Notes on the first-order part of Ramsey's theorem for pairs (Proof theory and complexity)

Title

Author(s)
Yokoyama, Keita

Citation
数理解析研究所講究録, 1832: 127-134

Issue Date
2013-04

Type
Departmental Bulletin Paper

Text version
author

URL
http://hdl.handle.net/10119/11590

Rights

Notes on the first-order part of Ramsey's theorem for pairs (Proof theory and complexity), Keita Yokoyama, 数理解析研究所講究録, No.1832, pp.127-134, 2013. 本著作物は京都大学数理解析研究所の許可のもとに掲載するものです。This material is posted here with permission of the Research Institute for Mathematical Sciences.
Notes on the first-order part of Ramsey’s theorem for pairs

Keita Yokoyama*
(Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology)

Abstract
We give the Π^0_2-part, the Π^0_3-part and the Π^0_4-part of RT$_2^2$ and related combinatorial principles.

1 Introduction
Determinating the first-order part of WKL$_0 + \text{RT}_2^2$ and other important combinatorial principles is one of the crucial topics in the study of Reverse Mathematics (see, e.g., [2, 4]). The usual approach for these questions is using forcing arguments to construct a second-order part for the target combinatorial principle. On the other hand, there is a traditional way to study the strength of combinatorial principles by using indicator functions. (For the details of indicator functions, see [6].) In [1], Bovykin and Weiermann gave the Π^0_2-part of WKL$_0 + \text{RT}_2^2$ by means of an indicator function defined by a density notion, using the idea of Paris [7] and Paris/Kirby [8]. Using similar arguments, we can show that the Π^0_2-part of WKL$_0 + \text{RT}_2^2$ is equivalent to Elementary Function Arithmetic (see [9]). In this paper, we give the Π^0_3-part and the Π^0_4-part of WKL$_0 + \text{RT}_2^2$ based on [1]. We will also give several density notions to characterize the Π^0_2-part, the Π^0_3-part and the Π^0_4-part of RT$_{<\infty}^2$, SRT$_2^2$, SRT$_{<\infty}^2$ and EM.

2 The Π^0_2-part of WKL$_0 + \text{RT}_2^2$
This section is essentially due to Bovykin/Weiermann[1].

Definition 2.1 (within Σ_1). For a finite set X, we define the notion of n-density as follows.

- A finite set X is said to be 0-dense if $|X| > \min X$.
- A finite set X is said to be $n+1$-dense if for any (coloring) function $P : |X|^2 \to 2$, there exists a subset $Y \subseteq X$ such that Y is n-dense and Y is P-homogeneous, i.e., P is constant on $|Y|^2$.

*2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, JAPAN. e-mail: yokoyama.k.ai@m.titech.ac.jp
Note that “\(X \text{ is } m\text{-dense} \)” can be expressed by a \(\Sigma_0 \)-formula.

Definition 2.2. \(n\text{PH}_2 \) asserts that for any \(a \) there exists an \(n\)-dense set \(X \) such that \(\min X > a \).

Define \(T_0 := \{ k\text{PH}_2^2 \mid k \in \omega \} \cup \Sigma_1 \).

Lemma 2.1.
- \(\text{WKL}_0 + \text{RT}_2^2 \vdash n\text{PH}_2^2 \) for any \(n \in \omega \).
- \(\Sigma_1 \vdash m\text{PH}_2^2 \rightarrow \text{PH}_{m+1}^2 \).

Proof. Easy.

Lemma 2.2 (Bovykin/Weiermann[1]). Let \(M \) be a countable model of \(\Sigma_1 \), and let \(X \subseteq M \) is a (\(M \)-)finite set which is \(k \)-dense for any \(k \in \omega \). Then, there exists a cut \(I \subseteq M \) such that \(\min X \in I < \max X \), \(X \cap I \) is unbounded in \(I \) and \((I, \text{Cod}(I/M)) \models \text{WKL}_0 + \text{RT}_2^2 \).

Proof. See [1].

Theorem 2.3 (Bovykin/Weiermann[1]). A \(\Pi^0_2 \) sentence \(\psi \) is provable in \(\text{WKL}_0 + \text{RT}_2^2 \) if and only if it is provable in \(T_0 \).

Proof. See [1].

In fact, we can generalize this theorem as follows.

Theorem 2.4. A \(\Pi^0_3 \) formula \(\psi \) (\(\psi \) may contain set parameters) is provable in \(\text{WKL}_0 + \text{RT}_2^2 \) if and only if it is provable in \(\Sigma^0_1 \cup \{ k\text{PH}_2^2 \mid k \in \omega \} \). (Here, \(\Sigma^0_1 \) is a system of second-order arithmetic which contains basic axioms and induction axioms for \(\Sigma^0_1 \)-formulas with set parameters.)

3 The \(\Pi^0_3 \)-part of \(\text{WKL}_0 + \text{RT}_2^2 \)

Definition 3.1. Let \(\theta(a, x, y) \) be a \(\Sigma_0 \)-formula. We say that a finite set \(X = \{ a_i \mid i \leq l \} \) dominates \(\theta(a, \cdot, \cdot) \) if \(\forall i \leq l \ \forall x \leq a_i \ \exists y \leq a_{i+1} \theta(a, x, y) \) holds. We define several variations of \(\text{PH}_2^2 \) as follows:

- \(\theta-n\text{PH}_2^2 \equiv \forall a (\forall x \exists y \theta(a, x, y) \rightarrow \exists X \ (X \text{ is finite, } n\text{-dense, and dominates } \theta(a, \cdot, \cdot))) \),
- \(n\text{PH}_2^2 \equiv \forall X (\forall x \exists y \geq x \ y \in X \rightarrow \exists Y \ (Y \text{ is finite, } n\text{-dense, and } Y \subseteq X)) \).

Define \(T_1 := \{ \theta-k\text{PH}_2^2 \mid k \in \omega, \theta \in \Sigma_0 \} \cup \Sigma_1 \) and \(T_1 \) := \(\{ k\text{PH}_2^2 \mid k \in \omega \} \cup \text{RCA}_0 \). Note that \(T_1 \) is a \(\Pi^0_3 \)-theory, i.e., \(T_1 \) is a set of \(\Pi^0_3 \)-sentences.

Lemma 3.1. Let \(\theta(a, x, y) \) be a \(\Sigma_0 \)-formula, and let \(n \in \omega \). Then, \(\text{WKL}_0 + \text{RT}_2^2 \vdash \theta-n\text{PH}_2^2 \), and \(\text{WKL}_0 + \text{RT}_2^2 \vdash n\text{PH}_2^2 \).

Proof. Easy.
Theorem 3.2. A Π^0_3 sentence ψ is provable in $\text{WKL}_0 + \text{RT}_2^2$ if and only if it is provable in T_1. Thus, T_1 is the Π^0_3-part of $\text{WKL}_0 + \text{RT}_2^2$.

Proof. We show that $T_1 \nvdash \psi$ implies $\text{WKL}_0 + \text{RT}_2^2 \nvdash \psi$ for any Π^0_3-sentence ψ. Assume that $\psi \equiv \forall a \exists x \forall y \theta(a, x, y)$ is not provable from T_1. Then, there exists a nonstandard countable model $M \models T_1$ such that $M \models \forall x \exists y \neg \theta(a, x, y)$ for some $a \in M$. By $(\neg \theta)$-$k\text{PH}_2^1$ and overspill, there exists an m-dense set X which dominates $-\theta(a, \cdot, \cdot)$ for some $m \in M \setminus \omega$. By Lemma 2.2, there exists an initial segment $I \subseteq M$ such that $(I, \text{Cod}(I/M)) \models \text{WKL}_0 + \text{RT}_2^2$ and $I \cap X$ is unbounded in I. Since X dominates $-\theta$, for any $x \in I$ there exists $y \in I$ such that $I \models \neg \theta(a, x, y)$. Thus, we have $(I, \text{Cod}(I/M)) \models \neg \psi$, which means that $\text{WKL}_0 + \text{RT}_2^2 \nvdash \psi$. \hfill \square

Theorem 3.3. A Π^0_3 formula ψ is provable in $\text{WKL}_0 + \text{RT}_2^2$ if and only if it is provable in \widehat{T}_1.

Proof. Similar to the proof of Theorem 3.2. \hfill \square

Note that \widehat{T}_1 is equivalent to $\Sigma^0_1 \cup \{\forall A \forall a(\forall x \exists y \theta(A, a, x, y) \rightarrow \exists X (X \text{ is finite, } n\text{-dense, and dominates } \theta(A, a, \cdot, \cdot))) \mid n \in \omega, \theta \in \Sigma^0_0\}$ with respect to Π^1_1-sentences.

4 The Π^0_4-part of $\text{WKL}_0 + \text{RT}_2^2$

Definition 4.1 (within Σ_1). Let $\theta(a, x, y, z)$ be a Σ_0-formula. Then, we define the notion of weakly domination as follows.

- A 0-dense set X weakly dominates $\theta(a, \cdot, \cdot, \cdot)$.
- An $n + 1$-dense set X weakly dominates $\theta(a, \cdot, \cdot, \cdot)$ if for any coloring $P : [X]^2 \rightarrow 2$, there exists a P-homogeneous set $Y \subseteq X$ such that $\forall x < \min X \exists y < \min Y \forall z < \max Y \theta(a, x, y, z)$, Y is n-dense and weakly dominates $\theta(a, \cdot, \cdot, \cdot)$.

Note that “X is m-dense and weakly dominates $\theta(a, \cdot, \cdot, \cdot)$” can be expressed by a Σ_0 formula.

Definition 4.2. Let $\theta(a, x, y, z)$ be a Σ_0-formula. Then, the assertion $\theta^* - \text{PH}_2^1$ is the following

$\forall a \forall b (\forall x \exists y \forall z \theta(a, x, y, z) \rightarrow \exists X (X \text{ is } n\text{-dense, weakly dominates } \theta(a, \cdot, \cdot, \cdot) \text{ and } \min X > b))$.

Define $T_2 := \{\theta^* - \text{PH}_2^1 \mid n \in \omega, \theta(a, x, y, z) \in \Sigma_0\} \cup \Sigma_1$. Note that T_2 is a Π^0_4-theory.

Lemma 4.1. Let $\theta(a, x, y, z)$ be a Σ_0-formula, and let $n \in \omega$. Then, $\text{WKL}_0 + \text{RT}_2^2 \vdash \theta^* - \text{PH}_2^1$.

Proof. Easy. \hfill \square
Theorem 4.2. A Π^0_4 sentence ψ is provable in $\text{WKL}_0 + \text{RT}_2^2$ if and only if it is provable in T_2. Thus, T_2 is the Π^0_4-part of $\text{WKL}_0 + \text{RT}_2^2$.

Proof. We show that $T_2 \not\vdash \psi$ implies $\text{WKL}_0 + \text{RT}_2^2 \not\vdash \psi$ for any Π^0_4-sentence ψ. Assume that $\psi \equiv \forall a \exists x \forall y \forall z \theta(a, x, y, z)$ is not provable from T_2. Then, there exists a non-standard countable model $M \models T_2$ such that $M \models \forall x \exists y \forall z \neg \theta(a, x, y, z)$ for some $a \in M$. By $(k, -\theta)\text{PH}_2^2$ and overspill, there exists an $(m, \theta(a, \cdot, \cdot, \cdot))$-dense set X such that $\min X > a$ for some $m \in M \setminus \omega$. As the proof of Theorem 1 of [1], we can construct a descending sequence $X_0 \supseteq X_1 \supseteq X_2 \supseteq \ldots$ which satisfies the following:

- $I = \sup\{\min X_i \mid i \in \omega\} \subseteq M$,
- $(I, \text{Cod}(I/M)) \models \text{WKL}_0 + \text{RT}_2^2$,
- $I \cap X$ is unbounded in I,
- $\forall x \leq \min X_i \exists y \leq \min X_{i+1} \forall z \leq \max X_{i+1} - \theta(a, x, y, z)$ for any $i \in \omega$.

Since $\min X_i < \min X_{i+1} < I < \max X_{i+1}$ for any $i \in \omega$, we have $I \models \forall x \exists y \forall z \neg \theta(a, x, y, z)$, i.e., $(I, \text{Cod}(I/M)) \models \neg \psi$. This means that $\text{WKL}_0 + \text{RT}_2^2 \not\vdash \psi$. \hfill \square

Remark 4.3. Adding set parameters, we can easily show the following: a Π^0_4 formula ψ is provable in $\text{WKL}_0 + \text{RT}_2^2$ if and only if it is provable in

$$\text{I}^0_4 \cup \{\forall A \forall a \forall b (\forall x \exists y \forall z \theta(A, a, x, y, z) \rightarrow \exists X(X \text{ is } n\text{-dense, weakly dominates } \theta(A, a, \cdot, \cdot, \cdot) \text{ and } \min X > b) \mid n \in \omega, \theta \in \Sigma^0_4\}.$$

5 \ PH\^2_2 with stronger largeness notion

In this section, we compare $n\text{PH}_2^2$ with PH_2^2 plus “stronger largeness”.

Definition 5.1 (within I^Σ_1).
- A finite set X is said to be 0-large if $X \neq \emptyset$.
- A finite set X is said to be $r + 1$-large if there is a partition $X = \bigsqcup_{i \leq \min X} Y_i$ such that $\max Y_i < \min Y_{i+1}$ for any $i < \min X$ and each Y_i is r-large.

Remark 5.1. 1. For any $r \in \omega$, I^Σ_1 proves that for any a, there exists a finite set X such that $\min X > a$ and X is r-large.

2. $Q(a, b) := \max\{r \mid [a, b] \text{ is } r\text{-large}\}$ is an indicator function for WKL_0.

3. More generally, if M is a model of I^Σ_1 and $X \subseteq M$ is r-large for some $r \in M \setminus \omega$, then there exists a cut $I \subseteq M$ such that $(I, \text{Cod}(I/M)) \models \text{WKL}_0$ and $X \cap I$ is unbounded in I.

Definition 5.2. 1. PH^2_r asserts that for any a, there exists a finite set X such that $\min X > a$ and for any coloring $P : [X]^2 \to 2$, there exists a P-homogeneous set $Y \subseteq X$ which is r-large.
2. \(\widetilde{PH}^2_{2,r} \) asserts that for any infinite set \(A \), there exists a finite set \(X \) such that \(X \subseteq A \) and for any coloring \(P : [X]^2 \to 2 \), there exists a \(P \)-homogeneous set \(Y \subseteq X \) which is \(r \)-large.

3. In general, \(n\widetilde{PH}^2_{2,r} \) asserts that for any infinite set \(A \), there exists a finite set \(X \) such that \(X \subseteq A \) and \(X \) is \((n,r)\)-dense, where the notion of \((n,r)\)-density is defined as follows:

- A finite set \(X \) is said to be \((0,r)\)-dense if \(X \) is \(r \)-large.
- A finite set \(X \) is said to be \((n+1,r)\)-dense if for any coloring \(P : [X]^2 \to 2 \), there exists a \(P \)-homogeneous set \(Y \subseteq X \) which is \((n,r)\)-dense.

Proposition 5.2. \(\Sigma_1 \vdash n\widetilde{PH}^2_{2} \to \widetilde{PH}^2_{2,n} \).

Proof. Easy. \(\square \)

The strength of \(\widetilde{PH}^2_{2,r} \) is related to the strength of \(n\widetilde{PH}^2_{2} \) in the following meaning.

Proposition 5.3. Assume that \(WKL_0 \vdash \widetilde{PH}^2_{2,r} \) for all \(r \in \omega \), then we have \(WKL_0 \vdash n\widetilde{PH}^2_{2} \) for all \(n \in \omega \).

Proof. Our assumption is \(WKL_0 \vdash 1\widetilde{PH}^2_{2,r} \) for any \(r \in \omega \). We will show by induction on \(n \) that \(WKL_0 \vdash n\widetilde{PH}^2_{2,r} \) for any \(r \in \omega \) and for any \(n \in \omega \). Let \(WKL_0 \vdash n\widetilde{PH}^2_{2,r} \) for any \(r \in \omega \). Assume for the sake of contradiction that \(WKL_0 \not\vdash (n+1)\widetilde{PH}^2_{2,r} \) for some \(r \in \omega \). Then, there exists a model \((M,S) \models WKL_0 \) and \(A \in S \) such that \(M \not\models \omega \), \(A \) is unbounded in \(M \) and any \((M-)\)finite subset of \(A \) is not \((n+1,r)\)-dense. By the assumption, there exists an \((n,s)\)-dense subset of \(A \) for any \(s \in \omega \). Thus, by overspill, for some \(m \in M \setminus \omega \), we can take an \((n,m)\)-dense subset \(X \subseteq A \). We will show that this \(X \) is in fact \((n+1,r)\)-dense, which leads to a contradiction. By the definition of \((n,m)\)-density, for any coloring \(P : [X]^2 \to 2 \), there exists a \(P \)-homogeneous set \(Y_1 \subseteq X \) which is \((n-1,m)\)-dense, and we can repeat this process \(n \)-times then the result set \(Y_n \) is \(m \)-large. By Remark 5.1.3, there exists a cut \(I \subseteq M \) such that \((I,\text{Cod}(I/M)) \models WKL_0 \) and \(Y_n \cap I \) is unbounded in \(I \). Thus, there exists a finite subset of \(Y_n \cap I \) which is \((1,r)\)-dense. This means that \(Y_n \) is \((1,r)\)-dense, and hence \(X \) is \((n+1,r)\)-dense.

Thus, if \(WKL_0 \vdash \widetilde{PH}^2_{2,r} \), then \(WKL_0 + RT^2_2 \) is a \(\Pi^0_2 \)-conservative extension of \(WKL_0 \). This may give a new approach to study the proof-theoretic strength of \(WKL_0 + RT^2_2 \).

Question 5.3. Is \(\Sigma_1 \cup \{n\widetilde{PH}^2_2 \mid n \in \omega \} \) equivalent to \(\Sigma_1 \cup \{\widetilde{PH}^2_{2,r} \mid r \in \omega \} \)?
6 Other combinatorial principles

In this section, we give several density notions for SRT$_2^2$, RT$_{<\infty}^2$, SRT$_{<\infty}^2$, EM and ADS.
(For the definitions of these combinatorial principles, see [2, 5, 1].) Using these notions, we can characterize Π^0_2, Π^0_3 or Π^0_4 part of the target combinatorial principle as in Sections 2, 3 and 4.

We reason within Σ^0_1.

Proposition 6.1. The Π^0_2-part, Π^0_3-part and the Π^0_4-part of $\text{WKL}_0 + \text{SRT}_2^2$ is characterized by the following density notion.

A finite set X is said to be

- 0-dense if $|X| > \min X$, and
- $m + 1$-dense if for any $P : [X]^2 \rightarrow 2$,
 - there exists a P-homogeneous subset $Y \subseteq X$ which is m-dense, or,
 - there exists $Y = \{y_0 < y_1 < \cdots < y_l\} \subseteq X$ such that $P(y_0, y_i) \neq P(y_0, y_{i+1})$ for any $0 < i < l$ and Y is m-dense.

For the strength of SRT$_2^2$, see also Chong/Slaman/Yang [3].

Proposition 6.2. The Π^0_2-part, Π^0_3-part and the Π^0_4-part of $\text{WKL}_0 + \text{RT}_2^2$ is characterized by the following density notion.

A finite set X is said to be

- 0-dense if $|X| > \min X$, and
- $m + 1$-dense if for any coloring $P : [X]^2 \rightarrow k$ such that $k < \min X$, there exists a P-homogeneous subset $Y \subseteq X$ which is m-dense.

Proposition 6.3. The Π^0_2-part, Π^0_3-part and the Π^0_4-part of $\text{WKL}_0 + \text{SRT}_{<\infty}^2$ is characterized by the following density notion.

A finite set X is said to be

- 0-dense if $|X| > \min X$, and
- $m + 1$-dense if for any coloring $P : [X]^2 \rightarrow k$ such that $k < \min X$,
 - there exists a P-homogeneous subset $Y \subseteq X$ which is m-dense, or,
 - there exists $Y = \{y_0 < y_1 < \cdots < y_l\} \subseteq X$ such that $P(y_0, y_i) \neq P(y_0, y_{i+1})$ for any $0 < i < l$ and Y is m-dense.

Proposition 6.4. The Π^0_2-part, Π^0_3-part and the Π^0_4-part of $\text{WKL}_0 + \text{EM}$ is characterized by the following density notion.

A finite set X is said to be
• 0-dense if $|X| > \min X$, and

• $m+1$-dense if

 for any coloring $P : [X]^2 \to 2$, there exists $Y \subseteq X$ such that P is transitive on Y and Y is m-dense, and,

 there is a partition $X = \bigsqcup_{i \leq \min X} Y_i$ such that $\max Y_i < \min Y_{i+1}$ for any $i < \min X$ and each Y_i is m-dense.

Here, a coloring P is said to be transitive if $P(a, b) = P(b, c) \Rightarrow P(a, c) = P(a, c)$.

Proposition 6.5. The Π^0_2-part, Π^0_3-part and the Π^0_4-part of $\text{WKL}_0 + \text{ADS}$ is characterized by the following density notion.

A finite set X is said to be

• 0-dense if $|X| > \min X$, and

• $m+1$-dense if for any transitive coloring $P : [X]^2 \to 2$, there exists a P-homogeneous subset $Y \subseteq X$ which is m-dense.

In fact, Slaman/Chong/Yang[4] showed that $\text{WKL}_0 + \text{ADS}$ is a Π^1_1-conservative extension of $\text{B}\Sigma^0_2$. Thus, for any $n \in \omega$, WKL_0 actually proves for any a, there exists a finite set X such that $\min X > a$ and X is n-dense for ADS.

Acknowledgments

The author would like to thank Dr. Tin Lok Wong for useful comments. This work was partially supported by a Japan Society for the Promotion of Science postdoctoral fellowship for young scientists, and by a grant from the John Templeton Foundation.

References

