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Zipper Unfolding of Domes and Prismoids

Erik D. Demaine∗ Martin L. Demaine† Ryuhei Uehara‡

Abstract

We study Hamiltonian unfolding—cutting a convex
polyhedron along a Hamiltonian path of edges to un-
fold it without overlap, which could be implemented by
a single zipper—of two classes of polyhedra. First we
consider domes, which are simple convex polyhedra. We
find a series of domes whose graphs are Hamiltonian,
yet any Hamiltonian unfolding causes overlap, making
the domes Hamiltonian-ununfoldable. Second we turn
to prismoids, which are another family of simple con-
vex polyhedra. We show that any nested prismoid is
Hamiltonian-unfoldable, and that for general prismoids,
Hamiltonian unfoldability can be tested in polynomial
time.

Keywords: edge unfolding, zipper unfolding, paper fold-
ing, dome, prismoid.

1 Introduction

A common way to make a polyhedron from paper is to
fold and glue a planar polygonal shape, called a net of
the polyhedron. The characterization of polyhedra and
their nets has been investigated since Dürer used nets
to represent polyhedra in his 1525 book (see [DO07,
O’R11]). One long-standing open problem is whether
every convex polyhedron can be developed into a flat
nonoverlapping polygonal shape by cutting only along
its edges. Such a development is called an edge unfolding
of the polyhedron. So far, very special classes of edge-
unfoldable convex polyhedra are known: polyhedra of at
most six vertices [DiB90], pyramids, prisms, prismoids,
and domes [O’R01, DO07, O’R08].

In any edge unfolding, the cut edges produce a span-
ning tree of the graph representing the combinatorial
structure of the convex polyhedron. One possible ap-
proach to the open problem is to restrict the cutting
spanning tree to be a simple path. Because the path
should visit (or cut) every vertex exactly once, the cut-
ting edges produce a Hamiltonian path along the edges
of the polyhedron. This restricted type of edge unfold-
ing is called a Hamiltonian unfolding [DDL+10]. From

∗Computer Science and Artificial Intelligence Laboratory,
MIT, edemaine@mit.edu
†Computer Science and Artificial Intelligence Laboratory,

MIT, mdemaine@mit.edu
‡School of Information Science, JAIST, uehara@jaist.ac.jp

Figure 1: Zipper folding bags

an industrial point of view, such an unfolding can be re-
alized by a zipper, and there are several products based
on this idea (Figure 1).

From the graph-theoretical point of view, the Hamil-
tonian unfolding problem is related to the Hamiltonian
path problem on a graph representing the vertices and
the edges of the polyhedron. More precisely, if a poly-
hedron is Hamiltonian-unfoldable, then its correspond-
ing graph must have a Hamiltonian path. Recently,
Demaine et al. [DDL+10] found that all Archimedean
solids are Hamiltonian-unfoldable. On the other hand,
a rhombic dodecahedron does not have a zipper unfold-
ing because its corresponding graph has no Hamilto-
nian path [DDL+10]. As far as the authors know, all
Hamiltonian-ununfoldable polyhedra have been proved
in this combinatorial way, by showing that their corre-
sponding graphs are not Hamiltonian.

On the other hand, the difficulty of edge unfolding
convex polyhedra comes from the fact that we have
no general strategy to check whether its development
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causes an overlap no matter how it is cut along its edges.
That is, to solve the open problem negatively, we have
to find a convex polyhedron that causes an overlap by
edge unfolding along any spanning tree. In this sense,
a natural question arises: is there a convex polyhedron
whose corresponding graph has a Hamiltonian path, yet
any Hamiltonian unfolding causes overlap?

Our results. Our first result is an affirmative answer
to this question. We show a series of convex polyhedra,
which are simple domes, such that an overlap occurs in
every Hamiltonian unfolding. Each of our domes has
many Hamiltonian paths on its corresponding graph.
Thus we can say that a graph-theoretic approach is not
enough to tackle the open problem even for quite simple
convex polyhedra.

Extending this result, for any fixed integer k, we show
that there exists a series of domes that cannot be edge-
unfolded by any cutting tree of degree at most k. That
is, we show that, if the degree of the spanning tree of
cuts is bounded, there exist infinitely many convex poly-
hedra that cannot be edge-unfolded under the restric-
tion. Hamiltonian unfoldings are the special case when
the degree bound k = 2.

Next we turn to prismoids; a prismoid is the convex
hull of two parallel convex polygons whose correspond-
ing angles are equal. If one of these polygons contains
the other in the projection orthogonal to the parallel
planes, then the prismoid is nested. We give positive
results about prismoids. First we show that any nested
prismoid can be unfolded by a Hamiltonian unfolding.
This result is based on band unfolding of nested pris-
moids developed in [ADL+08]. Second we also show
how to determine whether a general prismoid can be
Hamiltonian-unfolded in polynomial time. This result
is based on counting of the number of Hamiltonian paths
of a general prismoid. We conjecture that any (general)
prismoid can be Hamiltonian-unfolded, but this prob-
lem remains open.

2 Zipper-Ununfoldable Dome

A dome is a convex polyhedron that consists of a single
base and at least three sides defined as follows. The
base is a convex n-gon for some n ≥ 3. Then the dome
has n sides; each side is a convex polygon, and it shares
a (distinct) edge with the base (see, e.g., [DO07]).

First we state a technical lemma.

Lemma 1 For a positive integer n, let θ = 2π
n . Let T

be an isosceles triangle with unit equilateral and apex
angle θ. We place eight copies of T as in Figure 2,
where bold edges are shared by two triangles. Then the
triangles T4 and T8 overlap for any n > 12.

T6
T5

T7

T8

T1
T2

T3

T4

A

B

C

D

O(0,0)

Figure 2: Overlapping triangles

Proof. We put the origin O = (0, 0) on the apex of T5,
and the y axis on the line joining the apices of T1 and T5.
Let A and B be the apices of T1 and T4, respectively.
Then we can compute

A =
(
0, 2 sin θ

2

)
, B =

(
2 sin θ

2 sin 2θ, 2 sin θ
2 (1− cos 2θ)

)
.

On the other hand, let C be the furthest base angle
point of T8 from T5. Then we have

C =
(
cos 7θ

2 , sin
7θ
2

)
.

Now consider the intersection point D on two lines AB
and OC. (Precisely, two lines containing AB and OC.)
Then both T4 and T8 contain the point D if |OD| < 1.
By a simple computation, we obtain

D =

(
2 sin θ

2

cot 2θ + cot 7θ
2

,
2 sin θ

2 tan 2θ

tan 2θ + tan 7θ
2

)

and hence |OD|2 equals

4 sin2 θ
2

(
1(

(cot 2θ + cot 7θ
2

)2 +
tan2 2θ

(tan 2θ + tan 7θ
2 )2

)
,

which is less than 1 for any n > 12. �

Theorem 2 There exists an infinite sequence of domes
that are Hamiltonian-ununfoldable.

Proof. Let n be an integer. For each n > 1, we define
a dome D(n) as follows. The base B(n) is a regular
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Figure 3: The top view of D(3)

2n-gon. Let p1, p2, . . . , p2n be the vertices of B(n). The
dome D(n) has an apex c that is on the central per-
pendicular of B(n). The height of c is very small. We
put a small circle C centered at c, and put n points
q1, q2, . . . , qn on C such that these points form a regular
n-gon. To simplify, we assume that the height of c and
the radius of C are almost 0. Then we join and make
edges {p2i−1, qi} and {p2i, qi} for each i = 1, 2, . . . , n.
We rotate the circle C so that each triangle qip2i−1p2i
is an isosceles triangle. We also join c to the qi for
each i = 1, 2, . . . , n. Figure 3 shows the top view of
the dome D(n) for n = 3. Now we show that D(n) is
Hamiltonian-ununfoldable for n > 12.

Suppose that D(n) is Hamiltonian-unfoldable by a
cutting line P . Then P is a Hamiltonian path on D(n).
We here denote by degP (v) for a vertex v the number
of edges in P incident to v. That is, degP (v) = 1 for
two endpoints and degP (v) = 2 for the other vertices
because P is a Hamiltonian path. Thus degP (c) is one
or two, and almost all vertices qi have degP (qi) = 2.
This implies that for almost all vertices qi, the path
(p2i−1, qi, p2i) is a part of P . That is, most isosceles
triangles will be flipped along its base line like petals of
a flower.

We have two cases. First, we suppose that c is an
endpoint of P . Without loss of generality, we can
assume that the path (c, q1, p1) is in P . Then, be-
cause c has no other degree except (c, q1), P con-
tains all subpaths (p2i−1, qi, p2i) with 1 < i ≤ n
(except i = 1). Then we have only two pos-
sible ways to make a Hamiltonian path. One is
(c, q1, p1, p2n, qn, p2n−1, . . . , p4, q2, p3, p2), and the other
one is (c, q1, p1, p2, p3, q2, p4, . . . , p2n−1, qn, p2n).

The first subcase is illustrated in Figure 4(b) and (c).
We first cut along the dotted path in Figure 4(b). Then
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3
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Figure 4: One possible development of D(12)

we flip the lid, which consists of all pentagons and one
triangle p1p2q1 (Figure 4(c)). Now the other triangles
have to be flipped, however, the gray triangles overlap
with the lid by Lemma 1 if the circle C and the height of
the dome is sufficiently small and n > 12. Therefore, we
cannot develop in this case without overlap. The second
subcase is easier: one closer triangle again overlaps the
flipped lid. Therefore, when c is an endpoint of P , every
development causes an overlap.

Now we turn to the next case: c is not an end-
point of P . We now assume that the path (qi, c, q1, p1)
is in P without loss of generality for some i. When
qi is an endpoint, almost same argument as the first
case works. If qi = q2 or qi = qn, one of two
petals overlaps, but in other cases, two petals again
overlap the flipped lid. Therefore, we consider the
case (pj , qi, c, q1, p1), where j = 2i − 1 or j = 2i.
If we remove the vertices {pj , qi, c, q1, p1} from the
graph obtained from the dome D(n), it is easy to see
that the graph is disconnected to two parts. We say
the graph induced by {p2, p3, . . . , pj−1, q2, q3, . . . , qi−1}
the right graph, and the other graph induced by
{pj+1, pj+1, . . . , p2n, qi+1, . . . , qn} the left graph. Then,
clearly, P consists of three part; Pr for the right graph,
Pl for the left graph, and the subpath (pj , qi, c, q1, p1)
joining Pr and Pl. Now we take the larger graph P ′ be-
tween Pr and Pl, apply the same argument as the first
case on P ′ with (pj , qi, c, q1, p1), then we again obtain
an overlap. This completes the proof. �

In the Hamiltonian unfolding, each vertex has degree
at most 2 on the cutting path. This can be generalized
to any integer k ≥ 2:
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Figure 5: Maximum degree bounded case

Theorem 3 For any positive integer k ≥ 2, there exists
an infinite number of domes that are edge-ununfoldable
when the maximum degree of the cutting tree at each
vertex is bounded above by k.

We note that all vertices of the dome D(n) have de-
gree 3 except the central vertex c. That is, the cutting
tree in Theorem 3 has only one vertex of degree greater
than 3.

Proof. We consider the dome D(n) for any n > 6k. Let
T be any spanning tree of D(n) with the maximum de-
gree at most k. We show that the development of D(n)
by cutting the edges in T causes an overlap. Because
the maximum degree is bounded by k, the central ver-
tex c has degree at most k. Let Tc be the subtree of T
induced by the vertices {c}∪NT (c)∪NT (NT (c)), where
NT (v) is the neighbor set of v on T , and NT (NT (c)) =
∪q∈NT (c)NT (q). Then, Tc has at most 2k leaves be-
cause each qi may have two leaves from p2i−1 and p2i
in Tc. However, by the expected value argument, we
have at least (n− k)/k > 5 consecutive triangles on the
boundary of the base between two leaves p and p′ of
Tc (Figure 5). They are cut along T in the same way
of the proof of Theorem 2. Precisely, all pentagons be-
tween p and p′ form a lid, and it is then flipped at one
boundary edge, say {q, q′} (Figure 5). When the trian-
gles between p and p′ are flipped, two triangles sharing
q and q′ (gray triangles in Figure 5) will overlap with
the lid by Lemma 1. �

3 Zipper Unfoldability of a Prismoid

A prismoid is a convex hull of two parallel convex poly-
gons with matching angles. If one of these polygons
contains the other in the projection orthogonal to the
parallel planes, the prismoid is nested. On a nested
prismoid, the larger polygon is called base and the other
polygon top. In general prismoid, we arbitrary name the
two parallel convex polygons base and top. The other
surface is called band. Because the top and base have
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Figure 6: Zipper unfolding of a nested prismoid (1)
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Figure 7: Zipper unfolding of a nested prismoid (2)

matching angles with parallel edges, the band consists
of trapezoids.

3.1 Nested Prismoid

Theorem 4 Any nested prismoid has a Hamiltonian
unfolding.

Proof. In [ADL+08], it is shown that the band of any
nested prismoid can be unfolded. That is, the band
has at least one edge (not included in base and top)
such that by cutting along the edge and unfolding con-
tinuously to place all faces of the band into a plane
without intersection. Let the top and base polygons
Pt = (a1, a2, . . . , an) and Pb = (b1, b2, . . . , bn), and sup-
pose that the edge (a1, b1) allows us to unfold the band.

Then our Hamiltonian unfolding consists of
(bi+1, bi+2, . . . , bn, b1, a1, an, an−1, . . . , a3, a2, b2, b3, . . . , bi)
for some i with i ≥ 2 (Figure 6). The index i is the first

index such that the angle between the vector
−−→
b1b2 and
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the vector
−−−→
bibi+1 is greater than 90◦. (Intuitively, the

vertex bi+1 is the first vertex coming back to b1. We
note that i can be n.) The unfolding consists of two
flipping centered to the base (Figure 7); one is the flip-
ping of the top along the axis (b1, b2) with the trapezoid
a1a2b2b1 as a hinge, and the other one is the flipping of
the band (except the trapezoid a1a2b2b1) along the axis
(bi, bi+1) with the trapezoid aiai+1bi+1bi as a hinge.
Let P ′t = (a′1, a

′
2, . . . , a

′
n) be the flipped top, and Q =

(b′2, . . . , b
′
i−1, bi, bi+1, b

′
i+2 . . . , b

′
n, b
′
1, a
′′
1 , a
′′
n, . . . , a

′′
3 , a
′′
2)

be the flipped band (except the trapezoid b1b2a
′
2a
′
1).

Let Lt and Lb be the line segments that contain b1b2
and bibi+1, respectively.

Now we prove that the Hamiltonian unfolding causes
no overlap. We define the area At by the union of the
rays ` perpendicular to Lt such that the endpoint of ` is
on Lt and ` has a nonempty intersection with the flipped
top (the left gray area in Figure 7). Let t1 and t2 be the
rightmost and the leftmost points on Lt, respectively.
For the Lb and the flipped band, we also define Ab in
a similar way. Let t3 be the point on Lb closest to Lt.
Then, it is easy to see that the flipped top is included
in At and the flipped band is included in Ab.

We will show that Ab is over the line Lt, and hence
At and Ab are separated by Lt. We have two cases. The

first case is that the angle between the vector
−−→
b1b2 and

the vector
−−−→
bibi+1 is less than 180◦. This case is easy; the

point t3 closest to Lt is the intersection of Lb and the
perpendicular to Lb that passes b′1 or b′2. In the worst
case, t3 is at the t1. In this case, At and Ab has an in-
tersection at this point, but this is the only point shared
by At and Ab. Thus we can see that the Hamiltonian
unfolding causes no overlap. Next we assume that the

angle between the vector
−−→
b1b2 and the vector

−−−→
bibi+1 is

greater than 180◦. In the case, we can use the sym-
metric argument at the point bi+1. The worst case is
that bi+1 = bn and t3 is at the t2. Although At and Ab
can have an intersection at this point, the Hamiltonian
unfolding itself causes no overlap. �

3.2 General Prismoid

Theorem 5 The number of Hamiltonian paths in a
prismoid of 2n vertices is n3 + 2n2 for even n, and
n3 + 2n2 − n for odd n.

Proof. Let Pt = (a1, a2, . . . , an) and Pb =
(b1, b2, . . . , bn) be the top and base polygons of the
prismoid, respectively. We assume that ai and bi are
joined by an edge for each 1 ≤ i ≤ n. The key
observation is that, once we add (ai−1, ai, bi, bi+1) or
(ai−1, ai, bi, bi−1) as a subpath of a Hamiltonian path,
the graph is separated into two parts at the edge {ai, bi}.
Thus we have at most one consecutive zig-zag pattern
(ai−1, ai, bi, bi+1, ai+1, ai+2, bi+2, . . .) in a Hamiltonian
path. The remaining part is filled by two paths in two

x y z

x y
bs

ai

bi

ai

bi

(a)

(b)

bs

Figure 8: Two possible types of Hamiltonian paths in a
prismoid

different ways. The possible patterns are depicted in
Figure 8 (the bold arrow indicates the start point of
the zig-zag pattern from the vertex bs). The first one
(Figure 8(a)) divides the remaining part into two parts,
say, left part and right part. Each of them is filled by
a bending path. In the second one (Figure 8(b)), one
of two subpaths spans the vertices in Pt, and the other
subpath spans the vertices in Pb. (Thus the length of
the zig-zag pattern is odd.)

Now we count the number of possible Hamiltonian
paths in the prismoid. We first assume that the unique
zig-zag pattern starts from (bs−1, bs, as, as+1) as in Fig-
ure 8. Then the number of possible combinations of the
first case (Figure 8(a)) is the number of partitions of n
into three parts of size x ≥ 0, y ≥ 0, and z ≥ 0 with
x + y + z = n, which is equal to

(
n+1
2

)
. On the other

hand, the number of possible combinations of the second
case (Figure 8(b)) is the number of partitions of n into
two parts of size x ≥ 0 and (odd) y ≥ 0 with x+ y = n,
which is equal to bn/2c. Thus we have

(
n+1
2

)
+ bn/2c

Hamiltonian paths in the case. We have n ways to
choose bs, and we have the other case that the unique
zig-zag pattern starts from (as−1, as, bs, bs+1). There-
fore, we have 2n(

(
n+1
2

)
+ bn/2c) Hamiltonian paths in

the prismoid. �

Corollary 6 Zipper unfoldability of a prismoid can be
determined in polynomial time.

Proof. We can check each cutting line along a Hamil-
tonian path in the prismoid if it gives us a nonoverlap-
ping unfolding. By theorem 5, the number of Hamil-
tonian paths in the prismoid is O(n3). Thus we can
test all possible Hamiltonian unfoldings in polynomial
time. �
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4 Conclusion

Some simple families of polyhedra that are edge-
unfoldable are presented in [DO07]. Among them,
it is easy to see that pyramids and prisms are also
Hamiltonian-unfoldable, by so-called “band unfolding”.

As we saw, any nested prismoid is Hamiltonian-
unfoldable, and the Hamiltonian unfoldability of a gen-
eral prismoid can be tested in polynomial time. We con-
jecture that all prismoids are Hamiltonian-unfoldable.
It is worth mentioning that Aloupis showed in his the-
sis [Alo05] that the band of any prismoid (without top
and bottom) can be unfolded. On the other hand, some
nested prismoids cause overlap in any band unfolding
[O’R12].

A generalization of prismoids are prismatoids: a pris-
matoid is the convex hull of any two parallel convex
polygons. Theorem 5 cannot be extended to pris-
matoids because some prismatoids have exponentially
many Hamiltonian paths; see Figure 9.

Figure 9: The side profile of a prismatoid that has ex-
ponentially many Hamiltonian paths
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