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Computational Complexity of Piano-Hinged Dissections

Zachary Abel∗ Erik D. Demaine† Martin L. Demaine† Takashi Horiyama‡ Ryuhei Uehara§

Abstract

We prove NP-completeness of deciding whether a
given loop of colored right isosceles triangles, hinged
together at edges, can be folded into a specified rect-
angular three-color pattern. By contrast, the same
problem becomes polynomially solvable with one color
or when the target shape is a tree-shaped polyomino.

1 Introduction

One of the simplest and most practical physical fold-
ing structures is that of a hinge, as in most doors
or attaching the lid to a grand piano. Frederickson
[4] introduced a way to make folding structures out
of such hinges that can change their shape between
“nearly 2D” shapes. The basic idea is to thicken a
(doubly covered) 2D polygon by extruding it orthog-
onally into a height-2ε 3D prism, divide that prism
into two height-ε layers, further divide those layers
into ε-thickened polygonal pieces, and hinge the pieces
together with hinges along shared edges. The goal in
a piano-hinged dissection is to find a connected hing-
ing of ε-thickened polygonal pieces that can fold into
two (or more) different 2ε-thickened polygons.

Piano-hinged dissections are meant to be a more
practical form of hinged dissections, which typically
use point hinges and thus are more difficult to build
[4]. Although hinged dissections have recently been
shown to exist for any finite set of polygons of equal
area [1], no such result is known for piano-hinged dis-
sections.

Here we study a family of simple piano-hinged dis-
sections, which we call a piano-hinged loop: 4n iden-
tical ε-thickened right isosceles triangles, alternating
in orientation, and connected into a loop by hinges
on the bottoms of their isosceles sides; see Figure 2.
Frederickson [4, chapter 11] mentions without proof
that this piano-hinged dissection can fold into any
(2ε-thickened) n-omino, that is, any connected edge-
to-edge joining of n unit squares.
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Figure 1: GeoLoop (left) and Ivan’s Hinge (right)

Two commercial puzzles, shown in Figure 1, con-
sist of piano-hinged loops [4]. GeoLoop is a piano-
hinged loop with n = 6 that was patented by Kenneth
Stevens in 1993/1994 [6] and sold by Binary Arts1 in
1996. The pieces alternate between two colors, and
by a checkerboard property of the piano-hinged loop,
the resulting squares of any polyomino will alternate
in color (on either side), so this puzzle is effectively
uncolored. Ivan’s Hinge is a piano-hinged loop with
n = 4 that was patented by Jan Essebaggers and Ivan
Moscovich in 1993/1994 [3] and sold by Paradigm
Games in the mid-to-late 1990s [4] and recently by
Fat Brain Toys2. Each piece is colored irregularly
with one of two colors, and the goal in this puzzle is
to make not only the specified tetromino shape but
also the specified two-color pattern.

Our results. In this paper, we investigate the com-
putational complexity of folding colored and uncol-
ored piano-hinged loop puzzles into n-ominoes.

First we consider the uncolored piano-hinged loop,
as in GeoLoop. For completeness, we prove Frederick-
son’s claim that this loop can realize any 2ε-thickened
n-omino, by mimicking a simple inductive argument
for hinged dissections of polyominoes from [2]. For
the special case of tree-shaped polyominoes, where the
dual graph of edge-to-edge adjacencies among unit
squares forms a tree, we prove further that the folding
of the piano-hinged loop is unique up to cyclic shifts
of the pieces in the loop.

Next we consider colored piano-hinged loops, as in
Ivan’s Hinge. For tree-shaped polyominoes, the pre-
vious uniqueness result implies that the problem can
be solved in O(n2) time by trying all cyclic shifts. (In

1Binary Arts changed its name to ThinkFun
(http://www.thinkfun.com) in 2003.

2http://www.fatbraintoys.com
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Figure 2: Piano-hinged loop with n = 3 (a), and two sequences of folding operations that result in a doubly
covered straight tromino (b, c, d) or L tromino (b, e, f). Gray denotes the back side of the pieces.

particular, this observation makes the n = 4 case of
Ivan’s Hinge easy to solve in practice, as each tetro-
mino has either 1 or 4 spanning trees to try.) For
general polyominoes, we prove that the problem is
NP-complete even if the number of colors is 3, each
piece is colored uniformly one color, and the target
shape is a rectangle.

Finally, we consider a related paper-folding prob-
lem: given a (monochromatic) sheet of paper of ar-
bitrary shape, can it fold into a doubly covered poly-
omino whose silhouette is a specified rectangle? This
seemingly simple problem is also NP-complete.

2 Preliminaries

A piano-hinged loop consists of a loop
of 4n consecutive isosceles right triangles
p0, q0, p1, q2, . . . , p2n−1, q2n−1, as shown in Fig-
ure 2. Every two consecutive triangular pieces share
one of two isosceles edges. The pi’s have a common
orientation (collinear hypotenuses when unfolded),
as do the qi’s, and these two orientations differ from
each other. Each shared edge is a piano hinge on the
back side that permits bending inward (bringing the
two back sides together).

In a folded state of the piano-hinged loop into a
doubly covered polyomino, (1) each piano hinge is
flat (180◦) or folded inward (360◦); and (2) each unit
square of the polyomino consumes exactly four trian-
gles, with two triangles on the front and two on the
back side. Thus, in any folded state, the exposed sur-
face consists of all front sides of the pieces, while the
back sides of all pieces remain hidden on the inside.
Therefore, we can ignore the color of the back side of
each piece, so for simplicity we can assume that each

piece has a uniform color (instead of a different color
on each side). Let c(pi) and c(qi) denote the color of
piece pi and qi.

For the resultant polyomino P of n unit squares,
we define the connection graph G(P ) = (V,E) as fol-
lows: V consists of n unit squares, and E contains an
edge {u, v} if and only if squares u and v are adjacent
(share an edge) in P . Having {u, v} ∈ E is a nec-
essary but not sufficient condition for there to be a
hinge connecting the four pieces representing square
u to the four pieces representing square v; if there is
such a hinge, we call u and v joined.

The uncolored piano-hinged loop problem asks
whether a given polyomino can be constructed as (the
silhouette of) a folded state of a given piano-hinged
loop. The “silhouette” phrasing allows the folding to
have unjoined squares, which are adjacent in the poly-
omino but not attached by a hinge in the folded state.
The colored piano-hinged loop problem asks whether
a given colored polyomino pattern can be similarly
constructed from a given colored piano-hinged loop.

The piano-hinged loop has a simple checkerboard-
ing property:

Observation 1 Consider two adjacent squares u and
v in a polyomino P , obtained as a folded state of a
piano-hinged loop. Without loss of generality, assume
that the top side of u contains (the front side of) tri-
angle pi. Then (1) the other triangle of u on front
side is pj for some j, (2) the backside of u contains
two qs, (3) the front side of v contains two ps, and (4)
the backside of v contains two qs.

Ivan’s Hinge has a group of triangles that are
monochromatic as assumed above, and a group of tri-
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angles with different colors on their front and back
sides. However, these groups directly correspond to
the parity classes in Observation 1. Hence, for each
unit square, the front side consists of two triangles
from the same group, and the back side consists of
two triangles from the other group. Thus, from a the-
oretical point of view, we can again effectively assume
that the pieces are monochromatic. (Practically, the
differing colors can vary the color patterns, which can
help visually.)

3 Uncolored Piano-Hinged Loop

We begin with the universality theorem of GeoLoop,
claimed by Frederickson [4]:

Theorem 1 ([4]) Any polyomino P of n unit
squares can be realized as a folded state of the piano-
hinge loop of 4n pieces.

Once we fix the spanning tree T of G(P ), we claim
that the folded state is uniquely determined up to
cyclic shift of the pieces. Both this corollary and the
previous theorem follow from a simple argument of
repeatedly pruning leaves in the graph of joinings.

Corollary 2 Let P be any polyomino of n unit
squares such that G(P ) is a tree. Then it can
be uniquely folded from the piano-hinge loop of 4n
pieces, up to cyclic shift of the pieces.

For a given tree-shaped polyomino, the piano-hinge
loop traverses the tree in the same manner as a depth-
first search without crossing. That is, if we imagine
that we are in the maze in the form of the tree, and
traverse the maze by the right-hand rule, then we tra-
verse each edge twice, and this is the order followed
by the piano-hinge loop. This intuition will be useful
in some proofs in this paper.

4 General Piano-Hinged Loop

Consider a polyomino P in which pieces pi and qi

have colors c(pi) and c(qi), respectively. When the
connection graph G(P ) is a tree (or the spanning tree
of G(P ) is explicitly given), we still have a polynomial-
time algorithm to solve the problem:

Theorem 3 Let P be any polyomino of n unit
squares such that G(P ) is a tree T . Then the gen-
eral piano-hinge loop problem can be solved in O(n2)
time.

Next we turn to the case that P is a general poly-
omino, where the problem is NP-complete:

Theorem 4 The colored piano-hinge loop problem is
NP-complete, even if the number of colors is 3 and the
target polyomino is a rectangle.

valley fold

valley fold

valley
 fold

valley
 fold

(a) (b) (c)

flip and pile

Figure 4: Crossover gadget

Proof outline: We prove NP-hardness by reducing
from 3-PARTITION, defined as follows.

3-PARTITION (cf. [5])
INSTANCE: A finite set A = {a1, a2, . . . , a3m}

of 3m weighted elements with w(aj) ∈ Z+, where
w(aj) gives the weight of aj , and a bound B ∈ Z+

such that each aj satisfies B/4 < w(aj) < B/2 and∑3m
j=1 w(aj) = mB.
QUESTION: Can A be partitioned into m disjoint

sets A(1), A(2), . . . , A(m) such that
∑

aj∈A(i) w(aj) =
B for 1 ≤ i ≤ m?

If A has a solution, then each A(i) must contain ex-
actly three items, because B/4 < w(aj) < B/2, for
all i and j.

Figure 3 outlines the construction. Our piano-hinge
loop L consists of two parts (Figure 3(a)). The first
part is a series of black triangles that form m empty
bins, such that each bin should be filled by B gray
unit squares. The second part is a sequence of gray
and white triangles. The ith run of 4ai consecutive
grey triangles in the sequence represents the weight of
an element ai for each i. White triangles will be used
to place the grey items arbitrary into bins. The key
point is that each run of gray triangles must be put
into exactly one bin, and the grey triangles cannot
be split into two or more different bins. Using the
property, we simulate 3-PARTITION. Figure 4 shows
one of the gadgets from the full proof.

Adding 3m× (b + 3)− 1 black squares in the lower
right of Figure 3(b), we can make the desired shape a
rectangle of size 15m × (12m + b + 3). �

5 Paper Folding Problem

The double-covering problem asks whether a given
sheet of paper (of arbitrary shape) can doubly cover
a given polyomino. A modification of our proof above
shows that this problem is also NP-hard:

Theorem 5 The doubly covering problem is NP-
hard, even when the target polyomino is a rectangle.
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Figure 3: Outline of the construction

Note that this notion of “double covering” a rect-
angle allows cuts/seams in the middle of the rectangle
(along grid edges). Without this flexibility, the fold-
ing would be uniquely determined up to cyclic shift,
leading to an O(n2)-time algorithm in the same man-
ner as Theorem 3.
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