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Chapter 1

Introduction

Modal logics based on classical logic Cl have been investigated well. Classical logics are

too strong from the computer scienti�c or constructive mathematical point of view. So

we want to weaken logics. But the negation of classical logics is stronger than that of in-

tuitionistic logics. Hence, in classical logics 2p$ :3:p holds, but in intuitionistic logics

2p $ :3:p and 3p $ :2:p do not generally hold. This provides more possibilities

for de�ning intuitionistic modal logics. We will consider intuitionistic modal logics to be

independent 2 and 3.

Let L23 be the language of propositional modal logic with countably many proposi-

tional variables, p; q; r; . . . and the connectives ^;_;!;?;2;3. Let Form(L23) be the

set of all formulas of L23. The formula :� is de�ned as �! ? and > as ? ! ?.

How to de�ne an intuitionistic modal analogue of classical normal modal logic K ?

Much work has been done in the �eld.

By the study of correspondence to the bi-modal logic with two box operators, Fischer

Servi [8][9] constructed a logic FS by imposing a weak connection between 2 and 3

operators. FS is the least set of formulas of L23 which contains axioms (1){(6) and is

closed under the rules of inference (a){(c)

(1) Int

(2) 2(p! 2q)! (2p! 2q)

(3) 3(p _ q)! (3p _3q)

(4) :3?

(5) 3(p! q)! (2p! 3q)

(6) (3p! 2q)! 2(p! q)

(a) modus ponens `�!� `�

` �
(MP)

(b) substitution (Sub)

(c) ` �

`2�
(RN)
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Various extension of FS were studied by Bull [5], Ono [11], Fischer Servi [7][8][9],

Wolter and Zakharyaschev [21], Wolter[18].

The well-known MIPC is introduced by Prior [13]. MIPC is obtained by adding to

FS the axioms

2p! p; 2p! 22p; 3p! 23p;

p! 3p; 33p! 3p; 32p! 2p:

From the relation to intuitionistic predicate logics, Bull [5], Ono [11],Ono and Suzuki [12],

Suzuki [16] and Bezhanishvili [1] investigate MIPC.

Wolter and Zakharyaschev introduced the weakest intuitionistic modal logic IntK23.

IntK23 is the least set of formulas of L23 which contains axioms (1){(3) and is closed

under the rules of inference (a){(c).

(1) the intuitionistic logic Int,

(2)

(22) (2p ^ 2q)! 2(p ^ q) and (23) 3(p _ q)! (3p _3q),

(3)

(32) 2> and (33) :3?,

(a) modus ponens `�!� `�

` �
(MP),

(b) substitution (Sub),

(c)
` �!�

`2�!2�
(RR2) and ` �!�

`3�!3�
(RR3).

Our goal is that by extending from the weakest logic IntK23, we investigate what

properties each logic has, and determine which logic is the best in some sense.

In relation to IntK23, we note some remarks. It is easily seen that the converses

2(p ^ q)! (2p ^2q) and (3p _3q)! 3(p _ q) of (2) are derivable in IntK23.

We can take alternative de�nitions. For example, Axiom (2p ^ 2q) ! 2(p ^ q) is

equivalent to the formula 2(p ! q) ! (2p ! 2q). The rule of inference (RR2) is

equivalent to the rule of inference ` �

`3�
(RN) under the formula 2(p! q)! (2p! 2q).

But operator 3 is deferent. Axiom 3(p _ q) ! (3p _ 3q) is not equivalent to the

formula 3(p ! q) ! (3p ! 3q). The rule of inference (RR3) is not equivalent to the

rule of inference ` �

`3�
even under the formula 3(p! q)! (3p! 3q).

A set L of formulas of L23 is said an intuitionistic modal logic if L contains IntK23

and is closed under the rules of inference (a){(c). We denote by NExtIntK23 the set of

all normal intuitionistic modal logics. Moreover, for a intuitionistic modal logic L, We

denote by NExtL the set of all normal intuitionistic modal logics containing L.
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Let Li be any logics or sets of formulas. We denote by
M

i2I

Li the smallest logic which

contains all of Li's.

Then, it is easy to see that (NExtIntK23;�;\) forms a complete lattice.

In Chapter 4, we will investigate the property of (NExtIntK23;�;\) further.
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Chapter 2

Preliminaries

In this chapter we study two type semantics of intuitionistic modal logics, which has been

investigated [21][15].

2.1 Algebraic semantics

First we well introduce algebraic semantics for intuitionistic modal logics. By translating

the language of logic into that of algebra, we will get algebraic semantics which will be

an adequate semantics for these logics.

De�nition 2.1 ([21]) An algebra A = (A;2;3) is called a 23-modal Heyting algebra

if the following conditions are satis�ed.

(1) A is a Heyting algebra,

(2) 2(a ^ b) = 2a ^ 2b and 3(a _ b) = 3a _3b,

(3) 2> = > and 3? = ?.

By m23HA , we denote the variety of all 23-modal Heyting algebras.

Notice that from (ii) 2 and 3 are monotone operators, i.e.

(1) a � b) 2a � 2b ,

(2) a � b) 3a � 3b .

De�nition 2.2 ([21])

(1) A valuation v on a modal Heyting algebra A is a function : Form(L23)! A which

satis�es the following conditions;

(i) v(?) = ?,

(ii) v(� ^ �) = v(�) ^ v(�),
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(iii) v(� _ �) = v(�) _ v(�),

(iv) v(�! �) = v(�)! v(�),

(v) v(2�) = 2v(�),

(vi) v(3�) = 3v(�).

(2) For any � 2 Form(L23), any A 2m23HA and any valuation v on A,

� is true in A under v (in symbol, (A; v) j= �) if v(�) = > .

(3) For any � 2 Form(L23) and any A 2m23HA ,

� is valid in A (in symbol, A j= � ) if v(�) = > for any valuation v on A .

(4) For any � 2 Form(L23) and any class K �m23HA ,

� is valid in K (in symbol, K j= �) if A j= � for any A in K.

Note that the values of a given valuation v is uniquely determined only by its values

of propositional variables.

When A is a Boolean algebra, by taking 3 = :2:, A is a (classical) modal algebra.

Proposition 2.3

(1) Let A be a 23-modal Heyting algebra. The set of formulas which are valid in A is

an intuitionistic modal logic.

(2) Let K be a class of 23-modal Heyting algebras. The set of formulas which are valid

in all algebras in K is an intuitionistic modal logic.

So these logics are called the logic characterized by A and the logic characterized by

K and denoted by L(A) and L(K), respectively.

Proof. Since L(K) =
\

A2K

L(A) , it's enough to show (1). Let v be any valuation on

A. v((2p ^ 2q)! 2(p ^ q)) = (2v(p) ^ 2v(q))! 2(v(p) ^ v(q)) = >.

Next, suppose v(� ! �) = >. Then since v(�) � v(�),by monotonicity 2v(�) �

2v(�).Therefore v(2� ! 2�) = >. The other axioms and rules can be proved in the

same way.

Let K be a class of 23-modal Heyting algebra. Then, H(K), S(K) and P (K) denote

the class of all homomorphic images of algebras from K, the class of all subalgebras of

algebras from K and the class of all direct products of algebras from K, respectively.

When H(K) = S(K) = P (K) = K holds, K is said to be a variety . It is well-

known that K is a variety i� HSP (K) = K, because SH(K) � HS(K);PH(K) �

HP (K);PS(K) � SP (K)[17].

We denote by �(m23HA ) the set of all subvarieties of m23HA .

Proposition 2.4 The set (�(m23HA );_;^) forms a complete lattice, where K1 _ K2

is HSP (K1 [K2) and K1 ^ K2 is K1 \ K2.

6



Proof. It is easy to see that (�(m23HA );_;^) is closed with respect to in�nite inter-

sections and HSP (
[

i2I

Ki) is the least variety containing all Ki's.

The following proposition holds, like the case of (classical) modal algebra.

Proposition 2.5 Suppose that A and B are 23-modal Heyting algebras.

(1) If B is a homomorphic image of A, then L(A) � L(B).

(2) If B is a subalgebra of A, then L(A) � L(B).

(3) If A is a direct product of fAigi2I , then L(A) =
\

i2I

L(Ai).

Proof. (1). Let f be the homomorphism of A onto B. There exists a map g of B

to A such that f � g = idB . For each valuation v on B, de�ne the valuation vA on A

by g � v(p) for each propositional variable p. Then we have f (vA(�)) = v(�) for every

formula �. So, if vA = > then v(�) = >. Thus, we have (1).

(2). If B is a subalgebra of A, any valuation on B is also a valuation on A.

(3). Let v be a valuation on A. Since the projection �i is a homomorphism of A onto

Ai, �i � v is a valuation on Ai. Moreover, the valuation v can be represented (�i � v)i2I .

Thus, we have L(A) �
\

i2I

L(Ai). The Converse direction follows from (1).

Corollary 2.6 For a given L 2 NExtIntK23, let K(L) be fA 2 m23HA ;A j= Lg.

Then, K(L) is a variety.

Our algebraic semantics is adequate, since the following theorem holds.

Theorem 2.7 (Completeness) For any L 2 NExtIntK23; L ` � i� K(L) j= �.

It is clear that L ` � implies K(L) j= �. To prove the converse, we de�ne the algebra

AL called the Lindenbaum algebra of a logic L 2 NExtIntK23. First given a logic L,

de�ne a congruence relation �L on formulas by taking

� �L � i� L ` (�! �) ^ (� �)

Then the Lindenbaum algebra AL = (Form(L23)=�L
;^;_;!;?;2;3) is constructed by

taking

Form(L23)=�L
:= fj�jL; � a formula g;

j�jL ^ j�jL := j� ^ �jL;

j�jL _ j�jL := j� _ �jL;

j�jL ! j�jL := j�! �jL;

? := j?jL;

2j�jL := j2�jL;

3j�jL := j3�jL:
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The fact that AL is indeed a modal Heyting algebra is easily shown by using the axioms

and rules of IntK23. Also, > of AL consists of all provable formulas. Now, de�ne a

valuation vL by

vL(�) = j�jL; for each formula �:

Then we have

vL(�) = > i� � 2 L:

Furthermore, for each valuation v on AL, v(�) is j�jL for some substitution instance �

of �. So, in particular if � 2 L then vL(�) = j�jL = >. Thus, AL validates L. Now

suppose that L 6` �. Then vL(�) 6= > and AL 2 K(L). Thus, K(L) 6j= � The proof of

completeness theorem is completed.

Proposition 2.8

(1) For any L 2 NExtIntK23; L(K(L)) = L.

(2) For any K 2 �(m23HA ); K(L(K)) = K.

(3) For any L1; L2 2 �(IntK23), L1 � L2 i� K(L2) � K(L1)

Proof. (1). This is the completeness theorem itself.

(2). By Birkho�'s theorem [3], any variety K is of the form K(L) for some logic L, so

that

K(L(K)) = K(L(K(L))) = K(L) = K.

(3). By the de�nition, both K(�) and L(�) are monotone decreasing.

Since (dually) order isomorphic implies (dually) lattice isomorphic, we have following

corollary.

Corollary 2.9 NExtIntK23 is dually isomorphic to �(m23HA ).

2.2 Kripke type semantics

In this section we will consider Kripke-type semantics for intuitionistic modal logics.

De�nition 2.10 ([21][15])

(1) A structure F = (W;R;R2; R3) is called an intuitionistic modal frame if the fol-

lowing conditions are satis�ed.

(i) W 6= ;,

(ii) R : a partial order on W ,

(iii) R2; R3: binary relations on W ,

(iv) R�R2 �R = R2, where R1 �R2 is the relational product of R1; R2 de�ned

by x(R1 � R2)y i� there is a z such that xR1z&zR2y.
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(v) R�1 � R3 �R
�1 = R3, where R�1 is the reverse of R.

(2) CONW is the set of all cones of W , i.e. CONW = fV � W ; (x 2 V & xRy) )

y 2 V g

(3) A valuation v on F is a function : Form(L23) ! CONWwhich satis�es the fol-

lowing conditions

(i) v(?) = ;,

(ii) v(� ^ �) = v(�) \ v(�),

(iii) v(� _ �) = v(�) [ v(�),

(iv) v(�! �) = fx 2 W ;8y((xRy & y 2 v(�))) y 2 v(�))g,

(v) v(2�) = fx 2W ;8y(xR2y ) y 2 v(�))g,

(vi) v(3�) = fx 2W ;9y(xR3y and y 2 v(�))g.

(4) A pairM = (F ; v) of F 2 IMF and a valuation v on F is called a model.

(5) For any � 2 Form(L23), any model M and any x 2 W;� is true at x in M (in

simbol, (M; x) j= � or simply x j= � ifM is understood) if x 2 v(�) .

(6) For any � 2 Form(L23) and any modelM; � is true in M (in simbol,M j= �) if

W = v(�).

(7) For any � 2 Form(L23) and any F 2 IMF , � is valid in F (in simbol, F j= �) if

W = v(�) for any valuation v on F .

Note that the values of a given valuation v is uniquely determined only by its values

of propositional variables.

We denote by IMF the set of all intuitionistic modal frames.

Proposition 2.11 (1) Let F be an intuitionistic modal frame. The set of formulas

which are valid in F is an intuitionistic modal logic.

(2) Let C be a class of intuitionistic modal frames. The set of formulas which are valid

in all frames in C is an intuitionistic modal logic.

So these logics are called the logic characterized by F and the logic characterized by

C and denoted by L(F) and L(C), respectively.

Proof. Since L(C) =
\

F2C

L(F) , it's enough to show (1). Let v be any valuation on

F . If xRy, y j= 2p and y j= 2q then z j= p and z j= q for any z such that yR2z. Hence

x j= (2p ^2q)! 2(p ^ q) at any x.

Next, suppose x j= p ! q. If xRyR2z and y j= 2p then z j= p and hence z j= 2q. So,

y j= 2q. Therefore x j= 2p! 2q. The other axioms and rules can be proved in the same
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way.

We denote by 2n� and 3n� the formulas 2 � � �2| {z }
n

� and 3 � � �3| {z }
n

�, respectively. When

n = 0, we de�ne that both 20� and 30� are just �. We denote also by 2(n)� and 3(n)�

the formulas 20 ^ � � � ^ 2n� and 30 _ � � � _ 3n�, respectively. In particular, we denote

2
(1)� and 3(1)� by 2+� and 3+�, respectively.

On the other hand, for n > 0 we denote R2 � � � � � R2| {z }
n

and R3 � � � � � R3| {z }
n

by Rn
2
and

Rn
3
, respectively. We understand R0

2
and R0

3
as R and R�1, respectively. We denote also

by R(n)
2

and R(n)
3

the binary relations R0
2
[ � � � [ Rn

2
and R0

3
[ � � � [ Rn

3
, respectively. In

particular,we denote R(1)
2

and R(1)
3

by R+
2
and R+

3
, respectively.

The binary relation Ŝ denotes the transitive closure
[

n>0

Sn of a given binary relation

S.

The frames validating a number of formulas are characterized as follows.

Proposition 2.12 ([15]) For any intuitionistic modal frame F , F validates each for-

mula in the following list i� F satis�es the condition of the list .

2(p! q)! (3p! 3q) yR3x) 9z(xRz & yR3z & yR2z) (2.1)

3(p! q)! (2p! 3q) yR3x) 9z(xRz & yR3z & yR2z) (2.2)

(3p! 2q)! 2(p! q) xR2y ) 9z(xRz & zR3y & zR2y) (2.3)

2
+(p! q)! (3p! 3q) yR3x) 9z(xRz & yR3z & yR+

2
z) (2.4)

2
(m)(p! q)! (3p! 3q) yR3x) 9z(xRz & yR3z & yR(m)

2
z) (2.5)

2p! p R2 : reflexive (2.6)

p! 3p R3 : reflexive (2.7)

2p! 22p R2 : transitive (2.8)

33p! 3p R3 : transitive (2.9)

3
k
2
lp! 2

m
3
np (xRm

2
y & xRk

3
z)) 9u(yRn

3
u & zRl

2
u) (2.10)

2p _ 2:2p (xR2y & xR2z)) yR2z (2.11)

2(2p _ q)! (2p _ 2q) (xR2y & xR2z)) 9u(xR2u & uRz & uR2y)(2.12)

2(2p! q) _ 2(2q ! p) (xR2y & xR2z)) (yR2z or zR2y) (2.13)

Proof. We will take up several of them. The rest can be checked similarly.

(2.5). Suppose thatM = (F ; v) is a countermodel for it. Then y j= 2(m)(p! q) and

y j= 3p and y 6j= 3q, for some y in F . Since x j= p for some x such that yR3x, if there

exist z and number n such that xRz, yR3z, yR
n
2
z and 0 � n � m, then we have z j= p

and z j= p ! q. Hence z j= q. This is a contradiction. Conversely, suppose that there
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are x; y such that yR3x and there is no point z for which xRz, yR3z and yR
(m)
2
z. De�ne

a valuation v in F by taking v(p) = fw;xRwg; v(q) = fw;xRw & yR(m)
2
wg. Then for

any n : 0 � n � m if xRn
2
w and w j= p then w j= q. Hence y j= 2(p ! q). we can also

show y j= 3p and y 6j= 3q, since x j= p and there is no point z for which yR3z, xRz and

yR(m)
2
z. Thus, y 6j= 2(p! q)! (3p! 3q).

(2.10). Suppose that M = (F ; v) is a countermodel for it. Then x j= 3
k
2
lp and

x 6j= 2
m
3
np, for some x in F . Hence there are y; z such that xRm

2
y, y 6j= 3

np and

xRk
3
z, z j= 2

lp. If there is u such that yRn
3
u and zRl

2
u then this is a contradiction.

Conversely, suppose that there are x; y; z such that xRm
2
y, xRk

3
z and there is no point

u for which yRn
3
u and zRl

2
u. De�ne a valuation v in F by taking v(p) = fw; zRl

2
wg.

Then we can show z j= 2lp and y 6j= 3np, whence x j= 3k
2
lp and x 6j= 2

m
3
np. Thus,

x 6j= 3k
2
lp! 2

m
3
np.

(2.12). Suppose that M = (F ; v) is a countermodel for it. Then x j= 2(2p _ q)

and x 6j= 2p _ 2q, for some x in F . Hence there are y; z such that xR2y; y 6j= p and

xR2z; z 6j= q. If there is u such that xR2u, uRz and uR2y then u 6j= 2p and u 6j= q.

Hence u 6j= 2p _ q. This is a contradiction. Conversely, suppose that there are x; y; z

such that xR2y, xR2z and there is no point u, for which xR2u, uRz and uR2y. De�ne

a valuation v in F by taking v(p) = fw;:wRyg; v(q) = fw;:wRzg. Then we can show

y 6j= p, z 6j= q and u j= 2p _ q. Indeed, there is no point u such that xR2u, u j= 2p and

u j= q. Hence x j= 2(2p _ q) and x 6j= 2p _ 2q. Thus, x 6j= 2(2p _ q)! (2p _ 2q).

De�ne several logics, by taking

IntK+
23

= IntK23 �2
+(p! q)! (3p! 3q);

IntK�
23

= IntK23 �2(p! q)! (3p! 3q);

IntK423 = IntK23 � f2p! 22p; 33p! 3pg;

IntS423 = IntK423 � f2p! p; p! 3pg;

IntS4:323 = IntS423 �2(2p! q) _ 2(2q ! p);

IntK523 = IntK23 � f32p! 2p; 3p! 23pg;

IntS523 = IntK523 � f2p! p; p! 3pg:

Then, the frames validating these logics are as follows.
IntK+

23
yR3x) 9z(xRz & yR3z & yR+

2
z)

IntK�
23

yR3x) 9z(xRz & yR3z & yR2z)

FS yR3x) 9z(xRz & yR3z & yR2z)

xR2y ) 9z(xRz & zR3y & zR2y)

IntK423 R2; R3: transitive

IntS423 R2; R3: re
exive and transitive

IntS4:323 R2; R3: re
exive and transitive

(xR2y & xR2z)) (yR2z or zR2y)

IntK523 (xR2y & xR3z)) (zR2y & yR3z)

IntS523 R3 = R�1
2

and R2 :re
exive and transitive

MIPC R3 = R�1
2

and R2 :re
exive and transitive

xR2y ) 9z(xRz & yR2z & zR2y)

11



Truth-preserving operations

In this subsection we will introduce three important operations on intuitionistic modal

frames which preserve validity.

De�nition 2.13 ([21])

(1) A frame F1 is called a generated subframe of a frame F2 if the following conditions

are satis�ed.

(i) W1 �W2,

(ii) R1 and R21
and R31

, is the restriction of R2 and R22
and R32

to W1, respec-

tively,

(iii) x 2 W1 & xR2y ) y 2 W1,

(iv) x 2 W1 & xR22
y ) y 2W1,

(v) x 2 W1 & xR32
y ) 9z 2W1 : xR31

z & yR2z.

(2) A map f : W1 ! W2 is said to be a p-morphism if

for all x 2W1; y 2 W2,

(i) f(x)R2y , 9z 2W1 : xR1z & f(z) = y,

(ii) f(x)R22
y , 9z 2W1 : xR21z & f(z) = y,

(iii) xR31
y ) f(x)R32

f(y),

(iv) f(x)R32
y ) 9z 2W1 : xR31

z & yR2f(z).

(3) A frame F1 is called reducible to a frame F2 if there exists a onto p-morphism (say

reduction) f : W1 !W2 .

(4) The frame F = (
X

i2I

Wi;
[

i2I

Ri;
[

i2I

R2i;
[

i2I

R3i) is called the disjoint union of a dis-

joint family fFi : i 2 Ig .

Note that each Fi is a generated subframe of the disjoint union of fFi : i 2 Ig.

Theorem 2.14 (Generation) Suppose F1 is a generated subframe of F2, and suppose

M1 andM2 are a model of F1 and a model of F2, respectively. If for every propositional

variable p and every x in F1

(M1; x) j= p i� (M2; x) j= p

then for every formula � and every x in F1

(M1; x) j= � i� (M2; x) j= �:
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Proof. We prove by induction on the construction of �. The basis of induction is

obvious. Let � = 3�. If (M1; x) j= 3� then there is a point y 2 W1 such that xR31
y and

(M1; y) j= �. By the induction hypothesis, (M2; y) j= �, and by (1)(ii) of De�nition 2.13,

xR32
y. Therefore (M2; x) j= 3�. Conversely, suppose (M2; x) j= 3�. Then there is a

point y 2 W2 such that xR32
y and (M2; y) j= �. By (1)(v) of De�nition 2.13, There is

z 2 W1 such that xR31
z and yR2z. Since (M2; z) j= �, by the induction hypothesis,

(M1; z) j= �, whence (M1; x) j= 3�.

The cases � = � ! 
 and � = 2� are similar, and the cases � = � ^ 
 and � = � _ 


are trivial.

Corollary 2.15 If F1 is a generated subframe of F2, then L(F2) � L(F1).

Proof. Suppose F1 6j= �. Then ((F1; v1); x) 6j= � for some v1 on F1 and x 2 F1.

De�ne a valuation v2 on F2 by taking

v2(p) := v1(p) for all propositional variables p:

By Theorem 2.14, ((F2; v2); x) 6j= �. Therefore, F2 6j= �.

Theorem 2.16 (Reduction) Suppose f is a reduction of F1 to F2, and suppose M1

and M2 are a model of F1 and a model of F2, respectively. If for every propositional

variable p and every x in F1

(M1; x) j= p i� (M2; f(x)) j= p

then for every formula � and every x in F1

(M1; x) j= � i� (M2; f(x)) j= �:

Proof. We prove by induction on the construction of �. The basis of induction is

obvious. Let � = 3�. If (M1; x) j= 3� then there is a point y 2 W1 such that xR31
y

and (M1; y) j= �. By the induction hypothesis, (M2; f(y)) j= �, and by (2)(iii) of De�ni-

tion 2.13, f(x)R32
f(y). Therefore (M2; x) j= 3�. Conversely, suppose (M2; f(x)) j= 3�.

Then there is a point y 2 W2 such that f(x)R32
y and (M2; y) j= �. By (2)(iv) of De�ni-

tion 2.13, There is z 2W1 such that xR31
z and yR2f(z). Since (M2; f(z)) j= �, by the

induction hypothesis, (M1; z) j= �, whence (M1; f(x)) j= 3�.

The cases � = � ! 
 and � = 2� are similar, and the cases � = � ^ 
 and � = � _ 


are trivial.

Corollary 2.17 If F1 is reducible to F2 , then L(F1) � L(F2).
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Proof. Let f be a reduction of F1 to F2. Suppose F2 6j= �. Then ((F2; v2); f(x)) 6j= �

for some v2 on F2 and x 2 F1. De�ne a valuation v1 on F1 by taking

v1(p) := f�1(v2(p)) for all propositional variables p:

By Theorem 2.16, ((F1; v1); x) 6j= �. Therefore, F1 6j= �.

Again, as a corollary of Theorem 2.14 we have the following.

Corollary 2.18 If F is the disjoint union of a family fFi : i 2 Ig ,

then L(F) =
\

i2I

L(Fi) .

2.3 Correspondence between algebraic semantics and

Kripke type semantics

In the following, we will show the relation between modal Heyting algebras and intuition-

istic modal frames.

De�nition 2.19 ([21])

(1) The map ( � )+ : IMF !m23HA is de�ned as follows :

For any F = (W;R;R2; R3);F
+ = ( CONW;2;3), where for any a; b 2 CONW ,

(i) a _ b = a [ b,

(ii) a ^ b = a \ b,

(iii) a! b = fx 2W ; 8y 2 W (xRy & y 2 a) y 2 b)g,

(iv) 2a = fx 2W ;8y 2 W (xR2y ) y 2 a)g,

(v) 3a = fx 2W ; 9y 2 W : xR3y & y 2 ag.

We call F+ the dual of F .

(2) The map ( � )+ :m23HA ! IMF is de�ned as follows :

For any A = (A;2;3);A+ = (W;R;R2; R3), where

(i) W is the set of all prime �lters of A (PF (A) , in symbol),

(ii) xRy
def
, x � y,

(iii) xR2y
def
, 8a 2 A(2a 2 x) a 2 y),

in other words, x2 � y, where x2 := fa : 2a 2 xg,

(iv) xR3y
def
, 8a 2 A(a 2 y ) 3a 2 x),

in other words, y � x3, where x3 := fa : 3a 2 xg.

We call A+ the dual of A.

14



Proposition 2.20

(1) For every intuitionistic modal frame F , its dual F+ is modal Heyting algebra.

(2) For every modal Heyting algebra A, its dual A+ is intuitionistic modal frame.

Proof. It is routine to check our proposition. Compare (1) with Proposition 2.11.

In relation to the prime �lter, the following theorem using Zorn's Lemma is well-known.

Theorem 2.21 Let G and J be a �lter and an ideal of a distributive lattice A such that

G \ J = ;. Then there exists a prime �lter F such that G � F and F \ J = ;.

The least �lter [X) containing a given non-empty set X in a lattice A is called the

�lter generated by X and represented by

[X) = fy 2 A : x1 ^ � � � ^ xn � y; for some x1; . . . ; xn 2 Xg:

The least ideal (X] containing a given non-empty set X in a lattice A is called the

ideal generated by X and represented by

(X ] = fy 2 A : y � x1 _ � � � _ xn; for some x1; . . . ; xn 2 Xg:

Proposition 2.22 ([21])

(1) For every intuitionistic modal frame F ; F is embedded into (F+)+ .

(2) For every modal Heyting algebra A; A is embedded into (A+)
+ .

Proof. (1). Let F = (W;R;R2; R3) and (F+)+ = (W 0; R0; R0
2
; R0

3
). De�ne a map f

from W into W 0 by taking, for all x 2W

f(x) := fa 2 CONW : x 2 ag 2W 0(= PF (CONW )):

Suppose xRy. If a 2 f(x), then y 2 a since x 2 a and a 2 CONW . Therefore

a 2 f(y), whence f (x)R0f (y). Conversely, suppose f(x) � f(y). Since fz : xRzg 2 f(x),

fz : xRzg 2 f(y). Therefore y 2 fz : xRzg, whence xRy.

Suppose xR2y. If 2a 2 f (x), then y 2 a since x 2 2a. Therefore a 2 f(y),

whence f(x)R0
2
f(y). Conversely, suppose (f(x))2 � f(y). Since 2fz : xR2zg 2 f(x),

fz : xR2zg 2 f(y). Therefore y 2 fz : xR2zg, whence xR2y.

Suppose xR3y. If a 2 f(y), then x 2 3a since y 2 a. Therefore 3a 2 f(x),

whence f(x)R0
3
f(y). Conversely, suppose f(y) � (f(x))3. Since fz : yRzg 2 f (y),

3fz : yRzg 2 f(x). Therefore since x 2 3fz : yRzg, there is z such that xR3z and yRz,

whence xR3y.

(2). Let A = (A;2;3) and A = (A0;20;30). De�ne a map h from A into A0 by

taking, for all a 2 A

h(a) := fx 2 PF (A) : a 2 xg 2 A0(= CONPF (A)):
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Let a 6� b. Since there is a prime �lter z in A such that a 2 z and b =2 z by

Theorem 2.21, h(a) 6� h(b). therefore h is a injection.

Let's check that h preserves the operations. It is easy to show h preserves ^;_;?.

Suppose x 2 h(a ! b). If x � y and a 2 y, then b 2 y since a ! b 2 x. Therefore

x 2 h(a) ! h(b). Conversely, suppose x =2 h(a ! b). If a ^ c � b for some c 2 x then

c � a ! b so it is contradiction. Therefore since [x [ fag) and (fbg] are disjoint, there

is a prime �lter y such that x � y, a 2 y and b =2 y by Theorem 2.21. This means

x =2 h(a)! h(b).

Suppose x 2 h(2a). If x2 � y, then a 2 y. Therefore x 2 2h(a). Conversely, suppose

x =2 h(2a). Since the �lter x2 does not contain a, there is a prime �lter y such that

x2 � y and a =2 y by Theorem 2.21. This means x =2 2h(a).

Suppose x 2 h(3a). Since the ideal (x3)
c does not contain a, there is a prime �lter

y such that y � x3 and a 2 y by Theorem 2.21. This means x 2 3h(a). Conversely,

suppose x 2 3h(a). There is a prime �lter y such that y � x3 and h(y) 2 a. Then

3a 2 x, since a 2 y. Therefore x 2 h(3a).

Proposition 2.23

(1) For every intuitionistic modal frame F ; L(F+) = L(F).

(2) For every modal Heyting algebra A; L(A+) � L(A):

Proof. (1). By de�nition, a valuation on F is at the same time a valuation on F+.

(2). Since A is isomorphic to a subalgebra of (A+)
+ by Proposition 2.22 (2),

L((A+)
+) � L(A) by corollary 2.15. And by (1), L((A+)

+) = L(A+). Hence L(A+) �

L(A).

16



Chapter 3

Kripke completeness

On algebraic semantics we showed completenes theorem. In this chapter we will consider

two method for completenes on Kripke type semantics. One of them is the method of

canonical models, and the other is �ltration method .

De�nition 3.1 A logic L is called Kripke complete if there is a class C of frame such

that

L ` � i� C j= �:

3.1 Canonical logics

In this section, we will construct a model refuting formulas outside of L. To get Kripke

completeness of L, it is morreover necessary that this frame validate L.

De�nition 3.2

(1) Let L be a intuitionistic modal logic. A set T of formulas is said to be a L-theory if

(i) L � T ,

(ii) �; �! � 2 T ) � 2 T .

(2) A L-theory T is consistent i� ? =2 T .

(3) A L-theory T is prime i�

(i) T is consistent,

(ii) � _ � 2 T ) � 2 T or � 2 T .

De�nition 3.3

(1) Let L be a intuitionistic modal logic. The canonical frame FL = (WL; RL; R2L ; R3L)

is de�ned as follows.

(i) WL is the set of all prime L-theories,
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(ii) T1RLT2
def
, T1 � T2,

(iii) T1R2LT2
def
, 8� 2 Form(L23)(2a 2 T1 ) a 2 T2),

in other words, (T1)2 � T2, where (T1)2 := f� : 2� 2 T1g,

(iv) T1R3LT2
def
, 8� 2 Form(L23)(a 2 T2 ) 3a 2 T1),

in other words, T2 � (T1)3, where (T1)3 := f� : 3� 2 T1g.

(2) The canonical model ML = (FL; vL) is de�ned by taking, for every propositional

variable p,

vL(p) := fx 2 WL : p 2 xg:

We can regard a (prime) L-theory as a (prime) �lter of the Lindenbaum algebra AL.

Compare De�nition 3.3 with De�nition 2.19(2), and we can also consider the canonical

frame FL as the dual (AL)+ of the Lindenbaum algebraAL. Actually a map : T 7! TL :=

fj�jL : � 2 Tg is a isomorphism.

De�nition 3.4 Let L be a intuitionistic modal logic. For a given non-empty set X of

formulas, we de�ne [X) and (X ] by

[X) = f� : L ` �1 ^ � � � ^ �n ! �; for some �1; . . . ; �n 2 Xg;

(X ] = f� : L ` � ! �1 _ � � � _ �n; for some �1; . . . ; �n 2 Xg:

Therefore similarly to Theorem 2.21, the following theorem holds.

Theorem 3.5 Let L be a intuitionistic modal logic. Given non-empty sets X and Y of

formulas such that [X)\ (Y ] = ;, there exists a prime L-theory T such that X � T and

T \ Y = ;.

Theorem 3.6 LetML = (FL; vL) be the canonical model. Then for every formula �,

vL(�) = fx 2 WL : � 2 xg:

Proof. It is similar to the proof of Proposition 2.22(2), by using vL instead of h.

Theorem 3.7 For any L 2 NExtIntK23, L ` � i� ML j= �.

Proof. For any x 2 WL, L � x. So � 2 L implies x j= �. Conversely, suppose L 6` �.

By Theorem 3.5 there is a prime L-theory x such that x =2 �.

In order to show logic L is Kripke complete, it is su�cient that the canonical frame

validates L. So we call such logic L a canonical logic.
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Proposition 3.8

(1) If logic L1 is a extension of logic L2, then the canonical frame FL1 is a generated

subframe of FL2.

(2) If Li is canonical logic for every i 2 I, then
M

i2I

Li is canonical logic.

Proof. (1). Clearly WL2 contains WL1. Let x 2 WL1 and y 2 WL2 . If x � y then

L1 � y, and if x2 � y then L1 � y, too, since L1 � (L1)2. Suppose y � x3. For formula

� 2 y and formula �, if � ! � 2 L1 then 3� 2 x since 3� ! 3� 2 L1 � x. Therefore

since [L1 [ y) � x3, by Theorem 3.5 there is z 2 WL1 such that z � x3 and y � z.

(2). By (1), F�Li is a generated subframe of FLi for every i 2 I. Since FLi j= Li,

F�Li j= Li by Corollary 2.15. Thus, F�Li j=
M

i2I

Li

Theorem 3.9 ([15][21]) IntK23�� is a canonical logic , if � consists of some formulas

in the following list.

2(p! q)! (3p! 3q); (3.1)

3(p! q)! (2p! 3q); (3.2)

(3p! 2q)! 2(p! q); (3.3)

2
+(p! q)! (3p! 3q); (3.4)

2
(m)(p! q)! (3p! 3q); (3.5)

2p! p; (3.6)

p! 3p; (3.7)

2p! 22p; (3.8)

33p! 3p; (3.9)

3
k
2
lp! 2

m
3
np; (3.10)

2p _ 2:2p; (3.11)

2(2p _ q)! (2p _2q) (3.12)

2(2p! q) _ 2(2q ! p) (3.13)

Therefore, IntK23 � � is Kripke complete.

Proof. We are not going to check all these and take up what is shown in Proposi-

tion 2.12. The rest can be checked similarly.

(3.5). Let 2(m)(p ! q) ! (3p ! 3q) 2 L, and show that the canonical frame FL
satis�es the condition of (2.5), i.e.

x � y3 ) 9z9n(x � z & z � y3 & y2n � z & 0 � n � m):
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Suppose x � y3. Then we will show [x[ y2n) � y3 for some n. Suppose otherwise. Then

there are formulas �0; . . . ; �m; �0; . . . ; �m; 
0; . . . ; 
m such that �n 2 x, 2
n�n 2 y;3
 =2 y

and �n ^ �n ! 
n 2 L. Since

(�0 _ � � � _ �m)! ((�0 ^ � � � ^ �m)! (
0 _ � � � _ 
m)) 2 L;

hence,

2
n(�0 _ � � � _ �m)! 2

n((�0 ^ � � � ^ �m)! (
0 _ � � � _ 
m)) 2 L:

Since 2n�n 2 y implies 2
n(�0 _ � � � _ �m) 2 y, hence,

2
n((�0 ^ � � � ^ �m)! (
0 _ � � � _ 
m)) 2 y:

Since also

2
(m)((�0 ^ � � � ^ �m)! (
0 _ � � � _ 
m)) 2 y;

hence,

3(�0 ^ � � � ^ �m)! 3(
0 _ � � � _ 
m) 2 y;

by using the axiom (3.5). Since �0^� � �^�m 2 x and x � y3, hence, 3(�0^� � �^�m) 2 y.

Therefore

3
0 _ � � � _3
m 2 y:

This is a contradiction. Thus we have [x[ y2n) � y3 for some n. Therefore Theorem 3.5

guarantees the existence of L-theory z such that x � z, z � y3 and y2n � z for some n.

(3.10). Let 3k
2
lp! 2

m
3
np 2 L, for some k; l;m; n � 0, and show that the canonical

frame FL satis�es the condition of (2.10), i.e.

(x2m � y & z � x3k)) 9u(u � y3n & z2l � u):

Suppose x2m � y and z � x3k . Hence, x2m3n � y3n and z2l � x3k2l . On the other hand

x3k2l � x2m3n since 3k
2
l� ! 2

m
3
n� 2 x. Thus z2l � y3n . Therefore Theorem 3.5

guarantees the existence of L-theory u such that u � y3n and z2l � u.

(3.12). Let 2(2p_q)! (2p_2q) 2 L, and show that the canonical frame FL satis�es

the condition of (2.12), i.e.

(x2 � y & x2 � z)) 9u(x2 � u & u � z & u2 � y):

Suppose x2 � y and x2 � z. Then we will show x2 \ (f2� : � =2 yg [ zc] = ;. Suppose

otherwise. Then there are formulas �; �1; . . . ; �n; 
 such that 2�n 2 x, �1; . . . ; �n =2 y


 =2 z, and

�! 2�1 _ . . . _ 2�n _ 
 2 L:

Since

2�! 2(2�1 _ . . . _ 2�n _ 
) 2 L;

hence,

2(2�1 _ . . . _ 2�n _ 
) 2 x:
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So, by using the axiom (3.12),

2�1 _ 2(�2 _ . . . _ 2�n _ 
) 2 x:

By iterating this,

2�1 _ �2 _ . . . _ 2�n _ 2
 2 x:

Therefore, 2�i 2 x for some i or 2
 2 x. In both cases, this implies a contradiction. Thus

we have x2 \ (f2� : � =2 yg [ zc] = ;. Therefore Theorem 3.5 guarantees the existence

of L-theory u such that x2 � u, u � z and u \ f2� : � =2 yg = ;. The third condition

implies u2 � y.

Corollary 3.10 In particular, IntK23, IntK
+
23

, IntK�
23

, FS, IntK423, IntS423,

IntS4:323, IntK523, IntS523 and MIPC are Kripke complete.

3.2 Finite model property

The canonical model of L refutes all the formulas which do not belong to L. It contains

continuum many points. But it is better that �nite frame refutes all the formulas which

do not belong to L. The logic L is said �nitely axiomatizable if L = IntK23�� for some

�nite set � of formulas.

If L is moreover �nitely axiomatizable, then it is decidable.

De�nition 3.11 A logic L enjoys the �nite model property if for every non-theorem '

of L, there exists a �nite frame F such that F j= L and F 6j= ':

In the following, we will show some logic enjoys the �nite model property by using

�ltration method.

De�nition 3.12 (Filtration)

(1) LetM be a model and � be a set of formulas closed under subformulas, i.e., Sub' �

� whenever ' 2 �, where Sub' is the set of all subformulas of '. We de�ne an

equivalence relation �� on W , by taking

x �� y
def
, (M; x) j= ' i� (M; y) j= ' , for every ' 2 �;

and we say x; y are �-equivalent in M. We denote by [x]� the equivalence class

generated by x. We write simply [x] if understood.

(2) A model M� = (W�; R�; R2�; R3�; v�) is called a �ltration of M through � if

the following conditions are satis�ed.

(i) W� = f[x] : x 2Wg,
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(ii) v�(p) = f[x] : x 2 v(p)g; for every propositional variable p 2 �,

(iii) xRy implies [x]R�[y], for all x; y 2 W ,

(iv) xR2y implies [x]R2�[y], for all x; y 2 W ,

(v) xR3y implies [x]R3�[y], for all x; y 2 W ,

(vi) if [x]R�[y] then y j= ' whenever x j= ', for x; y 2W and ' 2 �,

(vii) if [x]R2�[y] then y j= ' whenever x j= 2', for x; y 2W and 2' 2 �,

(viii) if [x]R3�[y] then x j= 3' whenever y j= ', for x; y 2 W and 3' 2 �.

Theorem 3.13 (Filtration)

Let M� be a �ltration of a model M through a set � of formulas. Then for every x

inM and every formula ' 2 �,

(M; x) j= ', (M�; [x]) j= ':

Proof. we prove by induction on the construction of ': The basis of induction follows

from (ii). Now let ' =  ! � 2 �. Suppose x j=  ! �, [x]R�[y] and [y] j=  . Then,

by (vi), y j=  ! � and, by the induction hypothesis, y j=  . Hence, y j= �, again by the

induction hypothesis, [y] j= �. Thus, [x] j=  ! �. Conversely, suppose [x] j=  ! �,

xRy and y j=  . Then, by (iii), [x]R�[y] and, by the induction hypothesis, [y] j=  .

Hence, [y] j= �, again by the induction hypothesis, y j= �. Thus, x j=  ! �.

Next let ' = 2 2 �. Suppose x j= 2 and [x]R2�[y]. Then, by (vii), y j=  and,

by the induction hypothesis, [y] j=  . Thus, [x] j= 2 . Conversely, suppose [x] j= 2 

and xRy. Then, by (iv), [x]R2�[y] and so [y] j=  . Hence, by the induction hypothesis,

y j=  . Thus, x j= 2 .

Let ' = 3 2 �. Suppose x j= 2 . Then, there is y such that xR3y and y j=  .

Hence, by (v), [x]R3�[y] and, by the induction hypothesis, [y] j=  . Thus, [x] j= 3 .

Conversely, suppose [x] j= 3 . Then, there is [y] such that [x]R3�[y] and [y] j=  .

Hence, by the induction hypothesis, y j=  and, by (viii), x j= 3 .

In general, the conditions (iii){(viii) do not determine the binary relations uniquely.

Actually, they allow us to choose any relations R�; R2�; R3� in the interval R� � R� �

R�, R2� � R2� � R2�, R3� � R3� � R3�, where

R� = f([x]; [y]) : 9x0; y0(x �� x0 & y �� y
0 & x0Ry0)g;

R2� = f([x]; [y]) : 9x0; y0(x �� x0 & y �� y
0 & x0R2y

0)g;

R3� = f([x]; [y]) : 9x0; y0(x �� x0 & y �� y
0 & x0R3y

0)g;

R� = f([x]; [y]) : 8' 2 �(x j= ') y j= ')g;

R2� = f([x]; [y]) : 82' 2 �(x j= 2') y j= ')g;

R3� = f([x]; [y]) : 83' 2 �(y j= ') x j= 3')g:

Indeed, if [x]R�[y], [x]R2�[y] and [x]R3�[y] hold then, by (vi), (vii) and (viii),

[x]R�[y], [x]R2�[y] and [x]R3�[y], respectively. And if [x]R�[y], [x]R2�[y] and [x]R3�[y]
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then x0Ry0, x0R2y
0 and x0R3y

0 for some x0 2 [x]; y0 2 [y], and so, by (iii), (iv) and (v),

[x]R�[y], [x]R2�[y] and [x]R3�[y], respectively. The fact that [x]R�[y], [x]R2�[y] and

[x]R3�[y] satisfy (vi), (vii) and (viii), respectively, and [x]R�[y], [x]R2�[y] and [x]R3�[y],

satisfy (iii), (iv) and (v), respectively, follows directly from de�nition of the valuation.

De�nition 3.14 The �ltration on the frame F� = (W�; R�; R2�; R3�) is called the

�nest �ltration ofM through�,while the �ltration on the frame F� = (W�; R�; R2�; R3�)

is called the coarsest �ltration ofM through �.

If � is �nite then W� is �nite (at most 2j�j), too. So, to prove the �nite model

property, it su�ces to show the condition of the following de�nition.

De�nition 3.15 For every non-theorem ' of L and a modelM of L such thatM 6j= ',

if there exists a �ltration of M through a �nite set � containing ' such that F� j= L

then we say that L admits �ltration.

Since the following logics are sound with respect to the class of frames satisfying a

property P and their canonical frames satisfy P, to prove that they admit �ltration it is

su�cient to show that a �ltration F� ofM satisfying P through a �nite set � containing

a ' satis�es P.

Theorem 3.16 IntK23, IntK423, IntS423, IntS523 admit �ltration and so enjoy the

�nite model property.

Proof. (IntK23). LetM be a intuitionistic modal frame and � be Sub'.

First, we will check that the coarsest �ltration is intuitionistic modal frame. We need

to check whether R� is a partial order, R��R2��R� = R2�, and R
�1

� �R3��R
�1

� = R3�.

The re
exivity of R� follows from (iii). The anti-symmetry of R� follows from (vi) and

the de�nition of �-equivalent. Suppose [x]R�[y]R�[z] and  2 �. If x j=  , then

y j=  . Hence z j=  . Thus, [x]R2�[z]. Suppose [x]R�[y]R2�[z]R�[w], and 2 2 �.

If x j= 2 , then y j= 2 . Hence z j=  . So, w j=  . Thus, [x]R2�[w]. Suppose

[x]R
�1

� [y]R3�[z]R
�1

� [w], and 3 2 �. If w j=  , then z j=  . Hence y j= 3 . So,

x j= 3 . Thus, [x]R3�[w].

Next, we will consider general �ltration. The re
exivity and the anti-symmetry of R�
is shown in the same way. But, R� may be non-transitive. To construct a transitive rela-

tion we can take the transitive closure R̂�. Clearly, R̂� satis�es (iii). By the transitivity

of R�, R̂� satis�es (vi). We also take R?
2�

and R?
3�

by

R?
2� = R̂� � R2� � R̂�

and

R?
3� = R̂�1

�
�R3� � R̂

�1
�
:

It is easily shown that these satisfy (iv), (v), (vii) and (viii). The frame (W�; R̂�; R
?
2�
; R?

3�
)

is what we desire.

23



(IntK423). LetM be a R2; R3 transitive frame and

� = Sub' [ f22 : 2 2 Sub'g [ f33 : 3 2 Sub'g:

First, we will check that the coarsest �ltration is R2�; R3� transitive frame.

Suppose [x]R2�[y]R2�[z] and 2 2 �. In the case 2 2 Sub', if x j= 2 , then

x j= 22 by transitivity. Since 22 2 �, y j= 2 . Hence, z j=  . Thus, [x]R2�[z]. In

the case 2 = 22� 2 f22� : 2� 2 Sub'g, if x j= 22�, then y j= 2�, since 22� 2 �.

By transitivity, y j= 22�. Hence, z j= 2�. Thus, [x]R2�[z].

Suppose [x]R3�[y]R3�[z] and 3 2 �. In the case 3 2 Sub', if z j=  , then

y j= 3 . Since 33 2 �, x j= 33 . Hence, x j= 3 , by transitivity. Thus, [x]R3�[z].

In the case 3 = 33� 2 f33� : 3� 2 Sub'g, if z j= 3�, then y j= 33�. By

transitivity, y j= 3�. Since 33� 2 �, x j= 33�. Thus, [x]R3�[z].

Next, we will consider �nest �ltration. We take R?̂
2� and R?̂

3� by

R?̂
2� = R̂� �

d
(R2� � R̂�)

and

R?̂
3� = R̂

�1

� �
d

(R3� � R̂
�1

� ):

It is easily shown that these satisfy (iv) and (v).

Suppose [x]R2�[y], 2 2 �. Then, there exist x0; y0 such that x0 2 [x]; y0 2 [y] and

x0R2y
0. If x j= 2 , x0 j= 2 . Since R2 is transitive, y0 j= 2

+ . Hence y j= 2
+ . By

iterating this argument, for any 2 2 �, if [x]R?̂
2�[y] and x j= 2 , then y j= 2

+ .

Hence, y j= 2+ . Thus, R?̂
2� satis�es (vii).

R?̂
3� satis�es (viii) in the same way.

The frame (W�; R̂�; R
?̂
2�; R

?̂
3�) is what we desire.

(IntS423). R2 and R3 are re
exive, then by (iv) and (v), any �ltration R2� and

R3� are re
exive, respectively. Moreover, R?̂
2� = R̂2� and R?̂

3� = R̂3�.

(IntS523). LetM be a R2; R3 re
exive transitive frame such that R2 = R�1
3
. Put

� = Sub' [ f22 ;32 : 2 2 Sub'g [ f33 ;23 : 3 2 Sub'g:

First, we will check that the coarsest �ltration satisfy R2� = R
�1

3�. Notice that by

properties of IntS523, if  = 2� or 3� for some � then

x j=  i� x j= 2 i� x j= 3 :

Suppose [x]R2�[y] and 3 2 �. In the case 3 2 Sub', if x j=  , then by the re
exivity

of R3, x j= 3 . Hence, x j= 23 . So, since 23 2 �, y j= 3 . Thus, [y]R3�[x]. In

the case 3 2 f22 ;32 : 2 2 Sub'g [ f33 ;23 : 3 2 Sub'g, if x j=  , then

x j= 2 . Since 2 2 �, y j=  . Hence, y j= 3 . Thus, [y]R3�[x].

Suppose [x]R3�[y] and 2 2 �. In the case 2 2 Sub', if y j= 2 , then x j= 32 ,

since 32 2 �. Hence, x j= 2 . By the re
exivity of R2, x j=  . Thus, [y]R2�[x]. In

the case 3 2 f22 ;32 : 2 2 Sub'g [ f33 ;23 : 3 2 Sub'g, if y j= 2 ,

then y j=  . Since 3 2 �, x j= 3 . Hence, x j=  . Thus, [y]R3�[x].
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Next, we will consider �nest �ltration. Since it is easily seen that R3� = R�1

3�
, so

R̂2� = R̂
�1

3�
.

Therefore, the frame (W�; R̂�; R̂2�; R̂3�) is what we desire.

Remark So far, we have treated the logics of L23. But, if we restrict the modal

operators only to 2 operator, Some logics can admit �ltration. For example, we fail to

show that IntS4:323 admits �ltration. But IntS4:32 on which the modal operator is

restricted to 2 operator admits �ltration, because we can take 2-rooted countermodel.
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Chapter 4

Algebraic properties

As previously stated, (NExtIntK23;�;\) and its dually isomorphic (�(m23HA );_;^)

are complete lattices. In this chapter, we will further investigate properties about them

for example, distributivity.

4.1 The deduction theorem

Unfortunately, IntK23 have bad properties. The deduction theorem which implies dis-

tributivity does not hold for IntK23. Recall that a derivation of ' from assumption �

is a sequence '1; . . . ; 'n of formulas such that 'n = ' and for every i, 1 � i � n, 'i is

either an axiom, an assumption or obtained from some of the preceding formulas in the

sequence by one of the inference rules. The deduction theorem for modal logic L is as

follows.

The deduction theorem for modal logic L

Suppose �;  ` ' and there exists a derivation of ' from the assumptions �[ f g.

Then

�;  ` ' i� � ` 2(k) ! '; for some k 2N

The deduction theorem for intuitionistic modal logic L holds under the following con-

dition.

Theorem 4.1 (Bezhanishvili and Hasimoto) For any L 2 NExtIntK23 ,

L enjoys the deduction theorem i�

` 2(m)(p! q)! (3p! 3q); for some m 2N

Proof. Suppose the deduction theorem holds. Since p! q ` 3p! 3q, so

` 2(m)(p ! q) ! (3p ! 3q); for some m 2 N . Conversely, we consider a derivation

'1; . . . ; 'n of ' from � [ f g, and show by induction on i that

� ` 2(mi) ! 'i; for some mi 2N :
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The cases when 'i is a substitution instance of an axiom 'j or belongs to � [ f g and

obtained from MP or RR2 are justi�ed in the same way as in classical modal logic.

Suppose 'i = 3'j ! 3'k is obtained from 'j ! 'k by RR3. Then, by the induction

hypothesis,

� ` 2(m1) ! ('j ! 'k); for some m1 2N :

Hence,

� ` 2(m1+m) ! 2
(m)('j ! 'k):

Thus,

� ` 2(m1+m) ! 3('j ! 'k):

Corollary 4.2 IntK�
23

enjoys the deduction theorem.

4.2 Filters and congruences

We consider this in the algebraic point of view. In this situation, 3 is neglected in some

sence. Hence, we can use the theory of the algebra with 2.

De�nition 4.3 A �lter F in a modal Heyting algebra A is said to be a 2-�lter if

a! b 2 F implies 2a! 2b 2 F:

If F also satis�es

a! b 2 F implies 3a! 3b 2 F;

then F is said to be a modal �lter. We denote by F 2(A) and FM (A) all 2-�lters and

all modal �lters in A , respectively.

It is easily seen that if a �lter F in a modal Heyting algebra A with 2(a ! b) �

3a! 3b (or 2(n)(a! b) � 3a! 3b, for some n 2N ), then,

F is a modal �lter i� F is a 2-�lter (c.f. Theorem 4.1).

By m�
23
HA , we denote the variety of all modal Heyting algebras with 2(a ! b) �

3a! 3b. For n 2N , we denote bym(n)
23
HA , the variety of all modal Heyting algebras

with 2(n)(a! b) � 3a! 3b.

Proposition 4.4 For anyA 2m23HA , the set (FM(A);_;\) forms a complete lattice,

where F1_F2 is the smallest modal �lter containing F1 and F2. And the set (F 2(A);_;\)

forms a complete distributive lattice, where F1 _ F2 is the smallest 2-�lter containing F1

and F2.
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Proof. We will show the distributivity. Since F1 _ F2 is [F1 [ F2) in 2-�lters, we will

show [F1[F2)\F3 � [(F1\F3)[ (F2\F3)). Suppose a 2 F3 such that b^ c � a for some

b 2 F1 and c 2 F2. Then, (b _ a)^ (c _ a) � a. Since b_ a 2 F1 \ F3 and c _ a 2 F2 \ F3,

a 2 [(F1 \ F3) [ (F2 \ F3)).

For any A 2 m23HA , we denote by �(A) the set of all congruence relations on A.

Proposition 4.5 For any A 2 m23HA , the set (�(A);_;\) forms a complete dis-

tributive lattice, where �1 _ �2 is the smallest congruence relation containing �1 and �2.

Proof. We will show the distributivity. It is easily seen that �1 _ �2 =
d(�1[�2): So

if a((�1 _ �2) \ �3)b, then there is sequence a = z0; z1; . . . ; zn = b such that a�3b and

z0�1z1�2 . . . �nzn, for �i = �1 or �2. De�ne

m(a; b; zi) := (a ^ b) _ (b ^ zi) _ (zi ^ a):

Then m(a; b; a) = a and m(a; b; b) = b. If z�iz
0 then m(a; b; z)�im(a; b; z0). We claim that

a�3b implies m(a; b; z)�3m(a; b; z0). Suppose a�3b. Then, a_(z^a)�3(a^b)_(z^a). Since

(z^a)�3(z^b) also holds, a_(z^a)�3(a^b)_(z^b)_(z^a). Hence, a�3m(a; b; z). Therefore,

m(a; b; z)�3m(a; b; z0). Thus, there is sequence a = m(a; b; z0);m(a; b; z1); . . . ;m(a; b; zn) =

b such that m(a; b; z0)(�1 \ �3)m(a; b; z1)(�2 \ �3) . . . (�n \ �3)m(a; b; zn). Therefore,

a((�1 \ �3) _ (�2 \ �3))b

The correspondence between these complete distributive lattices is as follows.

Theorem 4.6 Suppose A 2 m�
23
HA (or m(n)

23
HA for some n 2N ). Then the map

F 7! �F := f(a; b) : (a! b) ^ (b! a) 2 Fg

is an isomorphism from (FM (A);_;\) onto (�(A);_;\). Here the inverse map from

(�(A);_;\) onto (FM (A);_;\) is given by

� 7! F� := fa 2 A : a�>g:

Proof. By the de�nition, the monotonicities of both maps are clear. The relation �F
is an equivalence relation which is compatible with ^;_ and !. We will show that it is

compatible with 2 and 3. Suppose a�F b. Then, a ! b 2 F and b ! a 2 F . Hence,

2a ! 2b 2 F , 2b ! 2a 2 F , 3a ! 3b 2 F and 3b ! 3a 2 F . Thus, 2a �F2b

and 3a �F3b. It is easily seen that F� is a �lter. We will show that it is a 2-�lter,

which implies that it is a modal �lter. Suppose a ! b 2 F�. Then, a ! b�>. Hence,

2(a ! b) �2>. Therefore, 2a ! 2b �>. Thus, 2a ! 2b 2 F�. We will show that

F�F = F . By the de�nition, a 2 F�F i� a�F> i� (a ! >) ^ (> ! a) 2 F i� a 2 F .

We will show that �F� = �. By the de�nition,

a�F�b i� (a! b) ^ (b! a) 2 F�

i� (a! b) ^ (b! a)�>

i� a! b � > & b! a � >

i� a�a _ b & b�a _ b

i� a�b
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4.3 Congruence distributivity

In Proposition 4.5 we showed �(A) is distributive.

De�nition 4.7 A variety K is congruence distributive if for every A2 K, �(A) is dis-

tributive.

This property is useful. Recall that an algebra A is subdirectly irreducible if it has a

smallest non-trivial congruence. Denote by KSI the subdirectly irreducible members of

a variety K. When a variety is congruence distributive, subdirectly irreducible algebras

play an important role because we can apply J�onsson's Lemma [10]. By using J�onsson's

Lemma,

(K1 _ K2)SI = (K1)SI [ (K2)SI

for any subvarieties K1;K2 of a congruence distributive variety K [10]. Therefore, for any

subvarieties K1;K2 and K3,

((K1 _K2) \ K3)SI = ((K1 \ K3) _ (K2 \ K3))SI :

Since the subdirectly irreducible members of a variety K determine the variety K, we have

the following.

Proposition 4.8 ([10]) If a variety K is congruence distributive then the lattice of all

subvarieties of K is distributive.

Proposition 4.9 (NExtIntK23;�;\) is a complete distributive algebraic lattice. More-

over the join in�nite distributive law

L \
M

i2I

Li =
M

i2I

(L \ Li)

holds.

Proof. It is easily veri�ed NExtIntK23 is algebraic lattice whose compact element is

�nitely axiomatizable logic. We will show join in�nite distributivity. Since NExtIntK23

is algebraic, there are compact elements L0j such that

M

j2J

L0j = L \
M

i2I

Li:
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Hence, L0j � L and L0j �
L

i2I Li: Since L
0
j is compact, there is a �nite subset I0 of I such

that L0j �
L

i2I0
Li: Therefore,

L0j � L \
M

i2I0

Li

=
M

i2I0

(L \ Li)

�
M

i2I

(L \ Li):

Thus,

L \
M

i2I

Li =
M

i2I

(L \ Li):

But the meet in�nite distributive low

L�
\

i2I

Li =
\

i2I

(L� Li)

does not hold in NExtIntK23. Indeed, suppose otherwise. Then all logics in NExtMIPC

which is a complete sublattice of NExtIntK23 enjoy �nite model property [2], which is

not the case.

4.4 Congruence extension property

De�nition 4.10 A variety K has the congruence extension property if each congruence

in a subalgebra of an algebra can be extended to a congruence of the algebra itself.

An important property of varietyK with congruence extension property is thatHS(K0) =

SH(K0), for each set K0 � K.

Theorem 4.11 The varietym�
23
HA ( andm(n)

23
HA for any n 2N) has the congruence

extension property.

Proof. Since �(A) and FM (A) are isomorphic, it is su�cient to show that each

modal �lter in a subalgebra of an algebra can be extended to a modal �lter of the algebra

itself. Suppose that A is a subalgebra of B and F is a modal �lter in A. De�ne [F ) by

taking

[F ) = fb 2 B : a � b for some a 2 Ag:

Then, [F ) is a 2-�lter (hence, modal �lter) and [F ) \ F = F .
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Theorem 4.12 The variety m23HA does not have the congruence extension property.

Proof. Denote the algebras below by A1 and A2, from left to right.

d

a

⊥

⊥

c

b a

⊥

⊥

2> = > 3> = >

2a = a 3a = a

2b = c 3b = >

2c = c 3c = c

2d = ? 3d = a

2? = ? 3? = ?

A2 is a subalgebra of A1. A1 has two congruences, namely the least one f(a; a) : a 2

A1g and the greatest one A2
1. But A2 has three congruences.

Using duality, we will see this example again. Denote the algebras below by F1 and

F2, from left to right.

□R

□R

x

y z

□RR

v

w

□RR

x 7! v

y 7! w

z 7! w

All the points are re
exive. R3 is the reverse of R2. A1 and F1 are dual each other

and A2 and F2 are dual each other. F2 is reducible to F1 by the map: x 7! v; y 7! w

and z 7! w. fwg is a generated subframe of F2. But any generated subframe of F1 is not

reducible to fwg by the restriction of the map.

This example also shows that the variety corresponding to IntS523 does not have the

congruence extension property.
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Chapter 5

Conclusions and remarks

In this thesis, we veri�ed that like the classical modal case the intuitionistic modal logics

adequate algebraic semantics, and algebraic semantics corresponds to Kripke type se-

mantics. We also veri�ed that important logics are canonical logics, so they are Kripke

complete.

We have shown that IntK23, IntK423, IntS423 and IntS523 enjoy the �nite model

property. But, in the classical modal case, it is known that much more logics enjoy the

�nite model property. For each logic, It is proved that the logic enjoys the �nite model

property, not only by the �ltration method, but by various methods | by algebraic

method and by well selecting points from frame. In the intuitionistic modal caes, owing

to 3 operator, it is more complecated. But, it is interesting future subject to invesigate

that much more logics enjoy the �nite model property.

Unfortunately, IntK23 does not satisfy the deduction theorem and does not enjoy

congruence extension property. But it seems to 3 operator is not essential in IntK�
23
.

Therefore, we have to invesigate IntK23 in the various points of view in order to see

how 3 operator behave.
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