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Abstract In order to obtain a computer-tractable model of music,

we first discuss what conditions the music theory should satisfy from the

various viewpoints of artificial intelligence and/or other computational

notions. Then, we look back on the history of cognitive theory of mu-

sic, i.e., various attempts to represent our mental understandings and to

show music structures. Among which, we especially pay attention to the

Generative Theory of Tonal Music (GTTM) by Lehrdahl and Jackend-

off, as the most promising candidate of cognitive/computational theory

of music. We briefly overview the theory as well as its inherent problems,

including the ambiguity of its preference rules. By our recent efforts, we

have solved this ambiguity problem by assigning parametrized weights,

and thus we could implement an automatic tree analyzer. After we in-

troduce the system architecture, we show our application systems.
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§1 Introduction
When we hear music, we sometimes perceive its underlying, deep struc-

ture, detached from surface flow of notes. In such cases, we may say we could

understand the music piece. If there exists such underlying structure and if we

can grasp the meaning of music according to it, can a computer system also re-

trieve the similar structure? In this section, we discuss the music structure from

the three viewpoints: music theory for AI, music as computational object, and

music in linguistics. Although all these viewpoints are closely related, each of

which possesses its own historical background and still has independent agenda

to be discussed.

Music Theory and AI The prime objective of AI is to model our cognition,

and to model the real world to give an abstract representation of them. Here,

we argue that the representation methods should properly segment the target

domain by equivalence relations. In human recognition, however, the equiva-

lence relations do not appear directly; instead, they are perceived as similarity

indirectly. According to the MIT Encyclopedia of the Cognitive Sciences,29)

many approaches to modeling similarity can be employed: geometric, featural,

alignment-based, and transformational. What we would emphasize here is the

fact that every approach to similarity is underlain by the equivalence relations.

That is, whatever similarity we think of, it is determined by the extent to which

the equivalence relations hold recursively for substructures of music. In other

words, we think that a consistent and stable equivalence relation yields a con-

sistent and stable similarity.

In music information research, musical similarity has been drawing at-

tention from many researchers. Some of them are motivated by engineering

demands such as music retrieval, classification, and recommendation,21, 7, 23) and

others by modeling the cognitive processes of musical similarity.5, 6) Now the

question is how we can obtain such a similarity, or an appropriate equivalence

relation, in the representation of musical objects. Marsden16) addresses the re-

quirements of a representation system: musical objects must be well-defined and

be all grounded to relevant ones in the real world. We think these requirements

play an important role in mechanizing music theory. Note that these require-

ments are almost parallel to formalizing intelligence and representing knowledge.
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Since a musical piece contains notes, passages, chords, rhythms, and so on, we

can consider various kinds of equivalence relations between them. We show ex-

amples of equivalence relations between the two melodies in Fig.1, which shows

(a) the incipit of Bach’s Invention No.1 and (b) its fake that is transposed a

perfect fifth above and notes B are lowered by a semitone. If (a) and (b) are

& 42 jœ œ œ œ œ œ œ & 42 jœ œ œb œ œ œb œ

Fig. 1 Three Equivalence Relations of Melodies

compared on the note-wise basis in the literal representation, they are not equal

to each other at all. Next, we consider the pitch-interval representations of (a)

and (b); for (a) we have +2,+2,+1,−3,+2,−4 and (b) +2,+1,+2,−3,+1,−3

(unit: semitone). Thus, we find the two elements out of six are identical (the

first +2 and the fourth -3). Furthermore, when we employ the Parsons code,20)

where up (u) if a note is higher than the previous note, down (d) if lower, and

repeat (r) if the same, then we get u, u, u, d, u, d for both (a) and (b). The dif-

ference in resolution among these equivalence relations are determined by an

interpretation of musical phenomena or practical requirements.

Here we mention the aspects of commonality and idiosyncrasy in music.

In general, the goal of a scientific theory is to understand and represent the

mechanism or principle that is common to all phenomena. So in music theory,

musicologists have the same attitude to music, but they also seek for the fea-

tures that make the music unique and peculiar to a composer or an artist. The

approach we take to represent music, accessing commonality and idiosyncrasy,

influences what and how features of music we should pay attention to.

Music as Computational Object Music has been considered purely emo-

tional, sentimental, and intuitive human affair in general, and thus, has been

considered very far from mathematical, formal, procedural operations. The first

aim of this article is to introduce a branch of musicology to contradict such

a conventional view; i.e., music can be a target of computational operations

preserving the gestalt by human cognition. When we say computational oper-

ations, we mean rigid input/output relations, that belong to the same domain

and also are connected by an algorithm. For example, given a musicXML for

a music piece, such algorithms to produce its variation, elaboration, reduction,
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arrangement, and so on deterministically in the same XML format, can be called

computation. In order to achieve this aim, we need to represent music in a sym-

bolically structured way, because every target of computation should be strictly

formalized. Therefore, the structure of music must be represented by data struc-

ture, which is hierarchical and recursive.∗1 Seemingly, only a limited number of

music theories can serve this purpose. If a music piece is represented by a tree

then it can also be represented by a recursive feature structure (see Carpenter2)

and Sag et al.22)), which has been well studied and applied to many phases of

computation. In some cases, algebraic operations over structures are utilized in

a domain; in Section 6.1, we will show examples of meet and join operations.

Music in Linguistics The analogy between music and natural language has

been long discussed. In Bernstein,1) the correspondences between a note and

a phoneme, a motive and a morpheme, a phrase and a word, and so on, are

stated. It is commonly accepted that our human language belongs to a subclass

of context-sensitive grammar (CSG) and a superclass of context-free grammar

(CFG) in Chomsky hierarchy of formal language; in effect, most sentences can

be generated by CFGs, which have long distance dependency and tree structure.

The origin of music and language is regarded to be the same (see Wallin

et al.28)). Actually, we hear natural languages by our ears and utter them by

our throats and tongues; i.e., the devices are common. Then, we may consider

we recognize music in a similar way to language, employing the same part of

our brain. Since a CFG language is accepted by a push-down automaton, and

we can employ our short-term memory in our brain as push-down stack, we

can assume that music is also governed by a CFG-like grammar. The easiest

way to understand how the short-term memory works is the repetition. Since a

written scores appeared in the Middle Age in Europe, music has been denoted

by an iterated metrical structure by delimiting bars (measures) with equal in-

tervals. Another easy example is melody recognition. In a music piece, the

same melody or phrase appears repeatedly in time and/or in other voices. The

melody/phrase recognition implies that we possess an ability to group consec-

utive notes together, with the help of short-term memory. Cadence (Kadenz

in German) is a sophisticated example of long distance dependency, which is a

sequence of chords telling us the ending of the music piece. The typical one is

∗1 The signal representation of music is out of scope in this paper.
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the progression from V (dominant) to I (tonic).∗2 A music piece begins with

a tonic chord of its key in most cases, and we feel a tension when the notes

goes far from the original key; on the contrary, when the notes come near to

the original tonic chord, we feel a relaxation. Thus far, many natural language

researchers have tried to implement music parsers with CFG-like grammar. See

Winograd,30) Tojo et al,27) Steedman,25) and so on.

§2 History of Cognitive Music Theory
There have been proposed many music theories24, 13, 3, 19, 26, 4) so far. The

motivation/objective of each theory is different from each other, and so are the

fundamental concepts and models. We will briefly review these in this section.

Schenkerian Analysis Heinrich Schenker (1868–1935) seems the first to present

the idea of reduction in music piece. In his reduction analysis, the underlying

musical structure resides in three hierarchical levels: the background, the middle-

ground, and the foreground. The background possesses the fundamental struc-

ture (Ursatz in German), and as a result of elaboration we obtain the foreground.

The fundamental structure consists of the fundamental line (Urlinie), that is the

melodic line in the upper voice, and the counterpoint, that is the bass line in

the lower voice. Each of melodic/bass lines gives the piece a musical direction.

The melodic line proceeds in the descending scale-steps that fill in the interval

between the third and the tonic, the fifth and the tonic, or the octave and the

tonic. The base voice is a harmonic component of the fundamental structure;

it proceeds by an ascending fifth between the tonic and the dominant (I–V),

and returns downwards to the tonic (V–I). At the core of Schenkerian analysis,

there exists the notion of prolongation which means that a pitch event∗3 remains

as if it were still sounding. The structure of tonal music is consistent with the

structural dominance of the prolonged event. The melodic elaboration from the

background to the foreground is called linear progression, which horizontalizes

the vertical harmony; this process occurs in accordance with the downward scale-

steps toward the tonic. On the contrary, in order to preserve the fundamental

bass line of I-V-I, the linearization process acts to fill in the intermediate avail-

able harmonies. Thus, in the foreground level, horizontalization of the vertical is

∗2 The tonic is the first scale degree of a diatonic scale, and the dominant is the fifth scale
degree and is next in importance to the tonic. Here, we represent I and V for the triad
chords on the tonic and the dominant.

∗3 A chord or a note, exclusive of a rest.
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more emphasized while in the background, the verticalization of the horizontal is

salient. The Schenkerian reduction process is better understood in the heuristic

terms, rather than in the algorithmical terms, and this fact has alienated the

theory from computer implementation.

I-R Model The implication-realization (I-R) theory proposed by Narmour18)

is based on the hypothesis that we listen to the music, always predicting next

notes. Narmour assumed that successive three pitch events made fundamental

patterns which worked as the gestalt in perception, and the first two produced

implication, while the last one might or might not realize the implication. Here,

the realization includes continuation, differentiation, and reversal as seen in the

gestalt phenomena. The I-R theory can be thought as an alternative to the

models based on the reduction of the gestalt. Since a melody can be understood

as a series of the triplets of notes, the I-R theory is useful for analyzing melodic

contours. Then, the equivalence relations in the I-R theory are that any triplets

belonging to an identical pattern cause the same perception and have the same

function in the flow of music.

Berklee method Among music theories, the Berklee method is one of the

well-known harmony theories. It is quite common in the popular artist com-

munity because it is a mechanical and practical rule system so that anyone

can develop proper chord progressions. First, the Berklee method developed a

nomenclature of chords. Then, if there are two chords having the same name

(symbol) yet containing different notes, these two are supposed to work as the

same function in a chord progression. Please note that this is an equivalence

relation that the Berklee method introduces. As such, the idea that formal

grammars should be applied to analyze chord progressions is not new, but it

may be inspired by the Chomsky approach to natural languages to some extent.

As a result, the Berklee method transformed a chord progression into symbolic

manipulation and allows people to generate a progression like playing a puzzle.

Although it seems easy, at a first glance, to translate the rules of the Berklee

method into a context free grammar, it is not easy to distinguish generic rules of

chord progressions from those of exceptional ones. Hence, the rule organization

fluctuates, depending on each rule’s interpretation. This is mainly because the

Berklee method was developed for human, not for a computer.

§3 Generative Theory of Tonal Music
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As we have mentioned, if a music piece is represented by a hierarchical

tree structure, we can apply various computational operations on it. However,

only few theories are eligible for this purpose. We pay attention to the Generative

Theory of Tonal Music (GTTM),13) since it produces a hierarchical tree as a

result of analysis of a music piece.

3.1 Overview
GTTM consists of the following four processes. Grouping analysis puts

group boundaries on a music piece. Metric Analysis identifies its rhythmic struc-

ture. As a result, the theory composes two kinds of tree structures of music;

Time-span analysis composes a tree to represent the metric structure and Pro-

longational analysis makes a tree to represent harmonic stability.

Grouping Analysis The goal of this analysis is to find group boundaries. We

show several typical rules below, where GPR stands for group preference rules,

which will be explained later.

GPR2 (proximity) Consider a sequence of four notes. The transition of

the mid two notes may be heard as a group boundary if

a. the interval of time from the end of the 2nd note to the beginning of

the 3rd is greater than others.

b. the interval of time between the attack points of the 2nd and the 3rd

is greater than others.

GPR3 (change) Consider a sequence of four notes, then the 2nd and the

3rd may be heard as a group boundary, if the followings change.

a. register/ b. dynamics/ c. articulation/ d. length

Fig. 2 Boundaries Candidates Shown by Rule Number (Lerdahl and Jackendoff13, page 47))

We show an example of GPR 2 and 3 in Fig. 2, in which the rule names

appear in their applicable places though not all applicable places are marked.

Since these rules work disjunctively, the marked places are still candidates of

boundaries. As a result of grouping analysis, we obtain a sequence of groups,
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which do not have gaps nor overlap in each other. These groups are recursively

grouped, and compose a hierarchical grouping, as in Fig. 3

Fig. 3 Hierarchical Grouping in Mozart K.550 (Lerdahl and Jackendoff13, page 37))

Metric Analysis The metric analysis assigns the beat strength on each pitch

event, shown by the number of dots, as in Fig. 4.

Fig. 4 Metrical Analysis (Lerdahl and Jackendoff13, page 74))

Time-span Analysis The time-span tree is built by the comparison of adja-

cent two pitch events in terms of salience in the bottom-up way. A pitch event is

salient when (i) the event is located either at the beginning end or at the termi-

nal end of each group in the grouping analysis (Fig. 3), and (ii) it has a stronger

beat in the metrical analysis (Fig. 4). The branch on the more salient pitch

event extends upward, absorbing that on the neighboring pitch event. Since the

group boundaries are hierarchical, this process continues recursively until one

top event is reached. In Fig. 5, the pitch events labelled a are more salient than

those labelled b, and so are those labelled b than those labelled c. Thus, the

pitch events in b level and those in a level result in reduced music, each of which

is shown below a (the original) in the figure. In the sequence of reductions,

each level should sound like a natural simplification of the previous level. The

alternative omission of notes must make the successive levels that sound less like

the original. Hence, reduction can be regarded as rewriting an expression to an

equivalent simpler one; it often has the same meaning as abstraction. Behind

this time-span reduction (step-by-step simplification), there lies the philosophy

of the strong reduction hypothesis. The listener attempts to organize all the pitch
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events of a piece into a single coherent structure, in such a way that they are

heard in a hierarchy of relative importance.

Fig. 5 Time-span reduction in GTTM (Lerdahl and Jackendoff13, page 132))

Prolongational Analysis While the time-span tree represents the rhythmic

stability as it is composed by grouping and metrical analyses, the prolongational

tree represents the pitch stability. The notion of prolongation means that a pitch

event (especially a chord) is still felt remaining and sounding beyond group

boundaries, being classified in the following three grades.

• strong prolongation: same bass and root∗4

• weak prolongation: same root

• progression: no consonant∗5

Also, motion in music is explained in two ways; we feel tension when tones

go away from the original tonic, and we feel relaxation when they come back

to. Tension is represented by right-branching in tree structure, and relaxation

∗4 The root is the note upon which a chord may be built by stacking thirds, while the bass
is the lowest note in the chord. When a chord is inverted, the bass becomes different from
the root.

∗5 Harmonic notes such as thirds and fifths.
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becomes left-branching. These prolongation/progression and tension/relaxation

result in six patterns in Fig. 6, where open circle represents strong prolongation,

filled-in circle does weak prolongation, and no circle progression.

Fig. 6 Six patterns of prolongation/progression

As Schenkerian Ursatz, GTTM assumes the existence of basic form,

which possesses cadential preparation, i.e., the pitch events lead up to the ca-

dence and is represented by doubly embedded left-branching. Including the basic

form, a normative form consists of tension (right-branching) in the beginning and

relaxation (left-branching) in the cadence, as is shown in Fig. 7.

Fig. 7 Normative form in GTTM (Lerdahl and Jackendoff13, page 191))

The prolongational tree is composed by rearranging the branches of a

time-span tree, this time in the top-down way. Choosing the most locally im-

portant branch in the time-span tree, the algorithm decides where the branch

should be reattached for the prolongational tree from the viewpoint of pitch

stability. The stability is stated by the following four conditions.

• Branching condition

– right strong prolongation> right weak prolongation> right progression

– left progression > left weak prolongation > left strong prolongation

• Pitch-collection condition: a connection between two events (chords) is

more stable if they involve or imply a common diatonic collection.

• Melodic condition

– Melodically more stable if the distance is smaller.
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– Ascending is most stable in right-branching; descending is most stable

in left-branching.

• Harmonic condition

– Harmonically more stable if their roots are closer on the circle of fifths.

– Ascending along the circle of fifths is most stable in right-branching;

descending along the circle (subdominant to dominant) is most stable

in left-branching.

In the left-hand side of Fig. 8, the next important branch after the cadence ‘V-I’

and the initial ‘I’, seen from a top-down way, is either the intermediate ‘V’ or

the intermediate ‘I’ which reaches the next highest in the time-span tree. Since

each of ‘V’ and ‘I’ can be reattached to either left or right mother branch, there

are four possibilities shown by the dotted lines, in the right-hand side of Fig. 8.

From the viewpoint of stability, the left-hand side of Fig. 9 is chosen (right strong

Fig. 8 Four choices in prolongational analysis in GTTM (Lerdahl and Jackendoff13, page 223))

prolongation), and thus the next important branch on ‘V’ results in the right

branching as in the right-hand side of the figure.

Fig. 9 Ongoing prolongational analysis in GTTM (Lerdahl and Jackendoff13, page 224))

3.2 Problems of GTTM
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Selection of Preference Rules The generative rules of GTTM are classified

into well-formedness rules and preference rules. The former rigidly prescribes the

grammar; if one of these rules is violated, we cannot compose a tree. The latter

states only preferences, and thus the composing procedure becomes indetermin-

istic. In worse cases, those preferences contradict. In Fig. 2, such notations as

2a, 2b, 3a, 3c and 3d all show the name of preference rules, each of which claims

that the designated place can be a candidate of group boundary. However, if

we adopt all these, groups become too minutely minced; thus, we need to give

a criterion for each candidate to be true boundaries. We mention how we solve

this problem later.

Long Distance Dependency The time-span tree is composed basically in

the bottom-up way. This implies that we cannot represent the dependency

adequately in some cases. Especially, in the case of dependency between two

notes with a long distance, the correspondence should be represented in the top-

down manner. In GTTM, such a kind of dependency is explained by an analogy,

i.e., ‘like a ball thrown and caught’ (Lehrdahl and Jackendoff13), p.133). Fig. 10

shows the theme of the variation of the first movement, piano sonata K.331 in A

major, by Mozart. This figure shows the correct time-span tree; the small open

circle on the branches at the tail of the piece represents that the sequence of V–I

is put together to one event as a cadence.

Fig. 10 Cadence in the variation theme, 1st movement of K.331, Mozart

Notice that in the fourth bar (measure), A-E-C♯ at the first beat is I
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(tonic) in A major and E-G♯-B in the sixth beat is V (dominant); if they are

compared, the tonic should be salient (the left-hand side of Fig. 11). However,

this V is the nexus to the following I in the next bar, representing half-cadence,

and thus this V should be more salient (the right-hand side of Fig. 11) in the

macro-scopic view.

Fig. 11 Saliency in the fourth bar, K331

Thus, we need to equip with a top-down strategy, as well as a bottom-up

composition. This issue suggests the following problems of the original theory.

First, those multiple preference rules disturb the decision of the order of compo-

sition, and result in ambiguity. Second, in order to recognize a correct time-span

tree, we need to identify cadence, i.e., we need to find I and V, however, in the

original theory the procedure of chord recognition is not mentioned. These chord

information is also needed for us to reconstruct prolongational tree, rearranging

time-span tree.

§4 Implementing GTTM
In computer implementation of music theory,?, 3, 19, 26) we have to con-

sider two types of ambiguity in music analysis. One involves human under-

standing of music, and the other concerns the representation of music theory.

The former tolerates our subjective interpretation, while the latter is caused by

the incompleteness of the original theory, and the GTTM is not an exception.

Therefore, due to the former’s ambiguity, we assume there should be more than

one correct result. We would like to avoid the latter kind of ambiguity as much

as possible. In this section, we extend GTTM by full externalization and param-

eterization, and propose exGTTM. This externalization in mechanizing GTTM

includes introducing an algorithm for generating a time-span tree in the mixed
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manner of top-down and bottom-up. These parameters control the priorities of

rules to avoid conflicts, to obtain the most adequate shape of the hierarchical

time-span tree. At this stage, we restrict exGTTM to a monophony, for harmony

analysis is not taken into account yet.

4.1 exGTTM – an Introduction
We present the design strategy of a machine-executable extension of

GTTM, exGTTM.8) Since the original theory lacks formalities in some cases,

we need to compensate them for requisite definitions. Thus, we employ full-

externalization and parameterization to yield precise controllability and to cover

all possible human analyses.

The parameters introduced by exGTTM are classified into the following

three categories. For the first category, a parameter is explicitly mentioned in

the theory but is not assigned concrete values, hence, we need to valuate such a

parameter. For the second category, a parameter appears only implicitly; hence,

we need to make it explicit. For example, to resolve the conflict in preference

rules, we need to assign a priority value for each preference rule. For the third

category, we need to complement several control values which may not possess

any musicological meanings, to fully externalize the theory.

The domain of intermediate variables is constrained within the range of

0 to 1, and for this purpose, those variables are normalized at every computing

stage. Thanks to this property, exGTTM can flexibly combine any interme-

diate variables (and possibly parameters) and cascade as many weighted-mean

calculations as needed. Accordingly, this facilitates precise controllability.

Among issues that require working algorithms, the problems of acquiring

hierarchical structures in the grouping- and metrical-structure analyses and the

time-span tree reduction can be all regarded as a constraint-satisfaction problem

(CSP). This is because only the expected properties for the hierarchical struc-

tures are represented in the form of a rule, that is, no constraint nor order of

generating hierarchical structures is determined in advance.

The constraints stipulated by the GTTM rules are divided into two

categories: local and global. The former includes GPR2 (proximity, cf. Section

3) and TSRPR1∗6 (strong metrical position), and the latter GPR5∗7 (symmetry)

∗6 Time-Span Reduction Preference Rule 1 – Of the possible choices for a head of time-span
T , prefer a choice that is in a relatively strong metrical position.

∗7 Grouping Preference Rule 5 – Prefer grouping analyses that most closely approach the
ideal subdivision of groups into two parts of equal length.
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and MPR1∗8 (parallelism). We need to handle global constraints carefully when

generating hierarchical structures. For the example of GPR5 in Fig.12, given a

group at Layer 1, an inner boundary likely occurs around the center of the group,

that is, either between Notes 1 and 2 or Notes 2 and 3. Here, we can consider

Layer 1

Layer 2

Boundary around the center

Group

Subgroup

Case 1: Boundary between Notes 1 & 2 selected

Note 1     2   3

Layer 2

Case 2: Boundary between Notes 2 & 3 selected

Subgroup

Fig. 12 Global Constraints by GPR5.

two cases as follows. In Case 1, the boundary between Notes 1 and 2 is selected,

taking into account the effects of some other rules. Then in each subgroup in

Layer 2, the inner boundary of the subgroup may occur in the left-hand side of

a center note. On the other hand, in Case 2, the boundary between Notes 2

and 3 is selected. Therefore, the inner boundary may occur in the right-hand

side of a center note. Consequently, in computing GPR5, the boundary position

always affects the remote boundaries in lower layers, and we have to take into

account up-to-date global information every time. That is, the global constraint

is inevitably dynamic.

4.2 Overview of exGTTM
Based on the above consideration, we have developed algorithms for gen-

erating hierarchical structures for exGTTM so that nodes are generated either

from the bottom-most nodes or the top-most node incrementally. In addition, ev-

ery time the nodes at one layer are calculated, global information is re-calculated

before moving onto an adjacent layer.

The exGTTM consists of a grouping structure analyzer, a metrical struc-

ture analyzer, and a time-span tree analyzer. Here, we briefly explain the group-

∗8 Metric Preference Rule 1 – Where two or more groups or parts of groups can be construed
as parallel, they preferably receive parallel metrical structures.
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ing structure analyzer. Fig. 13 is a processing flow of grouping structure ana-

lyzer. First, the low-level, local boundaries are found by GPR2, GPR3, and so

on. Then, we apply such macro-scopic rules as GPR4 concerning the definition

of higher-level boundaries and GPR5 which stipulates that the length of groups

should be well-balanced. The latter process is repeated recursively as in the

figure.

-

Fig. 13 Processing flow of grouping structure analyzer.

Here we introduce two kinds of parameters.

Dr(i) means the degree as to how strongly the rule holds, and

Sr means the weight of the rule,

where suffix r is the rule number and argument i means an ordinal number of a

note. In Fig. 14, Blow(i) represents the local strength by a real number between

0 and 1; the larger the value is, the more likely the boundary is.

Blow(i) =
∑
R

DGPRR
(i)× SGPRR

/max
i′

(∑
R

DGPRR
(i′)× SGPRR

)

for R ∈ {2a, 2b, 3a, 3b, 3c, 3d, and 6}. Bhigh(i) represents the strength of a

boundary in a higher hierarchy by a real number between 0 and 1. Bhigh(i)

is different from Blow(i) in that the former reflects the result of those rules that
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Fig. 14 Low-level strength of boundary Blow(i).

concern phrasal structure, that is, DGPR4(i) and DGPR5(i). When a group in-

cludes a local boundary in it, the boundaries of one upper level î is recursively

detected by the following procedure (Fig. 15), where Bhigh(i) is renewed at each

level, since the value of DGPR5(i) will change at every grouping level. Then we

have a boundary

î = argmax
i

Dhigh(i),

where

Dhigh(i) = Dlow(i)×Bhigh(i),

Bhigh(i) =
∑
R

DGPRR
(i)× SGPRR

/max
i′

(∑
R

DGPRR
(i′)× SGPRR

)

for R ∈ {2a, 2b, 3a, 3b, 3c, 3d, 4, 5, and 6} and for all the i’s included in the group.

§5 ATTA and Interactive GTTM Analyzer
We have implemented exGTTM on a computer, and have named ATTA:

Automatic Time-span Tree Analyzer. The grouping and metrical analyses, and

the resulting time-span tree structures may change depending on the adjustable

parameters. In the current stage, the parameters are configured by humans

because the optimal values of the parameters depend on the piece of music.
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Fig. 15 Construction of hierarchical grouping structure.

5.1 Analyses by ATTA
Mozart Sonata K. 331 can be interpreted in two different ways: as a

grouping structure that has a boundary between note 4 and note 5 (Fig. 16(a))

and as a grouping structure that has a boundary between note 5 and note 6 (Fig.

16(b)). The system can output both grouping structures properly as a result of

using exGTTM for analysis by configuring SGPR2a, SGPR2b, and SGPR3a.

Analysis result

Analysis result

GPR GPR GPR

GPR GPR GPR

Fig. 16 Analysis of Mozart Sonata K. 331.

Fig. 17 shows the analyses of two pieces, which are tuned with the

same parameters, i.e., Beethoven, Turkish March and English Traditional, Green

Sleeves. The numbers at the separations of the tree in Fig. 17 indicate the
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applicable rules. As a result of comparing two pieces, the same rules hold, i.e.,

TSRPR1 and TSRPR3b.∗9

Analysis result (a)

Analysis result (b)

Fmeasure=0.84

Fmeasure=0.89

S        = S         =1.0,  S         = S        = S        = S        =0.0, W =W =W =0.5
TSRPR1 TSRPR3b TSRPR3a TSRPR4 TSRPR8 TSRPR9 m l s

S        = S         =1.0,  S         = S        = S        = S        =0.0, W =W =W =0.5
TSRPR1 TSRPR3b TSRPR3a TSRPR4 TSRPR8 TSRPR9 m l s
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Fig. 17 Analysis of two pieces having the same parameter sets. (a) Beethoven, Turkish

March. (b) English Traditional, Green Sleeves.

5.2 Interactive GTTM analyzer
Fig. 18 is a screenshot of the viewer of our interactive GTTM analyzer.

There is a sequence of notes displayed in a piano roll format. Fig. 19 is an

overview of our interactive GTTM analyzer, consisting of the ATTA, a manual

editor, and a process editor. As the ATTA cannot output all analyses that corre-

spond to all the interpretations of a piece of music, we designed a manual editor,

which generates all analyses. The original theory includes feed-back operations

from higher- to lower-level in the tree structure; however, no detailed description

is given but only a few examples are given. To solve this problem, we developed

a process editor, which enables seamless adjustment of the automatic analy-

∗9 Time-Span Reduction Preference Rule 3b – Of the possible choices for head of a time-span
T , weakly prefer a choice that has a lower bass pitch.
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Prolongational

Tree

Time-span

Tree

Grouping

Structure

Metrical

Structure

Fig. 18 Screenshot of interactive GTTM analyzer.

Grouping structure analyzer

Metrical structure analyzer

Time-span tree analyzer

Prolongational tree analyzer

Grouping structure editor

Metrical structure editor

Time-span tree editor

Prolongational tree editor

Tonal Pitch Space editor

ATTA GTTM manual editorGTTM process editor

Fig. 19 Overview of interactive GTTM analyzer.

sis process with an ATTA and the manual edit process with a manual editor.

Therefore, a user can acquire the target analysis by iterating the automatic and

manual processes interactively and can easily reflect his or her interpretations

on a piece of music.∗10 We also publicize the database of three hundred pairs

of scores and correct data which we asked musicologists to manually analyze

the score data faithfully with regard to the theory using our interactive GTTM

analyzer.

The interactive GTTM analyzer is the first application for acquiring

time-span trees. We hope to benchmark the analyzer to other systems, which

will be constructed. We use the XML as the import and export format since

XML format is extremely convenient to express hierarchical musical structures.

§6 Applications
This section we describe two application systems called ShakeGuitar

∗10 We publicize our interactive GTTM analyzer at:
http://music.iit.tsukuba.ac.jp/hamanaka/gttm.htm
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and Expectation Piano, both of which employ ATTA and the interactive GTTM

analyzer.

6.1 ShakeGuitar
ShakeGuitar is a demonstration system for the melody morphing method

that changes the morphing level of each half bar by using the values from the

accelerometer in the iPhone / iPod Touch/ iPad (Fig. 20).10) When the user

stops moving the iPhone / iPod Touch/ iPad, the unit plays the backing melody

of The Other Day, I Met a Bear (The Bear Song). When the user shakes it

vigorously, it plays heavy soloing. When the user shakes it slowly, it plays a

morphed melody between the backing and the heavy soloing.

Fig. 20 ShakeGuitar.

In melody morphing, we use primitive operations of the subsumption

relation (written as ⊑ in Fig. 21(a)), meet (written as ⊓) and join (written as

⊔). The meet operator extracts the largest common part or the most common

information of the time-span trees of two melodies in a top-down manner (Fig.

21(b)). The join operator unites two time-span trees in a top-down manner as

long as the structures of two time-span trees are consistent (Fig. 21(c)).

⊑

abstractinginstantiating ⊔

⊓

(a) (b) (c)

Fig. 21 Examples of Subsumption, meet and join.

The meet operation TA ⊓ TB is an abstraction from TA and TB , and as
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a result such notes as only in TA or only in TB are discarded (Fig. 22(1)). Since

we would like to retrieve those lost notes gradually, we find an adequate sub-

reduction, called Melody division reduction, on each reduction path (Fig. 22(2)).

Finally, we employ the join operator to combine melodies C and D, residing on

reduction paths, to obtain a morphing (Fig. 22(3)).10)

Melody A Melody B

TA
TB

TA TB

（1）Linking the common information of melodies

（2）Melody division reduction

TC

（3）Combining two melodies

TC TD

Melody C

TD
TC

Melody D
TD

Melody E

L
A

L
B

Fig. 22 Overview of melody morphing method.

6.2 Expectation Piano
Our expectation piano assists novices with musical improvisation by

displaying the predicted notes on the piano lid (Fig. 23).11) When the novice finds

it hard to continue playing the melody, she/he can continue the improvisation

by playing a note displayed on the lid, without impairing tonality.

The predicted notes are displayed in piano roll format within the range

of view of the keyboard. The roll scrolls down at a constant speed. Below the

piano lid, which is made of semitransparent acrylic resin, there is a 32 × 25

full-color LED matrix for displaying the scrolling piano roll. 32 represents two

measures when the resolution is a sixteenth note, and 25 is the number of keys

on the keyboard. The color of each LED in the matrix is determined under
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Fig. 23 Expectation piano.

the assumption that the onset of the next note will start at the corresponding

position on the piano roll and by calculating the level of stability. When the

level of stability is high, the LEDs show yellow, when it is low, they show black,

and when it is neither, they show red. There is also a 32 × 20 blue LED matrix

that displays the bar lines of the piano roll.

We identified two key requirements for our melody expectation method

to make it useful for musical novices to play an improvisation on the expectation

piano. 1) Candidate notes are predicted and output even if the input melody

is novel. 2) The output is appropriate from a musical point of view. Two

approaches were considered when developing this method: statistical learning

and music theory. With the statistical learning approach, the predictions depend

on the characteristics of the data used for learning: composer, genre, period,

country, etc.17, 15) Moreover, predicting candidate notes for a novel melody is

problematic because the system may not be able to find a similar melody in

the learning data and thus, may be unable to evaluate whether the notes are

appropriate or not. With the music theory approach, the predictions do not

depend on the characteristics of the data used for learning. It can thus be

applied to novel melodies.

Our melody expectation method predicts candidate notes by using the

level of stability of the time-span tree.9) The main advantage of our melody ex-

pectation method is that, the stability of a melody is calculated by analyzing

the whole melody from the beginning note to the expected note, not from only

the local melody (a few notes previous to a relevant note); previous melody ex-

pectation methods based on music theory (e.g. Steve Larson’s theory of musical

forces12)) have derived the expected note from the local melody. Music tends to

be more interesting when it does not match with the listener’s expectation, such

as a delayed note, and this may result in tension and relaxation. A composer
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can deliberately construct such music, which can make it difficult to predict the

next notes in the melody with accuracy. For example, an ornamental note is

often inserted before the expected note. In such cases, our method can predict

candidate notes fairly well because it can evaluate the stability of the entire

structure of the time-span trees, which includes branches connected to essential

notes and leaves connected to ornament notes.

The aim of Expectation Piano is to assist novices when they cannot

choose adequate notes for natural progression. Here, the level of stability should

represent the performer’s intuition. Thus, we investigate how the level fluctuates

in music pieces. Fig. 24 shows the results for Haydn’s andante. The graph below

the musical staff indicates the level of melody stability, corresponding to each

above note. The number under each note indicates the level of stability for

selecting a pitch of 25 possible ones. Stability of a pitch event is calculated from

the partial melody between its beginning and the relevant event, but not by the

sole event. As a result, the F# in measure 7 does not have the lowest stability,

and that of C in measure 5 is lower than that of G in the previous measure,

even in C major. Although this may contradict intuition, the calculated result

is faithful to our algorithm. At the end of the 4th and 8th measures, the level of

stability is high. This is because a dominant chord’s note that wants to resolve

to a tonic chord’s note occurs. In contrast, at the beginning of the 5th measure,

the level of stability is relatively low. This is because a tonic chord’s root note

at the beginning of the 5th measure occurs, and various progressions can follow

the root note. These results show that our prediction method works well from

a musical point of view.

Level of

stability

Time

1.0

0

5 6 4 3 5 4 5 3 4 3 2 4 8 7 4 4 2 4 84 74 5 2

Fig. 24 Example of melody expectation.

§7 Summary
We argue that we need to rely on a solid music theory to yield a con-

sistent and stable model, in which proper equivalence relations hold between

represented musical objects. As we have mentioned in Chapter 1, these repre-
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sentations of notes and other musical structures must be properly grounded onto

the real world. Furthermore, to embody a music theory into a computer system,

we must overcome some widely recognized intrinsic difficulties. One is to give

firm formalization to those ambiguous concepts, and the other is to complement

some missing concepts. We have chosen the Generative Theory of Tonal Music

(GTTM) by Lehrdahl and Jackendoff as the most solid theory of music. We

have solved those intrinsic difficulties, by assigning parametrized weights to the

preference rules, and have fully externalized the theory into exGTTM, together

with the automatic tree analyzer ATTA. We have introduced two of our appli-

cation systems, ShakeGuitar and Expectation Piano, and thus could show that

the theory is utilized as a basis of computational musicology.
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