
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Production of Various Strategies and Position

Control for Monte-Carlo Go - Entertaining human

players

Author(s) Ikeda, Kokolo; Viennot, Simon

Citation
2013 IEEE Conference on Computational

Intelligence in Games (CIG): 1-8

Issue Date 2013-08

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/11646

Rights

This is the author's version of the work.

Copyright (C) 2013 IEEE. 2013 IEEE Conference on

Computational Intelligence in Games (CIG), 2013,

1-8. Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

Production of Various Strategies and Position Control for
Monte-Carlo Go - Entertaining human players

Kokolo Ikeda and Simon Viennot

Abstract—Thanks to the continued development of tree
search algorithms, of more precise evaluation functions, and of
faster hardware, computer Go and computer Shogi have now
reached a level of strength sufficient for most amateur players.
However, the research about entertaining and coaching human
players of board games is still very limited. In this paper, we
try first to define what are the requirements for entertaining
human players in computer board games. Then, we describe
the different approaches that we have experimented in the case
of Monte-Carlo computer Go.

I. INTRODUCTION

In recent years, the strength of computer Go and com-
puter Shogi has increased dramatically, thanks to improve-
ments of the algorithms, for example Monte-Carlo Tree
Search (MCTS) [2] based on a Bradley-Terry model in
computer Go [3], or consultation algorithms in computer
Shogi (Japanese Chess) [4]. In particular, these algorithms
can use more efficiently multi-core processors and clusters
of computers.

The best programs of Shogi have reached professional
level, and the best programs of Go are now only 3 or 4
handicap stones weaker than professionals, which is already
a sufficient strength to play even games against most amateur
players.

For a long time, the most important problem of computer
Shogi or computer Go was to improve the strength. This was
the most straightforward goal of programs playing games,
and it is still an important domain of research in games
like Go where professional strength has not been reached
yet. However, now that the strength of the programs have
surpassed most human players, a new area of research has
appeared where the goal is to entertain and teach human
players, instead of only trying to beat them [1].

In areas not directly related to board games like Go or
Shogi, programs “with natural behavior” or “able to entertain
the player” are a topic of academic research. In particular
publications are found every year in the international con-
ference IEEE-CIG (Computer Intelligence and Games) [8].
For example, in FPS (First Person Shooter) games, “human
naturalness” is the topic of a Turing contest since 2008, and a
cash prize of 7000 dollars was awarded in 2012, for the two
first AIs more human-like than the average human player.
There are also competitions of “human-like AI” for “Super
Mario Bros.” or contests for creating game levels with a
difficulty that will be best enjoyed by human players.

In the case of the game of Go, there are multiple inter-
national tournaments to compete for the strongest program,

Kokolo Ikeda and Simon Viennot are with Japan Advanced Institute of
Science and Technology, email: kokolo@jaist.ac.jp

like the Computer Olympiad, the KGS bot tournament, the
UEC-cup or the TCGA tournament. On the contrary, only a
small number of tournaments have been organized so far to
compete for naturalness of the moves [9] or entertainment
[10]. One of the reason why research has been limited until
now in this area is the difficulty of evaluating the level of
“entertainment” or “teaching” that a program provides to
human players.

In this paper, we list first in section II the requirements of
a program able to entertain human players. Then, we describe
how to implement some of these requirements in the case of
a Monte-Carlo Go program: in section III, we describe a
“gentle play” algorithm able to control the game and keep it
balanced between the two players while avoiding unnatural
moves. We evaluate it with various experiments in section
IV. In section V, we present some simple methods to play
with various strategies, and we evaluate them in section VI
with human players. The results are still partial, but we hope
that it will fuel further research in this direction.

II. REQUIREMENTS FOR PLAYING ENTERTAINING
GAMES

Most of the ideas of this article could be applied to
a general game, but we will restrict our discussion to the
game of Go. It is an ancient board game, where players
alternately put a (black or white) stone on the board, trying
to enclose the widest possible area of the board. It is possible
to capture the opponent stones by encircling them, leading
to interesting local fights, called semeai and life-and-death.
The game is particularly famous in Asia with millions of
players and several professional leagues. Amateur players
are ranked with a system of kyu and dan, with increasing
levels of strength as follows: ... < 10 kyu < ... 1 kyu <
1 dan < ... < 7 dan. Dan players are considered as strong
players.

The game of Go allows players of very different strength
to play games with almost equal chance of winning by the
use of handicap stones. However, even with this handicap,
it is common that the strongest player does not play for
winning, but for teaching and entertaining the weakest player.
This skill is in particular required when playing with chil-
dren, because they need to win a fair number of games to
maintain their motivation towards the game. This skill is
also fairly different from being just strong at the game. For
example, it is frequent that a strong human player is in fact
not very good at playing entertaining games with children.

“Teaching games” usually refer to games played by a
professional against an amateur player, in the purpose of
teaching him the best way to play and improve his strength.
Professionals have different approaches to teaching games,

depending on what they consider as the most important part
of the teaching. For example, some of them emphasize the
“entertaining aspect” so that winning or losing is not the
main goal of a teaching game, while others try to play as
close as possible as usual even in teaching games, because
there is a risk that the teaching game becomes artificial and
loses its value [11].

In this article, we consider mainly players between 10 kyu
and 1 dan level, when they play against a stronger amateur
player or computer program, with handicaps smaller than
what is needed to make the game even (or even no handicap
at all). First, we list what we consider as the program
requirements in order to play such a kind of “teaching” or
“entertaining game”. They are based on our experience and
also on discussions with a large range of players, from novice
to professional players.

A. Rq-A. Acquiring an opponent model

A strong human player is able to tell roughly the strength
of a weaker player with around 20 to 30 moves, including his
ability to read the future moves, his precision, his knowledge
of shape and understanding of the global position. This abil-
ity of strong human players is a kind of “online” information
acquirement about the opponent during the game. It is also
possible to obtain this information offline, from game records
of the player if they are available, or directly from the player,
if he knows his kyu or dan rank. This information about the
player knowledge is important to implement efficiently some
of the other requirements.

A central question in order to play entertaining games is
to identify what aspects of a game are entertaining. There
are in fact a lot of possible players, which different views
on this question:

• Players having fun in winning, or on the contrary
players that want to play good moves, without em-
phasis on the win or loss result

• Players that do not want to play against an opponent
not using his full strength

• Players who like peaceful games without fight, or
players who find such games boring

• Players who prefer fast games, and players who
prefer slow games

• Players who want to play always a particular strat-
egy, and players who want to play a different strategy
each time

• There are also players who prefer watching a game,
or commenting it, instead of playing

As this list shows, there are a lot of different players,
with quite different entertaining needs. Some of them can be
guessed from the player moves during the game, but some
others need the player to explain in some way what he wants.

In this article, we try to address the case of an average
player (without defining it precisely), based on our own
experience of the game. An interesting direction of future
research would be to address the needs of some specific kind
of players.

B. Rq-B. Controlling the game position

For a lot of amateur players, in particular children, win-
ning is the main motivation towards games. A grandmaster of
Shogi said that it is adequate for a professional player to win
2 games and lose 13 ones when playing with children after
a child competition [12]. Since the handicap is usually less
than it should be to compensate the gap of strength between
the professional and the children, it means that professional
players use some kind of “gentle moves” in these teaching
games.

Figure 1 shows some possible evolutions of the winning
ratio in a teaching game, from the stronger player perspec-
tive. If crushing the opponent (a) is not recommended, there
is also no fun in winning if the stronger player offered no
resistance at all (b), or played some clearly bad moves (c)
only to balance the game. The stronger player must control
the position with slightly under-optimal moves (d), play some
risky moves that make the game result unclear, or even take
the lead temporarily but with possibilities of comeback for
the weaker player (e).

Fig. 1. Possible evolutions of the winning ratio in a teaching game.

The most important part is that the weaker player should
not realize that the game is controlled, so that he can think
he won because he played well. The stronger player must
adapt his moves to the level of the weaker player, and for
example win the game (f) if the weaker player made some
obvious mistake.

C. Rq-C. Avoiding unnatural moves

Even when the weaker player know that the stronger
player is not using all his strength, the stronger player should
avoid unnatural moves. If some unnatural moves are played,
the weaker player will not think that he won because he
played well, and there is no more fun to win in that case.

The main problem with the concept of “natural” move is
that it cannot be defined formally in a mathematical meaning,
and it also depends on the player strength. With figure 2, we
try to list the main possible reasons why a move can be
considered “unnatural”.

1) Bad shape move: some bad and good shapes (a
local pattern of stones) exist in the game of Go. For

Fig. 2. Example of a game position to describe the problem of “natural
moves”.

example White A (edge position), B (local shape),
or C (suicide move) are all bad shapes, even for
novice players.

2) Unnatural move order: if we suppose that White 1
and Black 2 have just been played, White D is the
usual continuation. White E is a move of roughly
the same value as white D, but playing white E now
would not look natural to the average player.

3) Clearly under-optimal moves: on figure 2, White
F secures the wide top-left corner, which is much
bigger than moves like White E. Playing White E
only to make the game close can look unnatural to
some players, especially the strongest ones.

4) Too high-level moves: there are also cases where
a good move involves advanced knowledge of the
game, and cannot be understood by weaker players.
On figure 2, after Black G, White H (or maybe
White I) would seem natural to most kyu-level play-
ers, but in fact, it is better to take a step back and
play White J. This is related to the possible follow-
up sequences for black and white and whether they
keep the initiative or not (sente or gote). White J
will possibly even be judged as an intentional bad
move. This problem cannot be solved without an
opponent modeling and an evaluation of the level
needed to understand the possible moves.

D. Rq-D. Using various strategies

When a strong player plays many games with the same
player, using always the same strategies or style of play can
be boring for the other player. To avoid this, in particular in
the case of a computer program, it is effective to change the
opening moves of the game (fuseki), but also to change the
style play, aggressive vs defensive, pessimistic vs optimistic
play for example.

In most commercial programs, it is usually possible to
set the level of strength, but not the style of play. Some
improvements in this area are possible (the possibility of
choosing the style of play exists partially for commercial

products of some games, like Mahjong or card games, but
not so much for the game of Go).

E. Rq-E. Thinking time and resign timing

The naturalness of the play does not concern only the
chosen moves, but also the time used for choosing them
and the resignation timing (when losing). Until recently, the
resignation timing of computer Go programs was frequently
too slow, frustrating the stronger players. This problem has
partially improved due to a better understanding of life-and-
death, semeai, or seki by the Go programs. However, against
intermediate-level players, too early resigns or resigns in a
close game are still a source of frustration, because most
players of this level want to know the final score of a close
game. MCTS based programs are usually set to resign when
the expected winning ratio goes under a given value (for
example 20%), which makes this problem quite frequent.

Lastly, the time used for choosing the move is an im-
portant factor of the fun for the players. Computer programs
often use a fixed amount of time per move, which is boring
when the next move is clearly obvious. And on the contrary,
if the stronger player uses almost no time to play in a difficult
position, it can hurt the feelings of the weaker player, who
feels like he is not a worthy opponent.

Compared to other requirements, we believe that Rq-E
can be implemented more easily, and already is in some
programs. For example, it is possible to use the expected
final score instead of only the winning ratio to decide the
best resignation timing. It is also possible to play quickly
obvious moves by checking the search progress at regular
intervals, and stopping it earlier when some move is clearly
identified as the best for some criteria.

F. Rq-F. Comments about the game

One more important aspect of a game between real
human players is the ability to make comments during or
after the game. Even on the internet, where some players
prefer to avoid talks with other players, comments after the
game are still considered as part of the fun.

For example, a lot of weaker players are eager to hear
comments from stronger players about their play, what was
good or not, what other variations were possible, etc. It seems
achievable to detect the good and bad moves of a player with
a program, but it should be noted that in the case of the game
of Go, one more difficulty comes from the fact that comments
are usually exchanged with a specific vocabulary of shapes
and goals (tsuke, hane, nobi, atari,), instead of only the
coordinates like (7, 4). Using if-then rules is sufficient to
treat some simple cases, but distinction of advanced cases
would probably require some machine learning.

In this article, our main interest is to show that three
of these requirements can be implemented relatively easily
in a computer Go program : controlling the game position
(Rq-B), avoiding unnatural moves (Rq-C) and using various
strategies (Rq-D).

III. POSITION CONTROL IN THE CASE OF
MONTE-CARLO GO

In this section, we focus on the problem of controlling the
game (Rq-B) by keeping the expected winning ratio inside
an ideal interval, while avoiding unnatural moves (Rq-C).

There is a tight relationship between controlling the game
position and avoiding unnatural moves, which justifies to
consider them simultaneously. It would be easy to control
the game if we were allowed to play both very good moves
and very bad moves, but as discussed in (Rq-C), moves like
(c) on Figure 1 should be avoided. What is interesting and
difficult is to control the game without playing obviously bad
or unnatural moves, in the way of (d), (e), (f) on Figure 1.

A. Computer Go

Since the introduction of Monte-Carlo Tree Search
(MCTS) algorithms, and in particular the Upper Confidence
Tree in 2006 [2], computer Go has shown remarkable
progress. The general idea is to evaluate the leaf nodes of
a search tree with random simulations of the game. The
estimated winning ratio of a node (or a move) is the average
percentage of the simulations starting from this node that are
winning.

The main enhancement to MCTS is to perform realistic
simulations of the game instead of random ones. A largely
used model is the Bradley-Terry model [3] that allows the
program to learn the moves of strong players in game
records. The output of this model is the static selection
probability, which reflects the probability that a move will
be played by strong players in a given situation. It is used
to perform realistic simulations, but also to prune the legal
moves of the search tree [3] or to add some bias in the search
[5], [13]. It is computed from a set of features, like “local
patterns of stones”, “the distance to the edge of the board”,
“stones in risk of capture”, etc.

Our implementation of the MCTS algorithm and the
Bradley-Terry model is a program called Nomitan. It reached
a rank of 2 dan on the KGS server, under the account
nomibot, thanks in part to the recent improvements of the
search bias [13]. KGS is an international Go server with
many players from novice to expert level, where programs
are allowed to play games against the human players.

B. A method to control the winning ratio

There are two main possible strategies to play under-
optimal moves against a weaker player, with both advantages
and drawbacks.

• Play always at a weaker level: for example, we can
decrease the tree search time, and always choose the
best move. However, this is possible only if we know
the strength of the target player (Rq-A).

• Play strongly or gently depending on the overall
advantage: for example, if the computer program
has already the advantage on the board, play loosely
and gently, and on the contrary, if the program is
in a losing situation, play as strongly as possible.
The difficulty is that the player will find the game

strange if the computer plays a very bad move after
a sequence of very good ones.

We are interested in the second method, and the goal
of this paper is to design an algorithm that respects Rq-C
1) of avoiding bad shape moves (too low static selection
probability), but also Rq-C 3), of avoiding clearly under-
optimal moves (too low winning ratio compared to the
best move). In other words, when we choose under-optimal
moves, we need to voluntarily select moves with a not-so-
bad shape and a not-so-bad winning ratio. We propose the
following algorithm.

I. Search. First, we search the game tree with the usual
MCTS algorithm existing in the target program. However,
we take care to block the program from searching only a
small set of moves, or to focus on only the best moves. This
is an important characteristic of a program that plays a lot
of gentle under-optimal moves. At the end of the search, we
sort the potential moves in decreasing order of the estimated
winning ratio.

II. Case of a unique possible move. If the difference
between the winning ratio of the best move and the second
best move is greater than a parameter Tuniq (for example
more than a 10% gap), we play the best move in order to
fulfill the Rq-C 3) of avoiding clearly under-optimal moves.

III. Case of low winning ratio. If the winning ratio of the
best move is under a parameter Tmin (for example 30%), we
play the best move. This prevents the program from losing
without any resistance, as required in Rq-B.

IV. Case of intermediate winning ratio. If the winning
ratio of the best move is above Tmin but under Tmax (for
example 45%), we restrict the selection to moves with at least
a Tdif = 5% gap of winning ratio with the best move, and in
these moves, we choose the move with the highest selection
probability for the static evaluation. Since the winning ratio
is in the target “control range”, we choose a not-so-bad move
which seems natural.

V. Case of high winning ratio. If the winning ratio of
the best move is above Tmax, the program is out of the
ideal winning ratio control range. In order to decrease the
advantage as fast as possible, we select the worst move for
the winning ratio, but inside the moves that have a not-so-
bad selection probability for the static evaluation. If such a
move does not exist, we just play the best move. To keep
naturalness while decreasing the winning ratio, we define a
policy where a move needs to have a bigger and bigger static
selection probability (i.e. being more and more natural) if the
winning ratio gap with the best move is bigger. For example:

i. For a winning ratio gap under 3%, the static selec-
tion probability must be over 5%

ii. For a winning ratio gap from 3% to 4%, the static
selection probability must be over 10%

iii. For a winning ratio gap from 4% to 6%, the static
selection probability must be over 20%

iv. For a winning ratio gap from 6% to 8%, the static
selection probability must be over 40%

We give an example in Table 1. Since the difference of
winning ratio between the best move and the second best

TABLE I. EXAMPLE OF SEARCHED MOVES, WINNING RATIO AND
STATIC SELECTION PROBABILITY

Rank Move Winning ratio Selection probability

1 A 54% 0.15

2 B 51% 0.25

3 C 49% 0.15

4 D 48% 0.25

5 E 38% 0.30

move is 3%, if Tuniq = 10% the condition II is not fulfilled.
If we consider Tmax = 60% and Tdif = 5%, condition IV
would be hit, and we would choose the move with the highest
static selection probability inside A, B, C, so B would be
chosen. If we consider Tmax = 45%, condition V is hit, B
fulfills conditions i and ii, D fulfills condition iii, C and E
do not fulfill any condition. So, we would choose the worst
winning ratio between B and D, and D would be chosen.

IV. EVALUATION OF THE POSITION CONTROL

We try now to evaluate the “gentle play algorithm”
presented in section III-B. First, we check that it correctly
limits the strength of the program, and then we check that it
is doing so without playing unnatural moves.

A. Evaluation of the strength control

To evaluate the strength control, we have used 5 different
program settings.

a) default (strong) program
b) program made weaker by using short thinking time

(only 8% of the time of the default settings above)
c) program made weaker by algorithm III-B, mild

effect of gentle play
d) intermediate effect of gentle play
e) strong effect of gentle play.

The parameters are Tuniq = 0.08c, Tdif = 0.03c, Tmin =
0.35, Tmax = 0.55, and conditions V for the winning ratio
gap are respectively 0.03c, 0.04c, 0.06c, 0.08c, with c = 0.8
for mild effect, c = 1.5 for intermediate effect, and c = 2.5
for strong effect.

For each program settings, around 100 games were
played against humans of different strengths on the KGS
server, in board size 13 × 13, with 5s/move (15s/move for
the humans). We present in table II the number of wins and
losses for different ranges of players.

TABLE II. RESULTS OF DIFFERENT PROGRAM SETTINGS AGAINST
HUMAN PLAYERS (NUMBER OF WINS - LOSSES, WINNING RATE)

2 dan and more 1 dan - 2 kyu 3 kyu and less

a 17-5, 77% 33-8, 80% 44-4, 92%

b 4-2, 67% 24-22, 52% 32-3, 91%

c 4-10, 29% 39-36, 52% 55-12, 82%

d 1-18, 3% 17-23, 42% 19-12, 61%

e 0-14, 0% 6-37, 14% 22-39, 36%

When our program plays with its full strength (a), the
winning rate1 is around 77% even against the strongest range

1not to be confused with the winning ratio of Monte-Carlo algorithms

of players (more than 2 dan). Some games are lost to weaker
players, revealing the weakness of our program in some
particular life-and-death cases, and also caused by some
inaccuracy in KGS player rankings. Next, it is important to
note that even if we reduce a lot the search time (b), the
winning rate against players weaker than 3 kyu is unchanged.
Decreasing even more the thinking time is not reasonable,
because it would cause a very shallow reading and some
obvious local mistakes would be done.

When we use the proposed method of gentle play with a
mild effect (c), our program is able to lose a fair amount of
games against 2 dan or stronger players, but it is still winning
most games against 3 kyu and less players. The winning rate
against this weakest range of players decrease clearly when
we make the effect intermediate, reaching even only 36%
when the effect is strong. If we know in advance the level
of the opponent (as described in Rq-A), it is possible to set
the ideal level of gentle play, according to the bold cells of
the table. Unfortunately, on the KGS server, the rank of the
human opponents is not transmitted to the programs.

B. Example of game without unnatural moves

Fig. 3. Black 8k player vs our program playing gently.

Figure 3 shows a game where an 8 kyu player (black)
was able to win by 6.5 points against our program playing
gently. A lot of under-optimal moves can be found like white
54, but thanks to the proposed “gentle play” method, white
played no fatal mistake and no clearly bad moves. In the next
section IV-C, we check more thoroughly with questionnaires
if the moves seem natural to the average human player.

C. Evaluation of the naturalness of the moves

First, we have prepared an old and weak version of our
program, which will be used as a weak opponent reference.
Against the current version of our program playing with its
full strength, the winning rate is only 5%. Then we have
played n games (limited to 60 moves) between this old weak
version and the current version playing the “gentle moves”
proposed in section III-B, obtaining a set A of game records.
We have also prepared a second set B of game records
played between the old weak version and a “naive gentle

move” version less sophisticated than the proposed method,
in particular the static selection probability is not taken into
account.

The human subjects were given one game record from
the set A and one from the set B and had 15 minutes to
review them freely. They were told in advance that Black is
a “weak player” and White a “strong player playing gentle
moves”, but not that different algorithms were used for the
White player of the two games. Then, they were asked to list
the white moves that look unnatural in each game record.

Fig. 4. Comparison of the number of unnatural moves between the proposed
method and a simple method.

Figure 4 shows the result of an experiment with 5 strong
players (3 kyu to 4 dan), and 5 novice to intermediate
players (15 kyu to 7 kyu). Despite the fact that naturalness
is something difficult to define and different for each player,
all players felt that the program using the proposed method
played less unnatural moves. The average value is 1.9 un-
natural moves for the proposed method, less than half of the
5.2 average for a naive method.

With the results of Table II, we can conclude that the
position control method of section III-B allows the program
to limit its strength and lose against weaker players, without
playing too much unnatural moves.

V. PLAYING VARIOUS STRATEGIES IN THE CASE OF
MONTE-CARLO GO

In order to force a program to play with a given strategy,
we can learn this strategy from game records, or add some
specific features to the program, like it was proposed for
the game of Shogi [6]. In this section, we present first two
methods that are easy to implement in any Monte-Carlo Go
program, one to enhance artificially the importance of the
center of the board or of the corners, and one to create an
optimistic or pessimistic behavior. Then, we present a third
method to play preferentially moves close or far from the
opponent last move, but this more sophisticated method can
be implemented only in a program already using some kind
of static evaluation function.

A. Territorial versus Influence Play

When we count the points of each player after the
simulation has reached the final position, it is of course

usual to count 1 point for each open intersection controlled
by a given player. But it is very simple to change this rule
and add some weight, for example count an intersection in
the corner 1.5 point, and an intersection in the center 0.5
point. By doing this, it is possible that what should have
been counted as a loss will in fact be counted as a win, for
example if a lot of points where taken in the corners. One
could think that such a tweak of what is counted as a win
or a loss would completely disturb the search algorithm, but
in fact the result is that the program simply starts to play
a territory-oriented strategy (taking corner territory) or an
influence-oriented strategy (taking the center). The details of
the method are given below.

I. Set the parameter α that indicates the relative im-
portance of the center, and the parameter nmax that
limits the influence when the game advances.

II. At the position of move n (n < nmax), use the
following weights when counting the territory result
of a simulation:

i. 1−α · (1− n
nmax

) from the first line to the
third line of the board (usually considered
the main place for territory in the game of
Go)

ii. 1 for the fourth line
iii. 1+α · (1− n

nmax
) for lines above the fifth

one (territory in the center).

Fig. 5. Example of real game between territorial settings (white) vs
influence settings (black).

The first line is the line at the edge of the board, and
the second line the line next to it inside the board, etc. In
the real game shown in Figure 5, Black uses α = +0.2
(center-oriented), white uses α = −0.2 (territory-oriented),
and nmax = 80. We can see clearly that black prefers the
center area while white prefers the corners and the edges.

Against the open-source Fuego program (version 1.1),
the winning rate of our program is around 56% with the
usual settings, 58% when using territory-oriented settings,
and 46% with center-oriented settings. It shows that any of
these settings is sufficiently strong for playing gently against
intermediate level human players. A possible explanation
for the increase of the winning rate with territory-oriented

settings is that the parameters of the Bradley-Terry model
used in our program are learned in size 19 × 19, leading
to an overestimated importance of the center in the smaller
size 13×13. In fact, we are now considering using territory-
oriented settings as our new default configuration in size
13× 13 (for tournaments).

B. Pessimistic versus optimistic

A lot of human players, whether amateur or professional,
have a tendency to be either optimistic or pessimistic. Pes-
simistic players tend to think that they are losing, even if
they are in fact winning, leading sometimes to useless and
disastrous invasions to reverse the game. On the contrary,
optimistic players tend to believe they are winning, even if
they are in fact losing, leading to actions delayed too much,
and good chances taken first by the opponent.

One way to reproduce these personality trends in a
program is to artificially add (or remove) a virtual komi when
counting the final territories. This is similar to the concept of
Dynamic Komi that is used for example in Pachi open-source
program [7] when the winning ratio of the simulations is too
high or too low. The details of the method are given below.

I. Set the optimistic parameter β, and the parameter
nmax that limits the influence when the game
advances.

II. At the position of move n (n < nmax), add to the
program side β · (1 − n

nmax
) points after adding

the komi when counting the territory result of a
simulation.

Fig. 6. Example of real game between optimistic settings (black) vs
pessimistic settings (white).

Figure 6 shows a real game where Black uses β = +10
(optimistic settings), white uses β = −10 (pessimistic
settings), and nmax = 80. White 10, 24, 32, 34 are “pushing
forward moves” often seen with the pessimistic settings, and
Black 19, 29, 35 are somewhat “slack moves” often seen
with the optimistic settings. Against Fuego, the optimistic
settings achieve 59% winning rate, pessimistic settings 53%,
which are not particularly weaker than the default settings
(56%). One possible reason why optimistic settings are better

is because life-and-death is a weak point of our program, so
it is better to be optimistic and avoid starting local fights.

C. Far from the last move versus near to the last move

As we described in section III.A, a lot of programs,
including our program, use the distance to the last move
as a feature [3], [5].

The result of the machine learning is that a smaller
distance to the last move is better, which gives a bigger static
value to moves near the last played move. When this static
value is used in Progressive Widening [3] or as a bonus in the
UCB formula [5], moves around the last move are searched
and selected more.

Interestingly, professional players have different prefer-
ences in relation to the distance to the last played move. For
example, compared to the classical Japanese style, there is a
tendency to play far from the last move in the Chinese and
Korean style, with the effect of creating more simultaneous
fights.

From this, we can expect that this tendency to play around
the last opponent move can be used as a feature to create
relatively easily different styles of play. In order to keep the
implementation simple, we have not tried to modify directly
the machine learning algorithms or the existing features of
our program. Instead, we have introduced heuristics like “en-
hance close moves” or “enhance far moves” as a correction
of the learned coefficients.

If we define:

• f(s, a) the value of the evaluation function for a
board state s, and a legal move a

• last(s) the last move played in the board state s

• dist(a1, a2) the distance between moves a1 and a2
[3]. dist(a1, a2) = |a1,x − a2,x| + |a1,y − a2,y| +
max(|a1,x − a2,x|, |a1,y − a2,y|)

• κ the correction parameter

Then, we write the corrected evaluation function as:

fκ(s, a) = f(s, a) · (dist(a, last(s)))κ (1)

When κ is positive, the corrected evaluation is bigger for
bigger values of dist(a, last(s)) which means that moves far
from the last move will be selected more. On the contrary,
when κ is negative, the search will give (relative) priority to
moves close to the last move.

In some preliminary experiments, the use of κ in all the
nodes of the search tree caused a big loss of strength in
the program, in particular positive values (where the search
around the opponent last move is limited). To keep the
program reasonably strong, we have limited the use of the
corrected evaluation function to the root node.

Figure 7 is a self-play game where both players use κ =
+3. We can see that the players have a tendency to play
independently of each other, all around the board. With κ =
+3, the winning rate is 39% against Fuego. Our program
is a bit weaker with this corrected evaluation function, but
still sufficiently strong for the goal of playing against weaker
players with various strategies.

Fig. 7. Example of real self-play game with κ = +3.

VI. EVALUATION OF THE STYLES OF PLAY

We have performed the following experiment to check if
human players are able to distinguish the difference of styles.

First, we have created a set of game records in size 13×
13, by playing games until 60 moves (3s/move on a fast
machine, which implies that the program is of strong amateur
level), with:

(a) α > 0 vs α < 0
(b) β > 0 vs β < 0
(c) κ > 0 vs κ < 0
(d) default vs default

A positive value of the parameters α, β or κ activates one
of the styles of play described in section V, and a negative
value activates the corresponding opposite style.

The human subjects were given one game from each set
(a) to (d), and 30 minutes to review them freely. They were
told in advance that Black and White use exactly the same
strategy, or opposite ones, depending on the game. They were
not told what are the possible strategies or how many games
use opposite ones. Then, they were asked to tell which games
were played with opposite strategies, and in that case, to
describe what is this difference.

With the same subjects as the experiment of IV-C, we
obtained the following results:

• All subject players found that (a) was played with
opposite styles of play. Moreover, 8 of the 10 sub-
jects found correctly that the difference was related
to “territorial vs influence”.

• Only 4 of the 10 subjects (3 of the 5 strongest
players, and 1 of 5 weakest players) felt the dif-
ference of (b). Since Optimistic vs Pessimistic is
an abstract concept, the influence on the game is
probably difficult to feel for less advanced players.

• 6 of the 10 subjects felt correctly the difference of
style in (c). Some players explained later that they
did not expect such kind of style difference. The

result will probably be better if players knew in
advance what styles are possible.

• 7 players answered correctly that (d) is played with
the same style, but 3 players incorrectly answered
that they felt a difference “aggressive vs protective”.
In fact, such a difference can appear naturally in a
given game, depending on the game development.

We can conclude that it is possible to force a program to
use the proposed style of plays (a) and (c) in a way clearly
felt by human players, with only a small loss of strength.

VII. CONCLUSION

In this article, we have first listed the different require-
ments for a program that would entertain human Go players.
Then, we have described concrete approaches for three of
these requirements, first how to play natural moves while
controlling the expected winning ratio of the game, and then
how to play with various strategies.

The “gentle play” method described in this paper dis-
played promising results on the KGS server against human
players. In particular, it seemed more adequate than simply
decreasing the thinking time, in order to limit the strength of
the program. Questionnaires with subjects also showed that
this method correctly avoids playing unnatural moves.

An interesting complement to this research could be an
experiment to evaluate if human players find the combination
of “gentle play” and various strategies more entertaining than
a program that takes only the strength into account.

REFERENCES

[1] Hiroyuki Iida and K Handa, “Tutoring Strategies in Game-Tree
Search”, ICGA Journal, pp. 191-204, (1995)

[2] Levente Kocsis, Csaba Szepesvari, “Bandit based Monte-Carlo Plan-
ning”, 17th European conference on Machine Learning (2006)

[3] Remi Coulom, “Computing Elo Ratings of Move Patterns in the Game
of Go”, ICGA Workshop, (2007)

[4] Takuya Obata, Takuya Sugiyama, Kunihito Hoki, Takeshi Ito, “Consul-
tation Algorithm for Computer Shogi: Move Decisions by Majority”,
Computers and Games, (2010)

[5] Shih Chieh Huang, “New Heuristics for Monte Carlo Tree Search
applied to the Game of Go”, Ph.D. Thesis, National Taiwan Normal
University (2011)

[6] Ryuji Takise and Tetsuro Tanaka, “Development of entering-king
oriented shogi programs”, 16th Game Programming Workshop, pp.
25-31 (2011)

[7] Petr Baudis, “Balancing MCTS by Dynamically Adjusting the Komi
Value”, ICGA Journal, 2011

[8] IEEE-CIG competitions, http://geneura.ugr.es/cig2012/competitions.html
[9] Jaist Cup 2011, 9 × 9 Turing-test competition,

http://www.jaist.ac.jp/jaistcup2011/index-e.htm
[10] Jaist Cup 2012, 9 × 9 Entertainment Go Contest,

http://www.jaist.ac.jp/jaistcup/2012/jc/eng/13roalg-eng.html
[11] Hirofumi Ohashi, professional Go player, personal communication

(2012)
[12] Kunio Yonenaga, professional Shogi player, personal communication

(2012)
[13] Kokolo Ikeda, Simon Viennot, “Efficiency of Static Knowledge Bias

in Monte-Carlo Tree Search”, Computer and Games (2013), to be
published

