
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Parallel TRAMのごみ集めの並列化に関する研究

Author(s) 斉藤, 嗣治

Citation

Issue Date 1998-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1170

Rights

Description Supervisor:二木 厚吉, 情報科学研究科, 修士



A Study on Parallel Garbage Collection for

Parallel TRAM

Tsuguharu Saitou

School of Information Science,

Japan Advanced Institute of Science and Technology

February 13, 1998

Keywords: parallel term rewriting, abstract machines, TRAM, multiprocessors,

concurrent garbage collection.

1 Introduction

Algebraic speci�cation languages such as CafeOBJ have been widely attracting atten-

tion since they have clear semantics and the ability to write down lucid, non-ambiguous,

and non-inconsistent speci�cations of software systems. Many algebraic speci�cation lan-

guages use (order-sorted conditional) term rewriting systems as a general computational

model. This makes it possible to verify and prove various properties of algebraic speci�-

cations, and to execute the speci�cations as programs by using rewrite engines. For im-

plementing the rewrite engines e�ciently on conventional computers, abstract machines

for term rewriting systems are designed. TRAM is one of these abstract machines.

On the other hand, with the rapid and steady advance of hardware technology, small-

sized and low-priced multiprocessor computers have been developed. These machines

are the next generation of uniprocessor workstations and personal computers and will

undoubtedly become standard for the future computers.

Judging from these facts, it would be very important to develop a method of imple-

menting rewrite engines e�ciently on multiprocessors. The �rst version of Parallel TRAM

used a globally synchronizing garbage collector that collected garbage after the collector

forced all running processes to be suspended. The collector was one of the main source of

the overhead in the �rst version. Therefore, we have designed a parallel garbage collector

that could collect garbage independent of other running processes in order to decrease the

overhead, and also have incorporated it into Parallel TRAM.

Copyright c
 1998 by Tsuguharu Saitou

1



2 TRAM and Parallel TRAM

TRAM is an abstract machine for order-sorted conditional term rewriting systems. This

can be used as an intermediate level or a target machine for complication in the area of

algebraic speci�cation languages. TRAM can be easily parallelized thanks to its architec-

ture. The parallel variant of TRAM is called Parallel TRAM. Both of them have similar

structure. However, the interpreters for abstract instructions and the mutable memory

spaces whose contents may be changed during rewritings are replicated and given to each

processor.

TRAM consists of seven regions and three processing units. The seven regions are

DNET, CR, CODE, SL, STACK, VAR and CANDS. The three processing units are the

rule compiler,the term compiler and TRAM interpreter.

DNET is the region for a discrimination net encoded from LHSs of a rewrite program.

CR is the region for compiled RHSs of a rewrite program. Matching Programs compiled

from subject terms are allocated on the region CODE. SL is the region for a strategy

list representing a reduction strategy. STACK is the working place for pattern matching.

VAR contains variable bindings for pattern matching. CANDS keeps the rule candidates.

In Parallel TRAM, the rules and the terms are compiled by the main processor se-

quentially.

Parallel TRAM has the four additional abstract instructions for rewriting terms in

parallel. The labels at which the instructions are stored are put in the strategy list

appropriately.

FORK : This instruction creates a new process for reducing a term independently and

allocates it on an idle processor and some care for exterior reference table. If there

are no such idle processors at the moment, this instruction is ignored and the pro-

cessor calling this instruction executes the new process by itself.

WAIT : This instruction is used to synchronize a processor with its child processes.

The processors calling this instruction suspend their executions until all of their

child processes (that are allocated on the other processors by FORK) are �nished.

During they suspend, their states are changed into idle and they may execute some

reductions from the other processors.

EXIT : This instruction tells the parent processor that the reduction allocated by FORK

is �nished. This instruction is put in the strategy list of a child process. If the parent

process waits for only one child process to �nish rewriting a term, the instruction

awakes the parent process, and otherwise the instruction decreases a value indicating

how many child processes the parent process waits for.

SLEEP : This instruction is called when a processor �nishes all of its allocated reductions

and changes its state into idle. This instruction makes in the initialize period.

2



3 Garbage Collection

Most of recent programming languages provide dynamic memory allocation. Parallel

TRAM is one of them. And dynamically allocated storage may become unreachable. Cells

that are not live, but are not free either, are called garbage. And, collecting this garbage

is called Garbage Collection. Dynamic storage allocation raises the issue of dynamic

storage management. The way of dynamic storage management can be divided into two

categories: explicit storage management; and automatic storage management. In the

former case, since the programmer must decide when to deallocate objects, deallocation

of object is complex and error-prone. While in the latter case, objects that are no longer

needed are automatically deallocated by language run-time environment. This type of

deallocation is called garbage collection. It releases the programmer from complex storage

management, and helps to make programs shorter and easier to maintain, because they

don't have to include part of storage management.

4 Concurrent Garbage Collection in Parallel TRAM

In TRAM, CODE is the garbage-collected region. TRAM uses a copying garbage collector

because

� TRAM allocates a lot of objects on CODE for a short period of time and most of

them become garbage quickly, and

� the size of each object is not constant.

So we have chosen the copying garbage collector as the basic algorithm of the parallel

garbage collector for Parallel TRAM.

Dijkstra's on the 
y garbage collection is typical of concurrent garbage collection.

But this algorithm is based on mark and sweep method. So this method is not suited

to Parallel TRAM. Baker's incremental garbage collector seems to be suited to Parallel

TRAM because the collector is based on the copying garbage collection. The collector is

suited to real time systems because each pause time for collecting garbage is very short.

However, the collector does not improve the overall performance of systems.

Then, we have adopted a similar algorithm of parallel garbage collectors used for

distributed systems. In this algorithm, each processor usually does a usual work as a

mutator. If it is time to collect garbage on its own region, the process collects garbage

as a collector mostly independent of the other processors and basically does not force the

other processors to be suspended. Only if a processor tries to access an object on the

region of another processor collecting garbage, the processor has to be suspended.

To manage such inter-processor references, we use the exterior reference table in which

inter-processor references are recorded. Before a processor starts to collect garbage on its

own region, it �rst locks all the entries in the exterior reference table that hold references

to the region from the other processors. A processor can access to the other region only

via the exterior reference table. Just after a processor locks all the entries in the exterior

3



reference table, it cannot start to collect garbage because the other processors might be

accessing to the region. So it waits for the other running processors to each rewrite terms

in one step.

5 Conclusion

We have designed a parallel garbage collector for Parallel TRAM and have incorporated

it into Parallel TRAM on the multiprocessor workstation Ultra Enterprise 4000 system

carrying six Ultra SPARC processors in C programming language. We have also evalu-

ated the parallel garbage collector by executing some benchmarks on the Parallel TRAM

system. The parallel garbage collector was found to make Parallel TRAM 1.2 times faster

than the �rst version adopting a globally synchronizing garbage collector.

4


