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Chapter 1

Introduction

Modal logics based on classical logic Cl have been investigated well. Classical logics are
too strong from the computer scientific or constructive mathematical point of view. So
we want to weaken logics. But the negation of classical logics is stronger than that of in-
tuitionistic logics. Hence, in classical logics Op < —<O=p holds, but in intuitionistic logics
Op < —=<C=p and Op < —O-p do not generally hold. This provides more possibilities
for defining intuitionistic modal logics. We will consider intuitionistic modal logics to be
independent O and <.

Let Loo be the language of propositional modal logic with countably many proposi-
tional variables, p,q,r,... and the connectives A,V,—, 1L 0,<. Let Form(Lae) be the
set of all formulas of £o¢. The formula —« is defined as « — L and T as L — L.

How to define an intuitionistic modal analogue of classical normal modal logic K ?
Much work has been done in the field.

By the study of correspondence to the bi-modal logic with two box operators, Fischer
Servi [8][9] constructed a logic FS by imposing a weak connection between O and <
operators. F'S is the least set of formulas of Lo, which contains axioms (1)—(6) and is
closed under the rules of inference (a)—(c)

(1) Int
(2) O(p — Ogq) — (Bp — Oq)
(3) ©(pVg) = (OpV Oq)
(4) -OL
(5) O(p—q) = (Bp— Oq)
(6) (Op—0qg) — O(p— q)
(a)
()
()

modus ponens £ e (MP)

a F 3

b) substitution (Sub)

Cc

tea (RN)



Various extension of FS were studied by Bull [5], Ono [11], Fischer Servi [7][8][9],
Wolter and Zakharyaschev [21], Wolter[18].
The well-known MIPC is introduced by Prior [13]. MIPC is obtained by adding to
F'S the axioms
Up — p, Op — OUp, Op — OOp,
p— Op, OOp — Op, ©Up — Up.
From the relation to intuitionistic predicate logics, Bull [5], Ono [11],0no and Suzuki [12],
Suzuki [16] and Bezhanishvili [1] investigate MIPC.
Wolter and Zakharyaschev introduced the weakest intuitionistic modal logic IntKp. .

IntKn. is the least set of formulas of Lo which contains axioms (1)—(3) and is closed
under the rules of inference (a)—(c).

(1) the intuitionistic logic Int,
(20) (BpADOg) —O(pAg)and  (20) O(pVe)— (OpV Cg),

(31]) aoT and (30) _|<>L,
(¢) modus ponens %(MP),

(b) substitution (Sub),

FE;:Dﬁﬁ (RRo) and l—gsjgﬁ (RRo).

Our goal is that by extending from the weakest logic IntKp., we investigate what
properties each logic has, and determine which logic is the best in some sense.

In relation to IntKge, we note some remarks. It is easily seen that the converses
O(p A q) — (Op AOg) and (Op V Oq) — O(p V q) of (2) are derivable in IntKp..

We can take alternative definitions. For example, Axiom (Op A Og) — O(p A q) is
equivalent to the formula O(p — ¢) — (Op — Og). The rule of inference (RRp) is
equivalent to the rule of inference =2 (RIN) under the formula O(p — ¢) — (Op — Og).

But operator < is deferent. Axiom O(pV g) — (Op V <Og) is not equivalent to the
formula O(p — ¢) — (Op — <©q). The rule of inference (RR.) is not equivalent to the
rule of inference % even under the formula O(p — ¢) — (Op — Oq).

A set L of formulas of Lo is said an intuitionistic modal logic if L contains IntKae
and is closed under the rules of inference (a)—(c). We denote by NExtIntKq. the set of
all normal intuitionistic modal logics. Moreover, for a intuitionistic modal logic L, We
denote by NExtL the set of all normal intuitionistic modal logics containing L.



Let L; be any logics or sets of formulas. We denote by @ L; the smallest logic which
iel
contains all of L,’s.
Then, it is easy to see that (NExtIntKno, @, N) forms a complete lattice.

In Chapter 4, we will investigate the property of (NExtIntKqo, 4, N) further.
Acknowledgements
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Chapter 2

Preliminaries

In this chapter we study two type semantics of intuitionistic modal logics, which has been
investigated [21][15].

2.1 Algebraic semantics

First we well introduce algebraic semantics for intuitionistic modal logics. By translating
the language of logic into that of algebra, we will get algebraic semantics which will be
an adequate semantics for these logics.

Definition 2.1 ([21]) An algebra A = (A,0,<) is called a OO -modal Heyting algebra
if the following conditions are satisfied.

(1) A is a Heyting algebra,

(2) O(aAb)=0aA0band O(aVbd) =CaV Ob,

(3) OT =T and <OL = 1.
By mpo HA |, we denote the variety of all OO -modal Heyting algebras.
Notice that from (ii) O and < are monotone operators, i.e.

(1) a<b=0Oa < 0b,

(2) a<b=Ca<Oh.

Definition 2.2 ([21])

(1) A valuation v on a modal Heyting algebra A is a function : Form(Lge) — A which
satisfies the following conditions;

(1) v(L) =1,
(1) v(a A B) = v(a) Av(B),



(2) For any o € Form(Lns), any A € moocHA and any valuation v on A,
a is true in A under v (in symbol, (A,v) = a) if v(a)=T .

(3) For any o € Form(Lpo) and any A € mpoHA |
a is valid in A (in symbol, A = o ) ifv(a) = T for any valuation v on A .

(4) For any o € Form(Las) and any class K C mpo HA
a is valid in K (in symbol, K |= o) if A |=« for any A in K.

Note that the values of a given valuation v is uniquely determined only by its values
of propositional variables.
When A is a Boolean algebra, by taking & = —0-, A is a (classical) modal algebra.

Proposition 2.3

(1) Let A be a OO-modal Heyting algebra. The set of formulas which are valid in A is
an intuitionistic modal logic.

(2) Let K be a class of OO-modal Heyting algebras. The set of formulas which are valid
in all algebras in K is an intuitionistic modal logic.

So these logics are called the logic characterized by A and the logic characterized by
K and denoted by L(A) and L(K), respectively.

Proof. Since L(K) = () L(A) , it’s enough to show (1). Let v be any valuation on
Ack
A. »((Op ABg) — B(p A g)) = (Bu(p) A Bu(q)) — O(v(p) Av(g)) = T.
Next, suppose v(a« — () = T. Then since v(a) < v(8),by monotonicity Ov(a) <
Ov(5).Therefore v(Oa — OF) = T. The other axioms and rules can be proved in the
same way. '

Let K be a class of OC-modal Heyting algebra. Then, H(K), S(K) and P(K) denote
the class of all homomorphic images of algebras from X, the class of all subalgebras of
algebras from K and the class of all direct products of algebras from K, respectively.

When H(K) = S(K) = P(K) = K holds, K is said to be a variety . Tt is well-
known that K is a variety iff HSP(K) = K, because SH(K) ¢ HS(K),PH(K) C
HP(K),PS(K) C SP(K)[17].

We denote by A(mgoHA ) the set of all subvarieties of mgo HA .

Proposition 2.4 The set (A(maoHA ),V,A\) forms a complete lattice, where Ki V Ky
18 HSP(]Cl U ’Cz) and ICl A ]Cz 18 ]Cl N ]Cz.



Proof. Tt is easy to see that (A(maoHA ), V,A) is closed with respect to infinite inter-

sections and HSP(U K;) is the least variety containing all C;’s. I
iel

The following proposition holds, like the case of (classical) modal algebra.
Proposition 2.5 Suppose that A and B are OO -modal Heyting algebras.
(1) If B is a homomorphic image of A, then L(A) C L(B).
(2) If B is a subalgebra of A, then L(A) C L(B).
(3) If A 1s a direct product of {A;}ier , then L(A) = () L(A;).

iel
Proof. (1). Let f be the homomorphism of A onto B. There exists a map g of B
to A such that f o g =1idpg. For each valuation v on B, define the valuation v 4 on A
by g o v(p) for each propositional variable p. Then we have f(v4(a)) = v(a) for every
formula . So, if v4 = T then v(a) = T. Thus, we have (1).
(2). If B is a subalgebra of A, any valuation on B is also a valuation on A.
(3). Let v be a valuation on A. Since the projection 7; is a homomorphism of A onto

A;, m; ovis a valuation on A;. Moreover, the valuation v can be represented (7; 0 v);c;.

Thus, we have L(A) D () L(A;). The Converse direction follows from (1). 1
el

Corollary 2.6 For a given L € NExtIntKgo, let K(L) be {A € mpocHA ;A |= L}.
Then, K(L) is a variety.
Our algebraic semantics is adequate, since the following theorem holds.

Theorem 2.7 (Completeness) For any L € NExtIntKqo, L a iff K(L) = a.

It is clear that L - o implies K(L) |= . To prove the converse, we define the algebra
A called the Lindenbaum algebra of a logic L € NExtIntKqn.. First given a logic L,
define a congruence relation ~; on formulas by taking

a~pfiff LE(a— [)A(a—f)

Then the Lindenbaum algebra A, = (Form(Las)/~,,A,V,—,L,0,O) is constructed by
taking

Form(Las)/~, = {|la|r; a aformula },
lalp ABlL = |aABL,
lalp VBl = |aV P,
lalp = |8l = | — f1,
1 = |1z
Ola|, = |Oa|g,
Olaly = [Calr.

7



The fact that Ay is indeed a modal Heyting algebra is easily shown by using the axioms
and rules of IntKpo. Also, T of Ay consists of all provable formulas. Now, define a
valuation vy by

vp(a) = |a|g, for each formula a.

Then we have
vp(a) =T iff a€ L.

Furthermore, for each valuation v on Aj, v(«) is |G|, for some substitution instance [
of a. So, in particular if &« € L then vp(a) = |G| = T. Thus, A validates L. Now
suppose that L I/ a. Then vp(a) # T and A € K(L). Thus, K(L) [~ o The proof of

completeness theorem is completed.

Proposition 2.8
(1) For any L € NExtIntKn,, L(K(L)) = L.
(2) For any K € A(mnooHA ), K(L(K)) =K.
(3) For any L1, Ly € A(IntKno), L1 C Ly iff K(Lz2) C K(Lq)

Proof. (1). This is the completeness theorem itself.

(2). By Birkhoff’s theorem [3], any variety K is of the form KC(L) for some logic L, so
that
KAL) = K(LUC(L)) = K(L) = K.

(3). By the definition, both K(-) and L(-) are monotone decreasing. 1

Since (dually) order isomorphic implies (dually) lattice isomorphic, we have following
corollary.

Corollary 2.9 NExtIntKq is dually isomorphic to A(mpoHA ).

2.2 Kripke type semantics

In this section we will consider Kripke-type semantics for intuitionistic modal logics.
Definition 2.10 ([21][15])

(1) A structure F = (W, R, Ro, Ro) is called an intuitionistic modal frame if the fol-
lowing conditions are satisfied.

(1) W #0,
(i1) R : a partial order on W,
(11i) Rn, Ro: binary relations on W,

(iv) Ro Rno R = Rp, where Ry o Ry is the relational product of Ry, Ry defined
by x(Ry o Ro)y iff there is a z such that Ry2& 2z Rsy.

8



(v) R"'o Ro o R7' = R, where R™1 is the reverse of R.

(2) CONW is the set of all cones of W, i.e. CONW ={V C W;(z € V & zRy) =
yeV}

(3) A valuation v on F is a function : Form(Loo) — CONW which satisfies the fol-
lowing conditions

) ={z € W;Vy(aRoy = y € v(a))},
(vi) v(Ca) ={z € W;3y(zRoy and y € v(a))}.

(i) v(L) =10,
(ir) v(a A B) = v(a) No(B),
(111) v(aV B) = v(a) Uv(f),
(v) v(a — B) ={z € W;Vy((zRy & y € v(a)) = y € v())},
(
(

(4) A pair M = (F,v) of F € IMF and a valuation v on F  is called a model.

(5) For any o € Form(Las), any model M and any v € W, is true at  in M (in
simbol, (M, ) |= a or simply x |= a if M is understood) if = € v(a) .

(6) For any o € Form(Las) and any model M, « is true in M (in simbol, M |= ) if
W =v(a).

(7) For any o € Form(Loo) and any F € IMF, « is valid in F (in simbol, F |= «) if
W =v(a) for any valuation v on F.

Note that the values of a given valuation v is uniquely determined only by its values
of propositional variables.

We denote by IMF' the set of all intuitionistic modal frames.

Proposition 2.11 (1) Let F be an intuitionistic modal frame. The set of formulas
which are valid in F s an intuitionistic modal logic.

(2) Let C be a class of intuitionistic modal frames. The set of formulas which are valid
in all frames in C s an intuitionistic modal logic.

So these logics are called the logic characterized by F and the logic characterized by
C and denoted by L(F) and L(C), respectively.

Proof. Since L(C) = () L(F) , it’s enough to show (1). Let v be any valuation on
Fel
F. If 2Ry, y |= Op and y |= Og then z = p and z |= ¢ for any z such that yRnz. Hence

z |= (Op AQg) — O(p A q) at any z.
Next, suppose z |= p — ¢. If 2 RyRpnz and y |= Op then z |= p and hence z |= Ogq. So,
y |= Oq. Therefore z |= Op — Og. The other axioms and rules can be proved in the same

9



way. 1

We denote by 0"« and O™« the formulas O--- O« and & - - - O a, respectively. When
—— ————

n = 0, we define that both 0% and O« are just a. We denote also by 0™ a and O™«
the formulas O° A --- A O« and O%V - -+ V O™, respectively. In particular, we denote
O0Wq and ©Wa by Ota and Ot e, respectively.

On the other hand, for n > 0 we denote Rpo---0 Rg and Ro 0---0 Re by R and

", respectively. We understand RY and R as R and R™!, respectively. We denote also
by R®™ and R the binary relations RS U ---U R® and RS U --- U R%, respectively. In
particular,we denote R} and RY) by R} and RY, respectively.

The binary relation S denotes the transitive closure U S™ of a given binary relation

n>0
S.

The frames validating a number of formulas are characterized as follows.

Proposition 2.12 ([15]) For any intuitionistic modal frame F, F wvalidates each for-
mula in the following list iff F satisfies the condition of the list .

Op —q) — (Op— <Oq) yRox = Fz(zRz & yRoz & yRp2) (2.1)
Op—q) — (Op — <Oq) yRox = J2(zRz & yRoz & yRaz) (2.2)
(Op—0¢) — O(p — q) xRoy = Jz2(zRz & 2Ry & zRny (2.3)
O (p— q) = (Op— Oq) yRox = Jz(zRz & yRoz & yRE2) (2.4)
O™ (p — q) = (Op — Oq)  yRoz = 3z(zRz & yRoz & yRI™z) (2.5)
Op —p  Rno:reflexive (2.6)

p— <p Re:reflexive (2.7)

Op — OOp  Rp: transitive (2.8)

OOp — Op R : transitive (2.9)

oOkfOlp — OmO™p  (zR™y & xRYz) = Fu(yR%u & zRLu) (2.10)
OpvO-Op  (zRpy & ®Rnz) = yRaz (2.11)

O(0OpVg) — (OpVvOqg) (zRoy & ©Rnz) = Ju(zRpu & uRz & uRny)(2.12)
O(0p — ¢q) vVO(dg — p) (2Roy & xRoz) = (yRaz or zRay) (2.13)

Proof. We will take up several of them. The rest can be checked similarly.

(2.5). Suppose that M = (F,v) is a countermodel for it. Then y = O(™)(p — ¢) and
y = Op and y [£ Og, for some y in F. Since z |= p for some = such that yRox, if there
exist z and number n such that 2Rz, yRoz, yREz and 0 < n < m, then we have z |=p
and z |= p — ¢. Hence z |= ¢. This is a contradiction. Conversely, suppose that there

10



are x,y such that yRoz and there is no point z for which 2Rz, yRoz and yR™ 2. Define
a valuation v in F by taking v(p) = {w;zRw},v(q) = {w;zRw & yR™w}. Then for
any n: 0 <n <mif zRw and w |= p then w |= ¢q. Hence y |= O(p — ¢). we can also
show y |= Op and y [~ g, since x |= p and there is no point z for which yR.z, xRz and
yRI™ 2. Thus, y £ O(p — q) — (Op — Oq).

(2.10). Suppose that M = (F,v) is a countermodel for it. Then z = O*O'p and
z [£ OmOp, for some x in F. Hence there are y,z such that 2Ry, y = <"p and
TRE 2 z |= Op. If there is u such that yR%u and zRLu then this is a contradiction.
Conversely, suppose that there are z,y, z such that zR%y, zR% 2 and there is no point
u for which yR%u and zRLu. Define a valuation v in F by taking v(p) = {w;zRLw}.
Then we can show z |= O'p and y [£ O"p, whence z = OFO'p and 2 £ O™O"p. Thus,
z [ oFalp — Omonp.

(2.12). Suppose that M = (F,v) is a countermodel for it. Then z |= O(Op V q)
and z £ Op Vv Og, for some z in F. Hence there are y, z such that zRpy,y [~ p and
zRnz,z £ q. If there is w such that ®Rpu, uRz and uRpy then w = Op and u £ q.
Hence u [= Op V q. This is a contradiction. Conversely, suppose that there are z,y, z
such that zRny, £ Rnz and there is no point u, for which z Rpu, uRz and uRpy. Define
a valuation v in F by taking v(p) = {w; ~wRy},v(q) = {w; ~wRz}. Then we can show
y ~Ep, z [F qand u |= OpV q. Indeed, there is no point u such that zRqu, v |= Op and
u |=q. Hence z = 0(0Op V q) and z [£ Op Vv Og. Thus, z £ O0(0pV ¢q) — (Op Vv Og).

Define several logics, by taking
IntK{, = IntKoe @ OF(p — q) — (Op — <q),
IntKf, = IntKpo @ O(p — q) — (Op — Og),
IntK4po = IntKqo @ {Op — OOp, OOp — Op},
IntS4q, = IntK4p, & {0p — p, p — Op},
IntS4.30, = IntS4pc ¢ O(Op — ¢) vV O(Og — p),
IntK5:, = IntKo, @ {<COp — Op, Op — OOp},
IntS5.¢ = IntK5, @ {Op — p, p — Op}.

Then, the frames validating these logics are as follows.
IntK/ yRox = 3z(zRz & yRoz & yRY2)
IntK? yRox = z(zRz & yRoz & yRnz)
FS yRox = z(zRz & yRoz & yRnz)
zRny = Jz2(2Rz & zRoy & zRny)
IntK4-. Ro, Ro: transitive
IntS4.. Rno, R reflexive and transitive
IntS4.30c Rpo, Ro: reflexive and transitive
(zRoy & Rnz) = (yRaz or zRny)
IntK500  (zRoy & ®Roz) = (2Roy & yRoz)
IntS5., R = R5! and Ry :reflexive and transitive
MIPC R, = R5! and Ry :reflexive and transitive
zRny = J2(xRz & yRnz & 2Rny)

11



Truth-preserving operations

In this subsection we will introduce three important operations on intuitionistic modal
frames which preserve validity.

Definition 2.13 ([21])

(1) A frame Fy is called a generated subframe of a frame Fy if the following conditions
are satisfied.
(Z) W, C WQ,

(1) Ry and Rp, and R, is the restriction of Ry and Rn, and R, to Wy, respec-
tively,

(’[,’l,’l,) T W1 & $R2y =y E Wl,

(w) © € Wy & ©Rn,y = y € Wy,

(v) € Wy & ©Ro,y = Iz € Wy @ zRo,z & yRsz2.

(2) A map f: Wy — Wy is said to be a p-morphism if

forallx € Wi,y € W,

(1) f(z)Rey & 2z € Wy @ zRy1z & f(2) =y,

(1)) f(z)Ro,y & Jz€ Wy @ zRo,z & f(2) =y,
() f(z)Ro,y = 3z € Wi : zRo,z & yRaf(2).

(3) A frame Fy is called reducible to a frame Fy if there exists a onto p-morphism (say
reduction) f: Wy — W, .

(4) The frame F = (> _W;,|J Ri, | Ro,, |J Ro,) is called the disjoint union of a dis-
i€l el el i€l
joint family {F;: 1€ 1} .
Note that each F; is a generated subframe of the disjoint union of {F; : 7 € I}.

Theorem 2.14 (Generation) Suppose Fy is a generated subframe of Fp, and suppose
My and My are a model of F1 and a model of F», respectively. If for every propositional
variable p and every x in Fy

(Mlv:ﬁ) |: p if (M27$) |: p
then for every formula o and every x in F;

(My,z) = a iff (Ma,2) |=a.

12



Proof. We prove by induction on the construction of a. The basis of induction is
obvious. Let a = OF. If (My,z) |= OB then there is a point y € W; such that zR.,y and
(My,y) |= 8. By the induction hypothesis, (M, y) |= 3, and by (1)(ii) of Definition 2.13,
zRs,y. Therefore (My,z) |= OF. Conversely, suppose (Ma, z) |= OfF. Then there is a
point y € W; such that zR.,y and (Ms,y) = 5. By (1)(v) of Definition 2.13, There is
z € Wy such that R,z and yRsz. Since (Ma, 2) |= §, by the induction hypothesis,
(M, 2) = B, whence (M, z) |= OF.

The cases & = f — v and o = O are similar, and the casessa =3 Avand a =gV 7y
are trivial. I

Corollary 2.15 If Fy is a generated subframe of Fa, then L(F3) C L(Fy).

Proof. Suppose F; = a. Then ((Fi,v1),z) = « for some vy on Fy and = € Fj.

Define a valuation v, on F> by taking
vo(p) := v1(p) for all propositional variables p.

By Theorem 2.14, ((F3, v2), z) & . Therefore, F5 [~ . 1

Theorem 2.16 (Reduction) Suppose f is a reduction of Fi to Fs, and suppose M
and My are a model of F; and a model of F3, respectively. If for every propositional
variable p and every x in F;

My, z) =p iff (Ma, f(z)) Ep

then for every formula o and every x in F;
(My,z) |F o iff (Ms, f(z)) F o

Proof. We prove by induction on the construction of . The basis of induction is
obvious. Let @ = Of. If (My,z) |= OfF then there is a point y € W; such that zR¢,y
and (My,y) = §. By the induction hypothesis, (Ma, f(v)) = 3, and by (2)(iii) of Defini-
tion 2.13, f(z)Ro, f(y). Therefore (My, z) |= OB. Conversely, suppose (Mo, f(z)) = OB.
Then there is a point y € W5 such that f(z)Re,y and (Ma,y) |= 5. By (2)(iv) of Defini-
tion 2.13, There is z € Wy such that xR,z and yRyf(z). Since (Ma, f(2)) |= 3, by the
induction hypothesis, (M1, z) |= 8, whence (My, f(z)) |E <B.

The cases & = 3 — v and a = OF are similar, and the cases a = Ay and a = Vy
are trivial. I

Corollary 2.17 If F; is reducible to Fy , then L(Fy) C L(F).

13



Proof. Let f be a reduction of F; to F,. Suppose F [~ a. Then ((Fz, v2), f(2)) FE o

for some vy on Fy and x € F;. Define a valuation v; on F; by taking
vi1(p) := f Ywa(p)) for all propositional variables p.

By Theorem 2.16, ((F1,v1), z) = a. Therefore, F; [~ a. 1
Again, as a corollary of Theorem 2.14 we have the following.

Corollary 2.18 If F is the disjoint union of a family {F; :i € I} ,
then L(F) = ﬂ L(F;) .
el
2.3 Correspondence between algebraic semantics and
Kripke type semantics

In the following, we will show the relation between modal Heyting algebras and intuition-
istic modal frames.

Definition 2.19 ([21])

(1) The map (- )" : IMF — maooHA s defined as follows :
For any F = (W, R, Ro, Ro), Ft = ( CONW, 0O, O), where for any a,b € CONW,

(1) aVb=aUb,

(it) aNb=anb,
(iii) a = b={x € W;Vye W(zRy &y € a =y € b)},
(tv) Oa={z € W;Vy € W(zRpy = y € a)},

(v) Ca={zxeW;dye W :zRoy & y € a}.

We call F* the dual of F.

(2) The map (- )+ : mooHA — IMF is defined as follows :
For any A =(A,0,0),A. = (W, R, Rn, Ro), where

(1) W is the set of all prime filters of A (PF(A) , in symbol),
(11) xRy b= Y,

(iit) cRoy “Uvae A(Qa €z = acy),
in other words, xn C vy, where o := {a: Oa € z},

() zRoy “va e Ala e y = Ca € ),
in other words, y C o, where z¢ := {a: Ca € z}.

We call A, the dual of A.
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Proposition 2.20
(1) For every intuitionistic modal frame F , its dual F* is modal Heyting algebra.

(2) For every modal Heyting algebra A, its dual A, is intuitionistic modal frame.

Proof. It is routine to check our proposition. Compare (1) with Proposition 2.11.

In relation to the prime filter, the following theorem using Zorn’s Lemma is well-known.

Theorem 2.21 Let G and J be a filter and an ideal of a distributive lattice A such that
GNJ=0. Then there exists a prime filter F such that G C F and FNJ = .

The least filter [X) containing a given non-empty set X in a lattice A is called the
filter generated by X and represented by

(X)={ye A:zy A - ANz, <y, for some z1,...,2, € X}.

The least ideal (X] containing a given non-empty set X in a lattice A is called the
1deal generated by X and represented by

(X]={yeA:y<azyV---Vua,, for some z1,...,z, € X}.
Proposition 2.22 ([21])
(1) For every intuitionistic modal frame F, F is embedded into (F*), .

(2) For every modal Heyting algebra A, A is embedded into (A,)" .

Proof. (1). Let 7 = (W, R, Ro, Ro) and (F'), = (W', R, R, R,,). Define a map f
from W into W' by taking, for all z € W

f(z) :={a € CONW : 2z € a} € W/(= PF(CONW)).

Suppose zRy. If a € f(z), then y € a since z € a and a € CONW. Therefore
a € f(y), whence f(x)R'f(y). Conversely, suppose f(x) C f(y). Since {z: xRz} € f(z),
{z: xRz} € f(y). Therefore y € {2 : xRz}, whence zRy.

Suppose zRny. If Oa € f(z), then y € a since x € Oa. Therefore a € f(y),
whence f(x)RLf(y). Conversely, suppose (f(z))a C f(y). Since O{z : zRgz} € f(x),
{z: ®Raz} € f(y). Therefore y € {z : *Rnz}, whence zRny.

Suppose zRoy. If a € f(y), then 2 € $a since y € a. Therefore Ga € f(z),
whence f(z)R. f(y). Conversely, suppose f(y) C (f(z))o. Since {z : yRz} € f(y),
O{z i yRz} € f(z). Therefore since x € O{z : yRz}, there is z such that 2Rz and yRz,
whence zRyy.

(2). Let A = (A,0,0) and A = (A,0,0'). Define a map h from A into A’ by
taking, foralla € A

h(a) = {z € PF(A):a €z} € A'(= CONPF(A)).
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Let a £ b. Since there is a prime filter z in A such that a« € z and b ¢ z by
Theorem 2.21, h(a) ¢ h(b). therefore h is a injection.

Let’s check that h preserves the operations. It is easy to show h preserves A, V, L.

Suppose z € h(a — b). If z C y and a € y, then b € y since a — b € x. Therefore
z € h(a) — h(b). Conversely, suppose ¢ h(a — b). If a A ¢ < b for some ¢ € = then
¢ < a — bso it is contradiction. Therefore since [z U {a}) and ({b}] are disjoint, there
is a prime filter y such that ¢ C y, a € y and b ¢ y by Theorem 2.21. This means
z ¢ h{a) — h(b).

Suppose z € h(Oa). If 25 C y, then a € y. Therefore z € Oh(a). Conversely, suppose
& ¢ h(Oa). Since the filter o does not contain a, there is a prime filter y such that
ro C y and a ¢ y by Theorem 2.21. This means = ¢ Oh(a).

Suppose z € h(<{a). Since the ideal (z)¢ does not contain a, there is a prime filter
y such that y C zo and a € y by Theorem 2.21. This means z € $h(a). Conversely,
suppose ¢ € <Oh(a). There is a prime filter y such that y C 2o and h(y) € a. Then
Oa € z, since a € y. Therefore z € h(<Ca). 1

Proposition 2.23
(1) For every intuitionistic modal frame F, L(F*) = L(F).

or every modal Heyting algebra A, C .

2) F dal Heyti lgebra A, L(A,) C L(A
Proof. (1). By definition, a valuation on  is at the same time a valuation on F*.
(2). Since A is isomorphic to a subalgebra of (A,)* by Proposition 2.22 (2),

L((A)%) C L(A) by corollary 2.15. And by (1), L((A)*) = L(A,). Hence L(A,) C
L(A). 1
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Chapter 3

Kripke completeness

On algebraic semantics we showed completenes theorem. In this chapter we will consider
two method for completenes on Kripke type semantics. One of them is the method of
canonical models, and the other is filtration method.

Definition 3.1 A logic L is called Kripke complete if there is a class C of frame such
that
LEta iff ClEa.

3.1 Canonical logics

In this section, we will construct a model refuting formulas outside of L. To get Kripke
completeness of L, it is morreover necessary that this frame validate L.

Definition 3.2

(1) Let L be a intuitionistic modal logic. A set T of formulas is said to be a L-theory if

(i) LCT,
(1)) oo — peT=peT.

(2) A L-theory T is consistent iff L ¢ T.
(3) A L-theory T is prime iff

(1) T is consistent,

(it) avpeT =acT orBel.

Definition 3.3

(1) Let L be a intuitionistic modal logic. The canonical frame Fj, = (Wy, Ry, Ra,, Ro,)
15 defined as follows.

(1) Wy is the set of all prime L-theories,
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(ii) TyR, Ty € Ty C T,

(i1i) TyRo, Ty & Vo € Form(Loo)(Oa € Ty = a € Ty),
in other words, (Th)a C Ty, where (T1)g := {a : Oa € T4},

(ZU) TlR()LTQ dg Ya € Form(ﬁgo)(a ey = Ca € Tl),
in other words, Ty C (T1)o, where (T1)o :={a : Ca € T1}.

(2) The canonical model M = (Fp,vy) is defined by taking, for every propositional
variable p,
vp(p) ={z e W :pea}

We can regard a (prime) L-theory as a (prime) filter of the Lindenbaum algebra Aj,.
Compare Definition 3.3 with Definition 2.19(2), and we can also consider the canonical
frame Fg, as the dual (A), of the Lindenbaum algebra Ay. Actually amap: T — T :=
{le| : @« € T'} is a isomorphism.

Definition 3.4 Let L be a intuitionistic modal logic. For a given non-empty set X of
formulas, we define [X) and (X] by

(X)={f:LFaiA---Na, — 3, for some ay,...,a, € X},
(X]={B:LFfF— a1V Vay, for some ay,...,a, € X}
Therefore similarly to Theorem 2.21, the following theorem holds.

Theorem 3.5 Let L be a intuitionistic modal logic. Given non-empty sets X and Y of
formulas such that [X)N (Y] = 0, there exists a prime L-theory T such that X C T and
Tny =40.

Theorem 3.6 Let M = (Fp,v;) be the canonical model. Then for every formula o,
vp(a) ={z € Wy :a € z}.

Proof. It is similar to the proof of Proposition 2.22(2), by using vy, instead of h.

Theorem 3.7 For any L € NExtIntKpo, LF o iff My = a.

Proof. For any € W, L C z. So a € L implies z |= a. Conversely, suppose L I/ a.
By Theorem 3.5 there is a prime L-theory = such that = ¢ «. 1

In order to show logic L is Kripke complete, it is sufficient that the canonical frame
validates L. So we call such logic L a canonical logic.
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Proposition 3.8

(1) If logic Ly is a extension of logic Lo, then the canonical frame Fr, is a generated

subframe of Fr,.

(2) If L; is canonical logic for every i € I, then @Li 15 canonical logic.
el

Proof. (1). Clearly Wy, contains Wy,. Let ¢ € Wy, and y € Wp,. If z C y then
Ly Cy, and if 25 C y then Ly C y, too, since L; C (Ly1)a. Suppose y C zo. For formula
a € y and formula 3, if « — § € Ly then Of € z since Ca — OfF € Ly C x. Therefore
since [Ly Uy) C zo, by Theorem 3.5 there is z € Wi, such that z C z¢ and y C z.

(2). By (1), Fgr, is a generated subframe of F, for every i € I. Since Fj, |= L;,
For. |E L; by Corollary 2.15. Thus, Fgr, = @Li I

el

Theorem 3.9 ([15][21]) IntKno®T is a canonical logic , if T' consists of some formulas
wn the following list.

Op — q) — (Cp — <q),
O(p — q) = (Op — <q),
(Op — Og) — O(p — ),
0% (p — q) — (Op — ©g),
0™(p — g) — (Op — Og),
Up — p,

p — <p,

Op — OOp,

OCp — Cp,

okolpy — amonyp,

Op vV O=0p,

O(Op V q) — (Op V Og)
O(0p — ¢) vV O(0g — p)

O © o 1 O O = W N =
e Y T N D N D N

W W W W o~~~ o~
\V]

A~ N N
—_ = = =
—_

w

Therefore, IntKoo ¢ I'' is Kripke complete.

Proof. We are not going to check all these and take up what is shown in Proposi-
tion 2.12. The rest can be checked similarly.

(3.5). Let O™(p — ¢q) — (Op — <©q) € L, and show that the canonical frame F,
satisfies the condition of (2.5), i.e.

rCyo=FzIn(c C2& 2C Y & yYyon C 2 & 0<n<m).
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Suppose & C yo. Then we will show [z Uyan) C yo for some n. Suppose otherwise. Then
there are formulas ag, ..., %m, Bo,- -+ Bm, Y0y« - - Ym such that o, € z, O"F, € y, Oy ¢y
and a, A B, — v, € L. Since

(BoV - VPn) = (@A Aam) = (0V - Vm)) €L,
hence,
O"BoV -V Ln) = 0" (A~ Aam) = (YoV - Vym)) € L.
Since 0", € y implies O™(Bo V - - V Bn) € ¥, hence,
O*((ao A Aam) = (0 V-V Im)) €.
Since also

hence,
Olag A ANay) = (Yo V- Vym) €,

by using the axiom (3.5). Since apA--- Aoy, € x and & C yo, hence, G(apgA---Aay) € .
Therefore
Ov V- VO, €.

This is a contradiction. Thus we have [z U ya») C yo for some n. Therefore Theorem 3.5
guarantees the existence of L-theory z such that  C 2, 2 C yo and yg» C 2 for some n.

(3.10). Let OO — O™O™p € L, for some k, I, m,n > 0, and show that the canonical
frame F, satisfies the condition of (2.10), i.e.

(zom Cy & 2z Cxor) = Fu(u C yon & 2ot C u).

Suppose zom C y and z C xsx. Hence, xomen C Yon and zoi C Zorm. On the other hand
Torgt C Tomon since OFO'a — O™O"a € x. Thus zgt C yon. Therefore Theorem 3.5
guarantees the existence of L-theory u such that v C yon and 2o C w.

(3.12). Let O(OpVgq) — (OpV0Ogq) € L, and show that the canonical frame F, satisfies
the condition of (2.12), i.e.

(zoCy&aeaCz)= Ju(ezp Cu & uCz&us Cy).

Suppose o C y and xg C z. Then we will show zo N ({08 : B ¢ y} U z¢] = 0. Suppose
otherwise. Then there are formulas o, 0y, ..., 8,,7 such that Oa,, € z, B1,...,0. ¢ ¥
v ¢ z, and

a— 0B V...VOB, VY€ L.

Since
Oa — O(0B; V...VOB, Vy) €L,

hence,
O(0OF, V...v OB, Vy) € x.
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So, by using the axiom (3.12),

OB,V OBy V...VOB, V7)€ .
By iterating this,

Dﬁl\/ﬁz\/...\/Dﬁn\/D76$.

Therefore, OF; € x for some ¢ or Oy € x. In both cases, this implies a contradiction. Thus
we have zg N ({0 : B ¢ y} U z¢] = 0. Therefore Theorem 3.5 guarantees the existence
of L-theory u such that zo C u, v C z and v N {0OF : 8 ¢ y} = 0. The third condition
implies ug C y.

Corollary 3.10 In particular, IntKpo, IntK:,, IntKf,,, FS, IntK4n,, IntS4q.,
IntS4.30., IntK50,,, IntS545, and MIPC are Kripke complete.

3.2 Finite model property

The canonical model of L refutes all the formulas which do not belong to L. It contains
continuum many points. But it is better that finite frame refutes all the formulas which
do not belong to L. The logic L is said finitely axiomatizable if L = IntKgo &I for some
finite set I' of formulas.

If L is moreover finitely axiomatizable, then it is decidable.

Definition 3.11 A logic L enjoys the finite model property if for every non-theorem ¢
of L, there exists a finite frame F such that F |= L and F £~ .

In the following, we will show some logic enjoys the finite model property by using
filtration method.

Definition 3.12 (Filtration)

(1) Let M be a model and % be a set of formulas closed under subformulas, i.e., Subgp C
3 whenever ¢ € 3, where Suby s the set of all subformulas of ¢. We define an
equivalence relation ~x on W, by taking

sesyd (M) e iff (Myy) e, for every p € 3,

and we say x,y are X-equivalent in M. We denote by [z]s the equivalence class
generated by x. We write simply [z] if understood.

(2) A model My, = (Ws, Rs, Ros, Rox, vs) is called a filtration of M through ¥ if
the following conditions are satisfied.

(i) Wg ={[z] : x € W},
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(11) vs(p) = {[z] : © € v(p)}, for every propositional variable p € 3,
(11i) xRy implies [z|Rxly], for allz,y € W,
() zRay implies [¢]|Roxly], for allz,y € W,
(v) xRoy implies [x|Roxly|, for all z,y € W,
vi) if [z]Rxgly] then yl|=¢ whenever z|=, forz,y €W and p € X,
) if |z|R h h f Wandp e X
vit) if |z|Rox|y| then y = ¢ whenever x =0y, forz,y € and Op € 3,
1) i R h h W and p
vie) if |x|Rox|y] then z = whenever Y |= @, Jor T,y € an € .
i) if [2]R h e wh o W and Op € S

Theorem 3.13 (Filtration)
Let My be a filtration of a model M through a set ¥ of formulas. Then for every x
i M and every formula ¢ € 3,

(M, z) = ¢ & (Ms, [2]) | ¢.

Proof. we prove by induction on the construction of . The basis of induction follows
from (ii). Now let ¢ = ¢ — x € X. Suppose z |= ¥ — ¥, [z]Rx[y] and [y] |= ¢. Then,
by (vi), y = ¥ — x and, by the induction hypothesis, y |= 1. Hence, y |= x, again by the
induction hypothesis, [y] = x. Thus, [z] = ¥ — x. Conversely, suppose [z] |= ¥ — ¥,
rRy and y = 9. Then, by (iii), [z]Rx[y] and, by the induction hypothesis, [y] | .
Hence, [y] = x, again by the induction hypothesis, y |= x. Thus, z = ¢ — .

Next let ¢ = Oy € 3. Suppose z = O0¢ and [z]Roxy]. Then, by (vii), y = ¢ and,
by the induction hypothesis, [y] |= ¥. Thus, [z] | Ot. Conversely, suppose [z] |= Oy
and zRy. Then, by (iv), [z]Rox[y] and so [y] |= ¥. Hence, by the induction hypothesis,
y = 9. Thus, z |= 0.

Let ¢ = Oy € . Suppose @ |= Ot. Then, there is y such that zRoy and y |= 9.
Hence, by (v), [z]Rox(y] and, by the induction hypothesis, [y] = . Thus, [z] | <.
Conversely, suppose [z] |= Ot Then, there is [y] such that [z]Rox[y] and [y] = .
Hence, by the induction hypothesis, y = ¢ and, by (viii), z | <. 1

In general, the conditions (iii)—(viii) do not determine the binary relations uniquely.
Actually, they allow us to choose any relations Rx, Ros, Ros in the interval Ry, C Ry C
Rs, Ross C Ros C Ros, Reosy C Ros C Rox, wWhere

Ry = {([z],[¥]) : F3",¢/(z ~5 2" & y ~s5 ¥ & 2'Ry")},
Roy = {([z],[y]) : 3",y (z ~s 2’ & y ~s ¥ & 2'Ray’)},
Ros, = {([z],[y]) : I, ¢/ (z ~s 2" &y ~5y & 2'Roy)},

Rs = {(zl, ) : Yo e Bz F =y v)},

Ros = {([z],[y])) : VOp € B(z F Op = y = ¢)},
Ros = {([z],[¥]) : VOp € By F ¢ = z |= Op) .

Indeed, if [2]Rgly], [z]Roxly] and [z]Rox[y] hold then, by (vi), (vii) and (viii),
[z] Rs[y], [z] Rox[y] and [z]Rox[y], respectively. And if [z]Rx(y], [z|Ros(y] and [z]Rox|y]
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then 'Ry, ' Ry and 2'Roy’ for some ' € [z],y € [y], and so, by (iii), (iv) and (v),
[z]Rs[y], [z]Rox|y] and [z]Roxly|, respectively. The fact that [z]|Rs[y], [z]|Ros(y] and
[z] Ros|y] satisfy (vi), (vii) and (viii), respectively, and [z]Rs[y], [z]Ros(y] and [z] Rox[y],
satisfy (iii), (iv) and (v), respectively, follows directly from definition of the valuation.

Definition 3.14 The filtration on the frame Fyx, = (Wx, Ry, Ros, Roxy) is called the
finest filtration of M through X, while the filtration on the frame Fx, = (Wx, Rx, Ros, Rox)
is called the coarsest filtration of M through X.

If ¥ is finite then Wy is finite (at most 2/*/), too. So, to prove the finite model
property, it suffices to show the condition of the following definition.

Definition 3.15 For every non-theorem ¢ of L and a model M of L such that M [~ o,
if there exists a filtration of M through a finite set ¥ containing ¢ such that Fx |= L
then we say that L admits filtration.

Since the following logics are sound with respect to the class of frames satisfying a
property P and their canonical frames satisfy P, to prove that they admit filtration it is
sufficient to show that a filtration Fs; of M satisfying P through a finite set 3 containing
a  satisfies P.

Theorem 3.16 IntKq., IntK4o., IntS4n., IntS54. admit filtration and so enjoy the
finite model property.

Proof. (IntKqo). Let M be a intuitionistic modal frame and ¥ be Subg.

First, we will check that the coarsest filtration is intuitionistic modal frame. We need
to check whether Ry; is a partial order, RxyoRoxoRs; = Rox, and E;oﬁog OR; = Rox.
The reflexivity of Ry follows from (iii). The anti-symmetry of Ry follows from (vi) and
the definition of X-equivalent. Suppose [z]Rg[y]|Rs[z] and ¢ € . If z | 4, then
y |= . Hence z |= v. Thus, [z]Rox|z]. Suppose [z]Rs[y|Ros|z|Rs[w], and Oy € X.
If z = Oy, then y |= Ot. Hence z = 9. So, w |= 9. Thus, [z]Rox[w]. Suppose
[x]ﬁg[g/]ﬁog[z]ﬁg[w], and O € X, If w |= 9, then z |= ¢. Hence y = O So,
z |= . Thus, [z]Rox|w].

Next, we will consider general filtration. The reflexivity and the anti-symmetry of Rx
is shown in the same way. But, Rx may be non-transitive. To construct a transitive rela-
tion we can take the transitive closure Ry Clearly, Ry satisfies (iii). By the transitivity
of Ry;, Ry satisfies (vi). We also take R%y; and R%y by

EE:REORDEORE

and
H—1 H—1
s = Ry o Ros o Ry

It is easily shown that these satisfy (iv), (v), (vii) and (viii). The frame (Wy, Ry, Ris, Rix)
is what we desire.

23



(IntK4n.). Let M be a Rn, Ro transitive frame and
3 = Subp U {00y : Oy € Subp} U {OOY @ OGP € Subgp}.

First, we will check that the coarsest filtration is Roy, Roxy transitive frame.

Suppose [z]Rox|y|Rox|z] and Oy € X. In the case Oy € Subyp, if z |= O, then
z |= 00y by transitivity. Since 00y € X, y |= Ov. Hence, 2 |= . Thus, [z]Rox[z]. In
the case Oy = OOy € {00y : Ox € Suby}, if z |= OOy, then y = Oy, since OOy € X.
By transitivity, y | O0y. Hence, 2 |= Oy. Thus, [z]Rox[z].

Suppose [z]Rox[y|Rox[z] and O € X. In the case Oy € Suby, if z |= ), then
y = O, Since OOy € X, z = OOy, Hence, z |= O, by transitivity. Thus, [z] Ros[z].
In the case O = OOx € {OOx : Ox € Subg}, if z = Ox, then y = &Ox. By
transitivity, y |= Oy. Since OOx € X, z = OOy, Thus, [z]Roxz].

Next, we will consider finest filtration. We take Ris, and Rl s by

—

Rl = Rso (Rox o Ez)

and

Ris =Ry o (Ropo Ry).

It is easily shown that these satisfy (iv) and (v).
Suppose [z]Ros|y], Oy € X. Then, there exist ',y such that ' € [z],¥ € [y| and
' Rpy'. If ¢ |= Ov¢, ¢’ |= Oy, Since Rp is transitive, y' |= O7¢. Hence y = O%¢. By
iterating this argument, for any O¢ € ¥, if [z]Ris[y] and = |= O%, then y |= Ot
Hence, y = Ot4. Thus, Rf s satisfies (vii).
R}y, satisfies (viii) in the same way.
The frame (W, Ry, R, RYx) is what we desire.

(IntS4p¢). Rn and R are reflexive, then by (iv) and (v), any filtration Roy and
R.% are reflexive, respectively. Moreover, Eég = EDE and Eix = EQE.

(IntS500). Let M be a Rno, Ro reflexive transitive frame such that Rg = RZ. Put

3 = Subyp U {00y, GOy : Oy € Subp} U {OOY, OOy : O € Subp}.

First, we will check that the coarsest filtration satisfy Roxy = Eg;. Notice that by
properties of IntS5q,, if ©» = Oy or ¢y for some y then

zl=Y iff 2Oy iff 2=y

Suppose [z] Rox[y] and Oy € X, In the case O € Subg, if ¢ |= 1, then by the reflexivity
of R, z |= <. Hence, z |= OO, So, since OOy € X, y |= Ov. Thus, [y]Rox[z]. In
the case Oy € {00y, OOy : Oy € Subp} U {OOY, 00y : Oy € Subyp}, if x |= 1, then
z |= O¢. Since Oy € X, y = 1. Hence, y |= Ov. Thus, [y|Rox|z].

Suppose [z]Roxly] and Oy € X. In the case Oy € Suby, if y |= 0¢, then = = OOy,
since ©0¢Y € X. Hence, z = O¢. By the reflexivity of Ry, z |= . Thus, [y]Rog[z]. In
the case Oy € {00y, OGOy : Oy € Subp} U {OOy, OOy : O € Subel, if y = O,
then y = 9. Since Oy € B, z |= Ov. Hence, z |= 9. Thus, [y|Rox[z].
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Next, we will consider finest filtration. Since it is easily seen that R.s = Egg, SO

A a1
EDE = Bog-

Therefore, the frame (Wx, Ry, Rusy, Rosy) is what we desire.
|

Remark So far, we have treated the logics of L. But, if we restrict the modal
operators only to O operator, Some logics can admit filtration. For example, we fail to
show that IntS4.3p. admits filtration. But IntS4.35 on which the modal operator is
restricted to O operator admits filtration, because we can take O-rooted countermodel.
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Chapter 4

Algebraic properties

As previously stated, (NExtIntKqo, @, N) and its dually isomorphic (A(maoo HA ), V, A)
are complete lattices. In this chapter, we will further investigate properties about them
for example, distributivity.

4.1 The deduction theorem

Unfortunately, IntKq. have bad properties. The deduction theorem which implies dis-
tributivity does not hold for IntKqn. Recall that a derivation of ¢ from assumption I'
is a sequence ¢y, ..., p, of formulas such that ¢, = ¢ and for every ¢, 1 <1 < n, @; is
either an axiom, an assumption or obtained from some of the preceding formulas in the
sequence by one of the inference rules. The deduction theorem for modal logic L is as
follows.

The deduction theorem for modal logic L
Suppose I', 1 - ¢ and there exists a derivation of ¢ from the assumptions I" U {¢}.
Then
T,yF ¢ if TFO®y — o, for some k € N

The deduction theorem for intuitionistic modal logic L holds under the following con-
dition.

Theorem 4.1 (Bezhanishvili and Hasimoto) For any L € NExtIntKq. ,
L enjoys the deduction theorem iff

Fam™(p — q) — (Op — Oq), for some m e N

Proof. Suppose the deduction theorem holds. Since p — g Op — g, so
FOM™(p — q) — (Op — <q), for some m € N. Conversely, we consider a derivation
©1,...,¢n of @ from I' U {4}, and show by induction on 7 that

T+ O™y — ¢, for some m; € N.
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The cases when ¢; is a substitution instance of an axiom ¢, or belongs to I' U {¢/} and
obtained from MP or RRpg are justified in the same way as in classical modal logic.
Suppose p; = Op; — Oy is obtained from ¢; — ¢, by RR¢. Then, by the induction
hypothesis,

T FOm™y — (¢ — @), for some m; € N.

Hence,
'k D(m1+m)1/) — D(m)(gpj — V).

Thus,
T OMmmy - O(p; — ).

Corollary 4.2 IntK{,, enjoys the deduction theorem.

4.2 Filters and congruences

We consider this in the algebraic point of view. In this situation, < is neglected in some
sence. Hence, we can use the theory of the algebra with O.

Definition 4.3 A filter F' in a modal Heyting algebra A is said to be a O-filter if
a— b€ F implies Oa — Ob € F.

If F also satisfies
a—beF implies Ga — Ob € F|

then F' is said to be a modal filter. We denote by Fo(A) and Fy(A) all O-filters and
all modal filters in A |, respectively.

It is easily seen that if a filter F' in a modal Heyting algebra A with O(a — b) <
Ca — b (or O™ (a — b) < Ga — Ob, for some n €IN), then,

F is a modal filter iff F is a O-filter (c.f. Theorem 4.1).

By m},HA , we denote the variety of all modal Heyting algebras with O(a — b) <
Oa — Ob. For n €N, we denote by m{) HA |, the variety of all modal Heyting algebras
with O™ (a — b) < Ga — Ob.

Proposition 4.4 For any A € mpooHA | the set (Fy(A),V,N) forms a complete lattice,
where F1V Fy is the smallest modal filter containing Fy and Fy. And the set (Fn(A),V,N)

forms a complete distributive lattice, where Fy V Fy is the smallest O-filter containing Fy
and Fs.
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Proof. We will show the distributivity. Since Fy V Fy is [F; U F5) in O-filters, we will
show [F1 U Fo) N F3 C [(F1NF3)U(FoN F3)). Suppose a € F3 such that bA ¢ < a for some
be Fyand ¢ € Fy. Then, (bVa)A(cVa)<a. SincebVaée FiNFEF;and cVaée FyNFs,
a € [(FiNF3)U(FN F3)). 1

For any A € mpo HA , we denote by ©(A) the set of all congruence relations on A.

Proposition 4.5 For any A € mpoHA |, the set (©(A),V,N) forms a complete dis-
tributive lattice, where 01 V 05 is the smallest congruence relation containing 6, and 6.

Proof. We will show the distributivity. It is easily seen that 6; V 6, = (91/U\92). So
if a((0; V 05) N O3)b, then there is sequence a = zg, 21,...,2, = b such that af3b and
20M121M2 - - - N Zn, for m; = 01 or B5. Define

m(a,b,z):=(aAb)V (bAz)V(z Aa).
Then m(a,b,a) = a and m(a,b,b) = b. If 21,2’ then m(a,b, 2)p;m(a,b, z’). We claim that

afsb implies m(a, b, 2)83m(a, b, 2’). Suppose afsb. Then, aV(zAa)f5(aAb)V(zAa). Since
(2Aa)05(zAb) also holds, aV(zAa)f3(aAb)V(2Ab)V(zAa). Hence, adsm(a,b, z). Therefore,

m(a,b, z)03m(a,b, z'). Thus, there is sequence a = m(a, b, zp), m(a,b, z1),...,m(a,b, z,) =
b such that m(a,b,z)(m N 0s)m(a,b, z1)(ne N 03)...(ny N O3)m(a,b, z,). Therefore,
a((91 N 93) vV (92 N 93))b 1

The correspondence between these complete distributive lattices is as follows.
Theorem 4.6 Suppose A € mf HA (or mM HA for some n €N ). Then the map
F—0p:= {(a,b):(a—>b)/\(b—>a) EF}
is an isomorphism from (Fy(A),V,N) onto (©(A),V,N). Here the inverse map from
(0(A),V,N) onto (Fy(A),V,N) is given by
O Fg:={a€ A:abT}.

Proof. By the definition, the monotonicities of both maps are clear. The relation 6g
is an equivalence relation which is compatible with A,V and —. We will show that it is
compatible with O and <. Suppose afgb. Then, a — b € F and b — a € F. Hence,
O¢ — 0Obe F,0b— 0Oa € F, Ca — Ob € F and &b — Oa € F. Thus, Oa 006
and Ca 0p<Cb. It is easily seen that [y is a filter. We will show that it is a O-filter,
which implies that it is a modal filter. Suppose a — b € Fy. Then, a — b0T. Hence,
O(a — b) 6OT. Therefore, Da — Ob §T. Thus, Oa — 0Ob € Fy. We will show that
Fy, = F. By the definition, a € Fy, iff afpT iff (a = T)A(T —a) € F iff a € F.
We will show that 0p, = 6. By the definition,

abp,b  iff  (a—b)A(b—a)€ Fy
if (a—=b)A(b—a)T
iff a—b0T&b—alT
iff afaVb& baVbd
iff  abb
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4.3 Congruence distributivity
In Proposition 4.5 we showed ©(A) is distributive.

Definition 4.7 A variety K is congruence distributive if for every Ac K, ©(A) is dis-
tributive.

This property is useful. Recall that an algebra A is subdirectly irreducible if it has a
smallest non-trivial congruence. Denote by Ks; the subdirectly irreducible members of
a variety K. When a variety is congruence distributive, subdirectly irreducible algebras
play an important role because we can apply Jénsson’s Lemma [10]. By using Jénsson’s
Lemma,

(K1 V K2)sr = (K1)s1 U (K2)st

for any subvarieties Ky, Ky of a congruence distributive variety K [10]. Therefore, for any
subvarieties K1, Ko and K3,

(K1 V K2) N Ks)sr = (K10 Ks) V(Ko 0 Ks))sr.

Since the subdirectly irreducible members of a variety K determine the variety K, we have
the following.

Proposition 4.8 ([10]) If a variety K is congruence distributive then the lattice of all
subvarieties of K 1is distributive.

Proposition 4.9 (NExtIntKne, ®,N) is a complete distributive algebraic lattice. More-
over the join infinite distributive law

Ln@L,=p(LnL)
el el
holds.
Proof. It is easily verified NExtIntKpg. is algebraic lattice whose compact element is

finitely axiomatizable logic. We will show join infinite distributivity. Since NExtIntKn
is algebraic, there are compact elements L such that

DL =LnP L

jedJ 1€l
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Hence, L;- C L and L; C @jer Li. Since L;- is compact, there is a finite subset Iy of I such
that L: C @;cy, Li- Therefore,

L ¢ LNnPL

€1y

= DLNL)

€]y
c P(LnL).
il
Thus,

Ln@L;=P(LnL).

i€l el
But the meet infinite distributive low
Lo Li=N(LaL)
iel el

does not hold in NExtIntKqo.. Indeed, suppose otherwise. Then all logics in NExtMIPC
which is a complete sublattice of NExtIntKq. enjoy finite model property [2], which is
not the case.

4.4 Congruence extension property

Definition 4.10 A wvariety K has the congruence extension property if each congruence
i a subalgebra of an algebra can be extended to a congruence of the algebra itself.

An important property of variety K with congruence extension property is that HS(Ky) =
SH(K,), for each set Ky C K.

Theorem 4.11 The variety mf ,HA ( and m HA for anyn €N ) has the congruence
extension property.

Proof. Since ©(A) and Fy(A) are isomorphic, it is sufficient to show that each
modal filter in a subalgebra of an algebra can be extended to a modal filter of the algebra
itself. Suppose that A is a subalgebra of B and F' is a modal filter in A. Define [F') by
taking

[F)={be B:a<bforsomeac A}

Then, [F) is a O-filter (hence, modal filter) and [F)NF = F. 1
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Theorem 4.12 The variety mpooHA does not have the congruence extension property.

Proof. Denote the algebras below by A; and As, from left to right.

0 ]
OT =T &T =T

VRN /
2 b 2 e oo+
SN S Ge—e oe—e
d C Ed:J_ gd:a
Ol=1 <L =1

\D/ ]

A, is a subalgebra of A;. A; has two congruences, namely the least one {(a,a):a €
A;} and the greatest one A7. But A, has three congruences. I

Using duality, we will see this example again. Denote the algebras below by F; and
Fa, from left to right.

y y oW

\ _ T v

R R RI R e
X Vv

All the points are reflexive. R is the reverse of Rn. A; and F; are dual each other
and A; and F, are dual each other. F; is reducible to F; by the map: = — v,y — w
and z — w. {w} is a generated subframe of F». But any generated subframe of F; is not
reducible to {w} by the restriction of the map.

This example also shows that the variety corresponding to IntS55, does not have the
congruence extension property.
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Chapter 5

Conclusions and remarks

In this thesis, we verified that like the classical modal case the intuitionistic modal logics
adequate algebraic semantics, and algebraic semantics corresponds to Kripke type se-
mantics. We also verified that important logics are canonical logics, so they are Kripke
complete.

We have shown that IntKno, IntK4q., IntS4n. and IntS54. enjoy the finite model
property. But, in the classical modal case, it is known that much more logics enjoy the
finite model property. For each logic, It is proved that the logic enjoys the finite model
property, not only by the filtration method, but by various methods — by algebraic
method and by well selecting points from frame. In the intuitionistic modal caes, owing
to & operator, it is more complecated. But, it is interesting future subject to invesigate
that much more logics enjoy the finite model property.

Unfortunately, IntKg, does not satisfy the deduction theorem and does not enjoy
congruence extension property. But it seems to & operator is not essential in IntKf ...

Therefore, we have to invesigate Int Koo in the various points of view in order to see
how <& operator behave.
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