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Exploration Priority Based Heuristic Approach to UAV Path P lanning

Abdullah Al Redwan Newaz, Ferdian Adi Pratama, and Nak YoGhgng

Abstract— This paper presents a 3D online path planning
algorithm for Unmanned Aerial Vehicles (UAVS) equipped
with limited range sensors and computational resources in
unknown cluttered environments. Even though quadrotor UAVs
are considered to be a promising technology for surveillane
purposes in indoor environments and for close observationni
outdoor urban areas, it is very difficult to achieve autonomais
aerial navigation toward a goal avoiding unpredicted collsions.
Furthermore, greater attention and effort should be aimed a
improving the computational efficiency and performance of
path planning algorithms. The proposed heuristic algorittm
offers on-the-fly path findings with a lesser computational
complexity. We demonstrate the efficiency of our algorithm m
a real world scenario implemented using the V-REP simulatar

|I. INTRODUCTION

In this paper, we consider the surveillance and recovery
mission after nuclear disasters or severe accidents irsindu
trial areas which are inaccessible by humans. We divide R £l
the possible use of UAVs in the above-mentioned missions (b) Indoor path planning
into three different categories: 1) indoor environmentwuiit ) N . . _
having GPS or motion capture sensors [1], 2) indoor environ- Fig. 1. Initial nominal path with respect to GPS coordinates
ment with motion capture sensors, 3) outdoor environment

for close observation with the help of GPS. obstacles are detected, the UAV has to re-plan its nominal

hIn” an mdfooruz\r}wr_ontmei\nt, l(_)ne_tof h:[he dmost 'r;:r;ort?r:‘éath in real time. If the path planner fails to generate a
challenges for S IS 10 localize 1ISell and search for afe path within a bounded time, collisions with obstacles

pp§|t|on to move, since thg GPS does not work. Moreqveﬁ,]ay result. Since the computational time of deterministic
vision based localization is not always useful especiall

h tter disaster situati dered. si ¥nd complete algorithm grows exponentially with the di-
when at er |(sjas ert5| l:_a r;(:_ns arE C(t);‘s' ered, since “_'mt?nmension of the configuration space, those algorithms do not
guarantee adequate fghting. FUrermore, scanning 'aseh, ige an adequate solution for online UAV path planning
range finders or different types of vision sensors increa &

th tational burd Itit i ite difficult t indoor environments. However, as the UAV can not
€ computational burden, as a resutt 1t 1s qurte dicu %ompare its coordinates with GPS or specific land coordinate

!mmer?er;t n Iow-_cost_tohn—bto ard p(rjocgss;r;]g units. Tthszorsystems, inertial navigation errors can be accumulateld wit
in the first scenario, without considering the computatigna its exploration. The accuracy of goal findings depends on a

prenswﬁ sEegéar;, Ehe EI>_(pI0ratt|r(1)n IPr|0_r|ty _Based Hec('j”Stproper calibration system. Nevertheless, we assume tkat th
pproach ( ) to online path planning is proposed. requirements for the localization accuracy are not verigtstr

Ob\./lllously, we .mu.:,:] ftlave a:)n 0ff||2e t};)lanh [2] .before afO( surveillance missions particularly within a small aaen
surverfance mission that can bé made by ChoosINg SeVeral, ye next scenario, stationary motion capture sensors are

waypoints using the sat(_alllte maps as shown n '_:'g' sed to identify the coordinate of UAV. We can implement
The waypoints are Cartesian coordinates representlngatspabur algorithm in this scenario, since a number of infrared re

positions in t.he horizonjtal X.Y plane where a nominal heighte ;e markers are used to identify the object, therefbee t
IS assurr_1ed in the Z a>.<|s. S|n(_:e every movement of an UAgnvironment is unknown unless the markers are attached to
creates its own coordinates, if we calibrate the UAV COOMpctacles Finally, our algorithm works for close obsdorat

dinate system With respect to outdoor GPS poordinates, tn‘TJ‘outdoor environments, where different size and shape of
UAV can reach its goal along a set of waypoints. MoreOVEBbstacles may appear in the path of a navigating UAV.
we must have an approximate idea for maximum altitude for

indoor environments. Specifically, if the previously unkmo [l. RELATED WORKS

. . , Path planning has been one of the most important elements
The authors are with the School of Information Science, damivanced f missi definiti d . hicl di
Institute of Science and Technology, Ishikawa 923-129gad4r edwan, ~ Of mission de Inition an management of venicles anad it
ferdi an, nakyoung}@aist.ac.jp became crucial after birth and growth of UAVs. Quadrotors




inaugurate the miniature form of UAV and furthermore theithe evolution of A* for re-planning [25]. Then, research on
kinematics gives hovering capabilities that make it easy tdynamic re-planning brought to the development of Lifelong
create paths on the fly. Several algorithms were develop&fanning A* (LPA*) and D* Lite. They are based on the
for robotic ground vehicles [3]-[5]. Likewise, physics forsame principles of D* and D* focused, but they recall the
potential field algorithms [6], [7], mathematics for proba-heuristic aspect of A* to improve the speed of the search
bilistic approaches [8], or computer science for graphdear process [26], [27]. Different approaches were developed to
algorithms [9] were applied to UAV path planning. cope with the suboptimal solutions problem, based on post-
Binney et al. [10] presented a path planning methodorocessing algorithms or on improvements of the graph-
for autonomous underwater vehicles (AUVsS) to maximizeearch algorithm itself. Very important examples are Field
mutual information. Pereira and Sukhatme [11] presentdd* [28] and Theta* [29]. These algorithms refined the graph
minimume-risk path planning for AUVs operating in coastalsearch obtaining generalized paths with any heading.
regions with high ship traffic. Jung and Tsiotras [12] ex- Comparing all of these algorithm, De Filippét al. [30]
plained on-line path generation for UAVs using B-splinedpatconclude that Theta* is the most promising solution for
templates where they investigated the problem of gengratithe path planning of fixed-wing UAVs. However, the short-
a smooth, planar reference path, given a family of discremoming of Theta* is the computational time. Our proposed
optimal paths. Jun and D’Andrea [13] used the probabilitalgorithm is thus aimed at reducing the computational time.
map and Bellman-Ford shortest path algorithm in advenrsaria
environments, maximizing the safety of the vehicles. Yang
and Sukkarieh [14] discussed 3D path planning for an UAVY We categorized indoor surveillance missions further into
operating in cluttered natural environments. Hrabar [¥6} p two cases: 1) navigate in the obstacle free space and 2) avoid
posed a synthesis of techniques for rotorcraft UAV navagati obstacles and escape from a deadend passageway. The former
through obstacle-populated environments. Rohmer and Ragase means that the UAV finds the minimum distance path
dall provided the target position programming solution][16 toward a goal position, if there is free space to move. The
where a low level control of UAV was implemented with thelatter, however, must conform to several crucial condgion
target subdivided intborizontal control and vertical control how to avoid unexpected obstacles that appear in the path
Many techniques were developed to tackle the indepeflocated in front, or to the left or right, or any possible
dent components for safe vehicle navigation in unknowarrangement of obstacles, except for the upward direction)
environments. We handpick a selection of these that, wheéfa complex and unpredictably changing environment makes
combined, offers what we believe is the best solution foit difficult to accomplish safe path planning. Moreover,ngsi
the disaster surveillance with quadrotor UAVs. The needf vision sensors increases the computational complexity
for off-line and real-time replanning substantially ressthe that makes it difficult to accommodate on-board imple-
path planning strategy. Moreover, the computational perfomentation requirements. Therefore, without having any
mances of the control station, where the mission managemgaiitori knowledge of the environment, this paper proposes
system is running, can influence the algorithm selectiod new heuristic approach to allow UAVs to navigate through
and design. The use of evolutionary algorithms for patkomplex terrains, ensuring near-constant computations.
optimization is an important solution permitting to apply Now we address the path planning of UAV in unknown
kinematic constraints to the path. Using splines or randognvironments as followsAssuming a surveillance UAV
trees to model the trajectory, these algorithms can rezt#oc equipped with limited range sensors exploring an arena,
the waypoint sequence to generate optimum solutions iMhere different types of unknown obstacles exist, how to
complex environments [17], [18]. Being interesting andflexmake it go to a goal position avoiding the obstacles with
ible, the evolutionary algorithms are spreading on différe comparatively little computational cost?
planning problems, but their complexity is paid with a heavy The path planning problem above can be decomposed into
computational effort [19]. The Dijkstra algorithm is one oftwo sub-problems:
the first greedy algorithms for graph search and permits « Sub-problem 1 (free spacg How does it travel a
to find the minimum path between two nodes of a graph  minimum possible distance in an obstacle free area?
with positive arc costs [20]. An evolution of the Dijkstra « Sub-problem 2 (obstacle avoidangeHow does it re-
algorithm is the Bellman-Ford algorithm [21], [22] that plan its position, while avoiding obstacles in its path?
finds the minimum path on oriented graphs with positive
and negative costs. Another important method is the Floyd-
Warshall algorithm [23], [24] that finds the shortest path on The idea underlying the proposed algorithm is similar to
a weighted graph with positive and negative weights, bua* algorithm [31]. However, in A* algorithm for 2D plane,
it reduces the number of evaluated nodes compared wighCartesian coordinates are computed and the coordinate of
the Dijkstra algorithm. The A* algorithm is one of the minimum cost among the cost of all coordinates is required
most important solvers explicitly oriented to robotics. A*to determine the movement position. Since the UAV does not
improved the logic of graph search with heuristic evaluaio know a priori the location of the obstacle, the cost of each
inside the loop [10]. Dynamic re-planning with graph searcleoordinate is calculated based on, for instance, ‘Manhatta
algorithms was introduced. D* (Dynamic A*) representedistance’. Although the proposed algorithm is a 3D path

Ill. PROBLEM STATEMENT

IV. ALGORITHM DESCRIPTION



planning algorithm, to reduce the computational compjexit four subfunctions are used which are the heading axis, senso
only one plane is chosen at a time for maneuvering. Imalue, movement option, and next set position, respegtivel
practice, 6 movement options (forward and backward, left 1. Grid making: The incremental distance between the
and right, and up and down) are available for the proposqzhrent coordinates and next coordinates is termed as
path planning, while up and down movements are considere@fined in the previous section. For the next set positioa, on
the special cases of obstacle avoidance maneuver. Therefaoordinate is chosen among four neighboring coordinates.
normally for maneuvering UAV (U), costs are calculatedThe value ofd could be determined by calibrating in the real
based on 4 coordinates, which are front (C12), left (C21Wworld environment. If we compare our result to real world
back (C32), right (C23), respectively, as shown in Fig. 2. GPS values outdoors, then we have to calibrate it with respec
to GPS values. Moreover, the smaller value dofnsures
lesser probability of colliding with obstacles.

C, C, G, Movement T G Algorithm 1 Pseudocode for grid making
C. U | == C: U Ca 1 for i =1;i < 5;i+ + do
C., C, C, l:> 2 G s 2: grid[i][1] =i > indexing
3: grid[i][2] =z +d > next x-coordinate
4 gridi][3] =y +td > next y-coordinate
Fig. 2. Reduced cost assessment 5: end for

Definition 1 (Input Description):The Cartesian coordi- 5 gt estimation: This part restricts the movement

nates of current position and goal position are given anlyions of UAV: straight or perpendicular movements are
the rest of coordinates are unknown. The UAV thus knowg,,re emphasized than diagonal movements. Therefore, costs
Its own position a_nld goal position but does not kneyriori . of diagonal movements are higher than straight or perpen-
the obstacle posm_on. The d|§tance between one coordingfR jar movements. This cost estimation (which is defined in
and Fhe next c_o_ordlnate IS deflngd as step lengtfhe value Definition 2) is valid when there is no obstacle around the
of d is propositional to the velocity of UAV. For larger value

of d, the UAV increases its velocity to cope with the distance 3" Obstacle searchWhen the UAV finds an obstacle, it
that is required to travel within limited time boundary. Theacquires two or more equal minimum cost coordinates at

goal position is divided into two partse, the goal in the the same time. Therefore, according to A* or other existing

XY pl_ane and the YZ plane, r_espectively_. After re_aching th'esllgorithms, the UAV has to search every possible way to
goal in one plane, the goal is automatically shifted to th?each the goal, which we believe is quite impractical. In

other._ . . , . this work, the UAV has a preplanned idea about ‘how to
Defmmon 2 (C.OSt for coordinate)A coordinate 09,3t IS avoid the obstacles’ and ‘how to reduce the computational

def|ne<(jj bﬁ/ the d'ﬁer?r_‘ce betweef‘ thebcurrent positish ( complexity’. Specifically, during the time of avoidance, it
y1) and the next positiong, 2) given by does not consider the cost for the goal. To acquire the
Cost == A x (x1 — 22) + B x (y1 — y2), knowledge of ‘how to avoid the obstacles’, we define several

) _ subfunctions detailed below.
whereA and B are arbitrary even constants for emphasizing g pfunction 1. (Direction of Heading) Comparing the

the straight forward (X-axis) or straight sideward (Y-3Xis o rrent position £1, y1) and the previous position:Q, 40),

movements instead of the diagonal movements travel. 3 the UAV determines the X-axis or Y-axis along which it
B, then the UAV moves forward or backward, white< B should move.

indicates left or right movements.

V. 3D EXPLORATION PRIORITY BASED HEURISTIC Alg(_)rithm 2 Pseudocode for heading direction in XY plane
APPROACH FOROBSTACLE AVOIDANCE 1 if (20 — 1) > (y0 — y1) then

In the proposed algorithm, the UAV searches two 2D 2 heading_i s x
planes separately to reduce the complexity of computationsSz else : :
After achieving the goal in the XY plane, it will shift its ' h_ead| ng_tsy
goal into the YZ plane that is the final goal. The searchingS: end if
algorithms is also divided into the obstacle free area and

the obstacle cluttered area. The UAV tries to identify the Since the UAV's heading direction is likely to change, the
shape of obstacle using its limited range of sensing which igriables of sensor value are also re-oriented accorditrgly
analogous to the blind cane. It then chooses appropriate pfeg. 3, s1, s2, s3, and s4 represent the front, right, baak, an
defined maneuvering behaviors to avoid the particular tygeft sensor value with respect to the UAV heading direction.
of obstacle. The proposed algorithm is basically dividegd in ~ Subfunction 2. (Sensor Value) Obstacle detection is lim-
four parts: 1) grid making, 2) cost calculation, 3) obstacléed by the detection range and precision of sensors, where
avoidance, and 4) move to minimum cost point. Furthermor@p detection range, the offset from the starting range, is




— avoid such an obstacle, the UAV detects overhead obstacles
and looks for its backward movements with respect to its

S 5 heading direction (Subfunction 1). To reduce the penalty
s« U s ss U s of backward movements, we have emphasized a special
S S diagonal movement instead of straight backward movements.

4. Moving to minimum cost point: The UAV finds an
optimal coordinate for its next set position and relocates
Fig. 3. Heading and sensor variables its position to this coordinate. When the UAV changes its
heading, the sensor indexes are also changed accordingly.

_ _ i Below is a sketch of the proposed algorithm, incorporating
introduced for sharp angle avoidance. Higher sensor range. anove-mentioned function modules:

ensures safety, but decreases the accuracy to reach the goal

Subfunction 3. (Movement Option) A sensor reports aAlgorithm V.1: SEARCHING GOAL IN XY PLANE(z, y)
certain range of numeric values, when it finds an obstacle
The available movement options are determined by countin
the number of sensors that do not detect anything.

Moving along X axis Moving along Y axis

repeat
gGRIDMAKING()
read sensor value
if obstacle exist
then EPBHA()
else COSTESTIMATION()

Algorithm 3 Pseudocode for movement option
1 fori=1;i < 7;i++ do

2: if valueof_sensor][i]> sensoxrangethen FINDMINIMUM INDEX()
3 count+ =1 > number of activated sensors
_ ¢ ti _6 compare(UAV Pos(z,y), goal Pos(x, y))
4 drrl?vemen —option =06 —count if goalPos(x,y) — UAV Pos(z,y) == desired accuracy
S endi then xy search is finished
6: end for

until xy search is not finished

Subfunction 4. (Next Set Position) The set position at
the next momentaf2, y2) can be computed from the currentAlgorithm V.2: SEARCHING GOAL IN YZ PLANE(y, 2)

heading and positionz(, y1) of the UAV.
g p ¢ y1) repeat

Algorithm 4 Pseudocode for next set position in XY plane CGRIDMAKING ()

1: if headingaxis== X then _read sensor v_alue
if obstacle exist

2: if Y1 > Y2 then

3 next _set position_is = left then EPBHA()

4 else else COSTESTIMATION()

5: next _set_position_is = right FINDMINIMUM INDEX()

6: end if .compare(UAVPos(y,z),goalPos(y,z)) -

7- else ifheadingaxis—— Y then if goalPos(y,z) — UAV Pos(y, z) == desired accuracy

g it 21 > 2o then then yz search is finished

9: ;ext 23et position is = |eft until yz search is not finished

10: else - B

11: next _set _position_is = right VI. SIMULATION RESULTS AND DISCUSSION

12. endif Six infrared sensors are used as proximity sensors to
13: end if detect obstacles which are mounted on top, front, right, lef

back, and bottom, of the UAV, respectively. The proxim-

While the UAV moves along an axis and finds an obstacléy sensors have).5m range and45° angle of detection.
in front of it, it calculates the set position at the next mone Moreover, it is imperative to place the sensafs to 30°
with respect to the current position, which gives priorityat  inclined to the surface of body for proper detection and safe
certain direction (Subfunction 4). This change of headsg iavoidance of obstacles. However, as we do not consider the
due to the UAV’s myopia in orienteering. In most cases, theneasurement accuracy and signal processing of the sensors,
position of obstacle is close to the ground, hence the UA¥ensor data is assumed to be accurate, noiseless, andegthiev
may find an obstacle-free path at a certain height from thastantaneously. Although the proposed path planningsis al
ground. As a result, in this algorithm, passing over is aaoth valid for dynamically changing goals, the goal position is
priority after the heading changing movement for obstacleonsidered as static in this simulation. The initial statiihe
avoidance. The UAV will determine more than one obstacl&JAV is the standard hovering position, where we specify the
from the sensor value and movement option subfunctionsgoal position, seen in Fig. 4 (a) and (b), respectively, &rd t

Moreover, the most interesting feature of the proposest of the UAV kinematics are adjusted automatically using
algorithm is to avoid the cave type obstacle. In order tthe dynamic simulation engine. Furthermore, as this paper



does not deal with a low level control system, we therefore *
assume that we can accurately estimate the next moveme
of UAV without dead reckoning and/or other aerodynamics
errors. Note that the flight path varies depending on theA 4 4

situation and environment as shown in Fig. 4. Moreover, it

is assumed that the sensing range for UAV is limited.,( (@) A* Search (b) B~ Search (c) EPBHA

0.5m) and there is no initial information such as map or Fig. 5. Comparison between search algorithms and EPBHA
pre-specified path. Therefore, the UAV can not plan a long

distance path and does not require to retrieve previously

given data, as a result the computation complexity is muafethod offers less search, while other algorithms enswee th
lesser. We compare our algorithm with existing A* and D*shortest path with higher search. We assumed that there is
search algorithms [32] which are commonly used for flighho initial information or map for the given place, therefore
path planning to find the shortest path. The main differendeis redundant for a single UAV to explore every possible
starts while the UAV finds any obstacle along its path. Wheway and choose the best one. Instead of searching for the
an obstacle appears in the path of UAV, it gets two or morminimum distance path, the 3D exploration capability of
minimum points for its next move. To find the shortest pathlJAV allows it to easily avoid the obstacles. The most notable
the UAV needs to explore every possible solution and decideature of the proposed method is that, obstacles reduce the
which flight path it should choose. searching time, while other existing searching algorithms
always increase the computational parameters. Fig. 6 shows
a significant decrease in coordinate cost estimation aswprd

to the obstacles position.

Car U Gy U G u
Cas C3 Cyy

(a) Starting position, in a stable, flying condition
Fig. 6. Coordinate cost calculation during obstacle avuiga

Since this algorithm does not use the global information,
it does not ensure the shortest path. It assures one of the
feasible paths with lesser computations. For the surveida
mission considered, it is not essential to find the shortest
path all the time. It should ensure a close-up view for
that place. Likewise, obstacles do not always prevent UAVs
from navigating a preplanned path, rather they could be also
important items for surveillance purposes.

Fig. 7. Offline path planning for known environment

Fig. 7 represents the offline path planning, where all the
environment information is initially available and the Ipat
Fig. 4. Dynamics simulation setup and result obtained is the shortest path. Meanwhile, Fig. 8 shows a
longer path compared to Fig. 7, but it ensures a close view for
In Fig. 5, the blue area indicates the searching areabstacles. This heuristic algorithm does not always gueean
where the yellow, black, red, and orange indicates th@ find the goal. For instance, it does not give any solution,
starting position, obstacle, goal position, and shortesh,p while the UAV detects an obstacle in the backward direction.
respectively. From the figure, it is obvious that the proposeHowever, hovering is proposed for such a deadlock situation

(c) Path traversing graph
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Fig. 8. EPBHA path planning
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[14]

[15]

[16]
[17]

Fig. 9.

Real time of exploration

(18]
Furthermore, the goal position is very close to the ground,
therefore a small amount of error remains in the Y and thgq
Z axis as shown in Fig. 4 (c). For better accuracy, the goal
position should be located somewhere above the ground levl!
and obstacle free environment. Fig. 9 shows that the re@h]
search time for the worst case setup is 2 minutes 20.57
seconds calculated by the real time function. (22]

VII. CONCLUSION (23]

Surveillance in unknown indoor environments is a chall24l
lenging mission, since substantially more compact spaces;
and obstacles exist compared to spacious outdoor envi-
ronments. The proposed algorithm offers one of the kel#®l
technologies for low-cost surveillance UAVs in complexy,;
cluttered areas ensuring low computational complexity. In
addition, this algorithm envisions a new direction for oeli (28]
path planning, based on the fact that the obstacle do
not always hinder us from reaching a goal position, rather
sometimes it is helpful to reach a goal position easily. To
recapitulate, we may conclude that this paper proposed-a uﬁ’]o]
versal path planning algorithm of quadrotor UAVs equippei]
with limited range sensors and computational resources,
particularly for small area surveillance purposes. 132]
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