JAIST Repository

https://dspace.jaist.ac.jp/

Title	Notes on the first-order part of Ramsey's theorem for pairs (Proof theory and complexity)
Author(s)	Yokoyama, Keita
Citation	数理解析研究所講究録,1832:127-134
Issue Date	2013-04
Туре	Departmental Bulletin Paper
Text version	author
URL	http://hdl.handle.net/10119/11590
Rights	Notes on the first-order part of Ramsey's theorem for pairs (Proof theory and complexity), Keita Yokoyama, 数理解析研究所講究録, No.1832, pp.127- 134, 2013. 本著作物は京都大学数理解析研究所の許 可のもとに掲載するものです。This material is posted here with permission of the Research Institute for Mathematical Sciences.
Description	

Japan Advanced Institute of Science and Technology

Notes on the first-order part of Ramsey's theorem for pairs

Keita Yokoyama*

(Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology)

Abstract

We give the Π_2^0 -part, the Π_3^0 -part and the Π_4^0 -part of RT_2^2 and related combinatorial principles.

1 Introduction

Determinating the first-order part of $WKL_0 + RT_2^2$ and other important combinatorial principles is a one of the crucial topics in the study of Reverse Mathematics (see, e.g., [2, 4]). The usual approach for these questions is using forcing arguments to construct a second-order part for the target combinatorial principle. On the other hand, there is a traditional way to study the strength of combinatorial principles by using indicator functions. (For the details of indicator functions, see [6].) In [1], Bovykin and Weiermann gave the Π_2^0 -part of $WKL_0 + RT_2^2$ by means of an indicator function defined by a density notion, using the idea of Paris [7] and Paris/Kirby [8]. Using similar arguments, we can show that the Π_2^0 -part of $WKL_0^* + RT_2^2$ is equivalent to Elementary Function Arithmetic (see [9]). In this paper, we give the Π_3^0 -part and the Π_4^0 -part of $WKL_0 + RT_2^2$ based on [1]. We will also give several density notions to characterize the Π_2^0 -part, the Π_3^0 -part and the Π_4^0 -part of $RT_{<\infty}^2$, SRT_2^2 , $SRT_{<\infty}^2$ and EM.

2 The Π_2^0 -part of WKL₀ + RT₂²

This section is essentially due to Bovykin/Weiermann[1].

Definition 2.1 (within $I\Sigma_1$). For a finite set X, we define the notion of *n*-density as follows.

- A finite set X is said to be 0-dense if $|X| > \min X$.
- A finite set X is said to be n + 1-dense if for any (coloring) function P : [X]² → 2, there exists a subset Y ⊆ X such that Y is n-dense and Y is P-homogeneous, *i.e.*, P is constant on [Y]².

^{*2-12-1} Oh-okayama, Meguro-ku, Tokyo 152-8551, JAPAN. e-mail: yokoyama.k.ai@m.titech.ac.jp

Note that "X is m-dense" can be expressed by a Σ_0 -formula.

Definition 2.2. nPH_2^2 asserts that for any *a* there exists an *n*-dense set *X* such that $\min X > a$.

Define $T_0 := \{k \operatorname{PH}_2^2 \mid k \in \omega\} \cup \operatorname{I}\Sigma_1$.

Lemma 2.1. • $WKL_0 + RT_2^2 \vdash nPH_2^2$ for any $n \in \omega$.

• $\mathrm{I}\Sigma_1 \vdash m\mathrm{PH}_2^2 \to \mathrm{PH}_{m+1}^2$.

Proof. Easy.

Lemma 2.2 (Bovykin/Weiermann[1]). Let M be a countable model of $I\Sigma_1$, and let $X \subseteq M$ is a (M-)finite set which is k-dense for any $k \in \omega$. Then, there exists a cut $I \subseteq M$ such that min $X \in I < \max X$, $X \cap I$ is unbounded in I and $(I, Cod(I/M) \models WKL_0 + RT_2^2)$.

Proof. See [1].

Theorem 2.3 (Bovykin/Weiermann[1]). A Π_2^0 sentence ψ is provable in WKL₀ + RT₂² if and only if it is provable in T_0 .

Proof. See [1].

In fact, we can generalize this theorem as follows.

Theorem 2.4. A Π_2^0 formula ψ (ψ may contain set parameters) is provable in WKL₀+RT₂² if and only if it is provable in I $\Sigma_1^0 \cup \{k P H_2^2 \mid k \in \omega\}$. (Here, I Σ_1^0 is a system of secondorder arithmetic which contains basic axioms and induction axioms for Σ_1^0 -formulas with set parameters.)

3 The Π_3^0 -part of WKL₀ + RT₂²

Definition 3.1. Let $\theta(a, x, y)$ be a Σ_0 -formula. We say that a finite set $X = \{a_i \mid i \leq l\}$ dominates $\theta(a, \cdot, \cdot)$ if $\forall i < l \ \forall x \leq a_i \ \exists y \leq a_{i+1}\theta(a, x, y)$ holds. We define several variations of PH₂² as follows:

- θ -nPH₂² := $\forall a(\forall x \exists y \theta(a, x, y) \rightarrow \exists X (X \text{ is finite, } n \text{-dense, and dominates } \theta(a, \cdot, \cdot))),$
- $n\widetilde{\operatorname{PH}_2^2} :\equiv \forall X (\forall x \exists y \ge x \ y \in X \to \exists Y \ (Y \text{ is finite, } n \text{-dense, and } Y \subseteq X)).$

Define $T_1 := \{\theta - k \operatorname{PH}_2^2 \mid k \in \omega, \theta \in \Sigma_0\} \cup \operatorname{I}\Sigma_1$ and $\widetilde{T_1} := \{k \operatorname{PH}_2^2 \mid k \in \omega\} \cup \operatorname{RCA}_0$. Note that T_1 is a Π_3^0 -theory, *i.e.*, T_1 is a set of Π_3^0 -sentences.

Lemma 3.1. Let $\theta(a, x, y)$ be a Σ_0 -formula, and let $n \in \omega$. Then, $\mathsf{WKL}_0 + \mathrm{RT}_2^2 \vdash \theta - n\mathrm{PH}_2^2$, and $\mathsf{WKL}_0 + \mathrm{RT}_2^2 \vdash n\mathrm{PH}_2^2$.

Proof. Easy.

Theorem 3.2. A Π_3^0 sentence ψ is provable in WKL₀ + RT₂² if and only if it is provable in T_1 . Thus, T_1 is the Π_3^0 -part of WKL₀ + RT₂².

Proof. We show that $T_1 \not\vDash \psi$ implies $\mathsf{WKL}_0 + \mathrm{RT}_2^2 \not\vDash \psi$ for any Π_3^0 -sentence ψ . Assume that $\psi \equiv \forall a \exists x \forall y \theta(a, x, y)$ is not provable from T_1 . Then, there exists a nonstandard countable model $M \models T_1$ such that $M \models \forall x \exists y \neg \theta(a, x, y)$ for some $a \in M$. By $(\neg \theta)$ - $k \mathrm{PH}_2^2$ and overspill, there exists an *m*-dense set X which dominates $\neg \theta(a, \cdot, \cdot)$ for some $m \in M \setminus \omega$. By Lemma 2.2, there exists an initial segment $I \subseteq_e M$ such that $(I, \mathrm{Cod}(I/M)) \models \mathrm{WKL}_0 + \mathrm{RT}_2^2$ and $I \cap X$ is unbounded in I. Since X dominates $\neg \theta$, for any $x \in I$ there exists $y \in I$ such that $I \models \neg \theta(a, x, y)$. Thus, we have $(I, \mathrm{Cod}(I/M)) \models \neg \psi$, which means that $\mathrm{WKL}_0 + \mathrm{RT}_2^2 \not\lor \psi$.

Theorem 3.3. A Π_3^0 formula ψ is provable in WKL₀ + RT₂² if and only if it is provable in $\widetilde{T_1}$.

Proof. Similar to the proof of Theorem 3.2.

Note that $\widetilde{T_1}$ is equivalent to $I\Sigma_1^0 \cup \{ \forall A \forall a (\forall x \exists y \theta(A, a, x, y) \to \exists X (X \text{ is finite, } n \text{-dense,} and dominates <math>\theta(A, a, \cdot, \cdot))) \mid n \in \omega, \theta \in \Sigma_0^0 \}$ with respect to Π_1^1 -sentences.

4 The Π_4^0 -part of WKL₀ + RT₂²

Definition 4.1 (within I Σ_1). Let $\theta(a, x, y, z)$ be a Σ_0 -formula. Then, we define the notion of *weakly domination* as follows.

- A 0-dense set X weakly dominates $\theta(a, \cdot, \cdot, \cdot)$.
- An n + 1-dense set X weakly dominates $\theta(a, \cdot, \cdot, \cdot)$ if for any coloring $P : [X]^2 \to 2$, there exists a P-homogeneous set $Y \subseteq X$ such that $\forall x < \min X \exists y < \min Y \forall z < \max Y \theta(a, x, y, z), Y$ is n-dense and weakly dominates $\theta(a, \cdot, \cdot, \cdot)$.

Note that "X is m-dense and weakly dominates $\theta(a, \cdot, \cdot, \cdot)$ " can be expressed by a Σ_0 formula.

Definition 4.2. Let $\theta(a, x, y, z)$ be a Σ_0 -formula. Then, the assertion θ^* - nPH_2^2 is the following

 $\forall a \forall b (\forall x \exists y \forall z \theta(a, x, y, z) \to \exists X(X \text{ is } n \text{-dense, weakly dominates } \theta(a, \cdot, \cdot, \cdot) \text{ and } \min X > b).$

Define $T_2 := \{\theta^* - n \operatorname{PH}_2^2 \mid n \in \omega, \theta(a, x, y, z) \in \Sigma_0\} \cup I\Sigma_1$. Note that T_2 is a Π_4^0 -theory.

Lemma 4.1. Let $\theta(a, x, y, z)$ be a Σ_0 -formula, and let $n \in \omega$. Then, $\mathsf{WKL}_0 + \mathrm{RT}_2^2 \vdash \theta^* - n \mathrm{PH}_2^2$.

Proof. Easy.

Theorem 4.2. A Π_4^0 sentence ψ is provable in WKL₀ + RT₂² if and only if it is provable in T_2 . Thus, T_2 is the Π_4^0 -part of WKL₀ + RT₂².

Proof. We show that $T_2 \not\vDash \psi$ implies $\mathsf{WKL}_0 + \mathsf{RT}_2^2 \not\vDash \psi$ for any Π_4^0 -sentence ψ . Assume that $\psi \equiv \forall a \exists x \forall y \forall z \theta(a, x, y, z)$ is not provable from T_2 . Then, there exists a nonstandard countable model $M \models T_2$ such that $M \models \forall x \exists y \neg \theta(a, x, y, z)$ for some $a \in M$. By $(k, \neg \theta) \mathsf{PH}_2^2$ and overspill, there exists an $(m, \theta(a, \cdot, \cdot, \cdot))$ -dense set X such that $\min X > a$ for some $m \in M \setminus \omega$. As the proof of Theorem 1 of [1], we can construct a descending sequence $X = X_0 \supseteq X_1 \supseteq X_2 \supseteq \ldots$ which satisfies the following:

- $I = \sup\{\min X_i \mid i \in \omega\} \subseteq_e M,$
- $(I, \operatorname{Cod}(I/M)) \models \mathsf{WKL}_0 + \mathrm{RT}_2^2$,
- $I \cap X$ is unbounded in I,
- $\forall x \leq \min X_i \; \exists y \leq \min X_{i+1} \; \forall z \leq \max X_{i+1} \neg \theta(a, x, y, z) \text{ for any } i \in \omega.$

Since $\min X_i < \min X_{i+1} < I < \max X_{i+1}$ for any $i \in \omega$, we have $I \models \forall x \exists y \forall z \neg \theta(a, x, y, z)$, *i.e.*, $(I, \operatorname{Cod}(I/M)) \models \neg \psi$. This means that $\mathsf{WKL}_0 + \mathrm{RT}_2^2 \not\vDash \psi$. \Box

Remark 4.3. Adding set parameters, we can easily show the following: a Π_4^0 formula ψ is provable in WKL₀ + RT₂² if and only if it is provable in

$$\begin{split} \mathrm{I}\Sigma_1^0 \cup \{ \forall A \forall a \forall b (\forall x \exists y \forall z \theta(A, a, x, y, z) \to \exists X (X \text{ is } n \text{-dense, weakly dominates } \theta(A, a, \cdot, \cdot, \cdot) \\ \text{and } \min X > b) \mid n \in \omega, \theta \in \Sigma_0^0 \}. \end{split}$$

5 PH_2^2 with stronger largeness notion

In this section, we compare nPH_2^2 with PH_2^2 plus "stronger largeness".

Definition 5.1 (within I Σ_1). • A finite set X is said to be 0-large if $X \neq \emptyset$.

- A finite set X is said to be r + 1-large if there is a partition $X = \bigsqcup_{i \le \min X} Y_i$ such that $\max Y_i < \min Y_{i+1}$ for any $i < \min X$ and each Y_i is r-large.
- **Remark 5.1.** 1. For any $r \in \omega$, $I\Sigma_1$ proves that for any a, there exists a finite set X such that min X > a and X is r-large.
 - 2. $Q(a,b) := \max\{r \mid [a,b] \text{ is } r\text{-large}\}\$ is an indicator function for WKL₀.
 - 3. More generally, if M is a model of $I\Sigma_1$ and $X \subseteq M$ is r-large for some $r \in M \setminus \omega$, then there exists a cut $I \subseteq_e M$ such that $(I, \operatorname{Cod}(I/M)) \models \mathsf{WKL}_0$ and $X \cap I$ is unbounded in I.
- **Definition 5.2.** 1. $\operatorname{PH}_{2,r}^2$ asserts that for any a, there exists a finite set X such that $\min X > a$ and for any coloring $P : [X]^2 \to 2$, there exists a P-homogeneous set $Y \subseteq X$ which is r-large.

- 2. $\operatorname{PH}_{2,r}^{2}$ asserts that for any infinite set A, there exists a finite set X such that $X \subseteq A$ and for any coloring $P : [X]^{2} \to 2$, there exists a P-homogeneous set $Y \subseteq X$ which is r-large.
- 3. In general, $n PH_{2,r}^2$ asserts that for any infinite set A, there exists a finite set X such that $X \subseteq A$ and X is (n, r)-dense, where the notion of (n, r)-density is defined as follows:
 - A finite set X is said to be (0, r)-dense if X is r-large.
 - A finite set X is said to be (n + 1, r)-dense if for any coloring $P : [X]^2 \to 2$, there exists a P-homogeneous set $Y \subseteq X$ which is (n, r)-dense.

Proposition 5.2. $I\Sigma_1 \vdash nPH_2^2 \rightarrow PH_{2,n}^2$.

Proof. Easy.

The strength of $PH_{2,r}^2$ is related to the strength of nPH_2^2 in the following meaning.

Proposition 5.3. Assume that $WKL_0 \vdash \widetilde{PH}_{2,r}^2$ for all $r \in \omega$, then we have $WKL_0 \vdash n\widetilde{PH}_2^2$ for all $n \in \omega$.

Proof. Our assumption is WKL₀ ⊢ $1\widetilde{\text{PH}}_{2,r}^2$ for any $r \in \omega$. We will show by induction on n that WKL₀ ⊢ $n\widetilde{\text{PH}}_{2,r}^2$ for any $r \in \omega$ and for any $n \in \omega$. Let WKL₀ ⊢ $n\widetilde{\text{PH}}_{2,r}^2$ for any $r \in \omega$. Assume for the sake of contradiction that WKL₀ $\vdash (n+1)\widetilde{\text{PH}}_{2,r}^2$ for some $r \in \omega$. Then, there exists a model $(M, S) \models$ WKL₀ and $A \in S$ such that $M \ncong \omega$, A is unbounded in M and any (M-)finite subset of A is not (n+1,r)-dense. By the assumption, there exists an (n, s)-dense subset of A for any $s \in \omega$. Thus, by overspill, for some $m \in M \setminus \omega$, we can take an (n, m)-dense subset $X \subseteq A$. We will show that this X is in fact (n+1,r)-dense, which leads to a contradiction. By the definition of (n, m)-density, for any coloring $P : [X]^2 \to 2$, there exists a P-homogeneous set $Y_1 \subseteq X$ which is (n-1,m)-dense, and we can repeat this process n-times then the result set Y_n is m-large. By Remark 5.1.3, there exists a cut $I \subseteq_e M$ such that $(I, \operatorname{Cod}(I/M)) \models$ WKL₀ and $Y_n \cap I$ is unbounded in I. Thus, there exists a finite subset of $Y_n \cap I$ which is (1, r)-dense. This means that Y_n is (1, r)-dense, and hence X is (n+1,r)-dense.

Thus, if $WKL_0 \vdash \widetilde{PH}_{2,r}^2$, then $WKL_0 + RT_2^2$ is a Π_2^0 -conservative extension of WKL_0 . This may give a new approach to study the proof-theoretic strength of $WKL_0 + RT_2^2$.

Question 5.3. Is $I\Sigma_1 \cup \{nPH_2^2 \mid n \in \omega\}$ equivalent to $I\Sigma_1 \cup \{PH_{2,r}^2 \mid r \in \omega\}$?

6 Other combinatorial principles

In this section, we give several density notions for SRT_2^2 , $\text{RT}_{<\infty}^2$, $\text{SRT}_{<\infty}^2$, EM and ADS. (For the definitions of these combinatorial principles, see [2, 5, 1].) Using these notions, we can characterize Π_2^0 , Π_3^0 or Π_4^0 part of the target combinatorial principle as in Sections 2,3 and 4.

We reason within $I\Sigma_1$.

Proposition 6.1. The Π_2^0 -part, Π_3^0 -part and the Π_4^0 -part of WKL₀+SRT₂² is characterized by the following density notion.

A finite set X is said to be

- 0-dense if $|X| > \min X$, and
- m + 1-dense if for any $P : [X]^2 \to 2$,
 - there exists a P-homogeneous subset $Y \subseteq X$ which is m-dense, or,
 - there exists $Y = \{y_0 < y_1 < \cdots < y_l\} \subseteq X$ such that $P(y_0, y_i) \neq P(y_0, y_{i+1})$ for any 0 < i < l and Y is m-dense.

For the strength of SRT_2^2 , see also Chong/Slaman/Yang [3].

Proposition 6.2. The Π_2^0 -part, Π_3^0 -part and the Π_4^0 -part of WKL₀+RT²_{< ∞} is characterized by the following density notion.

A finite set X is said to be

- 0-dense if $|X| > \min X$, and
- m + 1-dense if for any coloring $P : [X]^2 \to k$ such that $k < \min X$, there exists a P-homogeneous subset $Y \subseteq X$ which is m-dense.

Proposition 6.3. The Π_2^0 -part, Π_3^0 -part and the Π_4^0 -part of WKL₀ + SRT²_{< ∞} is characterized by the following density notion.

A finite set X is said to be

- 0-dense if $|X| > \min X$, and
- m + 1-dense if for any coloring $P : [X]^2 \to k$ such that $k < \min X$,
 - there exists a P-homogeneous subset $Y \subseteq X$ which is m-dense, or,
 - there exists $Y = \{y_0 < y_1 < \cdots < y_l\} \subseteq X$ such that $P(y_0, y_i) \neq P(y_0, y_{i+1})$ for any 0 < i < l and Y is m-dense,

Proposition 6.4. The Π_2^0 -part, Π_3^0 -part and the Π_4^0 -part of WKL₀ + EM is characterized by the following density notion.

A finite set X is said to be

- 0-dense if $|X| > \min X$, and
- m + 1-dense if
 - for any coloring $P: [X]^2 \to 2$, there exists $Y \subseteq X$ such that P is transitive on Y and Y is m-dense, and,
 - there is a partition $X = \bigsqcup_{i \le \min X} Y_i$ such that $\max Y_i < \min Y_{i+1}$ for any $i < \min X$ and each Y_i is m-dense.

Here, a coloring P is said to be transitive if $P(a,b) = P(b,c) \Rightarrow P(a,b) = P(a,c)$.

Proposition 6.5. The Π_2^0 -part, Π_3^0 -part and the Π_4^0 -part of WKL₀ + ADS is characterized by the following density notion.

A finite set X is said to be

- 0-dense if $|X| > \min X$, and
- m+1-dense if for any transitive coloring P: [X]² → 2, there exists a P-homogeneous subset Y ⊆ X which is m-dense.

In fact, Slaman/Chong/Yang[4] showed that $\mathsf{WKL}_0 + \mathrm{ADS}$ is a Π_1^1 -conservative extension of $\mathrm{B}\Sigma_2^0$. Thus, for any $n \in \omega$, WKL_0 actually proves for any a, there exists a finite set X such that min X > a and X is n-dense for ADS.

Acknowledgments

The author would like to thank Dr. Tin Lok Wong for useful comments. This work was partially supported by a Japan Society for the Promotion of Science postdoctoral fellowship for young scientists, and by a grant from the John Templeton Foundation.

References

- [1] Andrey Bovykin and Andreas Weiermann. The strength of infinitary ramseyan principles can be accessed by their densities. to appear.
- [2] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. *Journal of Symbolic Logic*, 66(1):1–55, 2001.
- [3] C. T. Chong, Theodore A. Slaman, and Yue Yang. The metamathematics of Stable Ramsey's Theorem for pairs. to appear.
- [4] C. T. Chong, Theodore A. Slaman, and Yue Yang. Π¹₁-conservation of combinatorial principles weaker than Ramsey's theorem for pairs. Advances in Mathematics, 230(3):1060–1077, 2012.

- [5] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles weaker than Ramsey's theorem for pairs. *Journal of Symbolic Logic*, 72(1):171–206, 2007.
- [6] Richard Kaye. Models of Peano Arithmetic. Oxford Logic Guides, 15. Oxford University Press, 1991. x+292 pages.
- [7] J. B. Paris. Some independence results for Peano Arithmetic. Journal of Symbolic Logic, 43(4):725-731, 1978.
- [8] J. B. Paris and L. A. S. Kirby. Σ_n -collection schemas in arithmetic. In Logic Colloquium '77 (Proc. Conf., Wroclaw, 1977), volume 96 of Stud. Logic Foundations Math., 1978.
- [9] Keita Yokoyama. On the strength of Ramsey's theorem without Σ_1 -induction. to appear.