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Exploration Priority Based Heuristic Approach to UAV Path P lanning

Abdullah Al Redwan Newaz, Ferdian Adi Pratama, and Nak YoungChong

Abstract— This paper presents a 3D online path planning
algorithm for Unmanned Aerial Vehicles (UAVs) equipped
with limited range sensors and computational resources in
unknown cluttered environments. Even though quadrotor UAVs
are considered to be a promising technology for surveillance
purposes in indoor environments and for close observation in
outdoor urban areas, it is very difficult to achieve autonomous
aerial navigation toward a goal avoiding unpredicted collisions.
Furthermore, greater attention and effort should be aimed at
improving the computational efficiency and performance of
path planning algorithms. The proposed heuristic algorithm
offers on-the-fly path findings with a lesser computational
complexity. We demonstrate the efficiency of our algorithm in
a real world scenario implemented using the V-REP simulator.

I. I NTRODUCTION

In this paper, we consider the surveillance and recovery
mission after nuclear disasters or severe accidents in indus-
trial areas which are inaccessible by humans. We divide
the possible use of UAVs in the above-mentioned missions
into three different categories: 1) indoor environment without
having GPS or motion capture sensors [1], 2) indoor environ-
ment with motion capture sensors, 3) outdoor environment
for close observation with the help of GPS.

In an indoor environment, one of the most important
challenges for UAVs is to localize itself and search for the
position to move, since the GPS does not work. Moreover,
vision based localization is not always useful especially
when after disaster situations are considered, since we cannot
guarantee adequate lighting. Furthermore, scanning laser
range finders or different types of vision sensors increase
the computational burden, as a result it is quite difficult to
implement in low-cost on-board processing units. Therefore,
in the first scenario, without considering the computationally
expensive sensors, the Exploration Priority Based Heuristic
Approach (EPBHA) to online path planning is proposed.

Obviously, we must have an offline plan [2] before a
surveillance mission that can be made by choosing several
waypoints using the satellite maps as shown in Fig. 1.
The waypoints are Cartesian coordinates representing spatial
positions in the horizontal XY plane where a nominal height
is assumed in the Z axis. Since every movement of an UAV
creates its own coordinates, if we calibrate the UAV coor-
dinate system with respect to outdoor GPS coordinates, the
UAV can reach its goal along a set of waypoints. Moreover,
we must have an approximate idea for maximum altitude for
indoor environments. Specifically, if the previously unknown
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(a) Outdoor GPS coordinates

(b) Indoor path planning

Fig. 1. Initial nominal path with respect to GPS coordinates

obstacles are detected, the UAV has to re-plan its nominal
path in real time. If the path planner fails to generate a
safe path within a bounded time, collisions with obstacles
may result. Since the computational time of deterministic
and complete algorithm grows exponentially with the di-
mension of the configuration space, those algorithms do not
provide an adequate solution for online UAV path planning
in indoor environments. However, as the UAV can not
compare its coordinates with GPS or specific land coordinate
systems, inertial navigation errors can be accumulated with
its exploration. The accuracy of goal findings depends on a
proper calibration system. Nevertheless, we assume that the
requirements for the localization accuracy are not very strict
for surveillance missions particularly within a small arena.

In the next scenario, stationary motion capture sensors are
used to identify the coordinate of UAV. We can implement
our algorithm in this scenario, since a number of infrared re-
flective markers are used to identify the object, therefore the
environment is unknown unless the markers are attached to
obstacles. Finally, our algorithm works for close observation
in outdoor environments, where different size and shape of
obstacles may appear in the path of a navigating UAV.

II. RELATED WORKS

Path planning has been one of the most important elements
of mission definition and management of vehicles and it
became crucial after birth and growth of UAVs. Quadrotors



inaugurate the miniature form of UAV and furthermore their
kinematics gives hovering capabilities that make it easy to
create paths on the fly. Several algorithms were developed
for robotic ground vehicles [3]–[5]. Likewise, physics for
potential field algorithms [6], [7], mathematics for proba-
bilistic approaches [8], or computer science for graph search
algorithms [9] were applied to UAV path planning.

Binney et al. [10] presented a path planning method
for autonomous underwater vehicles (AUVs) to maximize
mutual information. Pereira and Sukhatme [11] presented
minimum-risk path planning for AUVs operating in coastal
regions with high ship traffic. Jung and Tsiotras [12] ex-
plained on-line path generation for UAVs using B-spline path
templates where they investigated the problem of generating
a smooth, planar reference path, given a family of discrete
optimal paths. Jun and D’Andrea [13] used the probability
map and Bellman-Ford shortest path algorithm in adversarial
environments, maximizing the safety of the vehicles. Yang
and Sukkarieh [14] discussed 3D path planning for an UAV
operating in cluttered natural environments. Hrabar [15] pro-
posed a synthesis of techniques for rotorcraft UAV navigation
through obstacle-populated environments. Rohmer and Ran-
dall provided the target position programming solution [16],
where a low level control of UAV was implemented with the
target subdivided intohorizontal control and vertical control.

Many techniques were developed to tackle the indepen-
dent components for safe vehicle navigation in unknown
environments. We handpick a selection of these that, when
combined, offers what we believe is the best solution for
the disaster surveillance with quadrotor UAVs. The need
for off-line and real-time replanning substantially revises the
path planning strategy. Moreover, the computational perfor-
mances of the control station, where the mission management
system is running, can influence the algorithm selection
and design. The use of evolutionary algorithms for path
optimization is an important solution permitting to apply
kinematic constraints to the path. Using splines or random
trees to model the trajectory, these algorithms can reallocate
the waypoint sequence to generate optimum solutions in
complex environments [17], [18]. Being interesting and flex-
ible, the evolutionary algorithms are spreading on different
planning problems, but their complexity is paid with a heavy
computational effort [19]. The Dijkstra algorithm is one of
the first greedy algorithms for graph search and permits
to find the minimum path between two nodes of a graph
with positive arc costs [20]. An evolution of the Dijkstra
algorithm is the Bellman-Ford algorithm [21], [22] that
finds the minimum path on oriented graphs with positive
and negative costs. Another important method is the Floyd-
Warshall algorithm [23], [24] that finds the shortest path on
a weighted graph with positive and negative weights, but
it reduces the number of evaluated nodes compared with
the Dijkstra algorithm. The A* algorithm is one of the
most important solvers explicitly oriented to robotics. A*
improved the logic of graph search with heuristic evaluations
inside the loop [10]. Dynamic re-planning with graph search
algorithms was introduced. D* (Dynamic A*) represented

the evolution of A* for re-planning [25]. Then, research on
dynamic re-planning brought to the development of Lifelong
Planning A* (LPA*) and D* Lite. They are based on the
same principles of D* and D* focused, but they recall the
heuristic aspect of A* to improve the speed of the search
process [26], [27]. Different approaches were developed to
cope with the suboptimal solutions problem, based on post-
processing algorithms or on improvements of the graph-
search algorithm itself. Very important examples are Field
D* [28] and Theta* [29]. These algorithms refined the graph
search obtaining generalized paths with any heading.

Comparing all of these algorithm, De Filippiset al. [30]
conclude that Theta* is the most promising solution for
the path planning of fixed-wing UAVs. However, the short-
coming of Theta* is the computational time. Our proposed
algorithm is thus aimed at reducing the computational time.

III. PROBLEM STATEMENT

We categorized indoor surveillance missions further into
two cases: 1) navigate in the obstacle free space and 2) avoid
obstacles and escape from a deadend passageway. The former
case means that the UAV finds the minimum distance path
toward a goal position, if there is free space to move. The
latter, however, must conform to several crucial conditions:
how to avoid unexpected obstacles that appear in the path
(located in front, or to the left or right, or any possible
arrangement of obstacles, except for the upward direction).
A complex and unpredictably changing environment makes
it difficult to accomplish safe path planning. Moreover, using
of vision sensors increases the computational complexity
that makes it difficult to accommodate on-board imple-
mentation requirements. Therefore, without having anya
priori knowledge of the environment, this paper proposes
a new heuristic approach to allow UAVs to navigate through
complex terrains, ensuring near-constant computations.

Now we address the path planning of UAV in unknown
environments as follows:Assuming a surveillance UAV
equipped with limited range sensors exploring an arena,
where different types of unknown obstacles exist, how to
make it go to a goal position avoiding the obstacles with
comparatively little computational cost?

The path planning problem above can be decomposed into
two sub-problems:

• Sub-problem 1 (free space) How does it travel a
minimum possible distance in an obstacle free area?

• Sub-problem 2 (obstacle avoidance) How does it re-
plan its position, while avoiding obstacles in its path?

IV. A LGORITHM DESCRIPTION

The idea underlying the proposed algorithm is similar to
A* algorithm [31]. However, in A* algorithm for 2D plane,
8 Cartesian coordinates are computed and the coordinate of
minimum cost among the cost of all coordinates is required
to determine the movement position. Since the UAV does not
know a priori the location of the obstacle, the cost of each
coordinate is calculated based on, for instance, ‘Manhattan
Distance’. Although the proposed algorithm is a 3D path



planning algorithm, to reduce the computational complexity,
only one plane is chosen at a time for maneuvering. In
practice, 6 movement options (forward and backward, left
and right, and up and down) are available for the proposed
path planning, while up and down movements are considered
the special cases of obstacle avoidance maneuver. Therefore,
normally for maneuvering UAV (U), costs are calculated
based on 4 coordinates, which are front (C12), left (C21),
back (C32), right (C23), respectively, as shown in Fig. 2.
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Fig. 2. Reduced cost assessment

Definition 1 (Input Description):The Cartesian coordi-
nates of current position and goal position are given and
the rest of coordinates are unknown. The UAV thus knows
its own position and goal position but does not knowa priori
the obstacle position. The distance between one coordinate
and the next coordinate is defined as step lengthd. The value
of d is propositional to the velocity of UAV. For larger value
of d, the UAV increases its velocity to cope with the distance
that is required to travel within limited time boundary. The
goal position is divided into two parts,i.e., the goal in the
XY plane and the YZ plane, respectively. After reaching the
goal in one plane, the goal is automatically shifted to the
other.

Definition 2 (Cost for coordinate):A coordinate cost is
defined by the difference between the current position (x1,
y1) and the next position (x2, y2) given by

Cost := A× (x1 − x2) +B × (y1 − y2),

whereA andB are arbitrary even constants for emphasizing
the straight forward (X-axis) or straight sideward (Y-axis)
movements instead of the diagonal movements travel. IfA >

B, then the UAV moves forward or backward, whileA < B

indicates left or right movements.

V. 3D EXPLORATION PRIORITY BASED HEURISTIC

APPROACH FOROBSTACLE AVOIDANCE

In the proposed algorithm, the UAV searches two 2D
planes separately to reduce the complexity of computations.
After achieving the goal in the XY plane, it will shift its
goal into the YZ plane that is the final goal. The searching
algorithms is also divided into the obstacle free area and
the obstacle cluttered area. The UAV tries to identify the
shape of obstacle using its limited range of sensing which is
analogous to the blind cane. It then chooses appropriate pre-
defined maneuvering behaviors to avoid the particular type
of obstacle. The proposed algorithm is basically divided into
four parts: 1) grid making, 2) cost calculation, 3) obstacle
avoidance, and 4) move to minimum cost point. Furthermore,

four subfunctions are used which are the heading axis, sensor
value, movement option, and next set position, respectively.

1. Grid making: The incremental distance between the
parent coordinates and next coordinates is termed asd as
defined in the previous section. For the next set position, one
coordinate is chosen among four neighboring coordinates.
The value ofd could be determined by calibrating in the real
world environment. If we compare our result to real world
GPS values outdoors, then we have to calibrate it with respect
to GPS values. Moreover, the smaller value ofd ensures
lesser probability of colliding with obstacles.

Algorithm 1 Pseudocode for grid making
1: for i = 1; i < 5; i++ do
2: grid[i][1] = i ⊲ indexing
3: grid[i][2] = x± d ⊲ next x-coordinate
4: grid[i][3] = y ± d ⊲ next y-coordinate
5: end for

2. Cost estimation: This part restricts the movement
options of UAV: straight or perpendicular movements are
more emphasized than diagonal movements. Therefore, costs
of diagonal movements are higher than straight or perpen-
dicular movements. This cost estimation (which is defined in
Definition 2) is valid when there is no obstacle around the
UAV.

3. Obstacle search:When the UAV finds an obstacle, it
acquires two or more equal minimum cost coordinates at
the same time. Therefore, according to A* or other existing
algorithms, the UAV has to search every possible way to
reach the goal, which we believe is quite impractical. In
this work, the UAV has a preplanned idea about ‘how to
avoid the obstacles’ and ‘how to reduce the computational
complexity’. Specifically, during the time of avoidance, it
does not consider the cost for the goal. To acquire the
knowledge of ‘how to avoid the obstacles’, we define several
subfunctions detailed below.

Subfunction 1. (Direction of Heading) Comparing the
current position (x1, y1) and the previous position (x0, y0),
the UAV determines the X-axis or Y-axis along which it
should move.

Algorithm 2 Pseudocode for heading direction in XY plane

1: if (x0 − x1) > (y0− y1) then
2: heading_is x
3: else
4: heading_is y
5: end if

Since the UAV’s heading direction is likely to change, the
variables of sensor value are also re-oriented accordingly. In
Fig. 3, s1, s2, s3, and s4 represent the front, right, back, and
left sensor value with respect to the UAV heading direction.

Subfunction 2. (Sensor Value) Obstacle detection is lim-
ited by the detection range and precision of sensors, where
no detection range, the offset from the starting range, is
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Fig. 3. Heading and sensor variables

introduced for sharp angle avoidance. Higher sensor range
ensures safety, but decreases the accuracy to reach the goal.

Subfunction 3. (Movement Option) A sensor reports a
certain range of numeric values, when it finds an obstacle.
The available movement options are determined by counting
the number of sensors that do not detect anything.

Algorithm 3 Pseudocode for movement option
1: for i = 1; i < 7; i++ do
2: if valueof sensor[i]> sensorrangethen
3: count+ = 1 ⊲ number of activated sensors
4: movement_option = 6− count

5: end if
6: end for

Subfunction 4. (Next Set Position) The set position at
the next moment (x2, y2) can be computed from the current
heading and position (x1, y1) of the UAV.

Algorithm 4 Pseudocode for next set position in XY plane
1: if headingaxis== X then
2: if y1 > y2 then
3: next_set_position_is = left
4: else
5: next_set_position_is = right
6: end if
7: else if headingaxis== Y then
8: if x1 > x2 then
9: next_set_position_is = left

10: else
11: next_set_position_is = right
12: end if
13: end if

While the UAV moves along an axis and finds an obstacle
in front of it, it calculates the set position at the next moment
with respect to the current position, which gives priority to a
certain direction (Subfunction 4). This change of heading is
due to the UAV’s myopia in orienteering. In most cases, the
position of obstacle is close to the ground, hence the UAV
may find an obstacle-free path at a certain height from the
ground. As a result, in this algorithm, passing over is another
priority after the heading changing movement for obstacle
avoidance. The UAV will determine more than one obstacle
from the sensor value and movement option subfunctions.

Moreover, the most interesting feature of the proposed
algorithm is to avoid the cave type obstacle. In order to

avoid such an obstacle, the UAV detects overhead obstacles
and looks for its backward movements with respect to its
heading direction (Subfunction 1). To reduce the penalty
of backward movements, we have emphasized a special
diagonal movement instead of straight backward movements.

4. Moving to minimum cost point: The UAV finds an
optimal coordinate for its next set position and relocates
its position to this coordinate. When the UAV changes its
heading, the sensor indexes are also changed accordingly.

Below is a sketch of the proposed algorithm, incorporating
the above-mentioned function modules:

Algorithm V.1: SEARCHING GOAL IN XY PLANE(x, y)

repeat
GRIDMAKING ()
read sensor value
if obstacle exist

then EPBHA()
elseCOSTESTIMATION()

FINDM INIMUM INDEX()
compare(UAV Pos(x, y), goalPos(x, y))
if goalPos(x, y)− UAV Pos(x, y) == desired accuracy

then xy search is finished
until xy search is not finished

Algorithm V.2: SEARCHING GOAL IN YZ PLANE(y, z)

repeat
GRIDMAKING ()
read sensor value
if obstacle exist

then EPBHA()
elseCOSTESTIMATION()

FINDM INIMUM INDEX()
compare(UAV Pos(y, z), goalPos(y, z))
if goalPos(y, z)− UAV Pos(y, z) == desired accuracy

then yz search is finished
until yz search is not finished

VI. SIMULATION RESULTS AND DISCUSSION

Six infrared sensors are used as proximity sensors to
detect obstacles which are mounted on top, front, right, left,
back, and bottom, of the UAV, respectively. The proxim-
ity sensors have0.5m range and45◦ angle of detection.
Moreover, it is imperative to place the sensors15◦ to 30◦

inclined to the surface of body for proper detection and safe
avoidance of obstacles. However, as we do not consider the
measurement accuracy and signal processing of the sensors,
sensor data is assumed to be accurate, noiseless, and achieved
instantaneously. Although the proposed path planning is also
valid for dynamically changing goals, the goal position is
considered as static in this simulation. The initial statusof the
UAV is the standard hovering position, where we specify the
goal position, seen in Fig. 4 (a) and (b), respectively, and the
rest of the UAV kinematics are adjusted automatically using
the dynamic simulation engine. Furthermore, as this paper



does not deal with a low level control system, we therefore
assume that we can accurately estimate the next movement
of UAV without dead reckoning and/or other aerodynamics
errors. Note that the flight path varies depending on the
situation and environment as shown in Fig. 4. Moreover, it
is assumed that the sensing range for UAV is limited (i.e.,
0.5m) and there is no initial information such as map or
pre-specified path. Therefore, the UAV can not plan a long
distance path and does not require to retrieve previously
given data, as a result the computation complexity is much
lesser. We compare our algorithm with existing A* and D*
search algorithms [32] which are commonly used for flight
path planning to find the shortest path. The main difference
starts while the UAV finds any obstacle along its path. When
an obstacle appears in the path of UAV, it gets two or more
minimum points for its next move. To find the shortest path,
the UAV needs to explore every possible solution and decide
which flight path it should choose.

(a) Starting position, in a stable, flying condition

(b) Goal position, the box under the table

(c) Path traversing graph

Fig. 4. Dynamics simulation setup and result

In Fig. 5, the blue area indicates the searching area,
where the yellow, black, red, and orange indicates the
starting position, obstacle, goal position, and shortest path,
respectively. From the figure, it is obvious that the proposed

(a) A* Search (b) D* Search (c) EPBHA

Fig. 5. Comparison between search algorithms and EPBHA

method offers less search, while other algorithms ensure the
shortest path with higher search. We assumed that there is
no initial information or map for the given place, therefore
it is redundant for a single UAV to explore every possible
way and choose the best one. Instead of searching for the
minimum distance path, the 3D exploration capability of
UAV allows it to easily avoid the obstacles. The most notable
feature of the proposed method is that, obstacles reduce the
searching time, while other existing searching algorithms
always increase the computational parameters. Fig. 6 shows
a significant decrease in coordinate cost estimation according
to the obstacles position.

Fig. 6. Coordinate cost calculation during obstacle avoidance

Since this algorithm does not use the global information,
it does not ensure the shortest path. It assures one of the
feasible paths with lesser computations. For the surveillance
mission considered, it is not essential to find the shortest
path all the time. It should ensure a close-up view for
that place. Likewise, obstacles do not always prevent UAVs
from navigating a preplanned path, rather they could be also
important items for surveillance purposes.

Fig. 7. Offline path planning for known environment

Fig. 7 represents the offline path planning, where all the
environment information is initially available and the path
obtained is the shortest path. Meanwhile, Fig. 8 shows a
longer path compared to Fig. 7, but it ensures a close view for
obstacles. This heuristic algorithm does not always guarantee
to find the goal. For instance, it does not give any solution,
while the UAV detects an obstacle in the backward direction.
However, hovering is proposed for such a deadlock situation.



Fig. 8. EPBHA path planning

Fig. 9. Real time of exploration

Furthermore, the goal position is very close to the ground,
therefore a small amount of error remains in the Y and the
Z axis as shown in Fig. 4 (c). For better accuracy, the goal
position should be located somewhere above the ground level
and obstacle free environment. Fig. 9 shows that the real
search time for the worst case setup is 2 minutes 20.57
seconds calculated by the real time function.

VII. C ONCLUSION

Surveillance in unknown indoor environments is a chal-
lenging mission, since substantially more compact spaces
and obstacles exist compared to spacious outdoor envi-
ronments. The proposed algorithm offers one of the key
technologies for low-cost surveillance UAVs in complex,
cluttered areas ensuring low computational complexity. In
addition, this algorithm envisions a new direction for online
path planning, based on the fact that the obstacle does
not always hinder us from reaching a goal position, rather
sometimes it is helpful to reach a goal position easily. To
recapitulate, we may conclude that this paper proposed a uni-
versal path planning algorithm of quadrotor UAVs equipped
with limited range sensors and computational resources,
particularly for small area surveillance purposes.
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