}

One can easily realize that the diversity of NIPS is significantly larger than that of AP

and KOS. Among 12419 words of NIPS, 5900 words have at least 5 different frequencies;

1633 words have at least 10 different frequencies.3 These facts show that a large number

of words in NIPS vary significantly within the corpus, and hence may cause considerable

difficulties for topic models.

AP and KOS are comparable in terms of diversity. Despite this fact, AP seems to have

quite greater variation compared with KOS. The reason is that although the number of

documents in AP is nearly 10/15 of that in KOS, the number of words with |OV | ≥ 5 in

AP is approximately 12/15 of that in KOS. Furthermore, KOS and AP have nearly the

same number of words with |OV | ≥ 10. Another explanation for the larger variation of AP

over KOS is is that the documents in AP are much longer on average than those of KOS,

see Table A.1. Longer documents would generally provide more chances for occurrences

of words, and thus would probably encourage greater diversity for a corpus.

Comm-Crime and SPAM are non-textual datasets. Their diversities are 0.0458 and

0.0566, respectively. Almost all attributes have |OV | ≥ 30, except one in each data set,

and the greatest |OV | in SPAM is 2161 which is far greater than that in the textual

counterparts. The values of attributes are mostly real numbers, and vary considerably.

This is why their diversities are much larger than those of textual corpora.

The next investigations were on how individual content words distribute in a corpus.

3The three words which have greatest number of different frequencies, |OV |, are “network”, “model”,
and “learning”. Each of these words appears in more than 1100 documents of NIPS. To some extent,
they are believed to compose the main theme of the corpus with very high probability.
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Figure A.1: Distributions of some attributes in Comm-Crime and SPAM. Bold curves are
the histograms of the attributes. Thin curves are the best fitted Lognormal distributions;
dashed curves are the best fitted Beta distributions.

We found that many words (attributes) of SPAM and Comm-Crime very likely follow

lognormal distributions. Figure A.1 shows the distributions of some representative words.

To see whether or not these words are likely log-normally distributed, we fitted the data

with lognormal distributions by maximum likelihood estimation. The solid thin curves in

the figure are density functions of the best fitted lognormal distributions. We also fitted

the data with the Beta distribution.4 Interestingly, Beta distributions, as plotted by

dashed curves, fit data very badly. By more investigations, we found that more than 85%

of attributes in Comm-Crime very likely follow lognormal distributions. This amount

in SPAM is 67%. For AP, NIPS and KOS, not many words seem to be log-normally

distributed.

A.4 Insights into the Lognormal and Dirichlet distri-

butions

The previous section provided us an overview on the diversity and log-normality of the

considered datasets. Diversity differs from dataset to dataset, and in some respects rep-

resents characteristics of data types. Textual data often have much less diversity than

non-textual data. There are non-negligible differences in terms of diversity between text

corpora. We also have seen that many datasets have many log-normally distributed

properties. These facts raise an important question of how to model well diversity and

log-normality of real data.

Taking individual attributes (words) into account in modeling data, one may imme-

diately think about using the lognormal distribution to deal with the log-normality of

data. This naive intuition seems to be appropriate in the context of topic modeling. As

4Note that Beta distributions are 1-dimensional Dirichlet distributions. We fitted the data with this
distribution for the aim of comparison in terms of goodness-of-fit between the Dirichlet and lognormal
distributions.
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Figure A.2: Illustration of two distributions in the 2-dimensional space. The top row are
the Dirichlet density functions with different parameter settings. The bottom row are the
Lognormal density functions with parameters set as µ = 0,Σ = Diag(σ).

we shall see, the lognormal distribution is not only able to capture log-normality, but also

able to model well diversity. Justifications for those abilities may be borrowed from the

characteristics of the distribution.

Attempts to understand the lognormal and Dirichlet distributions were initiated. We

began by illustrating the two distributions in 2-dimensional space. Depicted in Figure A.2

are density functions with different parameter settings.

As one can easily observe, the mass of the Dirichlet distribution will shift from the

center of the simplex to the corners as the values of the parameters decrease. Conversely,

the mass of the lognormal distribution will shift from the origin to regions which are

far from the origin as σ decreases. From more careful observations, we realized that the

lognormal distribution often has long (thick) tails as σ is large, and has quickly-decreased

thin tails as σ is small. Nonetheless, the reverse phenomenon is the case for the Dirichlet

distribution.

The tails of a density function tell us much about that distribution. A distribution

with long (thick) tails would often generate many samples which are outside of its mass.

This fact suggests that the variations of individual random variables in such a multivari-

ate distribution might be large. As a consequence, such probability distributions often

generate samples of high diversity.

Unlike distributions with long tails, those with short (thin) tails considerably restrict
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Table A.3: Synthetic datasets originated from the Beta and lognormal distributions. As
shown in this table, the Beta distribution very often yielded the same samples. Hence it
generated datasets with diversity which is often much less than the number of attributes.
Conversely, the lognormal distribution sometimes yielded repeated samples, and thus
resulted in datasets with very high diversity.

Dataset Drawn from #Documents #Attributes Diversity
1 lognormal 1000 200 193.034
2 beta 1000 200 82.552
3 lognormal 5000 200 193.019
4 beta 5000 200 82.5986
5 lognormal 5000 2000 1461.6
6 beta 5000 2000 456.6768

variations of theirs samples. This implies that individual random variables in such dis-

tributions may be less free in terms of variation than those in long-tail distributions.

Therefore, probability distributions with short thin tails are likely to generate samples of

low diversity.

The above arguments suggest at least two implications. First, the lognormal distribu-

tion probably often generates samples of high diversity, and hence is capable of modeling

high diversity data, since it often has long (thick) tails. Second, the Dirichlet distribution

is appropriate to model data of low diversity like text corpora. As a result, it seems to

be inferior in modeling data of high diversity, compared with the lognormal distribution.

With the aim of illustrating the above conclusions, we simulated an experiment as fol-

lows. Using tools from Matlab, we made 6 synthetic datasets from samples organized into

documents. 3 datasets were constructed from samples drawn from the Beta distribution

with parameters α = (0.1, 0.1); the others were from 1-dimensional lognormal distribution

with parameters µ = 0, σ = 1. All samples were rounded to the third decimal. Note that

the Beta distribution is the 1-dimensional Dirichlet distribution. Some information of the

6 synthetic datasets is reported in Table A.3. Observe that with the same settings, the

lognormal distribution gave rise to datasets with significantly higher diversity than the

Beta distribution. Hence, this simulation supports further our conclusions above.

A.5 The DLN model

We have discussed in Section A.4 that the Dirichlet distribution seems to be inappropriate

with data of high diversity. It will be shown empirically in the next section that this

distribution often causes a topic model to be inconsistent with respect to diversity. In
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Figure A.3: Graphical model representations of DLN and LDA.

addition, many datasets seem to have log-normally distributed properties. Therefore, it

is necessary to derive new topic models that can capture well diversity and log-normality.

In this section, we describe a new variant of LDA, in which the Dirichlet distribution used

to generate topics is replaced with the lognormal distribution.

Similar with LDA, the DLN model assumes the bag-of-words representations for both

documents and corpus. Let C be a given corpus that consists of M documents, composed

from the vocabulary V of V words. Then the corpus is assumed to be generated by the

following process:

1. For each topic k ∈ {1, ..., K}, choose

βk|µk,Σk ∼ LN(µk,Σk)

2. For each document d in the corpus:

(a) Choose topic proportions θd|α ∼ Dir(α)

(b) For the nth word wdn in the document,

• Choose topic index zdn|θd ∼ Mult(θd)

• Generate the word

wdn|β, zdn ∼ Mult(f(βzdn
)).

Here f(·) is a mapping which maps βk to parameters of multinomial distributions. In

DLN, the mapping is

f(βk) =
βk∑V

j=1 βkj

.

The graphical representation of the model is depicted in Figure A.3. We note that

the distributions used to endow the topics are the main differences between DLN and

LDA. Using the lognormal distribution also results in various difficulties in learning the

model and inferring new documents. To overcome those difficulties, we used variational

methods.
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A.5.1 Variational method for learning and posterior inference

There are many learning approaches to a given model. Nonetheless, the lognormal distri-

bution used in DLN is not conjugate with the multinomial distribution. So learning the

parameters of the model is much more complicated than that of LDA. We use variational

methods [110] for our model.

The main idea behind variational methods is to use simpler variational distributions to

approximate the original distributions. Those variational distributions should be tractable

to learn their parameters, but still give good approximations.

Let C be a given corpus of M documents, say C = {w1, ..., wM}. V is the vocabulary

of the corpus and has V words. The jth word of the vocabulary is represented as the jth

unit vector of the V -dimensional space RV . More specifically, if wj is the jth word in the

vocabulary V and wi
j is the ith component of wj , then wi

j = 0 for all i 6= j, and wj
j = 1.

These notations are similar to those in [21] for ease of comparison.

The starting point of our derivation for learning and inference is the joint distribution

of latent variables for each document d, P (zd, θd, β|α, µ,Σ). This distribution is so

complex that it is intractable to deal with. We will approximate it by the following

variational distribution:

Q(zd, θd, β|φd, γd, µ̂, Σ̂) = Q(θd|γd)Q(zd|φd)

K∏

k=1

Q(βk|µ̂k, Σ̂k)

= Q(θd|γd)

Nd∏

n=1

Q(zdn|φdn)
K∏

k=1

V∏

j=1

Q(βkj|µ̂kj, σ̂
2
kj)

Where Σ̂k = diag(σ̂2
k1, ..., σ̂

2
kV ), µ̂k = (µ̂k1, ..., µ̂kV )T ∈ RV . The variational distribu-

tion of discrete variable zdn is specified by the K-dimensional parameter φdn. Likewise,

the variational distribution of continuous variable θd is specified by the K-dimensional pa-

rameter γd. The topic-word distributions are approximated by much simpler variational

distributions Q(βk|µ̂k, Σ̂k) which are decomposable into 1-dimensional lognormals.

We now consider the log likelihood of the corpus C given the model {α, µ,Σ}.
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log P (C|α, µ,Σ) =
M∑

d=1

log P (wd|α, µ,Σ)

=

M∑

d=1

log

∫
dθd

∫
dβ
∑

zd

P (wd, zd, θd, β|α, µ,Σ)

=
M∑

d=1

log

∫
dθd

∫
dβ
∑

zd

P (wd, Ξ|α, µ,Σ)
Q(Ξ|Λ)

Q(Ξ|Λ)
.

Where we have denoted Ξ = {zd, θd, β}, Λ = {φd, γd, µ̂, Σ̂}. By Jensen’s inequality

[110] we have

log P (C|α, µ,Σ) ≥
M∑

d=1

∫
dθd

∫
dβ
∑

zd

Q(Ξ|Λ) log
P (wd, Ξ|α, µ,Σ)

Q(Ξ|Λ)

≥
M∑

d=1

[EQ log P (wd, Ξ|α, µ,Σ) − EQ log Q(Ξ|Λ)] . (A.1)

The task of the variational EM algorithm is to optimize the equation (A.1), i.e., to

maximize the lower bound of the log likelihood. The algorithm alternates E-step and

M-step until convergence. In the E-step, the algorithm tries to maximize the lower bound

w.r.t variational parameters. Then for fixed values of variational parameters, the M-step

maximizes the lower bound w.r.t model parameters. In summary, the EM algorithm for

the DLN model is as follows.

• E-step: maximize the lower bound in (A.1) w.r.t φ, γ, µ̂, Σ̂.

• M-step: maximize the lower bound in (A.1) w.r.t α, µ,Σ.

• Iterate these two steps until convergence.

Note that DLN differs from LDA only in topic-word distributions. Thus φ, γ, and α

can be learnt as in [21], with a slightly different formula for φ.

φdni ∝

[
µ̂iν − log

V∑

t=1

exp(µ̂it +
1

2
σ̂2

it)

]
exp

(
Ψ(γdi) − Ψ(

K∑

j=1

γdj)

)
(A.2)
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To complete the description of the learning algorithm for DLN, we next deal with the

remaining variational parameters and model parameters. For the aim of clarity, we begin

with the lower bound in (A.1).

EQ log P (wd, Ξ|α, µ,Σ) = EQ log P (wd|zd, β) + EQ log P (zd|θd)

+EQ log P (θd|α) + EQ log P (β|µ,Σ)

EQ log Q(Ξ|φd, γd, µ̂, Σ̂) = EQ log Q(zd|φd) + EQ log Q(θd|γd)

+
K∑

i=1

EQ log Q(βi|µ̂i, Σ̂i)

Thus the log likelihood now is

log P (C|α, µ,Σ) ≥
M∑

d=1

EQ log P (wd|zd, β)

−
M∑

d=1

[KL (Q(zd|φd)||P (zd|θd)) − KL (Q(θd|γd)||P (θd|α))]

−
M∑

d=1

K∑

i=1

KL
(
Q(βi|µ̂i, Σ̂i)||P (βi|µi,Σi)

)
(A.3)

Where KL(·||·) is the Kullback-Leibler divergence of two distributions. Since Q(zd|φd)

and P (zd|θd) are multinomial distributions, according to [74], we have

KL (Q(zd|φd)||P (zd|θd)) =

Nd∑

n=1

K∑

i=1

φdni log φdni −

Nd∑

n=1

K∑

i=1

φdni

[

Ψ(γdi) − Ψ(

K∑

t=1

γdt)

]

(A.4)

Where Ψ(·) is the digamma function. Note that the first term is the expectation of

log Q(zd|φd), and the second one is the expectation of log P (zd|θd) for which we have

used the expectation of the sufficient statistics EQ[log θdi|γd] = Ψ(γdi) − Ψ(
∑K

t=1 γdt) for

the Dirichlet distribution [21].
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Similarly, for Dirichlet distributions as implicitly shown in [21],

KL (Q(θd|γd)||P (θd|α)) =

− log Γ(

K∑

i=1

αi) +

K∑

i=1

log Γ(αi) −
K∑

i=1

(αi − 1)

(

Ψ(γdi) − Ψ(

K∑

t=1

γdt)

)

+ log Γ(

K∑

j=1

γdj) −
K∑

i=1

log Γ(γdi) +

K∑

i=1

(γdi − 1)

(
Ψ(γdi) − Ψ(

K∑

t=1

γdt)

)
(A.5)

By a simple transformation, we can easily show that the KL divergence of two log-

normal distributions, Q(β|µ̂, Σ̂) and P (β|µ,Σ), is equal to that of other normal distri-

butions, Q∗(β|µ̂, Σ̂) and P ∗(β|µ,Σ). Hence using the KL divergence of two Normals as

in [75], we obtain the divergence of two lognormal distributions.

KL
(
Q(βi|µ̂i, Σ̂i)||P (βi|µi,Σi)

)

=
1

2
log |Σ̂

−1

i Σi| +
1

2
Tr
(
(Σ̂

−1

i Σi)
−1
)
−

V

2
+

1

2
(µ̂i − µi)

TΣ−1
i (µ̂i − µi) (A.6)

Where Tr(A) is the trace of the matrix A.

The remaining term in (A.3) is the expectation of the log likelihood of the document

wd. To find more detailed representations, we observe that, since βi is a log-normally

random variable,

EQ log βij = µ̂ij, j ∈ {1, ..., V }

EQ log

V∑

t=1

βit = log exp

(
EQ log

V∑

t=1

βit

)
(A.7)

≤ log EQ

V∑

t=1

βit (A.8)

≤ log
V∑

t=1

exp(µ̂it + σ̂2
it/2) (A.9)

Note that the inequality (A.8) has been derived from (A.7) using Jensen’s inequality.

The last inequality (A.9) is simply another form of (A.8), replacing the expectations of

individual variables by their detailed formulas [55].
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From those observations, we have

EQ log P (wd|zd, β)

=

Nd∑

n=1

EQ log P (wdn|zdn, β) (A.10)

=

Nd∑

n=1

K∑

i=1

V∑

j=1

φdniw
j
dnEQ

[
log βij − log

V∑

t=1

βit

]
(A.11)

≥
Nd∑

n=1

K∑

i=1

V∑

j=1

φdniw
j
dn

[
µ̂ij − log

V∑

t=1

exp(µ̂it + σ̂2
it/2)

]
(A.12)

There is a little strange in the right-hand side of (A.11) resulting from (A.10). The

reason is that in DLN each topic βi has to be transformed by the mapping f(·) into pa-

rameters of the multinomial distribution. Hence the derived formula is more complicated

than that of LDA.

A lower bound of the log likelihood of the corpus C is finally derived from combining

(A.3), (A.4), (A.5), (A.6), and (A.12). We next have to incorporate this lower bound into

the variational EM algorithm for DLN by describing how to maximize the lower bound

with respect to the parameters.

Variational parameters:

First, we would like to maximize the lower bound by variational parameters, µ̂, Σ̂.

Note that the term containing µ̂i for each i ∈ {1, ..., K} is

L[µ̂i] = −
M

2
(µ̂i − µi)

TΣ−1
i (µ̂i − µi)

+
M∑

d=1

Nd∑

n=1

V∑

j=1

φdniw
j
dn

[
µ̂ij − log

V∑

t=1

exp(µ̂it + σ̂2
it/2)

]
.

Since log-sum-exp functions are convex in their variables [27], L[µ̂i] is a concave func-

tion in µ̂i. Therefore, we can use convex optimization methods to maximize L[µ̂i]. In

particular, we use LBFGS [62] to find the maximum of L[µ̂i] with the following partial

derivatives

∂L

∂µ̂ij
= −MΣ−1

ij (µ̂i − µi) +

M∑

d=1

Nd∑

n=1

φdniw
j
dn −

M∑

d=1

Nd∑

n=1

φdni

exp(µ̂ij + σ̂2
ij/2)

∑V
t=1 exp(µ̂it + σ̂2

it/2)

Where Σ−1
ij is the jth row of Σ−1

i .
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The term in the lower bound of (A.3) that contains Σ̂i for each i is

L[Σ̂i] =
M

2
log |Σ̂i| −

M

2
Tr(Σ−1

i Σ̂i) −
M∑

d=1

Nd∑

n=1

φdni log
V∑

t=1

exp(µ̂it + σ̂2
it/2)

We use LBFGS-B [128] to find its maximum subject to the constraints σ̂2
ij > 0, ∀j ∈

{1, ..., V }, with the following derivatives

∂L

∂σ̂2
ij

=
M

2σ̂2
ij

−
M

2
σ−2

ij −
1

2

M∑

d=1

Nd∑

n=1

φdni

exp(µ̂ij + σ̂2
ij/2)

∑V
t=1 exp(µ̂it + σ̂2

it/2)

Where σ−2
ij is the jth element on the diagonal of Σ−1

i .

Model parameters:

We now want to maximize the lower bound of (A.3) with respect to the model param-

eters µ and Σ, for the M-step of the variational EM algorithm. The term containing µi

for each i is

L[µi] = −
M

2
(µ̂i − µi)

TΣ−1
i (µ̂i − µi)

The maximum of this function is reached at

µi = µ̂i (A.13)

The term containing Σ−1
i that is to be maximized is

L[Σ−1
i ] =

M

2
log |Σ−1

i | −
M

2
Tr(Σ−1

i Σ̂i)

−
M

2
(µ̂i − µi)

TΣ−1
i (µ̂i − µi)

And its derivative is

∂L

∂Σ−1
i

=
M

2
Σi −

M

2
Σ̂i −

M

2
(µ̂i − µi)(µ̂i − µi)

T

Setting this to 0, we can find the maximum point:

Σi = Σ̂i + (µ̂i − µi)(µ̂i − µi)
T (A.14)
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We have derived how to maximize the lower bound of the log likelihood of the corpus C

in (A.1) with respect to the variational parameters and model parameters. The variational

EM algorithm now proceeds by maximizing the lower bound w.r.t φ, γ, µ̂, Σ̂ under the

fixed values of the model parameters, and then by maximizing w.r.t α, µ,Σ under the

fixed values of variational parameters. Iterate these two steps until convergence. In our

experiments, the convergence criterion is that the relative change of the log likelihood was

no more than 10−4.

For inferences on each new document, we can use the same iterative procedure as de-

scribed in [21] using the formula (A.2) for φ. The convergence threshold for the inferences

of each document was 10−6.

A.6 Evaluation

This section is dedicated to presenting evaluations and comparisons for the new model.

The topic model that will be used to compare with DLN is LDA. As previously men-

tioned, LDA is very popular and is the core of various topic models, where the topic-word

distributions are endowed with the Dirichlet distribution. This view on topics is the only

point in which DLN differs from LDA. Hence, any advantages of DLN over LDA can be

applied to other variants of LDA. However, any LDA-based model can be readily modi-

fied to become a DLN-based model. From these observations, it is reasonable to compare

performances of DLN and LDA.

Our strategy is as follows:

• We want to see how good the predictive power of DLN is in general. Perplexity will

be used as a standard measure for this task.

• Next, stability of topic models with respect to diversity will be considered. Addi-

tionally, we will also study whether LDA and DLN likely favor data of low or high

diversity. See subsection A.6.2.

• Finally, we want to see how well DLN can model data having log-normality and

high diversity. This will be measured via classification on two non-textual datasets,

Comm-Crime and SPAM. Details are in subsection A.6.3.
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Figure A.4: Perplexity as the number of topics increases. Solid curves are DLN, dashed
curves are LDA. The lower is the better.

A.6.1 Perplexity as a goodness-of-fit measure

We first use perplexity as a standard measure to compare LDA and DLN. Perplexity

is a popular measure which evaluates the goodness-of-fit of a statistical model, and is

widely used in the language modeling community. It is known to correlate closely with

the precision-recall measure in information retrieval [50]. The measure is often used to

compare predictive powers of different topic models as well.

Let C be the training data, and D = {w1, ..., wT} be the test set. Then perplexity is

calculated by

Perp(D|C) = exp

(
−

∑T
d=1 log P (wd|C)
∑T

d=1 |wd|

)
.

The data for this task were the 3 text corpora. The two non-textual data sets were not

considered, since perplexity is implicitly defined for text. For each of the 3 text corpora,

we selected randomly 90% of the data to train DLN and LDA, and the remainings were

used to test their predictive powers. Both models used the same convergence settings

for both learning and inference. Figure A.4 shows the results as the number of topics

increases. We can see clearly that DLN achieved better perplexity for AP and NIPS than

LDA. However, it behaved worse than LDA on the KOS corpus.

Remember that NIPS has the greatest diversity among these 3 corpora as investigated

in Section A.3. That is, the variations of the words in that corpus are very high. Besides,

the lognormal distribution seems to favor data of high diversity as analyzed in Section

A.4. The use of this distribution in DLN aims to capture the diversity of individual words

better. Hence the better perplexity of DLN over LDA for the NIPS corpus is apparently

justified.

The better result of DLN on NIPS also suggests more insights into the LDA model.
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In Section A.4 we have argued that the Dirichlet distribution seems to favor data of low

diversity, and seems inappropriate for high diversity data. These hypotheses are further

supported by our experiments in this section.

Note that AP and KOS have nearly equal diversity. Nevertheless, the performances of

both models on these corpora were quite different. DLN was much better than LDA on

AP, but not on KOS. This phenomenon should be further investigated. In our opinion,

some explanations for this may be borrowed from some observations in Section A.3. Notice

that although the number of documents of KOS is approximately 50% larger than that

of AP, the number of words having at least 5 different frequencies (|OV | ≥ 5) in KOS is

only about 20% larger than that of AP. This fact suggests that the words in AP seem to

have higher variations than those in KOS. Besides, DivAP > DivKOS. Combining these

observations, we can conclude that AP has higher variation than KOS. This is probably

the reason why DLN performed better than LDA on AP.

A.6.2 Stability in predictive power

Next we would like to see whether the two models can work stably with respect to diversity.

The experiments described in the previous subsection are not good enough to see this.

The reason is that both topic models were tested on corpora of different numbers of

documents, each with different document length. It means comparisons across various

corpora by perplexity would not be fair if based on those experiments. Hence we need to

conduct other experiments for this task.

Perplexity was used again for this investigation. To arrive at fair comparisons and

conclusions, we need to measure perplexity on corpora of the same size and same document

length. In order to have such corpora, we did as follows. We used 3 text corpora as above.

For each corpus, 90% were randomly chosen for training, and the remaining were used

for testing. In each testing set, each document was randomly cut off to remain only 100

occurrences of words in total. This means the resulting documents for testing were of the

same length across testing sets. Additionally, we randomly removed some documents to

remain only 100 documents in each testing set. Finally, we have 3 testing sets which are

equal in size and document length.

After learning both topic models, the testing sets were inferred to measure their pre-

dictive powers. The results are summarized in Figure A.5. As known in Section A.3,

the diversity of NIPS is greater than those of AP and KOS. However, LDA performed

inconsistently in terms of perplexity on these corpora as the number of topics increased.
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Figure A.5: Sensitivity of LDA and DLN against diversity, measured by perplexity as the
number of topics increases. The testing sets were of same size and same document length
in these experiments. Under the knowledge of DivNIPS > DivAP > DivKOS, we can see
that LDA performed inconsistently with respect to diversity; DLN performed much more
consistently.

Higher diversity led to neither consistently better nor consistently worse perplexity. This

fact suggests that LDA cannot capture well the diversity of data.

In comparison with LDA, DLN worked more consistently on these corpora. It achieved

the best perplexity on NIPS, which has the largest diversity among 3 corpora. The gap

in perplexity between NIPS and the others is quite large. This implies that DLN may

capture well data of high diversity. However, since the perplexity for AP was worse than

that for KOS while DivAP = 0.0012 > DivKOS = 0.0011, we do not know clearly whether

DLN can cope well with data of low diversity or not. Answers for this question require

more sophisticated investigations.

Another observation from the results depicted in Figure A.5 is that LDA seems to work

well on data of low diversity, because its perplexity on KOS was consistently better than

on other corpora. A reasonable explanation for this behavior is the use of the Dirichlet

distribution to generate topics. Indeed, such distribution favors low diversity, as analyzed

in Section A.4. Nonetheless, it is still unclear to conclude that LDA really works well on

data of low diversity, because its perplexity for KOS was much better than that for AP

while DivAP ≃ DivKOS.

A.6.3 Document classification

Our next experiments were to measure how well the two models work, via classification

tasks, when data have high diversity and log-normality. As is well-known, topic models

are basically high-level descriptions of data. In other words, the most interesting char-

acteristics of data are expected to be captured in topic models. Hence we can consider

118



them as other representations of data. This interpretation implicitly allows us to apply

them to many other applications, such as classification.

The datasets for these tasks are SPAM and Comm-Crime. We used micro precision

[88] as a measure for comparison. Loosely speaking, precision can be interpreted as the

extent of our confidence in assigning labels to documents. It is believed, at least in the text

categorization community, that this measure is more reliable than the accuracy measure

for classification [88]. Thus it is reasonable to use it for our tasks in this section.

SPAM is straightforward to understand, and is very suitable for the classification task.

The main objective is to predict whether a given document is spam or not. Thus, we keep

the spam attribute unchanged, and multiply all values of other attributes in all records by

10000 to make sure that the obtained values are integers. Resulting records are regarded

as documents in which each value of an attribute is the frequency of the associated word.

The nature of Comm-Crime is indirectly related to classification. The goal of Comm-

Crime is to predict how many violent crimes will occur per 100K population. In this

corpus, all cities have these values that can be used to train or test a learning algorithm.

Since predicting an exact number of violent crimes is unrealistic, we predicted the interval

in which the number of violent crimes of a city most probably falls.5

Since all crime values in the original data were normalized to be in [0,1], two issues arise

when performing classification on this dataset. First, how many intervals are appropriate?

Second, how to represent crime values, each belonging to exactly one interval, as class

labels. The first issue is easier to deal with in practice than the latter. In our experiments,

we first tried 10 intervals, and then 15 intervals. For the second issue, we did as follows:

each attribute was associated with a word except crime. The values of the attributes were

scaled by the same number to make sure that all are integers, and then were regarded as

frequencies of the associated words. For the crime attribute, we associated each interval

with each class label. Each record then corresponds to a document, where the crime value

is associated with a class label.

We considered performances on Comm-Crime of 3 approaches: SVM, DLN+SVM,

LDA+SVM. Here we used multi-class SVM implemented in the package by Joachims.6

It was trained and tested on the original dataset to ensure fair comparisons. DLN+SVM

(and LDA+SVM) worked in the same way as in previous works [21], i.e., we first modeled

5Be aware that this dataset is also suitable to be used in regression, since the data were previously
normalized to be in [0, 1]. However, this section is devoted to comparing topic models in terms of how
well they can capture diversity and log-normality of data. SPAM and Comm-Crime are good datasets for
these tasks, because they both have high diversity and many likely log-normally distributed attributes.

6Available from http://svmlight.joachims.org/svm multiclass.html
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Table A.4: Average precision in crime prediction.
#intervals SVM DLN+SVM LDA+SVM

10 0.56 0.61 0.58
15 0.43 0.48 0.46

the data by DLN (LDA) to find hidden representations of the documents in terms of

topic proportions vectors, and then used them as feature vectors for SVM. For topic

models, the number of topics, K, should be chosen appropriately. In [111], Wallach et

al. empirically showed that LDA may work better as the number of topics increases.

Nevertheless, the Subsections A.6.1 and A.6.2 have indicated that large values of K did

not lead to consistently better perplexity for LDA. Moreover, the two models did not

behave so badly at K = 50. Hence we chose 20 topics for both topic models in subsequent

experiments. We used 5-fold cross-validation for the candidates. The results are presented

in Table A.4.

Among the 3 approaches, DLN+SVM consistently performed best. These results

suggest that DLN worked better than LDA did. We remark that Comm-Crime has very

high diversity and seems to have plenty of log-normality. Hence the better performance

of DLN over LDA suggests that the new model can capture well log-normality of data,

and can work well on data of high diversity.

One can realize that the precisions obtained from these approaches were quite low. In

our opinion, this may be due to the inherent nature of that data. To provide evidence for

our belief, we conducted separately regression on the original Comm-Crime dataset with

two other well-known methods, Bagging and Linear Regression implemented in Weka.7

Experiments with these methods used default parameters and used 5-fold cross-validation.

Mean absolute errors from these experiments varied from 0.0891 to 0.0975. Note that all

values of the attributes in the dataset had been normalized to be in [0, 1]. Therefore

the resulting errors are problematic. After scaling and transforming the regression results

to classification, the consequent precisions vary from 0.3458 to 0.4112. This variation

suggests that Comm-Crime seems to be difficult for current learning methods.

The above experiments on Comm-Crime provide some supporting evidence for the

good performance of DLN. We next conducted experiments for classification on SPAM.

We used the same settings as above, 50 topics for topic models and 5-fold cross-validation.

The results are described in Table A.5. One can easily observe the consistently better

performance of our new model over LDA, working in combination with SVM. Note that

precisions for SPAM are much greater than those for Comm-Crime. The reasons are

7Version 3.7.2 at http://www.cs.waikato.ac.nz/∼ml/weka/
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Table A.5: Average precision in spam filtering.
SVM DLN+SVM LDA+SVM
0.81 0.95 0.92

that SPAM is inherently for binary classification, which is often easier than multi-class

counterparts, and that the training set for SPAM is much bigger than that for Comm-

Crime which better enables learning.

A.7 Discussion

In summary, we now have strong evidence from the empirical results and analyses for

the following conclusions. First, DLN can get benefits from data that have many likely

log-normally distributed properties. It seems to capture well log-normality of data. Sec-

ond, DLN is more suitable than LDA on data of high diversity, since consistently better

performances have been observed. Third, topic models are able to model well data that

are non-textual, since the combinations of topic models with SVM often got better results

than SVM did alone in our experiments.

LDA and DLN have been compared in various evaluations. The performance of DLN

was consistent with the diversity of data, whereas LDA was inconsistent. Furthermore,

DLN performed consistently better than LDA on data that have high diversity and many

likely log-normally distributed properties. Note that in our experiments, the considered

datasets have different diversities. This treatment aimed to ensure that each conclusion

will be strongly supported. In addition, the lognormal distribution is likely to favor

data of high diversity as demonstrated in Section A.4. Hence, the use of the lognormal

distribution in our model really helps the model to capture diversity and log-normality of

real data.

Although the new model has many distinguishing characteristics for real applications,

it suffers from some limitations. First, due to the complex nature of the lognormal dis-

tribution, learning the model from real data is complicated and time-consuming. Second,

the memory for practical implementation is large, O(K.V.V + M.V + K.M), since we

have to store K different lognormal distributions corresponding to K topics. Hence it

is suitable with corpora of average vocabularies, and datasets with average numbers of

attributes.

Some concerns may arise when applying DLN in real applications: what characteristics

of data ensure the good performance of DLN? Which data types are suitable for DLN?
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The followings are some of our observations.

• For non-textual datasets, DLN is very suitable if diversity is high. Our experiments

suggest that the higher diversity the data have, the better DLN can perform. Note

that diversity is basically proportional to the number of different values of attributes

observed in a dataset. Hence, by intuition, if there are many attributes that vary

significantly in a dataset, then the diversity of that dataset would be probably high,

and thus DLN would be suitable.

• Log-normality of data is much more difficult to see than diversity.8 Nonetheless,

if once we know that a given dataset has log-normally distributed properties, DLN

would probably work better on it than LDA.

• For text corpora, the diversity of a corpus is essentially proportional to the number

of different frequencies of words observed in the corpus. Hence if a corpus has words

that vary significantly, DLN would probably work better than LDA. The reason is

that DLN favors data of high diversity.

• A corpus whose documents are often long will allow high variations of individ-

ual words. This implies that such a corpus is very likely to have high diversity.

Therefore, DLN would probably work better than LDA, as observed in the previous

section. Corpora with short documents seem to be suitable for LDA.

• A corpus that is made from different sources with different domains would very

likely have high diversity. As we can see, each domain may result in a certain

common length for its documents, and thus the average document length would

vary significantly among domains. For instance, scientific papers in NIPS and news

in AP differ very much in length; conversations in blogs are often shorter than

scientific papers. For such mixed corpora, DLN seems to work well, but LDA is less

favorable.

A.8 Related work

In the topic modeling literature, many models assume a given corpus to be composed of

some hidden topics. Each document in that corpus is a mixture of those topics. The first

8In principle, checking the presence of log-normality in a dataset is possible. Indeed, checking the
log-normality property is equivalent to checking the normality property. This is because if a variable x
follows the normal distribution, then y = ex will follow the log-normal distribution [55], [60]. Hence,
checking the log-normality property of a dataset D can be reduced to checking the normality property of
the logarithm version of D.
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generative model of this type is known as Probabilistic Latent Semantic Analysis (pLSA)

proposed by Hofmann [50]. Assuming pLSA models a given corpus by K topics, then the

probability of a word w appearing in document d is

P (w|d) =
∑

z

P (w|z)P (z|d), (A.15)

where P (w|z) is the probability that the word w appears in the topic z ∈ {1, ..., K},

and P (z|d) is the probability that the topic z participates in the document d. However,

pLSA regards the topic proportions, P (z|d), to be generated from some discrete and

document-specific distributions.

Unlike pLSA, the topic proportions in each document are assumed to be samples

drawn from Dirichlet distributions in LDA [21]. Such assumption is strongly supported

by the de Finetti theorem on exchangeable random variables [6]. Amazingly, LDA has

been reported to be successful in many applications.

Many subsequent topic models have been introduced since then that differ from LDA

in endowing distributions on topic proportions. For instance, CTM and IFTM treat

the topic proportions as random variables which follow logistic distributions; Hierarchical

Dirichlet Process (HDP) considers these vectors as samples drawn from a Dirichlet process

[97]. Few models differ from LDA in view of topic-word distributions, i.e., distributions

over words. Some candidates in this line are Dirichlet Forest (DF) [8], Markov Topic

Model (MTM) [114], and Continuous Dynamic Topic Model (cDTM) [113].

Unlike those approaches, we endowed the topic-word distributions with the lognormal

distribution. Such treatment aimed to tackle diversity and log-normality of real datasets.

Unlike the Dirichlet distribution used by other models, the lognormal distribution seems

to allow high variation of its samples, and thus can capture well high diversity data. Hence

it is a good candidate to help us cope with diversity and log-normality.

A.9 Summary

In this work, we studied a fundamental property of real data, phrased as “diversity”, which

has not been paid enough attention from the machine learning community. Loosely speak-

ing, diversity measures average variations of attributes within a dataset. We showed that

diversity varies significantly among different data types. Textual corpora often have much

less diversity than non-textual datasets. Even within text, diversity varies significantly

among different types of text collections.
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We empirically showed that diversity of real data non-negligibly affects performance of

topic models. In particular, the well-known LDA model [21] worked inconsistently with

respect to diversity. In addition, LDA seems not to model well data of high diversity.

This fact raises an important question of how to model well the diversity of real corpora.

To deal with the inherent diversity property, we proposed a new variant of LDA, called

DLN, in which topics are samples drawn from the lognormal distribution. In spite of being

a simple variant, DLN was demonstrated to model well the diversity of data. It worked

consistently and seemingly proportionally as diversity varies. On the other hand, the use

of the lognormal distribution also allows the new model to capture lognormal properties

of many real datasets [60], [34].

Finally, we remark that our approach here can be readily applied to various topic

models since LDA is their core. In particular, the Dirichlet distribution used to generate

topics can be replaced with the lognormal distribution to cope with diversity of data.
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