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Abstract—Privacy-preserving set intersection protocol is de-
sirable for many practical applications. Malicious and semi-
honest adversarial models in cryptographic settings have been
considered mostly to design such protocols for privacy-preserving
set intersection. In a semi-honest or malicious model an adversary
is assumed to follow or arbitrarily deviate from the protocol,
respectively. Protocols in semi-honest model can utilize cheaper
cryptographic primitives, but that comes with a cost of weaker
security. On the other hand, strong security is guaranteed by
the malicious model whereby expensive cyptographic primitives
are required. However, achieving a desired level of privacy with
efficient computation is what we need for practical implemen-
tations. In this paper, we address the multiparty private set
intersection problem using simple cryptographic primitives, in
which each of the N parties learns no elements other than
the intersection of their N private datasets. The private set
intersection is constructed in game-theoretic model, where instead
of being semi-honest or malicious the parties are viewed as
rational and are assumed (only) to act in their own self-interest.
We consider both single player deviation and coalitions, and show
that our protocol satisfies computational strict Nash equilibrium.

KeyWords: Set intersection, Game theory, Computational
Strict Nash equilibrium, Commutative Encryption.

I. INTRODUCTION

A huge amount of sensitive data is produced by day-to-day
business operational applications. A major utility of databases
today is available from external sources such as market re-
search organizations, independent surveys and quality testing
labs, scientific or economic research. Data mining is used
to efficiently determine valuable sensitive knowledge patterns
from large databases. However, this is often not possible due to
the confidentiality issues which leads to concerns over privacy
infringement while performing the data mining operations.
To address the privacy problem, several privacy-preserving
data mining protocols using cryptographic techniques have
been suggested. In data mining area, private set intersection
protocols allow parties to interact on their respective input
sets. These protocols address several realistic privacy issues.
For example, to determine which customers appear on a do-
not-receive-advertisements list, a store must perform a set
intersection operation between its private customer list and
the producer’s list.

Privacy-preserving set intersection protocols use different
models based on the adversarial behavior assumptions. Two
main categories of adversaries have been considered in cryp-
tographic literature:
Semi-honest adversaries: Following Goldreich’s definition
[13], protocols secure in the presence of semi-honest adver-
saries (or honest-but-curious) assume that parties faithfully
follow all protocol specifications and do not misrepresent any
information related to their inputs, e.g., set size and content.
However, during or after protocol execution, any party might
(passively) attempt to infer additional information about the
other party’s input. This model is formalized by requiring that
each party does not learn more information that it would in an
ideal implementation relying on a trusted third party (TTP).
Malicious adversaries: Security in the presence of malicious
parties allows arbitrary deviations from the protocol. Under
this model, parties may refuse to participate in the protocol,
modify their private input sets, or abort the protocol prema-
turely, and these cases can not be prevented by such security
model.

The assumption of semi-honest behavior may be unrealistic
in some settings. In such cases, parties may prefer to use a
protocol that is secure against malicious behavior. It is clear
that the protocols secure in the malicious model offer more
security. However, these are not efficient enough to be used
in practice. Most of these constructions use general zero-
knowledge proofs for fully malicious multiparty computation
(MPC) protocols. These zero-knowledge compilers lead to
rather inefficient constructions [34]. In typical cryptographic
MPC protocols, parties are allowed to abort when they can find
some malicious behavior from other parties. This means that
the parties have to start the protocol from the scratch which
is undesirable for operations on huge data sets.

Protocols for some cryptographic tasks (e.g., secret sharing,
multiparty computation) have begun to be re-evaluated in a
game-theoretic light (see [9], [24] for an overview) since the
work of Halpern and Teague [17]. In this setting, parties are
neither honest nor corrupt but are instead viewed as rational
and are assumed (only) to act in their own self-interest. This
feature is particularly interesting for data mining operations
where huge collection of data is used, since parties will not



deviate (i.e., abort) as there is no incentive to do so. In many
real-world settings, parties are willing to actively deviate/cheat,
but only if they are not caught.

A. Related Work

Cryptographic techniques have been used to design many
different distributed privacy-preserving data mining algo-
rithms. In general, there are two types of assumptions on data
distribution: vertical and horizontal partitioning. In the case of
horizontally partitioned data, different sites collect the same set
of information about different entities. For example, different
credit card companies may collect credit card transactions of
different individuals. Secure distributed protocols have been
developed for horizontally partitioned data for mining decision
trees [28], k-means clustering [27], k-nn classifiers [22]. In
the case of vertically partitioned data, it is assumed that
different sites collect information about the same set of entities
but they collect different feature sets. For example, both a
university and a hospital may collect information about a
student. Again, secure protocols for the vertically partitioned
case have been developed for mining association rules [40],
and k-means clusters [20], [39]. In [38] the authors propose a
user-centric private k-means algorithm combined with a decen-
tralized cryptographic protocol and a gossip-based protocol in
multiparty setting. All of those previous protocols claimed to
be secure only in the semi-honest model. In [11], [23], authors
present two-party secure protocols in the malicious model
for data mining. They follow the generic malicious model
definitions from the cryptographic literature, and also focus
on the security issues in the malicious model, and provide
the malicious versions of the subprotocols commonly used in
previous privacy-preserving data mining algorithms. Assuming
that at least one party behaves in semi-honest model, they use
threshold homomorphic encryption for malicious adversaries
presented by Cramer et al. [7]. Since homomorphic encryption
is considered too expensive [30] and zero-knowledge proof
is often one of the most expensive parts of cryptographic
protocols, the protocols proposed in malicious adversarial
model are not very practical for operations on large data
items. Set operations using commutative encryption have been
proposed in [2], where the adversaries have been considered
as semi-honest parties. Commutative property of encryption
schemes has also been considered in [5] for collusion resistant
anonymous data collection in a malicious model. Game theory
and data mining, in general, have been combined in [21],
[36] for constructing various data mining algorithms. Rational
adversaries have also been considered in privacy-preserving
set operations [41], [3]. These protocols consider Nash equi-
librium to analyze the rational behavior of the participating en-
tities. As in all of cryptography, computational relaxations are
meaningful and should be considered; doing so allows us to get
around the limitations of the information-theoretic setting. So,
analyzing set operations from the viewpoint of computational
Nash equilibrium is interesting, since it gives a more realistic
results. Fairness and privacy have been considered in [4],
[16], [18].The use of game-theoretic concepts for capturing the

cryptographic properties of privacy and fairness in two-party
protocols is shown by [4]. Based on [4], the properties of two-
message oblivious transfer protocols is game-theoretic concept
is characterized in [18]. It presents a single two-player game,
where it captures the cryptographic properties of correctness
and privacy in the presence of malicious adversaries. [16]
shows that it is possible to perform rational fair computation
for arbitrary functions and utilities as long as the parties
have a strict incentive to compute the function in the ideal
world where fairness in guaranteed. This approach shows that
the impossibility results claimed in [4] are not due to the
inherent limitations of rational parties, rather due to the choice
of specific functions and utilities. However, how to handle
multiparty cases for fairness and privacy is not clear from
the these protocols. Again, there have been several works
on game theory based MPC/secret sharing schemes [1], [17],
[26], [32], [12], [37], [19]. But [17], [37] require the continual
involvement of the dealer even after the initial shares have been
distributed or assume that sufficiently many parties behave
honestly during the computation phase. Some schemes [1],
[26], [32] rely on multiple invocations of protocols. Other
work [19] relies on physical assumptions such as secure
envelopes and ballot boxes. [12] proposed efficient protocols
for rational secret sharing. But secret sharing schemes cannot
be directly used for our purpose since they require much
heavier computation, the existence of TTP, and their set up
is different.

B. Our Contribution

In this work, we build multiparty private set-intersection
protocol in game-theoretic setting using cryptographic primi-
tives1. It is assumed that parties are neither honest nor corrupt
but are instead rational and are assumed to act only in their
own self-interest. Our construction avoids the use of expensive
tools like homomorphic encryption, zero knowledge proof, and
oblivious transfer. We have used commutative encryption and
unique signatures as the underlying cryptographic primitives
which are simple and efficient. The parties run the protocol in
a sequence of r rounds and learn the complete result at the
end of the r-th round. We also show that our protocol satisfies
computational version of strict Nash equilibrium. In short, our
protocol achieves the following:

• Any party may cheat with incorrect input. But cheating
does not help winning the game.

• At any round earlier than r, aborting the protocol does
not give any higher pay off to the aborting party than
following the protocol.

• The protocol is resilient to coalitions of upto t−1 parties
under the assumption that exactly t parties are active
during the computation phase.

Organization of the paper: The remainder of the paper
is organized as follows: Section II presents the background,

1Previously, two-party private set-intersection protocol in game-theoretic
setting has been proposed [35].



definitions, and model. Section III includes protocol construc-
tion. In Section IV, we analyze the protocol formally. We give
some concluding remarks in Section V.

II. BACKGROUND AND PRELIMINARY

A. Cryptographic Considerations in Game Theory

Achieving a secure protocol is the objective in the cryp-
tographic setting. Eliminating the trusted party is one of the
main tasks while maintaining the privacy. On the other hand,
in game theory, some particular equilibrium is defined to
achieve stability. The existence of the trusted party/mediator
is a parameter setting resulting in a more desirable, but harder
to implement equilibrium concept for rational behaviors. Thus,
privacy is a goal in the cryptographic setting while in the game
theory setting it is a means to an end.

Games are treated in a modified way with a differently
defined equilibrium notions in a cryptographic setting with.
Katz, in [24], gives some examples of how this can be done
for the specific case of parties running a protocol in the
cryptographic setting. A security parameter n is introduced
which is provided to all parties at the beginning of the game.
The action of a player Pj now corresponds to running an
interactive Turing Machine (TM) Tj . The Tj takes the current
state and messages received from the other party as the input,
and outputs message of player Pj along with updated state.
The message mj is sent to the other party. In a computational
sense, it is required that Tj runs in PPT meaning that the
function is computed in time polynomial in n. Tj is thus
allowed to run for an unbounded number of rounds and, it
can be added that the expected number of rounds is also
polynomial for which Tj runs. The security parameter n is
given as input to the utility functions. Utility functions map
transcripts of a protocol execution to the reals that can be
computed in time polynomial in n. Let ∆ be a computational
game in which the actions of each player correspond to the
PPT TMs. Also, the utilities of each player are computed in
time polynomial in n. Thus, mixed strategies are no longer
needed to be considered, since a polynomial time mixed
strategy corresponds to a pure strategy (since pure strategies
correspond to randomized TMs) [24]. The parties are not
assumed to be curious in negligible changes in their utilities,
and this is an important difference between the cryptographic
setting and the setting that has been considered here.

B. Definitions and Model

In this section, we will state the definitions of computational
strict Nash equilibrium, Commutative encryption, and Unique
signatures. A protocol is in Nash equilibrium if no deviations
are advantageous. In other words, there is no incentive to
deviate in the case of a Nash equilibrium. We assume that
a party exhibits its malicious behavior by aborting early
or sending non-participate message. However, a malicious
party does not manipulate its own datasets to provide wrong
data. Preventing malicious parties from sharing false data
is difficult since the data are private and non-verifiable
information. To prevent such malicious behavior, there can

be auditing mechanism where a TTP can verify the integrity
of data. Further investigation is needed to thwart this kind
of misbehavior without a TTP. In this regard, mechanism
design could be a potential tool to motivate parties to share
their data. We denote the security parameter by l. A function
ε is negligible if for all c > 0 there is a lc > 0 such that
ε(l) < 1/lc for all l > lc; let negl denote a generic negligible
function. We say ε is noticeable if there exist c, lc such that
ε(l) > 1/lc for all l > lc.
We consider the strategies in our work as the PPT interactive
Turing machines. Given a vector of strategies ~σ for t∗ parties
in the computation phase, let uj(~σ) denote the expected
utility of Pj , where the expected utility is a function of
the security parameter n. This expectation is taken over the
randomness of the players’ strategies. Following the standard
game-theoretic notation, (σ′j , ~σ−j) denotes the strategy vector
~σ with Pj’s strategy changed to σ′j . Given that j parties are
active during the computation phase, let the outcome o of the
computation phase be a vector of length j with oj = 1 iff the
output of Pj is equal to the exact intersection (i.e., Pj learns
the correct output). Let νj(o) be the utility of player Pj for
the outcome o. Following [17], [12], we make the following
assumptions about the utility functions of the players:

• If oj > o′j , then ν(oj) > ν(o′j).
• If oj = o′j and

∑
j oj <

∑
j o
′
j , then ν(oj) > ν(o′j).

In other words, player Pj first prefers outcomes in which
he learns the output; otherwise, Pj prefers strategies in
which the fewest number of other players learn the result.
From the point of view of Pj , we consider the following
three cases of utilities for the outcome o where U∗ > U > U ′:

• If only Pj learns the output, then νj(o) = U∗.
• If Pj learns the output and at least one other player does

also, then νj(o) = U .
• If Pj does not learn the output, then νj(o) = U ′.
So, we have the expected utility of a party who outputs a

random guess for the output2 (assuming other parties abort
without any output, or with the wrong output) as follows:

Urand =
1

| D |
· U∗ + (1− 1

| D |
) · U ′.

Also, we assume that U > Urand; else players have almost no
incentive to run the computation phase at all. As in [12], we
make no distinction between outputting the wrong secret and
outputting a special ‘don’t know’ symbol- both are considered
as a failure to output the correct output.

We begin by giving definitions for the case of single-player
deviations, and then consider the case of coalitions.

Definition 1: Π induces a computational Nash equilibrium
if for any set J = {j1, . . . , jt∗} of t∗ ≥ t parties who are

2We do not consider U ′′- the utility when neither party learns the output,
since ‘not learning the output’ is not the target of a rational adversary in
practice.



active during the computation phase, any j ∈ J , and any PPT
strategy σ′1 we have uj(σ′j , ~σj) ≤ uj(~σj) + negl(l).

Definition 2: Fix a set J ⊆ n of t or more parties active
during computation phase, an index j ∈ J , and a strategy γj .
Define viewΠ

−j as follows:
All parties play their prescribed strategies. Let mes denote

the messages sent by Pj , but not including any messages sent
by Pj after it writes to its output tape. Then viewΠ

−j includes
the information given by the trusted party to all parties in
J \ j, the random coins of all parties in J \ j, and the (partial)
transcript mes.

Given algorithm A, define the random variable viewA,γj−j as
follows:

Strategy γj yields equivalent play with respect to Π, denoted
γj ≈ Π, if there exists a PPT algorithm A such that for all
PPT distinguishers D

| Pr[D(1l, view
A,γj
−j ) = 1]−Pr[D(1l, viewΠ

−j) = 1] |≤ negl(l)

With this in place, we can define a computational strict Nash
equilibrium.

Definition 3: Π induces a computational strict Nash equi-
librium if
• Π induces a computational Nash equilibrium;
• For any set J ⊆ n with |J | ≥ t, any j ∈ J , and any PPT

strategy σ′j for which σ′j 6≈ Π, there is a c > 0 such that
uj(~σ) ≥ uj(σ′j , ~σ−j)+ 1/lc for infinitely many values of
l.

We view a coalition C as a set of parties who may
coordinate their strategies in an arbitrary way. Since the
coalition acts in unison, we treat the utility of the coalition
as a whole and, in particular, view the coalition as having
only a single output value (rather than viewing each member
of the coalition as potentially outputting a different value).
Let νC(·) denote the utility of the coalition C. As before, we
assume the following utilities:

• If o is an outcome in which C learns the secret and no
player outside C does, then νC(o) = U∗.

• If o is an outcome in which all parties active during the
computation phase (including C) learn the secret, then
νC(o) = U .

• If o is an outcome in which C does not learn the secret,
then νC(o) = U ′.

If ~σ = (σC , ~σC
) then UC(~σ) denotes the expected utility

of C when parties in C follow σC and the remaining parties
follow σ−C .

Definition 4: Π induces an r-resilient computational Nash
equilibrium if for any set J ⊆ n of t-or-more players active
during the computation phase, any C ⊂ J with |C| ≤ r, and
any PPT strategy σ′C we have

UC = (σ′C , ~σC
) ≤ UC(~σ) + negl(l)

We define the notion of two coalition strategies σC , σ
′
C

yielding equivalent play in a manner analogous to Definition

3, except that now the transcript included in viewΠ
−C does not

include messages sent by the parties in C once any party in
C writes its output.

Definition 5: Π induces an r-resilient computational strict
Nash equilibrium if

• Π induces an r-resilient computational Nash equilibrium;
• For any set C ⊂ J ⊆ n with |J | ≥ t and |C| ≤ r, and

any PPT strategy σ′C for which σ′C 6≈ Π, there is a c > 0
such that UC(~σ) ≥ UC(σ′C , ~σ−C) + 1/lc for infinitely
many values of l.

Commutative Encryption: Here, we define commutative
encryption by using [2] as a reference. Briefly, a commutative
encryption is a pair of encryption functions f and g such that
f(g(v)) = g(f(v)). By using this property, each party can
apply their function regardress of its computation order, and
can get the same result. Moreover, we can ensure that a party
cannot compute the encryption of a value without the help of
others.

Definition 6 (Commutative Encryption [2]): A commuta-
tive encryption F is a computable (in polynomial time) func-
tion f : KeyF×DomF→ DomF, defined on finite computable
domains, that satisfies all properties listed below. We denote
fe(x) ≡ f(e, x).

1) Commutativity: For all e, e′ ∈ KeyF we have fe ◦ fe′ =
fe′ ◦ fe

2) Each fe : DomF→ DomF is a bijection.
3) The inverse f−1

e is also computable in polynomial time
given e.

4) The distribution of 〈x, fe(x), y, fe(y)〉 is indistinguish-
able from the distribution of 〈x, fe(x), y, z〉, where
x, y, z ∈r DomF and e ∈r KeyF.

Due to the property 1, the result of encryption with two
different keys is the same regardless of the order of encryption.
Due to the property 2, no collision occure, i.e., two different
values will never have the same encrypted value. Anyone who
knows e can compute the inverse of f efficently due to the
property 3. Due to the property 4, fe(y) and a random z are
indistinguishable even (x, fe(x), y) are given. Note that the
adversary does not control the choice of x since it is required
that property 4 holds only if x is a random value from DomF.
Indistinguishability is formaly defined as follows.

Definition 7 (Indistinguishability [2]): Let Ωl ∈ {0, 1}l
be a finite domain of l-bit numbers. Let D1 = D1(Ωl)
and D2 = D2(Ωl) be distributions over l. Let Al(x) be an
algorithm that, given x ∈ Ωl, returns either true or false.
We define distribution D1 of random variable x ∈ Ωl to be
computationally indistinguishable from distribution D2 if for
any family of PPT algorithms Al(x), any polynomial p(l),
and all sufficiently large l

P r[Al(x)|x ∈ D1]− Pr[Al(x)|x ∈ D2] <
1

p(l)

where x is distributed according to D1 or D2, and Pr[Al(x)]
is the probability that Al(x) returns true.



Next we give an example of commutative encryption, which
is given in [2]. Let p be a safe prime, where q := (p − 1)/2
is also prime, and G be a group with prime order q. Then,
DomF := G and KeyF := Zq . f is defined as fe(x) = xe mod
p. Since the group order q is knowen, f−1

e can be computed
such that f−1

e = fe−1 . Now, we assume that the DDH (desi-
cion Diffie-Hellman) assumption holds, where 〈g, ga, ga1 , ga1 〉
and 〈g, ga, ga1 , gb1〉 are indistinguishable. Here g is a generator
of G and a, b ∈r Zq . Then, 〈x, fe(x), y, fe(y)〉 = 〈x, xe, y, ye〉
and 〈x, xe, y, z〉 are indistinguishable under the DDH assump-
tion.
Unique Signatures: Next, we define unique signature by
using [31] as a reference. Briefly, the Sign algorithm is
deterministic in unique signatures. In [31], a unique signature
is constructed under the Gap DH assumption, where the
computational DH problem, where given (g, ga, gb) ∈ G for
a generator g and random values a, b ∈ Zq and compute gab,
is hard and the DDH problem is easy (i.e., bilinear groups).

Definition 8 (Unique Signatures [31]): A function family
Σ(·)(·) : {0, 1}l 7→ {0, 1}s(l) is a unique signature scheme
(US) if there exists probabilistic algorithm, efficient determin-
istic algorithm, and probabilistic algorithm such that G(1l)
generates the key pair PK,SK, Sign(SK, x) computes the
value Σ = ΣPK(x) and Verify(PK, x,Σ) verifies that Σ =
ΣPK(x). More formally,

1) (Uniqueness of ΣPK(m)) There do not exist val-
ues (PK,m,Σ1,Σ2) such that Σ1 6= Σ2 and
Verify(PK,m,Σ1) = Verify(PK,m,Σ2) = 1.

2) (Security) For all families of PPT machines A(·)
l , there

exists a negligible function negl(l) such that

Pr[(PK,SK)← G(1l);

(Q, x,Σ)← A
Sign(SK,·)
l (1l);

Verify(PK, x,Σ) = 1 ∧ (x,Σ) /∈ Q] ≤ negl(l),

where the contents of the query tape are denoted by Q.

III. RATIONAL SET-INTERSECTION PROTOCOL

In this section, we give our rational set-intersection protocol.
In a typical protocol, parties are viewed as either honest
or semi-honest/malicious. To model rationality, we consider
players’ utilities. Let D be the domain of output which is
polynomial in size. The function returns a vector I that repre-
sents the set-intersection where Im is set to one if item m is
in the set intersection. In other words, for all the data items of
the parties (i.e., D1,...,n), we will compute D1∩D2∩ . . .∩Dn,
and we get I as the output of the function.

A. An Overview of the Protocol

Our protocol is composed of two stages, where the first
stage can be viewed as a key generation stage and the second
stage that computes the intersection takes place in a sequence
of r = r(n) iterations. More specifically, in the key generation
stage the parties generate their encryption keys. They also
choose i∗ ∈ r according to some random distribution α in

which step they can learn the complete intersection result. In
every round i ∈ {1, . . . , r} the parties exchange the encrypted
data for the current round, which enables Pj perform the
Intersection Computation. Clearly, when all the parties are
honest, the parties produce the same output result which is
uniformly distributed. Briefly speaking, the stages have the
following form:
Key Generation Stage:
• Each party j randomly chooses a secret key for itself, i.e.
ej ∈ KeyF for commutative encryption. Also, it chooses
PKj , SKj for its unique signature.

• A value i∗ ∈ {1, . . . , r} is chosen according to some
random distribution 0 < α < 1 where α depends on
the players’ utilities (discussed later). This represents the
iteration, in which parties will learn the complete result.

Intersection Computation Stage:
Each party encrypts its items with its key, signs the encrypted
result and passes these along to the other parties. On receiving
a set of (encrypted) items and corresponding signatures, a
party verifies signatures, encrypts each item and permutes the
order before sending it to the next party. This is repeated until
every item has been encrypted by every party. Since encryption
is commutative, the resulting values from different sets will be
equal if and only if the original values were the same (i.e., the
item was present in the sets). Thus, we need only take the
values that are present in all of the encrypted itemsets. This
can be done by any party. More concretely, in each iteration
i, for i = 1, . . . , r, the parties do the following: First, Pj
sends cj and Sign(SKj , cj) to Pk (where Pk is any other
party in J) and then after verifying the signature Pk sends ck
and Sign(SKk, ck) to Pj , where ck and cj are the ciphertexts
computed by party Pk and Pj respectively. After receiving
the ciphertexts, Pj and Pk compute the set-intersection using
commutative property of the encryption scheme. If a party
aborts in some iteration i, then the other parties output the
value computed in the previous iteration. If some party fails to
follow the protocol, the other parties abort. In fact, it is rational
for Pj to follow the protocol as long as the expected gain of
deviating is positive only if Pj aborts exactly in iteration i∗;
and is outweighed by the expected loss if Pj aborts before
iteration i∗. The intersection computation phase proceeds in
a series of iterations, where each iteration consists of one
message sent by each party.

B. Protocol Construction

As described above, our protocol Π consists of two stages.
Let p be an arbitrary polynomial, and set r = p· | Y |.
We implement the first stage of Π using a key generation
algorithm. This functionality returns required keys to all the
parties. In the second stage of Π, the parties exchange their
ciphertexts in a sequence of r iterations. The protocol returns
I at the end of the operations on all the data items as follows:

Key Generation Stage:
• Each party j randomly chooses a secret key ej ∈ KeyF

for commutative encryption. Also, it generates keys for
signatures PKj , SKj .



• A value i∗ ∈ {1, . . . , r} is chosen according to some
random distribution 0 < α < 1 where α depends on the
players’ utilities. This represents the iteration, in which
parties will learn the complete result.

Set Intersection Computation Stage:
for all j do

1) Pj encrypts its input dataset Zj = fej (Dj), signs Zj
as Σj = Sign(SKj , Zj) and sends Zj ,Σj along to the
other parties Pk.

2) Pk encrypts its input dataset Zk = fek(Dk), signs Zk
as Σk = Sign(SKk, Zk) and sends Zk,Σk along to the
other parties Pj .

3) For Pj , if it has not received any messages from Pk or
fails to verify Σk, then output the result of iteration i−1
and halt. Otherwise, compute Z ′j = fej (fek(Dk)) and
sends the pairs 〈Zk, Z ′j〉 to the other parties Pk.

4) For Pk, if it has not received any message from Pj
or fails to verify Σj , then output the result of iteration
i−1 and halt.. Otherwise, compute Z ′k = fek(fej (Dj)).
Also, from pairs 〈fek(Dk), fej (fek(Dk))〉 obtained in
previous step for each dk ∈ Dk, it creates pair
〈dk, fej (fek(dk))〉 replacing fek(dk) with corresponding
dk.

5) For Pk, for dk ∈ Dk for which (fej (fek(dk)) ∈ Z ′k,
these values form the intersection result I = Dk ∩Dj .
Pk publishes this result.

Remark: In [31], a message m to be signed is encoded by
an error correcting code C such that C(m), and the code C
is publicly available. So, we can assume that a ciphertext
Zj = fej (Dj) is first encoded, and then this encoded-
ciphertext is signed by using the Sign algorithm. That is,
we can use different groups for the underlying commutative
encryption (i.e., a DDH-hard group) and the underlying unique
signature (i.e., a Gap-DH group), respectively.

IV. PROTOCOL ANALYSIS

Single Player Deviation: Here we will give some intuition
as to why the computation phase of Π is a computational
strict Nash equilibrium for an appropriate choice of α. Let us
assume that Pj follows the protocol, and any single party Pk
deviates from the protocol. When Pk aborts in some iteration
i < i∗, the best strategy Pk can adopt is to output Zi

∗

k hoping
that i = i∗. Thus, following this strategy, the expected utility
that Pk obtains can be calculated as follows:
• Pk aborts exactly in iteration i = i∗. In this case, the

utility that Pk gets is at most U∗.
• When i < i∗, Pk has ‘no information’ about correct I and

so the best it can do is guess. In this case, the expected
utility of Pk is at most Urand.

Considering the above, Pk’s expected utility of following this
strategy is at most:

α× U∗ + (1− α)× Urand
Now, it is possible to set the value of α such that the

expected utility of this strategy is strictly less than U , since

Urand < U by assumption. In such a case, Pk has no incentive
to deviate. Since there is always a unique valid message a party
can send and anything else is treated as an abort, it follows
that the protocol Π induces a computational Nash equilibrium.

Theorem 1: The protocol Π induces a computational strict
Nash equilibrium given that

0 < α < 1, U > α× U∗ + (1− α)× Urand

and the properties of commutative encryption and unique
signatures.

Proof: We first show that Π is a valid set-intersection pro-
tocol. Computational secrecy follows from the proof, below,
that the intersection computation is a computational strict Nash
equilibrium. Because if secrecy did not hold then computing
the output locally and not participating in the intersection
computation phase at all would be a profitable deviation.
We next focus on correctness. Assuming all the parties run
the protocol honestly, the output is computed correctly if
the properties of commutative encryption are not achieved,
which has negligible probability. We next show that Π induces
a computational Nash equilibrium. Assume Pj follows the
strategy σj prescribed by the protocol, and let σ′k denote any
PPT strategy followed by Pk. In a given execution of the
computation phase, let i denote the iteration in which Pk aborts
(where an incorrect message is viewed as an abort); if Pk never
aborts then set i = 1. Let early be the event that i < i∗; let
exact be the event that i = i∗; and let late be the event that
i > i∗. Let correct be the event that Pk outputs the correct
output. We will consider the probabilities of these events in
two experiments: the experiment defined by running the actual
intersection computation scheme, and a second experiment
where Pk is given Zk, tk chosen uniformly at random from
the appropriate ranges. We denote the probabilities in the first
experiment by Prreal[·], and the probabilities in the second
experiment by Prideal[·]. We have the following equation using
the fact (as discussed above) that whenever late occurs Pj
outputs the correct result. Since when all the parties follow
the protocol Pk gets utility U , we need to show that there
exists a negligible function ε such that

uk(σ′k, σj) ≤ U + ε(n) :

uk(σ′k, σj) ≤ U∗ × Pr
real

[exact]

+ U∗ × Pr
real

[correct ∧ early]

+ U ′ × Pr
real

[correct ∧ early]

+ U × Pr
real

[late]

Now we have the following claim that follows from the
indistinguishability property of commutative encryption and
unique signatures:



Claim 1: There exists a negligible function ε such that

| Pr
real

[exact] − Pr
ideal

[exact] |≤ ε(l)

| Pr
real

[late] − Pr
ideal

[late] |≤ ε(l)

| Pr
real

[correct ∧ early] − Pr
ideal

[correct ∧ early] |≤ ε(l)

| Pr
real

[correct ∧ early] − Pr
ideal

[correct ∧ early] |≤ ε(l)

Now, we have

Uideal = U∗ · Pr
ideal

[exact] + U∗ · Pr
ideal

[correct ∧ early]

+ U ′ · Pr
ideal

[correct ∧ early] + U · Pr
ideal

[late]

From Claim 1 we get that

| uk(σ′k, σj)− Uideal |≤ ε(l)

for some negligible ε. We bound Uideal as follows: Let
abort = exact ∨ early, so that abort is the event that Pk
aborts before iteration i∗ + 1. We have

Pr
ideal

[exact | abort] = α

and

Pr
ideal

[correct | early] = 1/D.

It is easy to find that

Uideal = U + (α ·U∗+ (1−α) ·Urand−U) · Pr
ideal

[abort] ≤ U

given that

α · U∗ + (1− α) · Urand − U < 0.

This shows that Π induces a computational Nash equilibrium.
That Π induces a computational strict Nash equilibrium

follows easily from the above analysis along with the fact
that there is always a unique valid message each party can
send. Specifically, say Pk plays a strategy σ′k with σ′k 6≈ Π.
This implies that

Pr
ideal

[abort] ≥ 1/poly(l)

for infinitely many values of l. Claim 1 then shows that

Pr
ideal

[abort] ≥= 1/poly(l)

for infinitely many values of l, and so U−Uideal ≥ 1/poly(l)
infinitely often as well. Since |uk(σ′k, σj)−Uideal| is negligi-
ble, we conclude that

U − uk(σ′k, σj) ≥ 1/poly(l)

for infinitely many values of l, as required.

Coalitions:
Theorem 2: If α > 0, U > α×U∗+(1−α)×Urand, and the

properties of commutative encryption and unique signatures
hold, then Π induces a (t − 1)-resilient computational strict
Nash equilibrium given that exactly t parties are active during
the computation phase.

The proof is similar to that of Theorem 1. We give a sketch
of the proof here. Let us assume some set of t parties J running
the computation phase, and consider some coalition C ⊂ J
of size at most t − 1. Let P ′ be any player in J but not in
C. As usual, the best strategy for C is to not abort until it
can definitively identify iteration r∗, which occurs only after
it receives the iteration-(r∗+1) message from P ′. But P ′ only
sends its iteration-(r∗+1) message after it has received (valid)
iteration-r∗ messages from all the parties in C. By this point,
no matter what the parties in C do, P ′ has the correct result
written on its output tape.

Till now we have assumed that exactly t parties are active
during the computation phase. However, as a general case,
during the protocol execution when the t parties run Π and
all other parties remain silent - that protocol is not a (t −
1)-resilient computational Nash equilibrium if t∗ > t parties
are active. Briefly explaining, let the active parties be I =
{1, . . . t+ 1} and let C = {3, . . . t+ 1} be a coalition of t− 1
parties. When P1 and P2 send their values in each iteration
r, the parties in C can compute t + 1 values. Due to the
computation steps, when r = r∗, the C parties are guaranteed
to lie on (t− 1) values, but when r < r∗, are unlikely to lie
on (t− 1) values. This helps the C parties to determine r∗ as
soon as that iteration is reached. At this point, preventing P1

and P2 from outputting the result, they can abort and output
the result. To overcome this, we let the parties run Π for t∗,
where t∗ denotes the number of active players. It follows as
an easy corollary of Theorem 2 that this induces a (t − 1)-
resilient computational strict Nash equilibrium regardless of
how many parties are active during the computation phase.

V. CONCLUSION

In this paper, we have proposed a private multiparty set-
intersection protocol from the view point of rational cryptog-
raphy. We have used tools like commutative encryption and
unique signatures as the underlying cryptographic primitives
which are simple and efficient. Also, we show that our protocol
satisfies computational strict Nash equilibrium in the case of
single party deviations or coalitions.
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