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Computational complexity and an integer programming model of Shakashaka

Erik D. Demaine∗ Yoshio Okamoto† Ryuhei Uehara‡ Yushi Uno§

Abstract

Shakashaka, one of the so-called “pencil-and-paper”
puzzles like Sudoku, was proposed by Guten and has
been popularized by the Japanese publisher Nikoli. The
computational complexity of Shakashaka was not stud-
ied so far. We first prove that Shakashaka is NP-
complete. Next we formulate Shakashaka as an inte-
ger programming problem. We apply the formulation
to some concrete instances that appeared in a puzzle
book, and solve them by using an IP solver, and show
the experimental results; each problem can be solved in
a second.

Keywords: integer programming, NP-completeness,
pencil-and-paper puzzle, Shakashaka

1 Introduction

The puzzle Shakashaka is popularized by Japanese pub-
lisher Nikoli, along with its more famous sibling Su-
doku, and several other “pencil-and-paper” puzzles.
Shakashaka was proposed in 2008 by Guten, and since
then, it has become one of the main puzzles in Nikoli.

An instance of Shakashaka is given as a rectangu-
lar board that consists of m × n unit squares, and each
square is either white or black. To solve the puzzle, each
white square is filled by a black isosceles right triangle
or left as it is. When a white square is filled by a black
isosceles right triangle, it is split into one black isosceles
right triangle and one white isosceles right triangle (that
is, one of , , , and ). The square filled by a black
isosceles right triangle is called a w/b square. Some
black squares contain numbers, and each of them spec-
ifies the number of w/b squares among four (vertically
or horizontally adjacent) neighbors of the black squares.
(Each black square without number allows any number
of w/b neighbors.) The objective of the puzzle is to fill
the white squares satisfying the above constraints start-
ing from the given initial board so that the remaining
white area only consists of (empty) squares and rect-
angles. An example of the puzzle Shakashaka in [1] is
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Figure 1: An instance of the puzzle Shakashaka and its
solution ([1])

shown in Figure 1(a), and its (unique) solution is given
in Figure 1(b).

As mentioned in the literature [2], a lot of “pencil-
and-paper” puzzles have been shown NP-complete.
However, the computational complexity of Shakashaka
was not studied so far. In this paper, we first prove
that Shakashaka is NP-complete. The proof is done
by a reduction of the planar 3SAT. Next we formu-
late Shakashaka as an integer programming problem.
Although integer programming is one of Karp’s 21 NP-
complete problems, there are many efficient solver from
the practical point of view. According to the talk
by Bixby, the performance of the solvers in 2012 runs
around 9.5×108 times faster than one in 1991 [3]. There-
fore, once we can formulate the puzzle as a 0-1 integer
linear programming problem, we can use these solvers
to solve the puzzle efficiently. Some authors proposed
integer-programming formulations of several puzzles be-
fore, mainly for the didactic purpose [4, 5, 6, 7, 8].
The formulation of Shakashaka is not so straightforward
since we have to avoid forming nonrectangular orthogo-



25th Canadian Conference on Computational Geometry, 2013

nal shapes or nested rectangles. We show that our for-
mulation characterizes the constraints of Shakashaka.
We also performed computational experiments, and ob-
served that each instance can be solved in one second.

2 Preliminaries

We here give a formal definition of the puzzle
Shakashaka. An instance I of Shakashaka is a rectan-
gular board of size m × n. Each unit square is col-
ored either white or black. Some black squares contain
a number i ∈ {0, . . . , 4}. A solution of the instance I
is a mapping from the set of white squares in I to the
set {WH,NW,NE, SW,SE} with the following condi-
tions.

1. Each white square mapped to WH is left uncolored,
and each square mapped to NW corresponds to the
pattern . The squares mapped to NE, SW,SE
correspond to the patterns , , and , respec-
tively. A square filled by a black isosceles right
triangle is called a w/b square.

2. Each black square that contains the number i has
exactly i w/b squares among its four neighbors.

3. Each connected white area forms a white rectangle
(or square).

Computationally, Shakashaka is a decision problem,
where for a given instance we decide whether or not
it has a solution. The counting version of Shakashaka
counts the number of solutions of a given instance.

3 NP-completeness of Shakashaka

In this section, we prove the following theorem.

Theorem 1 Shakashaka is NP-complete.

The proof is done by a reduction of the planar 3SAT,
one of the well-known NP-complete problems [9]. Let F
be an instance of the planar 3SAT. That is, F consists
of the set C = {C1, . . . , Cm} of m clauses of n variables
V = {x1, . . . , xn}, each clause Ci consists of three lit-
erals, and the graph G = (C ∪ V, E) is planar, where E
contains an edge {Ci, xj} if and only if xj or x̄j is in Ci.

Now we show a reduction of F to an instance I of
Shakashaka. The key idea is to use the pattern shown
in Figure 2 (the outside of the pattern is filled by black
squares). For the pattern Figure 2(a), we have two
choices shown in Figure 2(b). Essentially, this works
as a “wire” to propagate a signal. We consider the big
square containing four white squares in 2(b) represents
“0,” and the big diamond containing four (different)
w/b squares in 2(b) represents “1.” That is, the “wire”
pattern propagates a signal using the parity in two dif-
ferent ways. In the context of [2], we need the gadgets
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Figure 2: Basic pattern
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Figure 3: Variable gadget

of “variable,” “split,” “corner,” and “clause.” We here
show the gadgets one by one.

Variable gadget: The variable gadget is depicted in
Figure 3 (left). It is easy to see that we have two ways
to fill the pattern as Figure 3 (right). It can propagate
its value by the wire gadget as in the figure. It is also
easy to obtain the negation of the variable.

Split gadget/corner gadget: They are given in a
straightforward way as in Figure 4.

Clause gadget: For a clause C = {x, y, z}, the clause
gadget is given in Figure 5. According to the values
of x, y, z, we have eight possible cases. Among them,
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Figure 6: All possibilities of the clause gadget

1

1
1

1 1

10

1

1 1

11

1
1

1
1 1

1 1
1

1 1

11

1
1

1
1

1
1

1
1

1
1

0

0 0 0

0 0 0

1

1 1

1

11wire

split

corner

Figure 4: Split and corner gadgets
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Figure 5: Clause gadget
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Figure 7: Parity gadgets

only the case x = y = z = 0 violates the condition of
Shakashaka (Figure 6).

The gadgets for wire, variable, split, corner are
aligned properly since they can be put into 3×3 squares.
However, at a clause gadget, we have to change the po-
sitions of wires to fit the gadgets. To shift the position,
we use “parity” gadgets shown in Figure 7 (left). Join-
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Figure 8: An example for C1 = {x, ȳ, w} and C2 =
{y, z̄, w̄}

ing one of this gadgets in a straightforward way, we
can change the position of a wire arbitrarily (Figure 7
(right)). An example of a construction of Shakashaka
for the instance f = C1 ∨C2, where C1 = {x, ȳ, w} and
C2 = {y, z̄, w̄} is depicted in Figure 8.

The reduction can be done in polynomial time, and
it is clear that Shakashaka is in the class NP. Therefore,
Shakashaka is NP-complete. We note that our reduction
is parsimonious, i.e., preserves the number of solutions.
That is, the number of the original CNF is equal to the
resulting instance of Shakashaka. Since the counting
version of the planar 3SAT is #P-complete [10], we have
the following corollary.

Corollary 2 The counting version of generalized
Shakashaka is #P-complete.

4 Formulation of Shakashaka and experimental re-
sults

We formulate Shakashaka in terms of binary integer pro-
gramming. Remind that an instance I of Shakashaka
consists of a rectangular board of size m × n. We iden-
tify each square by (i, j) ∈ {1, . . . , m} × {1, . . . , n} in
the natural way.

Variables: For each white square (i, j), we will use
five 0-1 variables x[i, j, WH], x[i, j, NW ], x[i, j,NE],
x[i, j, SW ], and x[i, j, SE]. Each of them takes either
0 or 1, and it takes 1 in the following cases, respectively
(otherwise, it takes 0):

x[i, j, WH] = 1 means that (i, j) remains white,
x[i, j, NW ] = 1 means that (i, j) is filled with ,
x[i, j, NE] = 1 means that (i, j) is filled with ,
x[i, j, SW ] = 1 means that (i, j) is filled with ,
x[i, j, SE] = 1 means that (i, j) is filled with .

We construct a linear system S(I) with the variables
x[i, j, ∗] such that the solutions of the instance I of
Shakashaka are in bijection with the solutions of S(I).
To this end, we set up five types of linear constraints as
described below.

Constraint A (At Most One Triangle in Each White
Square): In a solution of I, each white square either
remains white, or filled with one of the four black isosce-
les right triangles. We map this condition to the follow-
ing linear equality:

x[i, j, WH] + x[i, j,NW ] + x[i, j, NE]
+x[i, j, SW ] + x[i, j, SE] = 1 (1)

for each i and j where (i, j) is a white square.

Proposition 3 Let SA(I) be the linear system that con-
sists of Constraint A. Then any feasible solution of
SA(I) gives the mapping from each white square to one
of , , , , or a white blank.

Constraint B (Neighbors of Black Squares): Next we
look at the black squares (i, j). First we consider the
case that (i, j) contains no number. In this case, (i, j)
gives some restrictions to its white neighbor. For exam-
ple, suppose that (i− 1, j) is white. Then, if (i− 1, j) is

or , we have 45◦ white area between (i − 1, j) and
(i, j). Thus (i − 1, j) must be , , or leaving white.
Hence, in this case,

x[i − 1, j, WH] + x[i − 1, j,NW ] + x[i − 1, j, NE]
+x[i − 1, j, SW ] + x[i − 1, j, SE] = 1 (2)

can be replaced by

x[i−1, j, WH]+x[i−1, j, SW ]+x[i−1, j, SE] = 1 (3)

and we can fix x[i − 1, j, NW ] = x[i − 1, j, NE] = 0.
On the other hand, when a black square (i, j) has a

number k, it must have k w/b squares as its neighbor.
This restriction is described by the following equation:

x[i − 1, j, SW ] + x[i − 1, j, SE] + x[i + 1, j,NW ]
+x[i + 1, j, NE] + x[i, j − 1, NE] + x[i, j − 1, SE]

+x[i, j + 1, NW ] + x[i, j + 1, SW ] = k, (4)
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where x[i, j, ∗] is regarded as 0 if (i, j) is black. We also
fix x[i − 1, j, NW ] = x[i − 1, j, NE] = x[i + 1, j, SW ] =
x[i + 1, j, SE] = x[i, j − 1, NW ] = x[i, j − 1, SW ] =
x[i, j + 1, NE] = x[i, j + 1, SE] = 0 to avoid the 45◦

white angle.

Constraint C (Sequences of Triangles): Next we turn
to the restrictions to make each connected white area
a rectangle. Assume x[i, j, SW ] = 1. That is, (i, j)
is filled as . In the case, the upper triangle can be
orthogonal if and only if either x[i, j+1, SE] = 1 ((i, j+
1) is ) or x[i + 1, j + 1, SW ] = 1 ((i, j + 1) is ).
Therefore, we obtain the following constraint:

x[i, j, SW ] ≤ x[i, j + 1, SE] + x[i + 1, j + 1, SW ]. (5)

Moreover, when x[i, j, SW ] = x[i + 1, j + 1, SW ] = 1,
(i, j + 1) must remain white, or x[i, j + 1,WH] = 1.
(When (i, j + 1) is , we have a parity problem; we
cannot enclose this area by extending this pattern. The
other cases are also inhibited.) This implies the follow-
ing constraint:

x[i, j, SW ]+x[i+1, j+1, SW ] ≤ x[i, j+1,WH]+1. (6)

We add the similar constraints for other directions.
Then, we have the following proposition.

Proposition 4 Let SC(I) be the linear system that
consists of Constraints A, B, and C, and fix any feasible
solution of S(I). Then, each angle on the boundary of
each connected white area given by the mapping is 90◦.

Proof. It is not difficult to check that no 45◦ white
angle is left alone between two black areas by the re-
strictions. �

Constraint D (Exclusion of Concave Corners): By
Proposition 4, any feasible solution to Constraints A, B,
and C produces the pattern consists of white polyomino.
However, this does not exclude a concave corner yet. By
Equation 5, no w/b square forms a part of a concave
corner. Thus, a concave corner may be produced by
only white squares. We suppose that x[i, j,WH] = x[i+
1, j, WH] = x[i, j + 1, WH] = 1. Then, (i + 1, j + 1)
must be or must remain white. Thus we add the
following constraints (for all possible directions):

x[i, j, WH] + x[i + 1, j,WH] + x[i, j + 1,WH]
≤ x[i + 1, j + 1, WH] + x[i + 1, j + 1, SE] + 2. (7)

We now have the following proposition.

Proposition 5 Let SD(I) be the linear system that
consists of Constraints A, B, C, and D, and fix any fea-
sible solution of S(I). Then each connected white area
given by the mapping is a convex orthogonal shape.
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Figure 9: An attificial example of the puzzle Shakashaka
of size n.

Constraint E (Exclusion of Nested White Rectangles):
The last problem is that the linear system so far may
produce nested rectangles. We suppose that both of
(i, j) and (i + k, j + k) are . Then, to avoid the nest,
we have to have between them. That is, we have to
have at (i + k′, j + k′) for some 0 < k′ < k. And it is
not difficult to see that this is a necessary and sufficient
condition to avoid nested rectangles. This observation
gives us the following constraint:

x[i, j, NW ] + x[i + k, j + k, NW ]

≤
∑

0<k′<k

x[i + k′, j + k′, SE] + 1. (8)

Combining all Propositions and observations above,
we conclude the following.

Theorem 6 Let I be an instance of Shakashaka, and
S(I) be the linear system that consists of the constraints
above. Then, a feasible solution of S(I) gives a solution
of I, and vice versa.

We here show our experimental results. We used
SCIP 3.0.01 (Binary: Windows/PC, 32bit, cl 16, intel
12.1: statically linked to SoPlex 1.7.0, Ipopt 3.10.2,Cp-
pAD 20120101.3) as an IP solver [11], that runs on a
laptop machine (Intel Core2 Duo P8600@2.40GHz with
RAM 4GB on Windows Vista Business SP2). Each of
the ten instances at nikoli.com2, was solved in one
second in our experiments (Table 1).

We also try another instance at nikoli.com, which
was prepared for a competition. The board has size
31 × 45, the level is Extreme, and the number of white
squares is 1230. A solution was obtained in 2.63 seconds.

The other examples are artificial ones (see Figure 9);
for each n = 1, 2, . . ., the board of size 2n × 2n consists
of 4×

∑n−1
i=1 i = 2n(n−1) black squares, and 4× (n−1)

1http://scip.zib.de/
2http://www.nikoli.com/ja/puzzles/shakashaka/
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Problem Size Level # of white squares Time (sec)
1 10x10 Easy 76 0.02
2 10x10 Easy 77 0.03
3 10x10 Easy 82 0.03
4 10x18 Easy 131 0.07
5 10x18 Medium 156 0.09
6 10x18 Medium 144 0.07
7 14x24 Medium 297 0.21
8 14x24 Hard 295 0.19
9 20x36 Hard 645 0.84
10 20x36 Hard 632 0.91

Table 1: Experimental results for the instances at nikoli.com
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Figure 10: Seconds for the artificial examples (n =
2, 3, . . . , 40).

black squares contain the number 2 as shown in the fig-
ure. Each of them has a unique solution. For n = 40,
the solution is obtained in 19.86 seconds. The compu-
tation times seem to be proportional to 1.18n.

5 Concluding Remarks

In this paper, we show that Shakashaka is NP-complete.
In our reduction, the black squares contain 1 only,
and no other numbers are used. An interesting ques-
tion is to determine the computational complexity of
Shakashaka that contains no black squares with num-
bers. A nontrivial example is given in Figure 11, which
has a unique solution. There are two natural questions
in this Shakashaka puzzle. How many black squares are
required to have a unique solution for m×n board? Can
this restricted Shakashaka be solved in linear time?
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