
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Bounding the Number of Reduced Trees, Cographs,

and Series-Parallel Graphs by Compression

Author(s) Uno, Takeaki; Uehara, Ryuhei; Nakano, Shin-ichi

Citation
Discrete Mathematics, Algorithms and

Applications, 5(2): 1360001-1-1360001-14

Issue Date 2013-06-21

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/11644

Rights

Electronic version of an article published as

Discrete Mathematics, Algorithms and

Applications, 5(2), 2013, 1360001-1-1360001-14.

DOI:10.1142/S179383091360001X. Copyright World

Scientific Publishing Company,

http://dx.doi.org/10.1142/S179383091360001X

Description

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

Discrete Mathematics, Algorithms and Applications
c© World Scientific Publishing Company

Bounding the Number of Reduced Trees, Cographs, and Series-Parallel
Graphs by Compression

Takeaki Uno

National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

uno@nii.jp

Ryuhei Uehara

School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa

923-1292, Japan. uehara@jaist.ac.jp

Shin-ichi Nakano

Department of Computer Science, Faculty of Engineering, Gunma University, Gunma

376-8515, Japan. nakano@cs.gunma-u.ac.jp

Received Day Month Year

Accepted Day Month Year

We give an efficient encoding and decoding scheme for computing a compact representa-

tion of a graph in one of unordered reduced trees, cographs, and series-parallel graphs.

The unordered reduced trees are rooted trees in which (i) the ordering of children of

each vertex does not matter, and (ii) no vertex has exactly one child. This is one of

basic models frequently used in many areas. Our algorithm computes a bit string of

length 2�− 1 for a given unordered reduced tree with � ≥ 1 leaves in O(�) time, whereas

a known folklore algorithm computes a bit string of length 2n − 2 for an ordered tree

with n vertices. Note that in an unordered reduced tree � ≤ n < 2� holds. To the best

of our knowledge this is the first such a compact representation for unordered reduced

trees. From the theoretical point of view, the length of the representation gives us an

upper bound of the number of unordered reduced trees with � leaves. Precisely, the num-

ber of unordered reduced trees with � leaves is at most 22�−2 for � ≥ 1. Moreover, the

encoding and decoding can be done in linear time. Therefore, from the practical point

of view, our representation is also useful to store a lot of unordered reduced trees effi-

ciently. We also apply the scheme for computing a compact representation to cographs

and series-parallel graphs. We show that each of cographs with n vertices has a compact

representation in 2n − 1 bits, and the number of cographs with n vertices is at most

22n−1. The resulting number is close to the number of cographs with n vertices obtained

by the enumeration for small n that approximates Cdn/n3/2, where C = 0.4126 · · · and

d = 3.5608 · · · . Series-parallel graphs are well investigated in the context of the graphs

of bounded treewidth. We give a method to represent a series-parallel graph with m

edges in �2.5285m− 2� bits. Hence the number of series-parallel graphs with m edges

is at most 2�2.5285m−2�. As far as the authors know, this is the first non-trivial result

about the number of series-parallel graphs. The encoding and decoding of the cographs

and series-parallel graphs also can be done in linear time.

Keywords: Cograph; compact representation; counting; encoding/decoding scheme;

1

�������	
��

�

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

2 Takeaki Uno, Ryuhei Uehara, and Shin-ichi Nakano

series-parallel graph; unordered reduce tree.

1. Introduction

Tree is one of basic models frequently used in various areas including searching for
keys, modeling computation, and parsing a program. Since an explicit storage of
a tree of a large size needs huge amount of memory, a compact representation is
desired. A typical example is a trie structure that compresses a given huge word
dictionary by taking the prefixes of words [11, Chapter 6.3]. In the area of data
mining, the other basic models are also used to represent a tons of data having
some specific structure. In this context, there are a lot of papers for encoding trees,
plane graphs, and plane triangulations. For example, see [9,12,7] for trees, [5,10] for
plane graphs, and [1,14] for maximal plane graphs, and referred papers.

In this paper, we first focus on the “unordered reduced” trees, in which the
children of each vertex has no ordering and no vertex has exactly one child. The
unordered reduced tree is one of important models from both theory and practice.
We first give an efficient representation of an unordered reduced tree. The represen-
tation requires 2� − 2 bits to represent a given unordered reduced tree with � ≥ 2
leaves, whereas a known folklore representation uses a bit string of length 2n − 2
which is a representation of an ordered tree with n vertices. Note that � ≤ n < 2�

holds for any unordered reduced tree. Computation of the representation can be
done efficiently; both of encoding and decoding can be done in O(�) time. To the
best of our knowledge this is the first non-trivial compact representation designed
for unordered reduced trees. It is worth mentioning that we do not use the big-O
notation. Hence the length of the representation gives us an upper bound of the
number of unordered reduced trees; the number of unordered reduced trees with
� ≥ 1 leaves is bounded by 22�−2.

We next apply the compact representation of unordered reduced tree to the
other graph classes; cographs and series-parallel graphs.

For the last decades, many graph classes have been introduced [3]. Among them,
cographs form one of basic graph classes. Since they have a simple recursive struc-
ture, the class is a subset of many important graph classes, and hence some in-
tractable problems on general graphs become tractable on cographs. The simple
recursive structure of a cograph can be represented by a canonical unordered re-
duced tree. Hence we can estimate that the number of cographs with n vertices
is at most 22n−1. In the context of the implicit representation of the graph class,
it is mentioned that the number of cographs is 2O(n log n) [13, Section 8.1]. We ex-
ponentially improve this upper bound, and we again mention that we do not use
the big-O notation. According to The On-Line Encyclopedia of Integer Sequences
(http://oeis.org/A000084), the number of cographs with n vertices is estimated
as Cdn/n3/2, where C = 0.4126 · · · and d = 3.5608 · · · . This value is obtained by
the enumeration for small n, and our upper bound is close to this estimation. The
encoding to a bit string from a given cograph and the decoding of the bit string to

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

Bounding the Number of Reduced Trees, Cographs, and Series-Parallel Graphs by Compression 3

the original cograph can be done in linear time.
The other graph class is series-parallel graphs. This is also one of basic graph

classes, and this class is well investigated in the context of the graphs of bounded
treewidth. However, recently, it is revealed that many data obtained from the bioin-
formatics area can be modeled in this graph class. For example, the E.coli metabolic
network has treewidth 3 and more than 90% of pathways of several organisms are
series-parallel graphs [4]. Therefore, the importance of this class increases more and
more. As far as the authors know, there are no known non-trivial results about
the compact representation designed for the class and the number of series-parallel
graphs. We give a method to represent a series-parallel graph with m edges in
�0.528m� bits. Hence the number of series-parallel graphs with m edges is at most
2�0.528m�. The encoding and decoding of the series-parallel graphs also can be done
in linear time.

The rest of the paper is organized as follows. In Section 2, we introduce some
definitions. Section 3 gives the algorithms for an unordered reduced tree. Sections
4 and 5 describe compact representations for cographs and series-parallel graphs,
respectively. Finally Section 6 is a conclusion.

2. Preliminaries

Let G be a graph. The degree of a vertex in G is the number of vertices adjacent
to the vertex. A tree is a connected graph with no cycle. A rooted tree is a tree in
which one vertex r is designated as the root. For each vertex v in a tree, let P (v)
be the unique path from v to the root r. The parent of v �= r is the unique vertex
in P (v) adjacent to v, and the ancestors of v are the vertices in P (v). The parent
of the root r is not defined. The only ancestor of r is r itself. We say u is a child of
v if v is the parent of u, and u is a descendant of v if v is an ancestor of u. Note
that each vertex v is always a descendant and an ancestor of v. The height of a
vertex v is the number of edges on the longest path from v to a descendant of v.
A leaf is a vertex having no child. The height of a leaf is always 0, and the height
of a vertex is always larger than the height of its child. Precisely, the height of a
vertex is the maximum height of its children plus one. A reduced tree is a rooted
tree in which no vertex has exactly one child. In [2] a reduced rooted tree is called
a homeomorphically-irreducible rooted tree. Note that the root of a reduced tree
may have degree two, although no vertex has degree two in a similar graph called
a reduced non-rooted tree, which is a non-rooted tree with no vertex of degree two.
A rooted tree is an ordered tree if the children of each vertex are linearly ordered,
and an unordered tree otherwise.

A full-binary tree is an ordered (rooted) tree in which each vertex has zero or
two children. If vertex v has the ordered children (vL, vR), vL is called the left child
and vR is called the right child of v. A path (v1, v2, · · · , vj) in a full-binary tree,
satisfying that each vi is the left child of vi+1 for i = 1, 2, · · · , j − 1, is called a
left-down path. A left-down path is maximal if it is not a proper subpath of any

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

4 Takeaki Uno, Ryuhei Uehara, and Shin-ichi Nakano

1

2

76 8

3

109 11

5

17
16

4

1312 14 15

1

5

16

1

4

154

14

19

4

13

17

12

1

3

3

10

11

9

2

82

76

18

(b) To

(c) B

4

2

31

1
00

(d)

18

19

1

2

1 1 1 1 1 1 1 1 1

2

2

22 4

5

2

1

1
3

76 8

3

109 11

5

17
16

4

1312 1415

(a) T

18

19

v1

v2

v3

v4

v5

v6

v7

Fig. 1. Outline of the algorithm

other left-down path. A left-down path from a vertex v to its ancestor u is denoted
by the sequence of its vertices starting from v and ending with u.

3. Compact Representation of Unordered Reduced Trees

In this section, we assume that the input is an unordered reduced (rooted) tree T

with � leaves. See an example in Fig. 1(a).
The outline of our algorithm is as follows. We first give a linear ordering of

children of each vertex of T by a simple rule. Now the unordered reduced tree T

is transformed into an “ordered” reduced tree TO (Fig. 1(b)). Then, by replacing
each non-leaf vertex of TO having k > 0 children by a left-down path of length k−1
(Fig. 2), the ordered reduced tree TO is transformed into a full-binary tree B. See
Fig. 1(c). Note that both TO and B still have � leaves. Finally, B is encoded into
a bit string S of length 2� − 1. The encoding of B is done by a depth first tree

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

Bounding the Number of Reduced Trees, Cographs, and Series-Parallel Graphs by Compression 5

traversal, in which each edge is traversed exactly twice in opposite direction. When
an edge is traversed downward, a “0” is appended to bitstring S, and when an edge
is traversed upward, a “1” is appended to S. From the bitstring S one can easily
reconstruct B.

However, to reconstruct TO from B, we need to divide each maximal left-down
path of B into left-down subpaths so that each subpath corresponds to a vertex in
T . Thanks to the linear ordering of children, we can always uniquely divide each
left-down path of B into suitable left-down subpaths. By ignoring the linear ordering
of children, T is derived from TO.

3.1. Encoding an unordered reduced tree

Now we give an encoding algorithm for unordered reduced trees. We begin with a
linear ordering of children, which is the key to our compact representation.

Let T be an unordered reduced tree with � leaves. Let (v1, v2, · · · , vk) be the se-
quence of children of a vertex u. We assume the heights of the vertices are increasing
order in the sequence, i.e., v1 has the smallest height and vk has the largest height
(ties are broken in arbitrary way). The linear ordering of children is the sequence
obtained by removing v2 from the sequence and appending v2 to the last, that is,
(v1, v3, v4, · · · , vk, v2). Note that each non-leaf vertex always has two or more chil-
dren, thereby the sequence above is always defined. The linear orderings define an
ordered reduced tree TO obtained from T . See Fig. 1(b). Intuitively, among the
children of each vertex, the leftmost child has the minimum height, the rightmost
child has the second minimum height, and the rest of children appear between them
with increasing order of heights.

Our idea of a compact representation is to represent TO by a full-binary tree
with the same number of leaves. We replace each non-leaf vertex u of T having
k > 0 children by a left-down path of length k − 1 as shown in Fig. 2. We call the
left-down path the expand path of u, and denote it by L(u). In the replacement, we
keep the linear ordering of the children. When the linear ordering of children of u

is (v1, . . . , vk) and L(u) = (u1, . . . , uk−1), we set v1 to the left child of u1, v2 to the
right child of u1, v3 to the right child of u2, . . ., vi to the right child of ui−1, . . ., and
vk to the right child of uk−1. For a rooted ordered tree T in Fig. 1(a), the resulting
full-binary tree B is drawn in Fig. 1(c). Essentially, our compact representation
is a bit string representing B. The algorithm to compute the representation is as
follows.

Algorithm (T : an unordered reduced tree)
1. compute the height of each vertex in T ;
2. sort the children of each vertex by their heights;
3. compute the linear ordering of the children of each vertex;
4. replace each node having more than two children by the left-down path with
keeping the linear ordering of children;
5. remove all leaves from the resulting tree B;

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

6 Takeaki Uno, Ryuhei Uehara, and Shin-ichi Nakano

(a) (b)

v1
v1 v3

v2v3 v4

u

u

u

v

u

v

v4

v2

1

3

2

Fig. 2. Replace a vertex v by a left-down path

6. output the bit string representing B (by the depth first tree traversal).

The height of each vertex of T can be computed in O(�) time in a bottom up
way. The sorting of the children can be done in O(�) time, by processing all sortings
at once by bucket sort.

We here describe the details of step 6 that encodes the resulting tree B. We
put a label 0 to each leaf and 1 to inner nodes. We then compute the pre-order
of vertices by a depth-first search going left child first, and right child next. The
pre-order is the visiting order by the depth-first search; at the beginning of the
search, the sequence is empty, and when a new vertex is visited by the search, the
vertex is added to the end of the sequence. The bit string is the sequence of vertex
labels ordered by the pre-order. For example, the tree T in Fig. 1(a) is encoded to

S = 111111001001001110010010011110010100101010010010100.

We can see that one can reconstruct B from the bit string S by simulating the
traverse. In the next section, we will show that the expand path of each vertex
can be extracted from the maximal left-down paths thanks to the linear ordering,
therefore the reconstruction of the original unordered reduced tree T from the bit
string S can be done uniquely and efficiently. We have the following theorem.

Theorem 3.1. One can compute in O(�) time a bit string of length 2� − 1 repre-
senting an unordered reduced tree with � leaves.

3.2. Decoding an unordered reduced tree

The full-binary tree B can be obtained from the bit string S. Since T is an unordered
tree, it is enough to show that TO can be reconstructed from B. The purpose of
this section is to establish a way to extract expand paths of all vertices in TO.

We choose a maximal left-down path and extract all the expand paths included
in the path. We start from the rightmost maximal left-down path, and iteratively
process maximal left-down paths from right to left. Therefore, when we process a
left-down path L, the extraction has been done in descendants of the right child u of
any vertex in L. See an example in Fig. 1(d). This implies that we have constructed
all the subtrees of TO rooted at the descendants of u, and hence we can compute

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

Bounding the Number of Reduced Trees, Cographs, and Series-Parallel Graphs by Compression 7

the height of any child x of a vertex vi in the left-down path L. Set h(vi) be the
height of the right child of vi.

The extraction of expand paths is done in a bottom up way. Suppose that
L = (v1, . . . , vk). We first observe that v1 itself corresponds to a leaf of TO, thus
the lowest expand path L(x) starts from v2. We find the other end vj of L(x) by
looking at the heights of right children of v2, . . . , vk one by one, so that cutting L

at the vertex will not result the violation of the linear ordering. In precise, vj is the
vertex in the ancestor of v2 whose right child has the smallest height among the
right children of all ancestors of v2. Then the next lowest expand path starts from
vj+1, and in the same way we can find the other end. In this way, we iteratively
extract the expand paths until we reach to the top of L. The upside end vertex
of an expand path is characterized by the following lemma. This is the key to the
extraction of expand paths.

Lemma 3.2. Suppose that an expand path L(u) in T is (vi, . . . , vj) for some vj.
Then, vj is the uppermost vertex in the maximal left-down path L including L(u)
such that h(vj) ≤ h(vi).

Proof. Let vl is the uppermost vertex in L such that h(vl) ≤ h(vi). We will prove
that vl = vj . Note that vl can be vi, and vj can be vi.

Suppose that vl is a proper descendant of vj , i.e., vl ∈ L(u) and vl �= vj . Then,
u has at least three children, and the heights of children are h0, h(vj), . . . , h(vl),
where h0 is the height of the first child of u. From the definition of vl, h(vl) <

h(vj), however this contradicts to the linear ordering. Therefore, vl is not a proper
descendant of vj .

We next suppose that vl is a proper ancestor of vj , i.e., vl �∈ L(u). Let L(u′) =
(vi′ , ..., vj′) be the expand path of u′ which includes vl. Observe that the height of
the left child w of u′ is no less than the height of u since w is an ancestor of u. This
implies that h(vl) is smaller than the height of w, since the height of u is strictly
larger than h(vi). This contradicts to the linear ordering. From these, we conclude
that vl = vj .

Lemma 3.2 claims that the highest vertex vl in L such that h(vl) ≤ h(vi) is the
other end vertex of L(u). Such a vertex vl can be found by looking the heights of
all vertices in L, thus we obtain the following algorithm to reconstruct T from S.

Algorithm Decode (S: bit string)
1. B := the full-binary tree obtained from S

2. V := ∅
3. for each maximal left-down path L from right to left
4. remove the leaf v from L, and V := V ∪ {v}
5. compute the height of each vertex in L

6. while L is not empty
7. vi := the lowest vertex in L

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

8 Takeaki Uno, Ryuhei Uehara, and Shin-ichi Nakano

8. vl := the highest vertex such that h(vl) ≤ h(vi)
9. remove the subpath from vi to vl, and insert it to V

10. end while
11. end for
12. E := edge set induced by the parent-child relation of expand paths and leaves
in B

A naive implementation makes this algorithm run in O(|S|2) time, where |S| is
the length of the bit string S. We explain how to compute it in O(|S|) time.

Let L = (v1, . . . , vk) be a left-down path and L(u) = (vi, . . . , vl) be an expand
path included in L. We suppose that vi �= vk, otherwise vl = vi. Let vj , j > i be the
lowest vertex satisfying h(vj−1) > h(vj). If there is no such vertex, vj is not defined.
vj′ is the highest vertex satisfying h(vj′) = h(vi). Note that vi can be vj′ , and vj′ is
always defined. The key observation is that in the linear ordering, children on the
middle are sorted in the increasing order of their heights. From the observation, we
have the following lemma.

Lemma 3.3. (1) vl = vj holds if vj is defined and h(vj) < h(vi), and (2) vl = vj′

holds if h(vj) ≥ h(vi) or vj is not defined.

Proof. We first observe that vl never be a proper ancestor of vj from the linear
ordering. Similarly, if vj is defined, no ancestor of vj has a height smaller than
or equal to vi; otherwise the linear ordering contains a decreasing point at the
middle. This together with the definition of vl implies that when vj is defined and
h(vj) < h(vi), we have vl = vj . If vj is defined but h(vj) ≥ h(vi), we have vl = vj′ .
In the case that vj is not defined, heights of the vertices in (vi, vi+1, · · · , vk) are
monotonically non-decreasing, thus the highest vertex having the height no more
than vi is vj′ . This implies vl = vj′ , and we conclude the lemma.

From Lemma 3.3, the task to find an expand path is to find both vj and vj′ .
This can be done in O(j − i) time as follows: If vl = vj , then we never access to
the vertices {vi, . . . , vj}. If vl = vj′ , we set vi to vj′+1, and find vj and vj′ again
to find the next expand path. However, in this case, we know that even for new
vi, the previous vj is still the lowest vertex satisfying h(vj−1) > h(vj). Thus, we
do not need to compute vj again. In summary, each vertex in a maximal left-down
path is accessed twice; once for finding vj and once for finding vj′ . The algorithm
maintains two lists. The first list consists of the vertices vj with h(vj−1) > h(vj)
from descendants, and the second list consists of the vertices of the same height.
Both lists can be maintained in linear time, and they admit us to find vj and vj′ in
O(1) time. Thus, the extraction of expand paths from a maximal left-down path L

can be done in O(|L|) time.
Therefore, any bit string that represents an unordered reduced tree can be de-

coded uniquely. Thus no two different unordered reduced trees are encoded into the
same bit string. Hence we have the following theorems.

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

Bounding the Number of Reduced Trees, Cographs, and Series-Parallel Graphs by Compression 9

Theorem 3.4. For any � ≥ 1, there is a 1-to-1 mapping from the set of unordered
reduced trees of � leaves to the set of bit strings of length at most 2�− 1.

Theorem 3.5. From a bit string of length 2�−1 representing an unordered reduced
tree with � ≥ 1 leaves, the unordered reduced tree can be reconstructed in O(�) time.

Since the first bit of the bit string is always 1 when the original unordered tree
has at least two leaves, we obtain the following theorem.

Theorem 3.6. The number of unordered reduced trees with � ≥ 1 leaves is at most
22�−2.

4. Compact Representation of Cographs

Let G1 = (V1, E1) and G2 = (V2, E2) be two arbitrary disjoint graphs. A graph
G = (V, E) is the parallel composition of G1 and G2 if V = V1∪V2 and E = E1∪E2.
A graph G = (V, E) is the series composition of G1 and G2 if V = V1 ∪ V2 and
E = E1 ∪ E2 ∪ {(x1, x2)|x1 ∈ V1, x2 ∈ V2}. A cograph is a graph composed of one
vertex, or a graph obtained from two cographs by one of these two compositions. It
is well known that a cograph has a canonical tree representation [6,8], in which (1)
each leaf of the tree corresponds to a vertex of the graph, (2) each internal vertex of
the tree has a label corresponding to either a series or parallel composition, and (3)
on every path in the tree, the labels appear alternatively. We note that (1) implies
that the number of leaves of the tree is n for any cograph of n vertices.

Each such canonical tree corresponds to a unique cograph up to isomorphism,
thus no two non-isomorphic cographs are made from the same canonical tree and
vice versa. Fig. 3 shows an example of a cograph and its canonical tree representa-
tion.

In a canonical tree, each non-leaf vertex has at least two children and the or-
dering of them does not matter. That is, the tree structure is an unordered reduced
tree. By (3), an unordered reduced tree corresponds to two cographs; one with the
root label of the series composition, and the other with the root label of the parallel
composition. Hence the number of cographs of n vertices is twice of the number of
unordered reduced trees of n leaves which is equal to 22n−2. Therefore, the following
theorem holds:

Theorem 4.1. The number of cographs with n vertices is at most 22n−1.

It is known that the canonical tree representation of a cograph can be obtained
in O(n+m) time, where n is the number of vertices and m is the number of edges in
the cograph. From the canonical tree representation one can reconstruct the original
cograph in O(n + m) time. We thus have the following theorem.

Theorem 4.2. A canonical bit string of length 2n − 1 for a cograph with n ver-
tices and m edges can be computed in O(n + m) time. From the bit string, the
corresponding cograph can be retrieved in O(n + m) time.

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

10 Takeaki Uno, Ryuhei Uehara, and Shin-ichi Nakano

(a) (b)

a Sb f

P

S

c

ed

P
a

b d

e

fc

Fig. 3. A cograph and its canonical tree representation

a

a

h

d

e

a

h

j

e

d

g f
a

h

j

e

d

g fi

c

b

g f

i

c

b

e d

jh

parallel

series seriesseries

parallel parallel

a

e dah

h j

Fig. 4. A connected series-parallel graph and a way to construct it

5. Compact Representation of Series-Parallel Graphs

Let G = (V, E, s, t) be a multi graph with two designated vertices s and t, called
the terminals. A multi graph is a graph that can contain two or more identical edges
having the same endpoints. A graph G = (V, E, s, t) is the parallel composition
of G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2) if V = V1 ∪ V2, E = E1 ∪ E2,
s = s1 = s2, and t = t1 = t2. A graph G = (V, E, s, t) is the series composition
of G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2) if V = V1 ∪ V2, E = E1 ∪ E2,
s = s1, t1 = s2, and t = t2. The series and the parallel composition can easily be
generalized to more than two graphs.

A graph G = (V,E, s, t) is a series-parallel graph with terminals s and t if it
consists of only one edge {s, t} or it can be obtained by a series composition or a
parallel composition of two or more series-parallel graphs.

It is well known that any series-parallel graph has a tree structure which de-
scribes how the graph is composed [3], and no two non-isomorphic series-parallel

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

Bounding the Number of Reduced Trees, Cographs, and Series-Parallel Graphs by Compression 11

graphs with two terminals are generated from the same tree structure. An example
of a series-parallel graph and its construction tree are shown in Fig. 4. Similar to
cographs, the structure is a reduced tree with alternative labels. The difference is
that the order of children matters for only series composition. Therefore, we have to
give care the ordering of children only for series composition, and we cannot use the
unordered reduced tree directly. We estimate the extra bits required to remember
the ordering of children at each series composition.

We give our linear ordering to parallel compositions in the same way and encode
the obtained full-binary tree B to a bit string. To enable us to extract the expand
paths, we put a length of the lowest expand path to each maximal left-down path,
and the label of the corresponding vertex if necessary. We will show that it is
sufficient to reconstruct the original construction tree T .

Let L = (v1, . . . , vk) be a maximal left-down path, and L(z) = (v2, . . . , vj) be the
lowest expand path in L. Like for reduced trees, we assume that the extraction has
been done in descendants of the right child and the vertices in L. In the following,
we observe that several labels are automatically determined by the structure of B.
Let vi be a non-leaf vertex in L, and x be the vertex such that vi ∈ L(x). Let u

be the right child of vi, and y be the vertex such that u ∈ L(y). We first consider
the case that u is a non-leaf vertex. In this case, the label of x is automatically
determined by the label of y, since they are always different. We next suppose that
u is a leaf and v is not in L(z). From the linear ordering, any child of x cannot be
a leaf if x is a parallel composition. This together with that u is a leaf implies that
x is a series composition.

From the above observation, we can determine the label of x �= z whose expand
path is included in L, by looking at the right children of the vertices in the path.
Thus, we cannot get the label of L(z) only when L(z) is the unique expand path
in L. In this case, we have to memory the label of z by using additional bits. Let
U(L) = (u1, . . . , uk′) be the vertices in L such that their right children are leaves.
We have to distinguish the following (k′ + 1) cases.

1 : u1, u2, . . . , uk′ ∈ L(z) and their labels are “Series”

2 : u1 ∈ L(z) and its label is “Parallel”

3 : u1, u2 ∈ L(z) and their labels are “Parallel”

. . .

k′ : u1, u2, . . . , uk′−1 ∈ L(z) and their labels are “Parallel”

k′ + 1 : u1, u2, . . . , uk′ ∈ L(z) and their labels are “Parallel”

Note that, in the case 2 to k′ + 1, we can determine that all labels of the other
vertices in U(L) are “Series.”

We put the index of the corresponding case to each left-down maximal path, and
this information is sufficient to reconstruct T and know the labels of the vertices.

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

12 Takeaki Uno, Ryuhei Uehara, and Shin-ichi Nakano

The maximum bits to store the information is equal to

log2 max{
∏

S∈P

(|S|+ 1) | P is a partition of {1, . . . , n}}.

By a simple calculation, we can observe that the maximum is attained by the
partition P = {S1, S2, . . . , Sh} such that |S1| = |S2| = · · · = |Sh−1| = 3 and
0 < |Sh| ≤ 3. In the case, the maximum length of the bit string is �(log2 3)n/3� <

0.5284n. We also need 2n− 2 bits to store the full binary tree of size n. Therefore,
we obtain the following theorem:

Theorem 5.1. The number of series-parallel graphs with two terminals and m

edges is at most 2�2.5285m−2�.

It is known that the construction tree of a series-parallel graph can be obtained
in O(m) time, thus encoding can be done in O(m) time. Decoding is also done in
O(m) time. Thus, we have the following theorem.

Theorem 5.2. There is a coding for the class of series-parallel graphs with two
terminals and m edges in at most �2.5285m − 2� bits with encoding and decoding
algorithms running in O(m) time.

6. Conclusion

In this paper, we designed an algorithm to compute a compact representation of
an unordered reduced tree. Our algorithm computes in O(�) time a bit string of
length 2� − 1 for an unordered reduced tree with � leaves, and also reconstructs
in O(�) time the original tree from the bit string. We also showed the number of
cographs of n vertices is at most 22n−1, and the number of series-parallel graphs
with two terminals of m edges is at most 2�2.5285m−2�. According to The On-Line
Encyclopedia of Integer Sequences (http://oeis.org/A000084), the numbers of
cographs of small n = 1, 2, · · · vertices are 1, 2, 4, 10, 24, 66, 180, 522, 1532, · · · , and
it is estimated as Cdn/n3/2, where C = 0.4126 · · · and d = 3.5608 · · · . Hence there
may still exist a chance to improve the representation.

Acknowledgement

Part of this research is supported by the Funding Program for World-Leading In-
novative R&D on Science and Technology, Japan.

References

[1] Aleardi, L.C., Devillers, O., Schaeffer, G.: Succinct Representation of Triangulations
with a Boundary. In: WADS 2005. pp. 134–145. Lecture Notes in Computer Science
Vol. 3608, Springer-Verlag (2005)

[2] Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-Like Structures.
Cambridge University Press (1998)

October 20, 2012 2:27 WSPC/INSTRUCTION FILE numtree

Bounding the Number of Reduced Trees, Cographs, and Series-Parallel Graphs by Compression 13

[3] Brandstädt, A., Le, V., Spinrad, J.: Graph Classes: A Survey. SIAM (1999)
[4] Cheng, Q., Berman, P., Harrison, R., Zelikovsky, A.: Efficient Algorithms of Metabolic

Networks with Bounded Treewidth. In: IEEE International Conference on Data Min-
ing Workshops. pp. 687–694. IEEE (2010), http://www.computer.org/portal/web/
csdl/doi/10.1109/ICDMW.2010.150

[5] Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly Spanning Trees with Applications. SIAM
J. Comput. 34(4), 924–945 (2005)

[6] Corneil, D.G., Perl, Y., Stewart, L.K.: A Linear Recognition Algorithm for Cographs.
SIAM Journal on Computing 14(4), 926–934 (1985)

[7] Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2, 510–534 (2006)

[8] Habib, M., Paul, C.: A simple linear time algorithm for cograph recognition. Discrete
Applied Mathematics 145(2), 183–197 (2005)

[9] Jacobson, G.: Space-efficient Static Trees and Graphs. In: Proc. 30th Symp. on Foun-
dations of Computer Science. pp. 549–554. IEEE (1989)

[10] Keeler, K., Westbrook, J.: Short Encodings of Planar Graphs and Maps. Discrete
Applied Mathematics 58(3), 239–252 (1995)

[11] Knuth, D.: Sorting and Searching, vol. 3 of The Art of Computer Programming.
Addison-Wesley Publishing Company, 2nd edn. (1998)

[12] Munro, J.I., Raman, V.: Succinct Representation of Balanced Parentheses and Static
Trees. SIAM Journal on Computing 31, 762–776 (2001)

[13] Spinrad, J.: Efficient Graph Representations. American Mathematical Society (2003)
[14] Yamanaka, K., Nakano, S.I.: A compact encoding of plane triangulations with efficient

query supports. Inf. Process. Lett. 18-19, 803–809 (2010)

