
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
クラウドインフラ運用管理における信頼性向上のため

の、形式的検証手法の適用

Author(s) 菊池　, 慎司

Citation

Issue Date 2013-12

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/11931

Rights

Description Supervisor:平石　邦彦, 情報科学研究科, 博士

Improving Reliability in Management of Cloud

Computing Infrastructure by Formal Methods

by

Shinji Kikuchi

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Kunihiko Hiraishi

School of Information Science
Japan Advanced Institute of Science and Technology

December 18, 2013

Abstract

It has been reported that the most of failures occurred in information systems have
been caused by human errors such as misconfigurations and improper operations. There-
fore, it is the utmost importance to prevent them. Among these human errors, we con-
centrate on the misconfigurations and improper operations caused by overlooking the
constraints to be kept in the systems management and operations. By preventing the
overlooking, we can reduce the occurrence of failures and improve the reliability of in-
formation systems. As for the constraints, we consider the constraints regarding (1) the
operation executions such as ”during the live migration operation, the memory size of
virtual machines should not be over the capacity of the physical server on which these
virtual machines are running” and (2) system configurations such as ”the system should
not have a single point of failure”. We considered that by using analysis method such as
formal methods, we will be able to determine the satisfiability of these constraints in the
information systems. By feedbacking the verification results to the system administrators,
we will be able to prevent the overlooking of the constraints and improve the reliability
of system management.

In this thesis, we propose the following two approaches based on formal methods to
improve the reliability of system management.

1. Synthesis of configuration change procedure: Using model finding approach, we au-
tomatically construct the procedures for configuration changes in ICT (Information
and Communication Technology) systems. By determining the processes satisfying
declarative constraints defined beforehand, we can prevent the failures caused by
executions of configuration change procedures in which the administrators overlook
the constraint to be satisfied in the configuration change.

2. Identification of vulnerability in system configuration: Using model checking tech-
nique, we evaluate and identify the risk (e.g. single point of failure) in system
structure and configuration changes. After identifying the risks in the system, we
can determine how the configuration changes can give an impact on the vulnerabil-
ity in system management. By this evaluation, we can avoid the execution of risky
operations and prevent the occurrence of service failures.

i

Acknowledgments

The author wishes to express his sincere gratitude to his principal advisor Professor
Kunihiko Hiraishi of Japan Advenced Institute of Science and Techology for his constant
assistance and kind guidance during this work. The author would like to thank his advisor
Professor Toshiaki Aoki of Japan Advanced Institute of Science and Technology for his
helpful discussions and suggestions for sub research theme. The author also wishes to
express his thanks to Associate Professor Kazuhiro Ogata of Japan Advanced Institute
of Science and Technology for his suggestions for this work.

The author is grateful to managers of System Software Laboratories (former Cloud
Computing Research Center) at FUJITSU LABORATORIES LTD. Fellow Yoshitaka
Sakashita, Head of System Software Laboratories Mitsuhiro Kishimoto, Senior Expert
Motomitsu Adachi and Research Manager Yasuhide Matsumoto gave him their constant
encouragements and supports. His colleagues also gave him countless supports.

The author also wishes to express his gratitude to Lecturer Radu Calinescu at Uni-
versity of York for his many useful advices regarding formal methods.

Last but not least, the author would like to say a big thank you to his family; his par-
ents and brother for their support, his wife for her great encouragement for the research,
and his son for many innocent smiles that give him happiness and powers for pursuiting
innovative research every day.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Emergence of cloud computing . 1
1.2 Complexity in management of cloud computing 1
1.3 Contribution of the dissertation . 2
1.4 Structure of the dissertation . 2

2 Preliminaries 4
2.1 Cloud computing . 4
2.2 Information system management . 7
2.3 Difficulties in system management . 9
2.4 Formal verification . 10

2.4.1 Model checking . 11
2.4.2 Alloy Analyzer . 13
2.4.3 NuSMV . 13

2.5 Target domain . 14
2.5.1 Target: Management of private IaaS cloud system 14
2.5.2 Problems in system configuration changes 16
2.5.3 Characteristics of properties to be checked 17

3 Configuration change procedure synthesis 19
3.1 Difficulties in configuration change planning for a system managed by var-

ious administrators . 19
3.2 Procedure synthesis for system configurations 20

3.2.1 Architecture . 21
3.2.2 Management knowledge representation 22
3.2.3 Procedure synthesis algorithm . 29

3.3 Example synthesis of procedure for configurations 33
3.4 Evaluation of computational resource consumption 35
3.5 Discussion . 37
3.6 Summary . 38

4 Operational vulnerability evaluation 40
4.1 Problem: Misconfiguration in redundant structure 40
4.2 System, operation and vulnerability . 41

iii

4.2.1 Target systems to be analyzed by our framework 41
4.2.2 Type of failures and operations . 42
4.2.3 Operational vulnerability . 42

4.3 Construction of system model and property 44
4.3.1 Layers of components and interdependencies 45
4.3.2 State transition in a single component 46
4.3.3 State transitions propagating along with relations 48
4.3.4 Property description . 49

4.4 Demonstration of vulnerability evaluation 51
4.4.1 Translation from state model to NuSMV code 51
4.4.2 Case study scenario . 53
4.4.3 Evaluation of operational vulnerability by NuSMV 56

4.5 Discussion . 59
4.6 Summary . 60

5 Discussion 62
5.1 Practicality and limitation of the proposed approach 62
5.2 Possible application . 63
5.3 Related work . 64

5.3.1 Configuration change planning . 64
5.3.2 Configuration verification . 66
5.3.3 Advantages and disadvantages . 69

6 Conclusion and future work 71
6.1 Summary . 71
6.2 Future work . 72

References 74

Publications 84

iv

Chapter 1

Introduction

1.1 Emergence of cloud computing

Recently, the paradigm of information systems providing various services to our society
has been drastically changing. In the past, it is typical to own computing resources (e.g.
servers) in a company or a datacenter to provide services to users. However, the emergence
of virtualization technologies enabling to instantiate several virtual machines on a physical
server has opened revolutionary usages of computing resources. Data centers having
large amount of computing resources lend them to users by ”pay-as-you-go” manner.
This transition of computing resource invoke the drastic shifting from capital expenses
to operating expenses. The users of these data centers do not have to mind where their
computing resources or their data are deployed in data centers. This approach has been
called ”Cloud computing”, because in science field a large agglomeration of objects is
visually described as a cloud [6].

The emergence of cloud computing enables cloud users to start their businesses with
small capital expenditure without owning their own facilities. In addition, when their
businesses grow (or shrink), they can rent additional resources (or cease to use resources).
This kind of elasticity and convenience has attracted many users and cloud services has
been prevailing. As as result, a large number of information systems and services has
been converging into cloud data centers.

1.2 Complexity in management of cloud computing

Since cloud data centers have to accommodate massive amount of computing resources
to serve many users, the size of cloud data centers has been becoming larger and larger.
For example, it is estimated that Google owns 900,000 physical servers and Amazon owns
450,000 physical servers in their datacenter [1, 2]. In addition, while new technologies
such as virtualization has enabled new functions such as dynamic resource provisioning
and live migration, they complicates the physical and logical structure of cloud datacenter
infrastructure. This results in the difficulties in the situation awareness and the executions
of appropriate system operations and managements. As a result, serious service failures in
cloud computing services has been happening every day. For example, one of the major
outages happened in Amazon Web Services in 2011 was triggered by the execution of
improper operations [43]. Since the cloud computing services are used by many users, the

1

impact of service outage is quite enormous. From this backgroud, in the operation and
management of cloud computing infrastructure, the demand for the technologies which
can prevent service outages caused by misconfigurations or improper operations has been
increasing.

1.3 Contribution of the dissertation

The main contribution of this dissertation is to show how to improve the reliability of
operation and management for complex information systems such as cloud computing
infrastructure. While there can be various types of approach to improving the reliability,
the most typical approaches are (1) prevent misconfigurations beforehand and (2) identi-
fying existing misconfigurations (or undesirable settings). For these two approaches, we
propose and evaluate the following two techniques utilizing formal methods.

1. Synthesis of configuration change procedure

Using model finding approach, we automatically construct the procedures for config-
uration changes in ICT systems. By determining the processes satisfying declarative
constraints defined beforehand, we prevent the failures caused by executions of im-
proper configuration change procedures in which the administrators overlook the
constraints to be satisfied in the configuration change.

2. Identification of vulnerability in system configuration

Using model checking technique, we evaluate and identify the risk (e.g. single point
of failure) in system structure and configuration changes. The example of the risk
is a single point of failure. We determine how undesirable events (e.g. improper
configuration changes and component failures) can give an impact on the vulnera-
bility in system management. By this evaluation, we can pay extra attention the
execution of risky operations and prevent the occurrence of service failures.

1.4 Structure of the dissertation

The dissertation is organized as follows.
Chapter 1 (this chapter) introduces research background, problems in management

complexity of cloud computing infrastructure, contribution and structure of the disserta-
tion. Chapter 2 presents preliminaries related to cloud computing, system management
and formal methods. In Chapter 2 we define the detail of the target system and its
management to be investigated. The configuration of private cloud system and the man-
agement tasks to be focused on are presented in the chapter. It also is explained that two
types of analysis methods are proposed in this thesis: (1) designing proper configuration
change procedures and (2) evaluating the system’s robustness for improper configuration
changes. Chapter 3 explains a method of configuration change procedure synthesis using
model finder. This method synthesizes a procedure satisfying constraints regarding sys-
tem management represented by logical formula using Alloy Analyzer. Chapter 4 explains
the operational vulnerability evaluation method using model checking. To achieve this,
first we define the operational vulnerability scale representing how a system is susceptible
to undesirable events. Then we execute verification to determine which vulnerability level

2

the system is in by NuSMV model checker. Chapter 5 presents the discussion includ-
ing the application of formal methods for improving the reliabilities of tasks in system
management lifecycle and related work. Chapter 6 concludes the dissertation.

3

Chapter 2

Preliminaries

2.1 Cloud computing

Before starting the discussion of technologies for improving the reliability of cloud system
management, here we first explain the overview of cloud computing. While it is sometimes
said that the definition of cloud computing is diverse and ambiguous, there are some
common understandings. First, it is said that the person who is the first to use the
term ”cloud computing” is Eric Schmidt (CEO of Google). In Search Engine Strategies
Conference in 2006, he said as follows [3].

What’s interesting [now] is that there is an emergent new model, and you
all are here because you are part of that new model. I don’t think people have
really understood how big this opportunity really is. It starts with the premise
that the data services and architecture should be on servers. We call it cloud
computing – they should be in a ”cloud” somewhere. And that if you have
the right kind of browser or the right kind of access, it doesn’t matter whether
you have a PC or a Mac or a mobile phone or a BlackBerry or what have you
– or new devices still to be developed – you can get access to the cloud. There
are a number of companies that have benefited from that. Obviously, Google,
Yahoo!, eBay, Amazon come to mind. The computation and the data and so
forth are in the servers.

Since then, along with the emergence of cloud services such as Amazon Web Services
[4] and Google App Engine [5], the term ”cloud computing” has been becoming popular
and widely used. The idea of using various services located beyond network from local
devices can be represented by Figure 2.1.

NIST (National Institute of Standards and Technology) summarized their definition
of cloud computing as follows [7].

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction.

4

Figure 2.1: Cloud computing logical diagram (excerpt from [6])

In [7], NIST also summarizes the essential five characteristics of cloud computing as
follows.

• On-demand self-service

A consumer can unilaterally provision computing capabilities, such as
server time and network storage, as needed automatically without re-
quiring human interaction with each service provider.

• Broad network access

Capabilities are available over the network and accessed through stan-
dard mechanisms that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, tablets, laptops, and workstations).

• Resource pooling

The provider’s computing resources are pooled to serve multiple con-
sumers using a multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to consumer
demand. There is a sense of location independence in that the customer
generally has no control or knowledge over the exact location of the pro-
vided resources but may be able to specify location at a higher level of

5

abstraction (e.g., country, state, or datacenter). Examples of resources
include storage, processing, memory, and network bandwidth.

• Rapid elasticity

Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available for provisioning
often appear to be unlimited and can be appropriated in any quantity at
any time.

• Measured service

Cloud systems automatically control and optimize resource use by lever-
aging a metering capability at some level of abstraction appropriate to
the type of service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and reported,
providing transparency for both the provider and consumer of the utilized
service.

Most of these essential characteristics indicate that the cloud computing has more
dynamic nature than previous information systems. For example, on-demand self-service
nature and elasticity which can change usages and structure of (virtual) systems can make
it difficult for system administrators to understand the current situation. The difficulties
in cloud system management is discussed in Section 2.3.

NIST also defines three types of cloud service models and cloud deployment models
as follows.

Cloud service model

• IaaS (Infrastructure as a service)

The IaaS service provides computing resources such as CPU time, storages and
networks. The resources are mainly provided as virtual machines (VM). The cloud
users can deploy operating systems and applications on the VMs. While the users do
not have control over the cloud infrastructure, they can manage operating systems
and applications.

• PaaS (Platform as a service)

The PaaS offering provides environments for application development and runtime,
including programming language, its libraries and developing tools. While the cloud
users do not have control over the lower layers such as hardware settings or operating
systems, they can develop and customize their applications within the range of
development and runtime environment.

• SaaS (Software as a service)

The SaaS capability provides applications for its users. The users can access to
the applications via some interfaces (e.g. web browser and APIs). While they
cannot modify the lower layers such as applications or operating systems, they can
customize the applications within a certain level.

Cloud deployment model

6

• Private cloud

The private cloud is used by a single organization (e.g. company and university).
This offering is for users who cannot use public clouds for some reasons such as the
security for confidential data. While the organization might own and operate the
cloud system by itself, it can also outsource the management tasks to some third
parties.

• Community cloud

The community cloud is for exclusive use by a specific community sharing some
concerns (e.g. mission and policy). The cloud infrastructure can be owned and
managed by one or more of the members of the community. The management tasks
can be also outsourced to some third parties.

• Public cloud

The public cloud is for open use by the general public. The public cloud infrastruc-
ture for the general use is mainly provisioned in the cloud datacenters owned and
managed by cloud providers.

• Hybrid cloud

The hybrid cloud is a combination of different types of cloud infrastructure (private,
community, or public). For example, some organizations might use public cloud
infrastructure for the front-end of their services for some reasons such as the cost
and the elasticity of the public clouds. On the other hand, they can also use private
cloud infrastructure to store confidential data. Combining them and providing a
consistent service is one of the example of hybrid cloud approaches.

In this dissertation, we mainly discuss relatively small private IaaS cloud architec-
ture which can be used by the limited members (e.g. company employees or university
students) and provides computing resources as virtual machines.

2.2 Information system management

The process of information system management consists of various activities. In ITIL
(Information Technology Infrastructure Library) V3 [8] published by itSMF (IT Service
Management Forum)[24], the system management lifecycle is explained by the following
five stages shown in Figure 2.2.

1. Service Strategy stage

The tasks in this stage are to recognize requirements for the system from users
or system managers, and to plan strategies for service design, development and
implementation to fulfill the requirements.

2. Service Design stage

In this stage, it is needed to materialize the strategies and design the service in
detail so that the service can be implemented to the system.

7

The Business / CustomersRequirements

Strategies

Solution Designs

Transition Plans
Tested solutions

Operational Plans
Operational services

SKMS updated

Architectures
Standards

SDPs

Policies
Resource

and constraints

SLPs from
Requirements

Service
Strategy

Service
Design

Service
Transition

Service
Operation

Continual
Service
Improvement

Se
rv

ic
e

K
no

w
le

dg
e

M
an

ag
em

en
t

Sy
st

em
 (

SK
M

S)
In

cl
ud

in
g

th
e

Se
rv

ic
e

Po
rt

fo
lio

 a
nd

 S
er

vi
ce

 C
at

al
og

ue

Improvement
actions & plans

Figure 2.2: Service lifecycle (excerpt from [8])

3. Service Transition stage

Before the activation, the service is verified and evaluated to prevent failures. Then
it is implemented and activated.

4. Service Operation stage

Tasks to keep service availability (e.g. problem management) are conducted in this
stage.

5. Continual Service Improvement stage

This stage focuses on improving the service performance by assessing some perfor-
mance indices such as service level, cost and efficiency.

The techniques discussed in the dissertaion is mainly focusing on the service transition
stage. In the service transition stage, the changes designed in the service design stage
are implemented and materialized. This process mainly consists of the following three
activities.

1. Change Management

The activity to ensure that the whole change process is properly executed by con-
ducting tasks such as authorization, evaluation and recording.

2. Service Asset and Configuration Management

The activity to identify and manage the configuration items (CI) in order to keep
the integrity in the changes executed to the system.

8

Table 2.1: Top 10 Obstacles for Growth of Cloud Computing [40]
Types of obstacle

1 Availability of Service
2 Data Lock-In
3 Data Confidentiality and Auditability
4 Data Transfer Bottlenecks
5 Performance Unpredictability
6 Scalable Storage
7 Bugs in Large Distributed Systems
8 Scaling Quickly
9 Reputation Fate Sharing
10 Software Licensing

3. Knowledge Management

The activity to manage the service transition to ensure that the required changes
are implemented to the system by the right person having the right expertise, at
the right time.

The approach proposed in this dissertaion mainly focuses on Service Asset and Con-
figuration Management. In this activity, it is important to keep the integrity while some
changes are executed on a system.

2.3 Difficulties in system management

While the best practices described in ITIL and the other frameworks can help system
administrators of cloud computing infrastructure, the system administration is quite dif-
ficult task. For example, in [40] the top 10 obstacles for growth of cloud computing are
listed (Table 2.1). In this list, the most serious concern in using cloud computing is its
availability. In reality, the outages of cloud computing services happen every day. While
these outages are caused by various types of root-causes, it has been revealed that the
most dominant causes of serious problems occured in ICT systems are misconfigurations
and improper operations [10] as shown in Figure 2.3. For example, Firstserver Inc. lost
business data belonging to 5,700 customers by executing improper operations [41, 42].
Amazon Web Services halted its services because of improper configuration changes to
network paths [43].

Although it is quite difficult, cloud vendors need to avoid service faults caused by
improper administration to provide stable services to their customers as much as possible,
because cloud failures impact on user experiences and the credibility of the cloud vendors.
For example, Amazon EC2 (Amazon Elastic Compute Cloud) has to refund 10% of user
expenses for penalty if the availability of their services become less than 99.95% [9]. In
addition, if a cloud provider causes service fault frequently, it will lost their credibility
from users. As a result, its users will cease to use its services and move to other vendors.

9

Figure 2.3: Root cause distribution among the customer problems (excerpt from [10])

However, the structure of data centers has been becoming too complex for administrators
to manage by their cognitive capabilities. It is reported that over 66% of data-center staff
said their systems were too complex to manage [14]. Therefore, some methods to assist
the system administrators’ tasks by some technical approaches have been highly required.

2.4 Formal verification

Formal methods [12] are mathematical techniques for software and hardware development.
They mainly focus on improving the reliability of system designs or program codes by
identifying flaws hidden in them by executing verification. They can be used throughout
the process of software/hardware development. Recently, formal methods have been be-
ginning to be applied for the testing and verification of information systems used in our
society. For example, in 1998 B-Method[67] was applied to prove safety properties in the
control system of automated metro system in Paris. It is also reported that the speci-
fication of Felica e-wallet system was described in VDM (Vienna Development Method)
formal specification language [11]. The formal specification helped the developers identify
the flaws in the specification by executing testing.

The verification approaches in formal methods can be generally categorized in theorem
proving or model checking. In the theorem proving, theorems are described as a set of
logical formula. Theorem proving tools such as Rodin Platform for Event-B [13] assists
users in checking the correctness of refinement using inference rules. It still requires high
level expertises to use theorem proving tools. Automatic general theorem proving tools
which can be used for various problems have not been developed so far. Based on this
situation, we use model checking approach in this dissertation.

10

2.4.1 Model checking

Model checking [50] is a technique used to check whether a system satisfies given re-
quirements. In this method, first the model representing the behavior of a system is
defined by a state transition graph such as Kripke structure represented by the 4-tuple
M = (S, S0, R, L). Here, S is the finite set of states in which the system can exist and
S0 ⊆ S is the set of the initial states of the system. R ⊆ S × S represents a transition
relation between states, and L : S → 2AP is a labeling function that labels each state
with the set AP of atomic propositions whose truth values are true in that state. Next
the specification to be satisfied by the system is described as logical formula such as CTL
(Computational Tree Logic). Then a model checking tool (e.g. SPIN [52], PRISM [53],
and NuSMV [54]) explores the state space to identify the set of states {s ∈ S|M, s |= ψ}
in the model M in which the valuation of given logical formula ψ is true. If a sequence of
state transition from an initial state to a state in which the valuation of the given formula
ψ is false is identified, the model checking tool outputs the sequence as a counterexample
for ψ. If not, we can conclude that the specification ψ is satisfied in the model M .

Various types of model checking approaches have been proposed so far. They can
be generally categorized in finite-state model checking or bounded model checking. The
typical realizations of the former include symbolic model checking using BDD (binary
decision diagram) which is used in tools such as NuSMV, and explicit-state on-the-fly
model checking used in tools such as Spin. The typical realizations of the latter are
to resolve problems into SAT problems as realized in tools such as Alloy. Satisfiability
problem (SAT) is a problem to determine whether or not the valuation of a propositional
formula can be true by assigning proper truth values to variables in the formula. The SAT
problem has been proven to be NP-complete problem. NP-complete problem is defined
such that a problem p in NP (Non-deterministic Polynomial time) is also NP-complete
if every other problem in NP can be transformed into p in polynomial time. SAT solver
is an engine to solve SAT problem and many tools have been developed so far such as
miniSAT [28] and SAT4J [27].

As for the specification of requirements, CTL (Computational Tree Logic) and LTL
(Linear Temporal Logic) are widely used. In this dissertation, we use CTL formula.
CTL[69] is a branching-time logic in which a model of time is a tree-like structure. There-
fore, there are different paths in the future and the valuation of a CTL formula is deter-
mined by the computational tree from initial states. CTL formula is defined recursively
as follows.

• An atomic proposition p ∈ AP is CTL formula. An atomic proposition has its truth
value (either true or false).

• If f1, f2 are CTL formulae, f1 ∧ f2, f1 ∨ f2, ¬f1, f1 → f2 are also CTL formulae.
The truth value of ¬f1 is the opposite of f1 (if f1 is true, then ¬f1 is false, and vice
versa). The semantics of the rest formulae is defined by the truth value assginments
shown in Table 2.2.

• If f1, f2 are CTL formulae, EXf1, EFf1, EGf1, AXf1, AFf1, AGf1, E(f1Uf2),
A(f1Uf2) are also CTL formulae.

The semantics of CTL operators can be explained as follows. Here, we denotes (s, s′) ∈
R when the system can change its state from s to s′. We also represent the set of paths
from a state s by Path(s).

11

Table 2.2: Semantics of logical operators
p q p ∧ q p ∨ q p→ q

true true true true true
true false false true false
false true false true true
false false false false true

Path(s0) = {(s0, ..., si, si+1, ...)|∀i ∈ N, (si, si+1) ∈ R}

Here we suppose that π is an infinite sequence s0, ..., si, ... with π(i) = si. For a state s
in a Kripke structureM = (S, S0, R, L), an atomic proposition p ∈ AP and CTL formulae
f1 and f2, the semantics of relation |= is inductively defined as follows.

• M, s |= p ⇐⇒ p ∈ L(s)

• M, s |= (¬p) ⇐⇒ p ̸∈ L(s)

• M, s |= f1 ∧ f2 ⇐⇒ M, s |= f1 and M, s |= f2

• M, s |= f1 ∨ f2 ⇐⇒ M, s |= f1 or M, s |= f2

• M, s |= f1 → f2 ⇐⇒ M, s ̸|= f1 or M, s |= f1 ∧ f2

• M, s |=EX f1 ⇐⇒ there exists a path π ∈ Path(s) such that M,π(1) |= f1

• M, s |=AX f1 ⇐⇒ for all paths π ∈ Path(s), M,π(1) |= f1

• M, s |=EF f1 ⇐⇒ there exists a path π ∈ Path(s) and i ∈ N such thatM,π(i) |= f1

• M, s |=AF f1 ⇐⇒ for all paths π ∈ Path(s), there exists i ∈ N such thatM,π(i) |=
f1

• M, s |=EG f1 ⇐⇒ there exists a path π ∈ Path(s) such that M,π(i) |= f1 for all
i ∈ N

• M, s |=AG f1 ⇐⇒ for all paths π ∈ Path(s), M,π(i) |= f1 for all i ∈ N

• M, s |=E f1 U f2 ⇐⇒ there exists a path π ∈ Path(s) and i ∈ N such that
M,π(si) |= f2 and M,π(sj) |= f1 for every j < i

• M, s |=A f1 U f2 ⇐⇒ for all paths π ∈ Path(s), there exists i ∈ N such that
M,π(si) |= f2 and M,π(sj) |= f1 for every j < i

Since the purpose of this dissertation is to analyze the behavior of an information
system, we suppose that the verification (analysis) tools should enable users to define
and verify the behavior of a system consisting of many components having interactions
between each other. While there are several tools which have functions sufficient to
cover these requirements, we decided to use Alloy Analyzer and NuSMV because they are
widely-used stable tools.

12

2.4.2 Alloy Analyzer

Alloy [26] is one of existing verification tools utilizing SAT solvers and based on a first order
relational logic. It has been developed at MIT which was inspired by the Z specification
language and Tarski’s relational calculus. Its language for describing a set of structures
is a simple and expressive logic based on the notion of relations. By combining first-order
logic formula with the following statements, Alloy provides a simple structural modeling
language.

• Signature (sig): Define a set of objects.

• Facts (fact): Define constraints that are assumed always to hold.

• Predicates (pred): Define named constraints.

• Functions (func): Define named functions that return results.

• Assertions (assert): Define constraints that are intended to follow from the facts
of the model. Alloy Analyzer checks the assertions.

The Alloy Analyzer [26] is a software tool to analyze specifications written in the
Alloy specifications. It is intended to provide fully automated analysis for the model
specifications in the following way. First, the Alloy Analyzer translates Alloy descriptions
into a SAT formula represented by a conjunctive normal formula (CNF). Next, the Alloy
Analyzer inputs this CNF into a SAT solver that can determine the satisfiability of the
CNF. The Alloy Analyzer can use various SAT solvers such as SAT4J [27] written in
Java and miniSat [28]. After analysis by the SAT solver, Alloy determines whether there
is a model (an assignment of truth values for variables) that makes the interpretation
of the SAT formula true, and it outputs instances of that model if they exist. Since
the Alloy Analyzer finds models satisfying a given formula, it is called a “model finder.”
It can also be used to check properties of the model by generating counterexamples for
the assertions. Since the models and counterexamples are displayed graphically, we can
easily understand the analysis results. In addition, since Alloy Analyzer has the ability
of incremental analysis, it can perform analysis incrementally from small scale with small
number of objects to large scale.

2.4.3 NuSMV

NuSMV used in Chapter 4 is a symbolic model checker which has been developed in a
joint project between ITC-IRST (Istituto Trentino di Cultura in Trento), Carnegie Mellon
University, the University of Genoa and the University of Trento. It is an extension of
CMU SMV symbolic model checker which is the first BDD-based model checking tool.
NuSMV supports the two types of temporal logic specifications; CTL (Computational
Tree Logic) and LTL (Linear Temporal Logic). It can verify the safety and liveness
properties described as CTL or LTL temporal logical formula. Same as Alloy, NuSMV
has several declarations for defining objects and constraints for them.

• Modules (MODULE): Define a module having its state transitions.

• Variables (VAR): Define a set of state variables in a module.

13

• Assignments (ASSIGN): Define variable assignments. By assigning values to the
variables in the next state (with guard conditions), we can define state transitions
of a module.

• Specifications (SPEC): Define constraints (specifications) which should be verified
by NuSMV.

The examples of NuSMV codes can be found in Chapter 4 (e.g. Figure 4.7).

2.5 Target domain

In this section, we discuss the target domain of this thesis in detail. As described before,
our target of analysis is in the domain of cloud infrastructure management, especially
for private IaaS (Infrastructure as a Service) cloud systems. First, the overview of the
structure and fundamental componets in private IaaS along with its management are
presented in Section 2.5.1. Then, problems in configuration change management to be
handled in our proposed method are discussed in Section 2.5.2.

2.5.1 Target: Management of private IaaS cloud system

As described in various reports, it is expected that the requirements from cloud users
will be diverse. This trends will spur demand for private cloud system which can be
customized for each cloud user’s requirements, rather than using large scale public cloud
which provides uniform and homogeneous services to a large number of users. For example,
research reports [116, 117] forecast that the market of private cloud will quadruple from
2013 to 2017, resulting in 1.4 trillion Yen. The main differences between private cloud
and public cloud can be summarized as follows.

• Security: By using private cloud, users can secure their confidential data within
their own facilities. In the case of public cloud, users might not be able to locate
the whereabout of their data, because the location of datacenters are ususally con-
fidential for security reason. It may cause difficulties in the use of public cloud for
some users who need to know the location of data for some reasons such as legal
requirements.

• Scale: Public clouds provide uniform services to a large number of users by utilizing
numerous servers, while private cloud may consist of a small number of hardware
components.

• Management: In public cloud, it can be expected that a large number of highly
expertized administrators manage the infrastructure to provide stable services to
their users. As for private cloud, some organizations might have to choose system
administrators from the members in the organizations. In this case, it is supposed
that the administrators of private cloud are less expertized than the ones of public
cloud.

From these characteristics, we can easily imagine that administrators of private cloud
will face with the difficulties in the cloud management even if the size of their system is

14

relatively small, because of the lack of their experience and expertise. Therefore, tech-
niques to assist their task will be in high demand. With the increase in demand for private
cloud, it is expected that the importance of such techniques also increase.

Next, in order to define the structure of target system (private IaaS cloud system),
identifying the structure and constituents of private cloud system is required. We can
identify the components comprising a private cloud from various types of integrated pri-
vate cloud products. For example, the configuration of IBM PureFlex Systems [118], an
integrated infrastructure product, can be seen from [119]. The fundamental components
of private cloud can be summarized as follows.

• Compute Nodes: Servers with CPUs (e.g. IBM POWER-processor or Intel-
processor)

• Networking: Switches and cables (e.g. Ethernet or Fiber Channel)

• Storage Nodes: Nodes with storage devises (e.g. hard disk drive (HDD) or solid
state drive (SSD))

• Power Unites: Power supplies and exhaust heat fans

In reality, there are many other functional components required to maintain the pri-
vate cloud infrastructure. For example, a data center needs chillers (cooling systems)
such as CoolLoop [120] to remove heat emitted from cloud infrastructures to out of the
data center. Security measures such as personal identification systems to prevent some-
one from intruding in the data center may also be mandatory requirements. However,
these functions are mostly related to the buildings of data center rather than ICT sys-
tems. Therefore, we decided to concentrate on the fundamental components listed above,
which provide resources (computing time, storage area, network bandwidth and power)
consumed by cloud customers.

As for the management of these types of cloud systems, various types of tasks must
be performed to keep the systems stable and updated. Especially, configuration changes
are requested for cloud administrators every day from the reasons as follows.

• Installation of new functions (e.g. releases of new services)

• Improvement of efficiency (e.g. reducing costs for energy [121] or software license
[122] by consolidating virtual machines to a small number of servers)

• Recovery from failure (e.g. replacing a faulty component with new one)

We can say that the first two tasks are schedulable, since administrators can determine
the schedule regarding when they are going to apply these changes. On the other hand, the
recovery from failure is not schedulable in most cases, because once a failure is observed,
administrators have to execute some workaround tasks (e.g. investigating root causes and
removing them) to recover services as soon as possible. While both types of tasks are
equally important, we decided to concentrate on the analysis of the schedulable changes.
The primary reason of this desicion is that faulty schdulable changes can invoke service
failures, resulting in the needs for executing workaround (unschedulable tasks). In other
words, if we can execute schedulable configuration changes properly and successfully, it
means that it can contribute to suppress the occurrences of unnecessary unschedulable
configuration changes.

15

2.5.2 Problems in system configuration changes

Before the execution of schedulable changes, change plans should be designed and evalu-
ated. For example, in ITIL framework [8], documented configuration change procedures
are reviewed by Change Advisory Board (CAB) consisting of various stakeholders in
ICT departments and business departments so that they can confirm that the planned
chnages do not have any undesirable and unexpected side effects impacting on the ser-
vices. However, even if the reviews are conducted by CAB members, it still has the room
for misconfigurations caused by planned changes. As described in the previous section,
misconfiguration is one of the most dominant factors in the occurrence of serious failures
in ICT systems. The typical two reasons of misconfigurations can be summarized as
follows.

1. Improper procedure planning

Since the various types of components comprising a cloud infrastructure are closely
interconnected with each other, configuration changes to be conducted for the in-
frastructure should require expertises in various technical domains. For example,
[70] shows that the provisioning process of virtual machines requires configura-
tion changes in operating systems, applications, network (VLAN and firewall) and
database. The complexity of the system can make it difficult for administrators
to design proper configuration steps. As mentioned in [123], the consultations be-
tween experts for various technical domains are mandatory in configuration change
planning. If the administrators design improper procesures without taking into ac-
count necessary preparation or constraint, the planned process does not work as the
administrators intended.

2. Unintentional changes

Even if the configuration changes are properly designed, there still is a room for
the occurrence of misconfiguration in its execution phase. While various types of
misconfigurations (e.g. command typo) can happen, one of the typical examples
is the execution of the changes to wrong target. Because of the complexity of
cloud infrastructure, misunderstanding of target can easily happen. For example,
in the case of failure occurred in Amazon [43], the configuration change for its
network was conducted. The configuration change was supposed to shift traffic to
the routers in the primary network which have enough capacity. However, the traffic
was accidentally routed to the secondary network with small capacity, resulting in
the network congestions. Another typical example of the assignment of wrong target
is the confusion of test environment and production environment. We can easily
imaginze that the outcome could be disastrous if a process for erasing temporal
data in testing environments is applied to production environments serving a large
number of customers.

In summary, in order to improve the reliability in configuration changes by preventing
undesirable outcomes, we need to do following two things: (1) synthesize proper con-
figuration procedure by taking into account the conditions regarding various types of
components comprising the systems and (2) avoid the execution of wrong tasks for wrong
targets.

16

2.5.3 Characteristics of properties to be checked

For the application of formal methods for the analysis to avoid improper procedure plan-
ning and unintentional chnages, we have to choose the analysis approach based on the
characteristics of the target problem. Here we discuss the characteristics of properties
to be checked in our problems and appropriate logic to be applied for the analysis. In
general, we can choose one of the following typical logical framework: propositoinal logic,
first-order logic, higher order logic and the extension of them with temporal operators.

• Propositional logic: In the propositional logic, a logical formula representing the
properties to be checked is defined by a concatenation of atomic propositions. This
logic is suitable for representing the simple relations between atomic propositions
(e.g. “if X is true then Y is also true”).

• First-order predicate logic: In the first-order predicate logic, by using predi-
cate and quantifiers, we can represent the conditions with “for all” or “existential”
quantifiers (e.g. “for all x, if P (x) is true, then Q(x) is also true”).

• Higher-order predicate logic: While predicates in the first-order logic can have
only variables for the parameters of predicates, in the higher-order logic a predicate’s
parameters can be other predicates. For example, if we have predicates P , Q and a
variable x, we can use representations such as P (Q(x)).

• Temporal extension: As described in Section 2.4.2, the temporal extension of
predicate logic can represent properties related to state changes by using temporal
operators. Therefore, we can define conditions such as ”X is eventually satisfied”.

Fisrt, since our analysis target (a cloud system) can have some similar types of com-
ponents (e.g. servers), it would be easiler to use predicate logic than propositional logic.
By using predicate logic, we can define constraints which can be applied for all elements
belonging to the same category. As for the temporal extension, we have to determine the
needs of it based on the characteristics of properties.

Properties in configuration change procedure synthesis

In order to achieve proper configuration change procedure synthesis, we need to take into
account declarative constraints as well as procedural constraints (pre- and post-conditions
of operations). The declarative constraints define conditions (e.g. a physical server can-
not accommodate virtual machines whose required resources exceed the capacity of the
physical server) to be kept during the configuration changes, usually defined declaratively
as “anti-pattern” or “not to do list” as shown in [113]. While the configuration change
procedure itself has dynamic nature, the declarative constraints (e.g. not to do list) are
usually related to whether a (static) state of a system satisfies them or not. Therfore, we
conclude that first-order logic is sufficient to express the constraints to be checked.

Properties in unintentional changes

Different from the procedure synthesis, in the analysis of the effect of unintentional
changes, we have to expect the occurrence of some undesirable events such as accidental
shut off of a server. Therefore, to prevent these undesirable events from causing service

17

failures, we need to evaluate the system’s vulnerability (or resiliency) to these undesirable
events. A typical example of resiliency measures is the existence of single point of failure.
We can say that the system does not have a single point of failure if any single undesirable
event (e.g. server fault or misconfigration) cannot cause service failure. The properties
to be checked can be represented by the sentences such as “all functions consisting of a
service will be alive eventually, after any single undesirable event”. We need temporal
operators for describing this kind of constraints including conditions such as “eventually”.
Therefore, we conclude that temporal logic such as CTL or LTL is appropriate for the
analysis. Therefore, we decided to use NuSMV for the verification of the properties de-
scribed in CTL, since NuSMV is one of the most popular open-source verification tool for
CTL properties.

Based on this viewpoint, we present the procedure synthesis methods and operational
vulnerability evaluation methods in the following chapters. In Chapter 3, we explain a
method of configuration change procedure synthesis using model finder. This method
synthesizes a procedure satisfying constraints regarding system management represented
by first-order logical formula using Alloy Analyzer. By using this method, we demonstrate
the synthesis of configuration procedure for consolidating virtual machines to a server for
eneregy saving, by taking into account the constraints from administrators of various
types of components such as server, network and storage. In Chapter 4, we explain the
operational vulnerability evaluation method using model checking. To achieve this, first
we define the operational vulnerability scale representing how a system is susceptible to
undesirable events. Next we execute verification to determine which vulnerability level
the system is in by evaluating the satisfiability of temporal logic formula by using NuSMV
model checker. Then we demonstrate the evaluation of vulnerability of a cloud system
for the execution of operations with wrong target assignment for virtual machine live
migration and monitoring function in high availability cluster structure.

18

Chapter 3

Configuration change procedure
synthesis

3.1 Difficulties in configuration change planning for

a system managed by various administrators

As described in the previous chapter, a cloud system can be managed by multiple domain
experts (e.g. server, operating systems, network and database). Incessant configuration
changes can be requested to the system from these experts to keep up with business
requirements. This situation gives the administrators a major challenge, since configu-
ration changes for components closely interrelated with the other components require a
coherent combination of area-specific configuration procedures produced by multiple do-
main experts. The current practice for integrating these procedures involves the group
of experts discussing their operations and constraints, in an attempt to identify viola-
tions of constraints from one domain by the operations of another (Figure 3.1). Lack
of consultation may lead to other experts ignoring this constraint in their planning, and
ultimately to communication failures in the re-configured ICT system. Therefore, when
designing system configuration procedures, we not only need to derive a sequence of oper-
ations satisfying their pre- and post-conditions but also to comply with these constraints
to avoid violating them (Figure 3.2). These kinds of configuration procedure designs by
experts having discussions are time-consuming and prone to errors. Actually, over 66% of
data-center staff said their systems were too complex to manage [14]. For these reasons,
methods of synthesizing appropriate procedures for system configurations are in high de-
mand to achieve reliable changes in configurations without incurring failures caused by
faulty human planning.

In this chapter, we propose a method of synthesizing the procedure to change sys-
tem configurations based on collected data on management knowledge about systems and
information on system configurations. First, we define and describe the knowledge on
system management in this method as a first-order logic formula using the Alloy lan-
guage [15]. Next, we derive information on current system configurations from a CMDB

19

Operations

Constraints

Operations

Constraints

Constraints

Operations

Operations

Constraints

Network expert DB expert

OS expert Server expert Check

Figure 3.1: Current system configuration procedure designing by discussion between ex-
perts

(Configuration Management Database) and translate it into an Alloy description. Then,
we combine both knowledge and information and input them into the Alloy Analyzer
(a model finder) with goal conditions. The Alloy Analyzer searches for and determines
the truth value assignment (valuation) that makes the interpretation of all formulas true.
This valuation results in a procedure that leads the system from the initial configuration
to that of the target that fulfills the goal conditions. In the procedure synthesis, we
identify the intermediate states satisfying some of the set of formulas, and synthesize the
procedure between them. By doing this, we can reduce the resources needed in procedure
synthesis because Alloy only have to synthesize the procedures for smaller configuration
steps instead of synthesizing the whole procedure steps.

The rest of this chapter is organized as follows. First, Section 3.2 presents our method
along with how knowledge on system management is represented. Next, we explain how
it works through a case study in Section 3.3. After Section 3.4 explains our evaluation,
we give some discussions in Section 3.5. Finally, Section 3.6 concludes the chapter and
outlines future challenges.

3.2 Procedure synthesis for system configurations

This section explains our method of synthesizing the procedure for system configu-
rations in detail. First, we explain the architecture for our method. Next, we use a
case study to explain how information on the system structure and knowledge on sys-
tem management are represented in it. Then we explain the algorithm for synthesizing
configuration procedures using Alloy Analyzer.

There are three main reasons for using Alloy and the Alloy Analyzer in our method
of synthesizing the configuration procedure, while other model checkers (e.g. SPIN or
NuSMV) can also be used.

20

Disabling

Connection

Goal

Space of system configurations (states)

… Constraint violation

Current

configuration

… Configuration change operation

SLA

violation

 Capacity

 shortage

… Configuration state

Appropriate

configuration

procedure

Inappropriate procedures

Figure 3.2: Synthesis of procedure for system configurations avoiding violations of declar-
ative constraints

• The Alloy Analyzer enables us to easily find an instance that can satisfy all con-
ditions by just describing them in Alloy language. With the capabilities of SAT
solvers, the Alloy Analyzer effectively executes exhaustive exploration of the state
space.

• We can define complex conditions in Alloy because of its flexible descriptive capa-
bilities based on first-order logic. It is also good at representing binary relations
between variables and transitive closures of relations. This capability is suitable for
modeling today’s ICT systems that are constructed by connecting various compo-
nents.

• Changes to system configurations can be defined by the transition relations between
the system’s states. This enables us to represent system-management operations to
dynamically change system configurations.

3.2.1 Architecture

The high-level architecture in our method is depicted in Figure 3.3. Synthesizing a pro-
cedure for system configurations with this method involves four elements:

(1) Configuration information from all system components is stored in a Configuration
Management Database (CMDB) [23], a storage solution for managing relationships
between system components that was proposed in the Information Technology In-
frastructure Library (ITIL) [24]. We implemented the CMDB on the AXIS2 [34]
server and used Resource Control eXtensible Markup Language (RCXML) [25] for
the data format. RCXML is a customized XML format used to integrate system
and management information.

21

Configuration Management

Database (CMDB)
RCXML

Configuration information

Network

expert

DB

expert
OS

expert

Appropriate

configuration
procedure

Operations

Constraints

Goal

conditions

Partial and

fractional
declarative
knowledge

Server

expert

Operations

Constraints

Goal

conditions

Operations

Constraints

Goal

conditions

Operations

Constraints

Goal

conditions

Output
Planning function

Find a sequence

of operations
satisfying all

given formula

Managed

system

Translator

Alloy

Description
(logical formula)

SAT

solver

Alloy Analyzer

CNFinstance

(Apply)

Figure 3.3: Architecture for method of synthesizing procedures

(2) The configuration information (relations between components) stored in CMDB is
translated into Alloy descriptions, i.e., first-order logic formulas through a translator.
We implemented the translator in Java.

(3) Each expert responsible for managing the components depending on their expertise
defines their knowledge on system management, such as constraints and operations
with pre- and post-conditions, along with goal conditions in some management tasks,
in the Alloy descriptions.

(4) From the information on system configurations and the knowledge on system man-
agement, the Alloy Analyzer detects a model (a situation) in which all these formulas
written in Alloy are true. We can regard the model generated by the Alloy Analyzer
as a synthesized procedure for system configurations that is a sequence of operations
leading the system from the current configuration to a state satisfying defined goal
conditions without violating any given constraints.

3.2.2 Management knowledge representation

Here, we use a case study to explain how information on the system structure and three
types of essential knowledge on system management (executable operations, declarative

22

Switch_S1

(VLAN : V1)

Server_A

(VLAN : V1)

CPU_A

(size: 12)

OS_image

(VLAN : V1)

Memory_A

(size: 12)
HDD_A

(size: 16)

VMM_A

(Xen)

RunningOn

Host_OS_A

(Linux)

Guest_OS_A2

(Linux: size)

Guest_OS_A1

(Linux: size 2)

Web_X

(Apache)

App_X

(Interstage)

RunningOn

RunningOn

Server_B

(VLAN : V1)

CPU_B

(size: 16)
Memory_B

(size: 24)
HDD_B

(size: 24)

VMM_B

(Xen)

RunningOn

Host_OS_B

(Linux)

Guest_OS_B1

(Linux: size 8)

DB_X

(MySQL)

RunningOn

RunningOn

Server_C

CPU_C

(size: 32)
Memory_C

(size: 32)
HDD_C

(size: 32)

VMM_C

(Xen)

RunningOn

connectedTo

connectedToconnectedTo

componentOfcomponentOfcomponentOf

accessTo

Host_OS_C

(Linux)

RunningOn

Figure 3.4: Initial system configuration in case study

constraints, and goal conditions) are represented in Alloy. In this case study, we have
assumed we are going to derive an appropriate procedure for configuration to consoli-
date virtual machines onto a server by migration for the managed system in Figure 3.4.
As discussed in [70] and [90], various tasks such as network and storage connections,
VLAN associations are required for conducting proper provisioning or migration of vir-
tual machines. The case study scenario was designed as one of the examples in which
administrators of relatively small cloud systems (e.g. private cloud) need to synthesize a
proper configuration procedure which requires domain knowledge regarding various fac-
tors comprising the system such as virtualization, network and storage.

System structure

The system we considered in our case study (shown in Figure 3.4) consists of three physical
servers (Server A, Server B and Server C) and an OS-image storage device (OS image).
Any subset of these components can be organized into a VLAN by means of a switch
(Switch S1). Each server is running Xen [31] virtual machine monitors (VMMs). On
each VMM (VMM A, VMM B, and VMM C), Linux operation systems are running as a
host OS or guest OSs. On VMM A’s guest OS (Guest OS A1), an Apache Web server
(Web X) is running, while an Interstage application server [32] (APP X) is running on
Guest OS A2. Likewise, a MySQL database server (DB X) is running on Guest OS B1
(a guest OS on Server B). We have assumed services are provided to users by a three-
tiered system consisting of these three pieces of software (Web X, APP X, and DB X). In
addition, Server C is standing by in case there is any shortage of system capacity. First,
while Server A, Server B, and OS image are connected to Switch S1 where they belong
to the same VLAN segment V1, Server C is not connected to the network.

Each server consists of three types of hardware components: a CPU, memory, and
hard disk. These components have a parameter called “size” representing the capacity of
resources that can be used to accommodate virtual OSs. We normalize the parameters
to a value ranging from 0 to 32 units according to their performance and capacity. For
example, in the price list of Amazon EC2 [33] services, the smallest set of resources
provided by the service consists of one processor (Intel Xeon or AMD Opteron) with a

23

<Components>

<Hardwares>

<Servers>

<Server id="Server_A">

<Configuration>

<CPU id="CPU_A" size="12" />

<Memory id="Memory_A" size="12" />

<HardDisk id="HDD_A" size="16" />

<Link id="svrA_link1" src="CPU_A" dest="Server_A" type="componentOf" />

<Link id="svrA_link2" src="Memory_A" dest="Server_A" type="componentOf" />

<Link id="svrA_link3" src="HDD_A" dest="Server_A" type="componentOf" />

</Configuration>

</Server>

...

Figure 3.5: Definition of system configuration

clock frequency of 1.0 to 1.2 GHz and a memory of 1.7 GB. We can define the value
of the size parameter by assuming that the size of a component is one unit when the
component has sufficient capacity to accommodate a certain OS requiring the smallest
set of resources. We also assumed that each OS had a size parameter and that a server
could not accommodate OSs if the total size of these OSs exceeds the size of any of the
server’s hardware components. For example, size α (a parameter in the case study) of
Guest OS A2 should not be more than 10 units, because the size of Guest OS A1 is two
units and the size of Server A’s CPU (CPU A) and memory (Memory A) are both 12.

The configuration information in our method is stored in CMDB in RCXML format,
as shown in Figure 3.5. This figure shows the physical configuration of Server A con-
sisting of three physical components (CPU, memory, and hard disk) by connecting the
elements representing these components with the Server A element via “componentOf”
links. Figure 3.6 shows definitions of various relations in the case study. “Link” elements
with attributes such as “connectedTo” or “runningOn” represent relations between com-
ponents. The fact that some components belong to VLAN segment V1 can also be defined
by “VLANs” type connections between these components and the element representing
VLAN V1.

Our method accesses the configuration information stored in CMDB by using Xpath
queries, and translates it into relation definitions in Alloy. Figure 3.7 shows part of the
configuration information of the system in the case study translated from RCXML to
Alloy by our translator. The relations in this figure, which can be used to characterize
the configuration status, are defined in Sig State {} descriptions. A Sig declaration is
used to introduce a set of atoms along with a set of relationships between atoms. For
example, there is a set of unidirectional relations defined (defined as the componentOf

relation) from hardware components (CPU, memory, and hard disk) to servers in a
system-configuration state. Along with these relation definitions, the system’s initial-
configuration status derived from CMDB is translated into fact {} declarations. The
fact declarations define facts that are assumed to hold in a state. For example, the
equality starting with first.componentOf defines the fact that the componentOf rela-
tionships (CPU A → Server A) and (Memory A → Server A) are held in the initial (first)
configuration of the system. The sizes of components are also translated into relationships
between these components and integer values as shown in the first.size equation.

24

<Links>

<Link id="ctl1" src="Server_A" dest="Switch_S1" type="connectedTo" />

<Link id="ctl2" src="Server_B" dest="Switch_S1" type="connectedTo" />

<Link id="ctl3" src="OS_image" dest="Switch_S1" type="connectedTo" />

...

<Link id="osl1" src="Host_OS_A" dest="VMM_A" type="runningOn" />

<Link id="osl2" src="Guest_OS_A1" dest="VMM_A" type="runningOn" />

...

<Link id="acl1" src="VMM_A" dest="OS_image" type="accessTo" />

<Link id="acl2" src="VMM_B" dest="OS_image" type="accessTo" />

...

<Link id="btl1" src="Server_A" dest="V1" type="VLANs"/>

<Link id="btl2" src="Server_B" dest="V1" type="VLANs"/>

<Link id="btl3" src="Switch_S1" dest="V1" type="VLANs"/>

<Link id="btl4" src="OS_image" dest="V1" type="VLANs"/>

</Links>

Figure 3.6: Definitions of relations between components (part)

Executable operations

We assumed that four operations could be executed in the system (Figure 3.8).

Connection operation: We can establish a physical network connection between any
server and network device (e.g., a switch) with an Ethernet cable.

Access config operation: We can modify some configuration files of servers to allow
one server or piece of software to access another one.

VLAN config operation: We can change the VLAN configurations of servers or net-
work devices to make them belong to some VLAN segments.

Migration operation: We can move a virtual OS from one VMM to another by using
the migration function of virtual machines under the condition that both physical
servers accommodating these VMM can access the same OS image storage.

We define knowledge about these operations by relationships that should hold before or
after operations so that Alloy Analyzer can determine changes in configurations triggered
by these operations. Figure 3.9 has the definitions of knowledge of the four operations by
using a predicate declaration in Alloy. In these operation definitions, system configuration
states s before an operation and state s’ after the operation is executed are used to
define the relationships held in these states. For example, the definition of the connection
operation for components src and dst represented by connect [s,s’:State, src,dst:

Objects] shows that the following three facts hold.

(a) No connectedTo relation from src to dst before connect operation is executed

(b) No connectedTo relation from dst to src before connect operation is executed

(c) The set of connectedTo relations after the connect operation is the union of the set
of ones before the operation and (src -> dst)

25

/ *** System ’s state definition ***/

sig State {

size : (CPU -> Int) +(Memory -> Int) +(HardDisk -> Int) +(OS -> Int) ,

connectedTo: (Server -> NetworkDevice) + (NetworkDevice -> Server) +

(NetworkDevice -> NetworkDevice),

componentOf: (CPU + Memory + HardDisk) -> Server ,

accessTo: (Program + OS + Server) -> (Program + OS + Server) ,

runningOn: (Program + OS) -> (Program + OS + Server) ,

...}

/ *** Initial state configuration ***/

fact {

first.size = (CPU_A -> Int[12]) + (CPU_B -> Int[16]) + (CPU_C -> Int[32]) +

(Memory_A -> Int[12]) + (Memory_B -> Int[24])+(Memory_C -> Int[32]) + ...

first.componentOf = (CPU_A -> Server_A) + (Memory_A -> Server_A) + ...

first.accessTo = (VMM_A -> OS_image) + (VMM_B -> OS_image)

first.runningOn = (Host_OS_A -> VMM_A) + (Guest_OS_A1 -> VMM_A) + ...

...}

Figure 3.7: System configrations translated from RCXML to Alloy (part)

The rest of the operations are defined in the same way. In the definition of the migra-
tion operation for virtual machines, both src and dstmust be Xen and the OS image must
be accessible from them as preconditions of the operation. Note that we not only need to
define the relationships that have changed after operations but also explicitly specify the
frame conditions [36] stating that the relationships not mentioned in these operations have
not changed. Without the frame conditions, model finders might consider that relation-
ships that have not been mentioned can implicitly be changed. This can result in irrelevant
procedures being output containing impossible changes to configurations. In our method,
we accomplish the frame-condition description with flag description s’.changes=* added
to the last part of each operation definition; the relations between the flags and the system
status changes are defined in Figure 3.10. For example, in the definition of the connection
operation in Figure 3.9, the description, s’.changes = connectedTo c, clarifies that the
operation only changes connectedTo relations by including the flag, connectedTo c, in
the set of flags s’.changes. At the same time, the frame condition, “(s.connectedTo =

s’.connectedTo || connectedTo c in s’.changes)”, described in Figure 3.10 defines
that unless this flag is included in the set s’.changes, the connectedTo relation remains
the same in state s’ after the operation.

The system’s state transitions (possible configuration changes) triggered by these op-
erations can be defined by using both the operation knowledge and the frame conditions
as shown in Figure 3.11. This description means that if there are some components x,
y, and z satisfying one of these predicates representing the operations and the frame
conditions, the system can change its status (configuration) from s to s’.

Constraints (requirements)

We also assumed that the following accessibility and VLAN constraints were defined by
network management experts, and the capacity constraint by virtual machine manage-
ment experts.

26

Connection

(a) Connection operation

Server Switch Server Switch

Access

config

(b) Access config operation

Server Server Server Server

ConnectedTo

ConnectedTo ConnectedTo

rver Serve

AccessTo

(c) VLAN config operation

Server Server

(d) Migration operation

Server

VLAN

config Migration

Belonging

to VLAN
VMM

Server

VMM

Virtual

OS

Server

VMM

Server

VMM

Virtual

OS

Figure 3.8: Executable operations

Accessibility constraint: In order for two network components to be able to access
each other, these components should be connected via some network links.

VLAN constraint: In order for two network components to be able to access each other,
both of these components should belong to the same VLAN segment, or neither of
them should belong to any VLAN segment.

Capacity constraint: The total size of OSs on a server should not be more than the
size of any of the server’s hardware components.

We can define these constraints to be retained in systems by describing them in first-
order logic formulas in Alloy’s fact {} declarations shown in Figure 3.12. For example,
the accessibility constraint is defined by the fact declaration stating that if there is an
accessTo relation between some components x and y in state s, then y should be able
to be reached from x through a set of runningOn and connectedTo relations and their
inverse relations in the state. In the Alloy description, we can represent the transitive
and reflexive closure of a relation and the inverse of a relation by using an asterisk (*) for
the former and a tilde (~) for the latter. The concatenation of different types of relations
can be represented by a dot (.). The VLAN and capacity constraints are also defined in
the same way in Figure 3.12.

Goal conditions (Request for change)

Here, we have assumed that there is a request to consolidate all pieces of software (Apache,
Interstage, and MySQL) comprising the service into the same physical server to conserve
energy by shutting down servers that are unused. Note that which server we should use
to accommodate these pieces of software on by migration is determined depending on
the current system configuration. For example, if the capacity, α, of Guest OS A2 is 2,
we can achieve this goal just by migrating Guest OS B1 from VMM B to VMM A, since
the sum of the OSs’ sizes is 12 (2+2+8) and all hardware components on Server A have

27

/*** Operation Definitions ***/

/* Connection operation: Connect src and dst */

pred connect[s,s’:State, src,dst: Objects]{

(not ((src->dst) in s.connectedTo)) &&

(not ((dst->src) in s.connectedTo)) &&

s’.connectedTo = s.connectedTo + (src->dst)&&

s’.changes = connectedTo_c }

/* Access config operation: make src access to dst */

pred addaccessTo [s,s’:State, src,dst: Objects]{

not ((src->dst) in s.accessTo)) &&

s’.accessTo = s.accessTo + (src -> dst) &&

s’.changes = accessTo_c }

/* VLAN config operation: make src join dst */

pred joinVlan [s,s’:State, src,dst: Objects]{

s’.VLANs = s.VLANs + (src -> dst) &&

s’.changes = VLANs_c }

/* Migration operation: migrate vm from src to dst */

pred migrate[s, s’:State, vm,src,dst: Objects]{

(Xen in (src.(s.name) & dst.(s.name))) &&

(OS_image in (src.(s.accessTo)

& dst.(s.accessTo))) &&

((vm->src) in s.runningOn) &&

s’.runningOn = s.runningOn ++ (vm->dst) &&

s’.changes = runningOn_c

}

Figure 3.9: Definitions of operations in Alloy

sufficient capacities to accommodate them. If α is more than 2, on the other hand, we
cannot consolidate them into Server A due to the capacity constraint. In addition, if we
consolidate them into Server B or Server C, the configuration procedures are completely
different from the one used for consolidation into Server A. Therefore, we need to derive
both a configuration satisfying the goal conditions and an appropriate sequence of oper-
ations that can change the system configuration from its initial configuration to the one
required.

We can define the goal conditions to be satisfied in the state after an appropriate
sequence of operations is executed by using fact {} declarations in the same way as
declarative constraints. Figure 3.13 shows the goal conditions for the case study (con-

/*** Frame conditions ***/

pred frame_condition [s,s’:State]{

(s.connectedTo = s’.connectedTo || connectedTo_c in s’.changes) &&

(s.componentOf = s’.componentOf || componentOf_c in s’.changes) &&

(s.accessTo = s’.accessTo || accessTo_c in s’.changes) &&

...}

Figure 3.10: Definitions of operations in Alloy

28

/*** State Transition Definitions ***/

fact StateTransition { all s: State, s’: ord/next[s] |

((some disj x,y: (s.Server + s.NetworkDevice) | connect[s,s’,x,y]) ||

(some disj x,y: (s.Program + s.OS + s.Server) | addaccessTo[s,s’,x,y]) ||

(some x: (s.Server + s.NetworkDevice) | some y: s.VLAN| joinVlan[s,s’,x,y]) ||

(some x: s.OS | some disj y,z: s.Program | migrate[s,s’,x,y,z]))

&& frame_condition [s,s’] }

Figure 3.11: Definitions of state transitions with operation knowledge and frame condi-
tions

/*** Declarative constraints ***/

/* Constraint 1

If x has access to y, x and y should be connected */

fact {all s: State | all disj x,y: (s.Program + s.OS + s.Server) |

(x->y) in s.accessTo => y in x.*(s.runningOn).

*(s.connectedTo + ~(s.connectedTo)). *(~(s.runningOn))}

/* Constraint 2

If x has access to y, x’s and y’s server should belong to the same VLAN */

fact {all s: State | all disj x,y: (s.Program +s.OS + s.Server) |

(x->y) in s.accessTo => (no (x+y).*(s.runningOn).(s.VLANs)) ||

y in x.*(s.runningOn).(s.VLANs).~(s.VLANs).*(~(s.runningOn))}

/* Constraint 3:

Total OSs size should be less than or equal to components’ capacity */

fact {all s: State | all x: s.Server | all c: x.(~(s.componentOf)) |

c.(s.size) >= (sum y: x.^(~(s.runningOn)) | (y & s.OS).(s.size))}

Figure 3.12: Declarative constraints

solidation of Web X, App X, and DB X) defined by the fact declaration that there is
state s where there is server x on which all of Web X, App X, and DB X are running. In
this figure, the hats (^) represent the transitive closure of relations without any reflexive
relations.

3.2.3 Procedure synthesis algorithm

In order to synthesize the configuration change steps from initial state to the state satis-
fying the goal condition, we input the required information (initial system configuration,
constraints, executable operations, and goal conditions) to Alloy Analyzer model finder.
Then Alloy Analyzer can derive the state changes from initial state to the goal state.
However, in the state search, we have to give a finite upper limit to the number of steps
to be searched in order to avoid state space explosion. The simplest approach in control-
ling the number of steps is to increment the upper limit one by one until we find a state
satisfying the goal condition (Figure 3.14(a)). However, long configuration steps can lead
the increase of the number of SAT clauses constructed from the system model, resulting

29

/*** Goal condition ***/

fact { some s: State | one x: s.Server |

x in Web_X.^(s.runningOn) && x in App_X.^(s.runningOn) && x in DB_X.^(s.runningOn)

}

Figure 3.13: Goal condition

Initial

State

Goal State

One (long) path

(a) Straightforward search path

(b) Multiple short search path

Initial

State

Goal State

Goal State

Goal State

Figure 3.14: State search with intermediate states

in the large memory size used for the configuration procedure synthesis. Therefore, we
need to keep the number of configuration change steps as small as possible in the state
space search by Alloy Analyzer.

In order to solve this problem, we divide the search path from the initial state to goal
state by “intermediate goal states” satisfying a part of goal conditions, as shown in Figure
3.14(b). Then we synthesize the procedure from the initial state to the goal state through
these intermediate states. Here we only have to synthesize some short paths of whole
required steps and concatenate those parts, instead of making Alloy Analyzer synthesize
the whole procedure. By this approach, our approach decomposing the state space search
into some smaller parts can synthesize the procedure with smaller memory.

The algorithm of configuration procedure synthesis utilizing the intermediate goal
states consists of two parts: 1) identifying the concrete goal states and intermediate goal
states and 2) searching for partial procedures from source states (initial or intermediate
states) to destination states (intermediate or goal states) by preferring the shortest paths
between them. The explanation for each step is as follows.

(1) Identify the goal and intermediate states

Here we first derive “concrete goal conditions” by assigning possible values for variables
X = (x1, x2, ..., xm) in the set of predicates Pred = (pred1, pred2, ..., predn) which are

30

to be satisfied to achieve goal condition. We represent the possible value assignments
for xi by A(xi) = {Ci1 , Ci2 , .., Cili

} and all combination of the value assignments by
P = {p1, p2, ...pl} = A(x1) × A(x2) × ... × A(xm). We represent the predicate predi
with an assignment pj by predi

pj . We define the set of concrete goal conditions CGC =
{cgc1, cgc2, ..., cgcl} where cgci = {pred1pi , pred2pi , ..., prednpi}.

Next, we define the state transition model M = (S, T, L) to represent the initial con-
figuration state, the concrete goal states satisfying the concrete goal conditions and the
transition relation between them. Here, S is a finite set of states representing a configura-
tion. T ⊆ S×S represents a transition relation between states which can be invoked by a
proper configuration change operation. L : S → 2Pred×P is a labeling function which la-
bels each state with the set of predicates with an assignment satisfied in that state. We also
have an initial state s0 ∈ S representing the initial condition and the set of concrete goal
states SG = {sG1 , sG2 , ..., sGL

} ⊆ S satisfying the concrete goal condition (L(sGi
) = cgci).

Then we define intermediate states s(i,j) ∈ S with L(s(i,j)) = {predkpi|k ≤ j} representing
the states where j out of n predicates in cgci under the assumption that the order of
predicates to be satisfied does not affect the reachability to the goal state. If we obtain
two states s(i1,j1) and s(i2,j2) having the same set of predicates with the same assignment
(L(s(i1,j1)) = L(s(i2,j2))), we eliminate one of them from S because these are redundant.
As a result of this step, the path to be investigated described in Figure 3.14(a) can be
modified to the paths having a set of state {s0, s(i,1), s(i,2), ..., s(i,n−1), sGi

} on it, as shown
in Figure 3.14(b).

(2) Search for the procedure between intermediate states

After identifying the state transition model, we synthesize the operation procedure by
determining the number of operation steps required to transit between these states by
Alloy Analyzer. The search algorithm based on the breadth-first search algorithm taking
into account the number of steps between intermediate states is summarized in Figure
3.15. In this algorithm, we first set the initial lower bound len(s, s′) of estimated number
of steps between s and s′ to zero, because it is possible that all of predicates L(s′) to
be satisfied in s′ have been already satisfied in the previous state s. Next, we choose
a transition for which we check the reachability. In order to make state space to be
searched small, we choose a transition (si∗ , sj∗) with the smallest estimated lower bound
to reach one of the concrete goal states. Then we check if the destination sj∗ is reachable
from the source si∗ within len(si∗ , sj∗) steps by Alloy Analyzer. If it is reachable, we
add new paths (sj∗ , .) to the set of paths which are the candidate of next search target,
and choose the next path to be searched. Otherwise, we increment the estimated lower
bound len(si∗ , sj∗) by one and choose the next transition. We repeat this search until
reaching one of the concrete goal states. By concatenating the state transitions on the
paths derived by Alloy Analyzer, we can obtain the configuration procedure to achieve the
goal conditions. We also prepare a parameter n representing the upper limit of the path
length. If the estimated lower bound len(s, s′) becomes larger than the limit n for any s
and s′, we conclude that the procedure is too long to be synthesized by our approach.

Remark

31

INPUT : M = (S, T, L),n
OUTPUT : A path from initial to a goal state
Open := {(s0, si)|(s0, si) ∈ T};
d(s) := 0, for all s ∈ S;
len(si, sj) := 0 for all (si, sj) ∈ T ;

While true
{
find (si∗ , sj∗) such that
len(si∗ , sj∗) = min{len(si, sj)|(si, sj) ∈ Open};

Alloy checks if sj∗ is reachable
from si∗ within len(si∗ , sj∗) steps;

If reachable
{
Record the operation steps from si∗ to sj∗ ;
d(sj∗) := d(sj∗) + len(si∗ , sj∗);
Remove all (,̇sj∗) from Open;
Open := Open ∪ {(sj∗), sk)|(sj∗ , sk) ∈ T};
len(sj∗ , sk) := 0 for all (sj∗ , sk) ∈ T ;
If sj∗ ∈ SG { break; } /* Solution found */

}
else { len(si∗ , sj∗) := len(si∗ , sj∗) + 1;}

If len(si∗ , sj∗) > n { break; } /* Solution not found in n steps */

}

Figure 3.15: Procedure synthesis algorithm

Here we discuss soundness and completeness of our approach using intermediate goals by
comparison with the straightforward approach.

1. Soundness

Here we suppose the soundness condition is that our approach does not find proce-
dures if they cannot be found by the straightforward approach. In this case, there
is no variable assginment satisfying the goal condition in the straightforward ap-
proach. In our approach, we derive concrete goal conditions by giving all possible
variable assginments to the goal condition. Therefore, if the goal condition in the
straightforward approach cannot be satisfied by any variable assignment, any con-
crete goal conditions also cannot be satisfied. As a result, our approach cannot
find any procedure which cannot be found by the straightforward approach, which
means our approach satisfies the soundness condition.

2. Completeness

Here we suppose the completeness condition is that our approach can find a pro-
cedure if the straightforward approach can find one. In this case, there is at least
one variable assignment which can satisfy the goal condition in the straightforward
approach. It means that at least one concrete goal condition can be satisfied in our
approach. We can also say that the reachability to the concrete goal states is not
affected by the order of the intermediate goal states even if there are interdependen-
cies between predicates to be satisfied in goal states. For example, suppose that in
a concrete goal state sg two predicates PredA

p1 and PredB
p1 with the assignment

p1 are true. We also suppose that we define an intermediate goal states s1 as a state

32

satisfying PredA
p1 . If PredA

p1 is a prerequisite to satisfy PredB
p1 , we can derive a

procedure from the initial state to the concrete goal state sg via the intermediate
goal state s1. On the other hand, if PredB

p1 is a prerequisite for PredA
p1 , first our

approach searches for a procedure from the initial state to s1. If it finds one, we can
also see that PredB

p1 (prerequisite for PredA
p1) is satisfyied in s1. In this case, the

procedure from the initial state to the goal and the one to the intermediate goal are
the same (s1 = sg). Therefore, we can say that our approach can find a procedure
if the straightforward approach can find one. From this discussion, we can conclude
that our approach is complete, while the operation steps in the procedures found
by both approaches can be different.

While we can say that our approach is sound and complete with the straightforward
approach from the above discussion, note that the algorithm does not guarantee that it
identifies the shortest path to the goal state. In order to find the procedure with smaller
steps, it is preferable that the administrators sort the order of the predicates in Pred
so that the predicates with low numbers are pre-conditions for the predicates with high
numbers based on their operation knowledge.

3.3 Example synthesis of procedure for configura-

tions

Here, we present an example of synthesizing the procedure for configurations with our
method using the case study described in the previous section. The goal of synthesizing
the procedure in this scenario is to obtain a sequence of operations that can change the
system configuration from the initial arrangement described in Figure 3.4 to one where
the three pieces of software Web X, App X, and DB X are consolidated on the same
server by migration. To demonstrate that our method can derive appropriate procedures
for different initial configurations, we executed our synthesis of the procedure in three
cases in which we set size α of Guest OS A2 on which App X was running to 2, 4, and 8.
We used the system configuration information, the executable operations, the declarative
constraints, and the goal conditions described in the previous section.

We implemented our synthesis program in Java and executed the synthesis of the pro-
cedure on a PC with an Intel Xeon 3-GHz CPU, a 4-GB memory, and a 32-bit Windows
7 OS. The program calls the Alloy Analyzer’s API. Then, the Alloy Analyzer scans given
Alloy descriptions and searches for a sequence of states that can satisfy all given con-
straints and the sequence of operations triggering the state transitions. We used Sat4J as
a SAT solver called from the Alloy Analyzer.

As a result of our synthesis of the procedure for all cases, we obtained the change
sequences for system configurations shown in Figure 3.16. Figure 3.17 shows an example
of an output screenshot representing the final system configuration derived in the case
where α = 8.

When α = 2, the output result (Figure 3.16(a)) indicates that we can achieve the
required configuration in just one step by transferring Guest OS B1 from VMM B to
VMM A. However when α = 4, the output (Figure 3.16(b)) indicates that we need two
steps to transfer both Guest OS A1 and Guest OS A2 to VMM B to achieve the goal
conditions, since the three pieces of software cannot be consolidated into Server A due

33

Server_A

(size:12)

VMM_A

(Xen)

Guest_OS_B1

(size: 8)

DB_X

(MySQL)

VMM_B

(Xen)

Server_B

(size: 16)

Guest_OS_B1

(size: 8)

DB_X

(MySQL)

Guest_OS_A2

(size: 2)

App_X

(Interstage)

Guest_OS_A1

(size: 2)

Web_X

(Apache)

(1) migrate

2)(=aa

Server_A

(size:12)

VMM_A

(Xen)

VMM_B

(Xen)

Server_B

(size: 16)

Guest_OS_A2

(size: 4)

App_X

(Interstage)

Guest_OS_A1

(size: 2)

Web_X

(Apache)

Guest_OS_B1

(size: 8)

DB_X

(MySQL)

Guest_OS_A2

(size: 4)

App_X

(Interstage)

Guest_OS_A1

(size: 2)

Web_X

(Apache)

(2) migrate (1) migrate

4)(=ab

(5) migrate

Server_A

(size:12)

VMM_A

(Xen)

VMM_B

(Xen)

Server_B

(size: 16)

VMM_C

(Xen)

Server_C

(size: 32)

OS_image

(1) connect

(2) join

VLAN V1

(3) access

(6) migrate (4) migrate

8)(=ac

Guest_OS_B1

(size: 8)

DB_X

(MySQL)

Guest_OS_A2

(size: 8)

App_X

(Interstage)

Guest_OS_A1

(size: 2)

Web_X

(Apache)

Guest_OS_B1

(size: 8)

DB_X

(MySQL)

Guest_OS_A2

(size: 8)

App_X

(Interstage)

Guest_OS_A1

(size: 2)

Web_X

(Apache)

Figure 3.16: Configuration changes planned when size α of Guest OS A2 is 2, 4, and 8.

to the capacity constraint. Then when α = 8, the procedure consisting of the following
six-step operations is obtained (Figure 3.16(c)).

(1) Connect Server C with Switch S1.

(2) Incorporate Server C into VLAN V1.

(3) Establish access from Server C to OS image.

(4) Transfer Guest OS A1 to VMM C.

(5) Transfer Guest OS A2 to VMM C.

(6) Transfer Guest OS B1 to VMM C.

This output procedure reveals the following facts. First, due to the capacity constraint,
the three pieces of software need to be consolidated on Server C. However, in order to

34

Figure 3.17: Screenshot of planned system configurations when size of Guest OS A2 is 8

migrate OSs to Server C, it should be able to access OS image. In addition, accessing
OS image requires that Server C and OS image belong to the same VLAN segment and
a physical connection should be established between them. Therefore, steps 1 to 3 are
needed to prepare for the migration to Server C.

As demonstrated by the above case study, the appropriate procedures for slightly
different initial system configurations to achieve the same goal conditions can result in
completely different procedures. While these kinds of non-linear and non-straightforward
patterns are the essential characteristics of complex systems consisting of various types
of components, it is difficult for system administrators to design appropriate procedures
without overlooking necessary domain knowledge and the small but critical difference in
initial system configurations. Inappropriate procedures designed by administrators with
fractional knowledge tend to cause system failures. Our approach based on formalized
knowledge, on the other hand, can synthesize appropriate procedures by taking into ac-
count both information on current system configurations and knowledge on all domains
(e.g., networks and virtual machines).

3.4 Evaluation of computational resource consump-

tion

To evaluate the computational resource consumption of the proposed approach in the
procedure synthesis, we compared our approach with the straightforward approach. In this
comparison, we set the number of spare servers having the same configuration as Server C
from 1 to 5 in the case study scenario with α = 8 (the size of GUEST OS A2). Since each
spare server is comprised of six components (the server itself, hard disk, memory, CPU,

35

Initial

Goal
For some x (server)

Web_X on x

App_X on x

DB_X on x

6 steps

(a) Straightforward approach

Initial

Goal

Web_X on A

App_X on A

DB_X on A

0 step

Goal

Goal

Web_X on B

App_X on B

DB_X on B

Web_X on C

App_X on C

DB_X on C

Web_X on A

App_X on A

DB_X on B

Web_X on A Web_X on A

App_X on A

>4 steps

Web_X on B

1 step 4 steps

Web_X on B

App_X on B

>4 steps

Web_X on C Web_X on C

App_X on C

(b) Proposed approach

4 steps 1 step 1 step

Figure 3.18: State search for case study scenario

virtual machine, and its host OS), the number of components ranges from 26 to 50 in
steps of six. We also set the memory size for Alloy Analyzer to 256Mbyte, 512Mbyte and
1024Mbyte and measured the number of SAT clauses for model finding and how much
memory is required to synthesize procedures by the both approaches.

In the straightforward approach, we synthesized the whole six steps from the initial
state to the goal states using Alloy Analyzer by incrementing the upper limit of the
state search one by one until finding the solution, as shown in Figure 3.18(a) On the
other hand, our approach only have to synthesize the short operation steps between
intermediate goals which lead to a concrete goal state, resulting in less than five steps in
the procedure synthesis for each transition to the goal state sG3 as shown in Figure 3.18(b).
In this evaluation, we used the three predicates Pred={(x in Web X.^(s.runningOn)), (x
in App X.^(s.runningOn)), (x in DB X.^(s.runningOn))} to be satisfied in the goal state
and constructed the intermediate states along with the order of the predicates in Pred.
In this case study, since there is no pre-/post-condition relation between these predicates,
the order of these predicates in Pred does not affect the resource consumptions and the
length of the path representing the synthesized procedure from the initial condition to
the goal condition.

From Table 3.1 showing the experimental results, we can see that our approach reduced
a third of the maximum number of SAT clauses to be analyzed in the procedure synthesis,

36

Table 3.1: Evaluation results for SAT clauses and memory size
Number of Number of SAT clauses (maximum) Memory size (byte)

spare Straight- Proposed (ratio) Straight- Proposed
servers forward approach forward approach

1 2.41× 106 1.63× 106 67.4% 512M 512M
2 3.90× 106 2.64× 106 67.6% 512M 512M
3 5.92× 106 4.00× 106 67.6% 1024M 512M
4 N/A 5.94× 106 N/A N/A 1024M
5 N/A 8.51× 106 N/A N/A 1024M

comparing with the straightforward approach. It can be also said that the memory size
required to synthesize procedures by the proposed approach is less than that with the
straightforward approach (“N/A” means non available because of memory overflow or
obtaining no analysis results within one hour). Therefore, we can conclude that proposed
approach contributed to reduce the amount of resources required to procedure synthesis
by reducing the number of SAT clauses.

As for the computational time, the straightforward approach took 68.6 sec in the initial
case study scenario with one spare server, while the proposed approach took 76.7 sec.
Since multiple paths have to be searched in our approach as shown in Figure 3.18(b), it is
possible that the straightforward approach achieves better performance in computational
time than the proposed approach. But the difference between them is marginal (about
12% increase).

3.5 Discussion

We demonstrated that our method can synthesize system configuration procedures from
the management knowledge regarding operations, constraints and goal conditions. In
the case study scenario, we confirmed that we can derive different procedures and final
configurations satisfying given goal conditions properly for different initial configurations.
In addition, proposed algorithm contributes to reduce the number of SAT clauses to be
analyzed in the procedure synthesis. While it has promising potential to improve system
management efficiency, we suppose that there are some difficulties for our method to be
more practical.

(1) Knowledge management
We can collect various knowledge regarding system management from different
stakeholders (e.g. administrators of server, network, database and services). We
can easily imagine that there can be some mistakes in described constraints. In
addition, the knowledge should be renewed along with the update of the system
infrastructure. This kind of flawed or obsolete knowledge can end up with the
contradictions between defined knowledge. Since any proper procedure cannot be
synthesized from contradicted conditions, proper updates and maintenances of the
system management knowledge are quite important.

(2) Efficient modeling
As shown in the Section 3.4, we reduced the number of SAT clauses to be analyzed

37

for procedure synthesis by using intermediate goal states. However, in order to
analyze larger system, we need to make the number of SAT clauses as small as
possible. There will be some approached to achieve this. For example, we can
apply some effective CNF construction techniques proposed in [35]. It will also be
possible to reduce the size of system model by abstracting some parts irrelevant to
the purpose of system configuration changes.

3.6 Summary

In order to design proper configuration change procedure in a private cloud system con-
sisting of various types of components, it is needed to use every expertises regarging the
components. To solve this burdensome problem, we developed a method of synthesiz-
ing procedures for system configurations using the Alloy Analyzer model finder. In this
method, first, management knowledge such as executable operations, constraints, and
goal conditions are described in the Alloy language. Next, this knowledge is combined
with information on current system configurations derived from CMDB. Then the Alloy
Analyzer identifies a model satisfying all conditions from integrated information. We can
regard the model as an appropriate procedure (a sequence of operations) that can change
the system from its initial configuration to the goal configuration that satisfies given con-
straints. In the procedure synthesis, we divide the possible paths from initial states to
concrete goal states into smaller steps using intermediate goal states to reduce the memory
resources required in the synthesis. Through a case study with typical scenario of virtual
machine consolidation for energy savings in cloud infrastructure, we confirmed that our
method could derive appropriate procedures for different configurations and evaluated the
memory consumptions.

Since our method will enable us to obtain appropriate procedures for configurations
automatically without forgetting to take into account the necessary knowledge on sys-
tem management, the reliability of system management can be improved and we can
reduce the cost needed to check the validity of obtained procedures and fix any prob-
lems caused by inappropriate procedures constructed by human experts. Since it can
also handle segmented fractional knowledge on system management possessed by indi-
vidual domain experts and information on system configurations in the same declarative
manner, it will make it easy to maintain (add, remove, or revise) knowledge on system
management. These characteristics are crucial for breaking down “silos” in private cloud
system management, where management knowledge possessed by domain experts needs
to be frequently modified in line with the changing requirements of systems.

We are now considering the following work for the future. First, while we can flexibly
define management knowledge in the Alloy description based on first-order logical formulas
and set theory, it might take some time for system administrators to learn how to describe
their knowledge in the Alloy language. To overcome this problem, we are going to prepare
various interfaces to help them to easily describe their knowledge. For example, it would
be helpful if we had some format for knowledge description and a translation function
that could automatically translate the format filled in by domain experts into Alloy.

Next, reducing computational complexity is also an important goal for future work.
While our algorithm using intermediate goals contributed to reduce the size of SAT formu-
las, we consider that there are still rooms for improvement in simplifying system models.

38

Combining techniques for making simple model with a model finding technique that can
check the satisfiabilities of formulas consisting of over 10 million SAT clauses, it would be
possible to overcome scalability problems in today’s complex large-scale ICT systems.

39

Chapter 4

Operational vulnerability evaluation

4.1 Problem: Misconfiguration in redundant struc-

ture

We discussed the method for configuration change procedure synthesis in the previous
chapter. This method is aimed at improving the reliability of system management by
avoiding misconfiguration in the design phase of configuration changes. However, there
still are rooms for misconfigurations causing service failures in the execution phase of the
configuration changes. For example, suppose redundant structures (e.g., load balancing
and high availability clusters) which are commonly applied to cloud systems and other
information systems to prevent service failure. System administrators assume that the
redundant structures can prevent a single hardware fault in their infrastructure from pro-
gressing to a service failure that is discernible to users. However, there remain many cases
where the redundant systems are disabled by misconfigurations or improper operation ex-
ecutions. For example, if several virtual machines for redundancy are instantiated on the
same physical server, it is possible that a failure in the physical server can make all of
these virtual machines inactive. In such cases, the flaws hidden in the system become
apparent only after the occurrence of service faults triggered by events such as hardware
faults. To prevent such disastrous situations, we need to identify the weak points (e.g.,
single points of failure) lurking in the system configurations, and the types of operations
that can cause serious service failures. In other words, to realize reliable cloud infras-
tructure management, we need to evaluate the “vulnerability” of systems to accidental
events in the cloud system management lifecycle, such as component faults and improper
operations. By identifying and eliminating the hidden risks in the systems that are as-
sociated with their operation, we can improve the quality and the reliability of cloud
service management. From the information presented above, we propose a framework to
evaluate the vulnerability of systems to internal system operation factors such as compo-
nent faults or misconfigurations. In this framework, we first define the vulnerability level
of services based on the degree of failure impact caused by misconfigurations or compo-
nent failures. Next, we construct a model representing the behavior of a cloud system
by combining models for components comprising the cloud system with interdependency
relationships between the components. In this model, we represent the execution of con-
figuration change operations and the occurrence of a component fault as a state transition
in a component model. A state change in a component can trigger state changes in an-

40

other component due to the interdependency between these components. By using this
model, we enable the analysis of the propagation of the fault’s effect between components
having interdependencies. Then, we use a case study to demonstrate how to evaluate the
operational vulnerability of a service using the model checker NuSMV.

The main contributions of this chapter can be summarized by the following three
points: (1) we defined the operational vulnerability level for cloud services, (2) we pre-
sented a method for the construction of a cloud system model and its representation in
a language for model checking, and (3) we demonstrated the evaluation using a model
checking tool.

The rest of this chapter is organized as follows. In Section 4.2, we first define the types
of systems and management operations to be discussed in this chapter. Next, we define
the degree of operational vulnerability. In Section 4.3, we show how to construct a state
transition model that represents the system’s behavior. In Section 4.4, we use this model
to demonstrate the evaluation of s system’s vulnerability by carrying out a case study
using the model checker NuSMV. Then, we discuss our results in Section 4.5. Finally
Section 4.6 concludes the chapter and outlines future challenges.

4.2 System, operation and vulnerability

4.2.1 Target systems to be analyzed by our framework

In this chapter, we analyze the behavior and the vulnerability of services instantiated on
IaaS (Infrastructure as a Service)-type cloud computing infrastructures with virtualization
technologies. Cloud providers with IaaS architectures have physical servers and network
components (e.g., routers and switches), and use virtualization functions called Hypervisor
such as Xen [44] and VMware [45] to instantiate several virtual machines (VMs) on a
physical server. They lend these VMs as computing resources to their customers and
charge rental fees in a pay-per-use manner for the resources (e.g. CPU time, storage
usage and amount of data transmitted). Typical examples of these IaaS services include
Amazon EC2 [33] and Google Compute Engine [46]. The other types of cloud services
are PaaS (Platform as a Service), which provides environments for software development
and deployment, and SaaS (Software as a Service), which provides software functions as
services; however, these types of cloud services are out of the scope of this chapter.

Using the IaaS cloud infrastructure, customers of cloud services can construct various
types of systems to realize their specific services. One of the typical system configurations
of enterprise information systems is a 3-tier system consisting of three types of functions:
(1) web tier, which provides a frontend interface for users of services, (2) application
tier, which handles business logics and (3) database tier, which is responsible for the
management of stored data. Actually, some cloud providers provide customized functions
to make it easy to construct virtualized multi-tier systems on their cloud infrastructure
[47]. Based on the above explanation, we selected as our target for the vulnerability
evaluation a service that is realized by a virtualized multi-tier system instantiated on an
IaaS cloud infrastructure.

41

Working

Server

Working

Working

Requests

Requests

Requests

(a) Load balancing cluster

Fault Working

Server

Working

Out of order

Requests

Requests

Working

Server

Standby

Requests
Fault Server

Working

Out of order

Requests

(b) High availability cluster

Figure 4.1: Cluster structure for redundancy

4.2.2 Type of failures and operations

With respect to the failures occurring in the system, we only consider crash faults in
components (e.g., hardware, software and VM) comprising the cloud system. We do not
take into account the other faults such as partial and temporal faults (e.g., transient fault,
intermittent fault and omission fault), faults related to performance (e.g., timing fault and
response fault) and faults for which we cannot predict the effects (e.g., Byzantine fault).

With regards to the type of operations that can be executed in the system, we consider
two types of operations. One is to change the state of components and the other is
to change the interdependencies between components. The former includes operations
such as “server shutdown,” which changes the server’s power status from “On” to “Off.”
The latter includes operations such as live migration, which transfers a virtual machine
between physical servers.

4.2.3 Operational vulnerability

The operational vulnerability discussed in this chapter indicates how susceptible services
are to accidental and undesirable internal events such as component faults and improper
operation executions. Because we consider only internal accidental factors related to cloud
infrastructure management, we do not consider the vulnerability from the perspective of
system security, that is, the resistance of services and systems to intentional and malicious
attacks external to the system.

Usually, in the multi-tier systems described in Section 4.2.1, some redundancy struc-
tures are applied to the systems so that a hardware fault does not lead to service failures
discernible to users [48]. The following typical patterns are shown in Figure 4.1.

(a) Load balancing cluster
This distributes user requests for the service to several components running at the

42

same time. In this configuration, when a component fails, the rest can continue
the service. A typical example of this configuration is a load balancing function for
frontend web servers.

(b) High availability (HA) cluster
This keeps some components as backups for a function in case there is a fault
for the primary component enabling the function. When the primary component is
working properly, the backup components are on stand-by and monitor the status of
the primary component. When the primary component fails, a backup starts up and
substitutes for the primary. This structure is used when it is difficult to apply the
load balancing cluster. For example, since a database must maintain the consistency
of its data, it is sometimes difficult to apply a distributed database server structure
that can require several database servers to simultaneously access the same data. In
such a case, we can use the HA cluster structure in which we connect a primary and
a backup database server with shared storage servers. When the primary database
fails, we can continue the service and maintain the data consistency by starting up
the backup database server immediately.

However, even if we use these redundant structures, service failures can occur because
of reasons such as component faults and improper operations. By focusing on the number
of components comprising a function and a service, we can categorize the service failures
into the following two types.

(a) Lack of working components
A system cannot continue to provide its services when there are not enough com-
ponents to provide a function necessary for the service. For example, even if we use
10 Web servers with a load balancing structure in a 3-tier system, the service will
fail when all of these 10 Web servers fail. This type of service failure is solved by
just restarting or substituting the failed functions.

(b) Excess of working components
A service failure can also occur when the number of components providing a function
exceeds its limit. For example, for database servers in an HA cluster structure, we
need to keep the system so that only one server (either a primary database or a
backup) in the cluster is working. However, if we have misconfigurations in which
the backup server that is supposed to monitor the primary database is configured to
monitor a different component, these two database servers might become active at
the same time because a fault in the monitored component can trigger the starting
up of the backup server while the primary one is still working. This case can result
in a “split brain” failure [48], which causes inconsistencies in the data accessed from
different database instances at the same time. To recover from this type of failure,
we need to not only reduce the number of working database server instances, but
also to execute the recovery procedures for the data having inconsistency, which
can be burdensome and time-consuming. In addition, if the cloud providers cannot
recover their customers’ data, the impact of the failure is immeasurable. Therefore,
this type of failure has a larger impact on the service than the case involving a lack
of working components.

43

Based on the above categorization, we defined the operational vulnerability of services
from level 0 to 3 as follows.

• Level 0: Safe condition

This is a scenario in which an infrastructure is configured properly and a service
is working properly. In this level, one component fault or improper operation does
not invoke a service failure that can be perceived by users.

• Level 1: Single point of failure

This is a scenario in which a service is working, but one component fault or improper
operation can lead the system into the undesirable scenarios defined by level 2 and
level 3 below.

• Level 2: Service unavailable

This is a scenario in which a service is not working because the components com-
prising a function are not alive. We can resume the service by restarting one of the
failed components.

• Level 3: Data inconsistency

This is a scenario in which the number of components enabling a service exceeds its
limit. Data loss or data inconsistency can occur in this scenario. This scenario is
more serious than that in level 2 because the recovery of the damaged data will take
time and incur additional cost. In this chapter, we do not take the types of impaired
consistencies (e.g., storing consistency and eventual consistency) in database into
account.

Our main purpose in this chapter is to evaluate the operational vulnerability of a
system by determining the vulnerability level in which the system exists. However, it is
difficult to evaluate the vulnerability using simple approaches such as an analysis of the
static system configuration (snapshot at a certain instant). For example, a multi-tier sys-
tem instantiated on a cloud infrastructure consists of various components such as virtual
machines and physical servers. These components collaborate and interrelate with each
other to provide a service in an organized way. For example, if a physical server crashes,
virtual machines instantiated on the server also shut off. If a primary virtual machine in
an HA cluster shuts off, the backup virtual machine monitoring the primary one can be
activated. From these examples, we see that a state change in a component can affect
other components. In addition, the interdependency between components can be changed
by some configuration change operations. Therefore, in order to evaluate the operational
vulnerability, we need to construct a model that can represent the state changes in compo-
nents and the propagations of the state changes along with the interrelationship between
these components. Details of the construction and analysis of such models are explained
in the next section.

4.3 Construction of system model and property

In this section, we explain how to construct system models and properties to be veri-
fied, which are essential factors in our evaluation of operational vulnerability. First, to

44

1: Facility layer

2: Physical

resource layer

3: Virtual

resource layer

Figure 4.2: 3-layer system structure model

construct the system model, we define layers of components comprising a system and
interdependencies between the components. Next, we use a state transition model to
represent the status changes in each component caused by component faults or configu-
ration change operations. In this model, the state transition of a component can trigger
another state transition in another component according to the interdependency between
them. Then, we explain how to construct properties to be checked in order to conduct an
evaluation of the operational vulnerability of a system.

4.3.1 Layers of components and interdependencies

In this chapter, we consider as our analysis target a virtualized cloud system that can lease
computing resources in units of a virtual machine to customers. The virtual machines
are instantiated on physical servers. In datacenters, facility components such as power
supplies provide electric power to enable the physical servers to work. To construct
a system model having such a structure, we defined a 3-layer system model having a
structure depicted in Figure 4.2. The detailed explanation for each layer in this figure is
as follows.

(1) Facility layer
This is the layer that represents facilities to support physical computing resources,
and include components such as power units, which provide electric power to phys-
ical servers.

(2) Physical resource layer
This is the layer consisting of physical components accommodating virtual resources
to be leased to cloud users, and includes components such as physical servers on
which virtual machines are instantiated.

45

(3) Virtual resource layer
This layer consists of virtualized computing resources to be leased to customers
of cloud providers, and virtual machines on which operating systems are installed
belong to this layer.

While we have depicted only three types of components (power unit, physical server
and virtual machine (VM)) in Figure 4.2 for simplicity, the other types of components
involved in the provision of services can be categorized into one of these layers. For
example, a physical storage server can belong to the physical resource layer since it is a
physical hardware component that stores virtual storages used by customers.

We also define the types of interrelationships between these components as follows.
These interrelationships are used to represent the propagations of state transitions be-
tween components in the system model.

(1) PoweredBy relation
An interrelationship between two components where a component in the facility
layer provides electric power to the other component in the physical layer. No
component in the physical layer can work without a power supply.

(2) InstantiatedOn relation
An interrelationship between two components where a component in the virtual
resource layer is instantiated on the other component in the physical layer. No com-
ponent in the virtualized layer can work without being instantiated on a component
in the physical layer.

(3) Monitor relation
An interrelationship between two components in the virtual resource layer where
one component monitors the behavior of the other component. When a monitored
component changes its status, the other component monitoring it can also change the
status. The interrelationship is used to represent the relation between the primary
and the backup component in a HA cluster structure where the fault of the primary
component triggers the activation of the backup component.

4.3.2 State transition in a single component

In order to construct the system model representing the behavior of the entire system
providing a service, we first construct a state transition model representing the behavior
of a single component in the system.

Definition 1 (States of a component) Let CFac, CPhy, CV ir be the set of components
belonging to the facility layer, the physical resource layer and the virtual resource layer,
respectively. We define the set of states of a component c ∈ CFac ∪ CPhy ∪ CV ir in the
system by Sc = Status(c)× Pow(c)× Ins(c)×Mon(c).

Status(c) = {StandBy,On,Off} represents the power status of c ; On (working
properly), Off (not working) and StandBy (waiting for starting up). The set Pow(c) =
2CFac represents the set of components belonging to the facility layer that have a PoweredBy
relation with the component c ∈ CPhy.

Likewise, the set Ins(c) ⊆ 2CPhy represents the set of components in the physical re-
source layer having an InstantiatedOn relation with the component c ∈ CV ir. Note that

46

Facility component : c1

(On)

Physical component : c2

(On)

Virtual component : c3

(Standby)

PoweredBy

InstantiatedOn

),,,()(1 Oncs !

),},{,()(12 cOncs !

)},{,,()(23 cStandBycs !

Figure 4.3: Example of a system model consisting of components and their interdepen-
dency

Ins(c) is a singleton set or empty set because the virtualized component c can be instanti-
ated on only one physical component at a certain instant. Mon(c) = 2CV ir represents the
set of components having the monitor relation with c ∈ CV ir.

For example, the states of three components c1, c2, c3 in Figure 4.3 can be represented
by s(c1) ∈ Sc1 , s(c2) ∈ Sc2 and s(c3) ∈ Sc3 , respectively.

By using the state definition, we define the state transitions T = S×S triggered by the
component fault or configuration change operations as follows. Here, we only consider two
types of operations: (1) live migration [49], which involves transferring a virtual machine
from a physical server to another server, and (2) changes in the monitoring target in the
HA cluster structure.

Definition 2 (State transition by component failure)

TFault = {(s(c), s′(c))|(s(c) = (StandBy, x, y, z)

||s(c) = (On, x, y, z)), s′(c) = (Off, x, y, z),

c ∈ CFac ∪ CPhy ∪ CV ir}

TFault ⊆ T represents the state transition triggered by the occurrence of a fault in the
component c. The fault invokes the state transition from s (the power status is On or
StandBy) to s’ (the power status is Off).

Definition 3 (State transition by live migration)

TMigration = {(s(c), s′(c))|s(c) = (w, x, y, z), s′(c) = (w, x, y′, z),

y ̸= y′, c ∈ CV ir, y ∈ CPhy, y
′ ∈ CPhy}

TMigration ⊆ T represents the transition triggered by the execution of live migration,
invoking the state transition from s (a virtual machine c is instantiated on a physical
server y) to s′ (c is on server y′).

47

VM1 (On)

Server1 Server2

VM2 VM3

}){},{,,()(2111 VMServerOnVMs !

InstantiatedOn

Monitor

VM1 (Off)

Server1 Server2

VM2 VM3

}){},{,,()(2112 VMServerOffVMs !

InstantiatedOn

Monitor

VM1 (On)

Server1 Server2

VM2 VM3

}){},{,,()(2213 VMServerOnVMs !

Monitor

VM1 (On)

Server1 Server2

VM2 VM3

}){},{,,()(3114 VMServerOnVMs !

InstantiatedOn

Monitor

VM1 fails

VM1 migration

(From Server 1 to 2)

InstantiatedOn

VM1 changes monitor target

(From VM 2 to 3)

Figure 4.4: State transition by faults and operations

Definition 4 (State transition by changing monitor target)

TChange monitor = {(s(c), s′(c))|s(c) = (w, x, y, z), s′(c) = (w, x, y, z′),

z ̸= z′, c ∈ CV ir, z ∈ CV ir, z
′ ∈ CV ir}

TChange monitor ⊆ T represents the transition triggered by the operation changing the
monitor target of a virtual machine c from z to z′.

For example, when a component VM1 is in a state s1 depicted in Figure 4.4, a fault
in VM1, the live migration of VM1 and changing VM1’s monitored target can invoke the
state transition from s1 to s2, s3, and s4, respectively.

4.3.3 State transitions propagating along with relations

Here, we define the state transitions in a component triggered by the state transitions that
occur in other components, along with the interrelationships between these components.
Here, we suppose the following two types of propagations of state transitions: (1) propa-
gation of power shut down and (2) starting up from standby by detecting the powering
off of other components.

Definition 5 (Propagation of power shut down)

TPropagate = {(s(c), s′(c))|s(c) = (w, x, y, z), s′(c) = (Off, x, y, z),

Pow(c′) = Off, (c′ ∈ x||c′ ∈ y)}

48

TPropagate ⊆ T represents the state transitions in a component c becoming Off when a
component c’ shuts off, and c depends on c’ by PoweredBy or InstantiatedOn relations.
This transition is used to represent situations where a physical server is shut down because
power units that provide electric power to the physical server shut down. Likewise, if a
physical server shuts down, all of the virtual machines that are instantiated on it will also
shut down.

Definition 6 (Starting up from standby mode)

TWakeup = {(s(c), s′(c))|s(c) = (StandBy, x, y, z), s′(c) = (On, x, y, z),

Pow(c′) = Off, c ∈ CV ir, c
′ ∈ z}

TWakeup ⊆ T represents the state transitions where a backup component c that is mon-
itoring a primary component c′ changes its power status from StandBy to On when c
detects that c′ is not working.

For example, suppose that a system consisting of one physical server (Server1) and
two virtual machines (VM1 and VM2), as depicted in Figure 4.5, is in its initial state
s1. If Server1 fails, the system changes its state to s2, where Server1’s power is Off.
Because VM1 has an InstantiatedOn relation with Server1, the system’s state changes
to s3, where VM1 is also Off through the transition TPropagate. Likewise, if VM2 fails in
the initial state s1, the system changes its state to s4. Then, it moves to s5, where VM1

monitoring VM2 starts up after detecting VM2’s shutdown.

4.3.4 Property description

In order to evaluate the operational vulnerability of services, we need to describe properties
that should be satisfied in the system that works properly using logical formula. We define
the properties to be checked for the vulnerability of level 2 and 3 described in Section
4.2.3 as follows.

Definition 7 (Property for vulnerability level 2 (service unavailable))

AG(AF (Service running)),

Service running := (func1&func2&...&funcn),

funci = (Status(ci,1) = On|Status(ci,2) = On|...|Status(ci,mi
) = On)

Here, we suppose that a service consists of n functions, and the i-th function consists
of mi redundant components. In this case, in order for the service consisting of these
functions to be working, at least one component should be alive for each function. The
temporal logical formula AG(AF (Service running)) described in CTL (Computational
Tree Logic) represents this condition. The proposition Service running consists of the
propositions funci representing each function. From the AND-concatenation of funci,
it represents that all functions should be alive for the service to be available. Likewise,
funci consists of the OR-concatenation of the proposition state(ci,j) = On, indicating that
at least one component should be alive in the i-th function. The temporal operators AG

49

VM1

(Standby)

Server1
(On)

VM2

(On)

}){},{,,()(2111 VMServerOnVMs !

InstantiatedOn

Monitor

VM1

(Standby)

Server1
(Off)

VM2

(On)

}){},{,,()(2113 VMServerOffVMs !

InstantiatedOn

Monitor

VM1

(Off)

Server1
(Off)

VM2

(On)

InstantiatedOn

Monitor

PropagateT

Server1 fails

VM1

(Standby)

Server1
(On)

VM2

(Off)

}){},{,,()(2115 VMServerOnVMs !

InstantiatedOn

Monitor

VM1

(On)

Server1
(On)

VM2

(Off)

InstantiatedOn

Monitor

WakeupT

VM2 fails

2s

4s

Figure 4.5: State transition by propagation of state changes

and AF represent “always globally” and “always finally” respectively. AG(X) indicates
that X is always satisfied. AF (X) indicates that X is eventually satisfied. Therefore,
AG(AF (Service running)) indicates that even if the service is temporarily unavailable,
it will eventually resume. For example, suppose that VM1 and VM2 in Figure 4.5 comprise
a function in a system. If VM2 fails in the initial state s1, the system moves to the next
state s4. In the state s4, neither VM1 nor VM2 is functioning. While the proposition
Service running is not satisfied at this instant, the backup component (VM2) of the HA
cluster wakes up immediately and the system changes its state to s5. As shown in this
figure, if the system can recover its all functions under some given conditions (e.g. the
number of simultanerous component faults is less than 2), the model satisfies the property.
Otherwise, since it might not be able to recover some functions, we can conclude that the
system is in the level 2 vulnerability.

Definition 8 (Property of vulnerability level 3 (data inconsistency))

AG(¬SplitBrain),
SplitBrain := (Sb1|Sb2|...|Sbn),
Sbi := (Exi,1|Exi,2|...|Exi,mi

),

Exi,j := (Status(exi,j) = On&(Status(exi,1) = On|Status(exi,2) = On|...|

50

Status(exi,j−1) = On|Status(exi,j+1) = On|...|Status(exi,mi
) = On)

Here, we suppose that a service consists of n functions, and the i-th function has mi

components that are supposed to work exclusively. Therefore, to avoid data inconsistency
caused by a split brain, only one of mi components is allowed to be active in the i-th func-
tion. The proposition Exi,j indicates that the j-th component and one other component
are active in the i-th function. By concatenating Exi,j with OR-operations, Sbi indicates
that at least two components are active in the i-th function, meaning that a split brain is
occurring. By the OR-concatenation of Sbi, the proposition SplitBrain means that a split
brain occurs in some functions. Therefore, the logical formula AG(¬SplitBrain) means
that a split brain never occurs in any situation. A system not in the vulnerability level 3
should satisfy the property.

We can determine that a system is in level 2 or 3 of operational vulnerability if the
model representing the behavior of the system does not satisfy these properties. If we in-
ject one fault in a component to the system model, and it does not satisfy these properties,
it means that the system has a “single point of failure”, and its operational vulnerability
level is 1. If we have to inject more than one fault into the system to satisfy these prop-
erties, we can conclude that the vulnerability level is zero since the system has no single
point of failure.

4.4 Demonstration of vulnerability evaluation

In this section, we demonstrate the evaluation of the operational vulnerability of a service
instantiated on the cloud system through a case study scenario. In this demonstration,
we use a model checking approach to showing how to verify properties for the state
transition model representing the behavior of the cloud system. The reason that we
decided to use the model checking for the operational vulnerability evaluation is that its
capability to execute the exhaustive search is suitable for checking the effect of a fault
and operations without overlooking vulnerabilities hidden in a system. In our approach,
the cloud system model presented in the previous section consists of components having
several discrete states. The behavior of the system is determined by the interaction
between these components. Common tools for the verification of such a distributed system
include SPIN [52], PRISM [53] and NuSMV [54]. We decided to use NuSMV, because
it is one of the most popular open-source model checking tools which can verify CTL
(Computational Tree Logic) formula in which we describe the properties to be checked.

4.4.1 Translation from state model to NuSMV code

In our approach, we translate a system model presented in the previous section to NuSMV
code as follows.

Components in the system

We define each component comprising the system as a module in NuSMV. In this module,
we define the following three types of state transitions regarding the power status of the
component.

51

MODULE VM(no, State, fail, inston, mon)

ASSIGN

next(State[no]):= case

fail[no]=1: Off;

State[inston]= Off: Off;

State[no] = StandBy & State[mon] = Off: On;

TRUE: State[no];

esac;

Figure 4.6: Definition of VM component

(1) State transition triggered by a fault of the component itself.

(2) Propagation of shutting off between components via the PoweredBy and
InstantiatedOn interrelationship.

(3) Starting up from the StandBy mode via the Monitor interrelationship when a mon-
itored component shuts off.

For example, the state transitions in a module representing the behavior of a virtual
machine component that is monitoring another component can be defined as shown in
Figure 4.6.

The above NuSMV code defines the value of the power status (State) of a component
using its identification number (no) in the next state by the following conditional state
transitions.

(1) Component fault: If the component fails, it shuts off. (fail[no]=1: Off;)

(2) Propagation of shutting down: If a physical server inston having
InstantiatedOn relation with the component fails, the component shuts off.
(State[inston]= Off: Off;)

(3) Starting up from StandBy: If the component in the standby mode and another
component mon that is being monitored by it fails, it starts up.
(State[no] = StandBy & State[mon] = Off: On;)

(4) Others: Keep the current state (TRUE: State[no];)

The components in the physical layer and the facility layer can be modeled in the same
manner, while they have to have a PoweredBy relationship instead of InstantiatedOn
and Monitor relationships. The behaviors of PoweredBy and InstantiatedOn relation-
ships are the same because in both relationships, if one component shuts off, the other
component that relies on it also shuts off.

52

MODULE Fault(i,fail)

DEFINE

f_th := LIMIT; -- Fault threshold

VAR

rand : {0,1,2,3,4,5};

ASSIGN

init(rand):=0;

next(rand):= case

f<f_th: {1,2,3,4,5};

TRUE: 0;

esac;

next(fail[1]):= case rand = 1 : 1; TRUE: fail[1]; esac;

next(fail[2]):= case rand = 2 : 1; TRUE: fail[2]; esac;

next(fail[3]):= case rand = 3 : 1; TRUE: fail[3]; esac;

next(fail[4]):= case rand = 4 : 1; TRUE: fail[4]; esac;

next(fail[5]):= case rand = 5 : 1; TRUE: fail[5]; esac;

Figure 4.7: Model of fault occurrence

Faults and operations occurring in nondeterministic way

In our model, we suppose that faults in components and improper configuration change
operations can happen in a nondeterministic way. Therefore, we simulate the occur-
rence of faults and configuration changes by defining a module which randomly selects a
component from the model and invokes a change in the components’ power state or inter-
relationship between the components. For example, using the module definition shown in
Figure 4.7, we can define state transitions showing that one of five components can fail
nondeterministically.

In this NuSMV code, the line “f<f th: {1,2,3,4,5};” gives to the variable rand a
random value from 1 to 5 if the number of faults f does not exceed its limit f th. Then,
it changes the value of the variable fail for the component with identification number
rand to 1 (true) in order to indicate that a fault occurred in the component. This change
invokes the state transition in the module representing the behavior of the component, as
shown in the previous subsection. As a result, the component’s power state changes to
Off. Executions of operations such as live migration and changes in the monitor target
can be defined in the same way, while we need to choose two components; one is the
target of the configuration change operation and the other is the destination of the live
migration or the monitored component.

4.4.2 Case study scenario

Here, we demonstrate how to evaluate a system’s operational vulnerability using model
checking through a case study scenario. This scenario is designed as one example of
analysis of vulnerability caused by undesirable events which can occur in cloud user side
and cloud provider side. The detail of the events (faults and configuration changes) is

53

Web1

Web2

Web3

Web4

DB1

(primary)

DB2

(backup)

monitor

App1

(primary)

App2

(backup)

Storage

(auto backup)

Load

balancer
monitor

Figure 4.8: 3-tier system for case study scenario

described later. Here we suppose that a cloud user contracting a cloud service provider
provides its service to customers by constructing the three-tier system shown in Figure
4.8 using virtual machines on the cloud infrastructure.

The three-tier system consists of a web server tier, an application server tier and a
database server tier. The web tier consists of four virtual machines (Web1, Web2, Web3
and Web4) with a load balancing cluster structure by using a load balancing function
(e.g., Amazon EC2 Elastic Load Balancing [55]) provided by the cloud provider. The
application layer is the HA cluster having a virtual machine App1 as its primary and App2
as its backup. The database layer has the same structure using two virtual machines (DB1
for primary and DB2 for backup). The data managed by the database servers is stored
in a storage prepared by storage services (e.g., Amazon S3 [56]), which is provided by the
cloud provider. Here, we assume that the load balancing function and the storage service
do not fail because the cloud provider provides these services and prepares a redundant
structure for them. Virtualized systems consisting of around 10 servers are common
configurations for middle-sized web services. For example, gumi [63], which is a popular
social game site in Japan having more than 10 million users, uses 8 virtual machines for
web-cum-application servers and 2 virtual machines for database servers [64]. Therefore,
it is practical to assume that a system for a typical web service for less than 10 million
users can consist of less than 10 virtual machine instances.

The manner in which these virtual machines are distributed on physical servers in
the cloud infrastructure depends on the decision made by the cloud provider side. Here,
we evaluate the operational vulnerability of the service with the placements in pattern
A and B, which are depicted in Figure 4.9(a) and (b), respectively, in order to show the
difference between the evaluation results of the operational vulnerability for these similar
placements.

In each deployment pattern, the cloud infrastructure consists of two power units (P1
and P2) in the facility layer and five physical servers (S1, S2, S3, S4 and S5) in the physical
resource layer. The power unit P1 provides its electric power for S1 and S2, while P2
provides for the other physical servers. In the deployment pattern A, S2 accommodates
three virtual machines (two web servers (Web1 and Web2) and one primary application
server App1). S3 has two web servers (Web3 and Web4) and one application server App2

54

Web1

Web2

DB2

(backup)

InstantiatedOn

Server S5

Power P1 Power P2

PoweredBy

App1
(primary)

App2
(backup)

DB1

(primary)

monitor

Server S4Server S3Server S2Server S1

Web3

Web4

(a) Deployment pattern A

Web1

Web2

DB2

(backup)

InstantiatedOn

Server S5

Power P1 Power P2

PoweredBy

App1
(primary)

App2
(backup)

DB1

(primary)

monitor

Server S4Server S3Server S2Server S1

Web3

Web4

(b) Deployment pattern B

Figure 4.9: Deployment patterns of virtual machines

for backup. The virtual machines for the primary database server (DB1) and for the
backup (DB2) are deployed on S1 and S4, respectively. In pattern B, it has the same
placement as with pattern A, except that DB1 is on S5. In the initial state in both
patterns, the virtual machines for backup (App2 and DB2) are in the standby mode, and
the other virtual machines are working properly.

In this case study, we assume that the following faults and operations can happen in
the system.

Fault: As typical events in information systems, we suppose crash faults of components
can occur. For cloud provider side, they include the faults in power units, phys-
ical servers and virtual machines caused by hardware/software defects. For cloud
user side, they include the events such as application halting and unintentional
shutdowns.

Live migration operation: As one of the typical examples of operations executed in
cloud provider side, we suppose that live migration can be executed to transfer
virtual machines to different physical server. As shown in [57], live migration is one
of the common tasks executed in cloud datacenter.

55

AG(AF(Service_running))

Service_running :=

(State[Web1]=On | State[Web2]=On |

State[Web3]=On | State[Web4]=On) &

(State[App1] = On | State[App2]=On) &

(State[DB1] = On |State[DB2]=On);

Figure 4.10: Property for service halting

AG(!SplitBrain)

SplitBrain :=

(State[App1]=On & State[App2]=On) |

(State[DB1]=On & State[DB2]=On);

Figure 4.11: Property for data inconsistency

Monitor change operation: For an example of operations executed in cloud user side,
we suppose the configuration changes in HA clusters can be executed to change
monitor target in a standby (backup) virtual machine. We chose this operation
for our case study because the misconfigurations in HA cluster is one of the most
common causes of split-brain syndrome as described in [115]. It is also reported
in [114] that the complexity in the cluster setup is the dominant factor of failover
success rates.

We assume the following two faulty conditions to be undesirable situations.

(1) Service halting

If there is a fault in all of the components consisting of a layer, we regard this as
a service halting failure. In our scenario, it occurs when four web servers, or two
application servers or two database servers fail at the same time. The property
can be represented by the formula in Figure 4.10 that was constructed based on
Definition 7.

(2) Data inconsistency

When a primary component and the backup for it in a HA cluster are working at
the same time, we consider that it is a situation involving data inconsistency. In our
scenario, it is the case when both App1 and App2 are on, or when both DB1 and
DB2 are on. Based on Definition 8, we can describe the property using the formula
in Figure 4.11.

4.4.3 Evaluation of operational vulnerability by NuSMV

We now evaluate the operational vulnerability of the system in the case study using
NuSMV. By implementing the system models in patterns A and B, and the properties to
be verified described in the previous subsection on NuSMV, we conducted an evaluation
of the operational vulnerability. For the evaluation, we used a PC with an Intel Core2
Duo E8500 CPU (3.17 GHz), 4 GB memory, Windows 7 Professional OS (32 bit), and

56

Table 4.1: Verification results for pattern A
No service halting No data inconsistency
Number of faults Number of faults
0 1 2 0 1 2

No operation True True False True True True
Migration True False False True True True

Monitor change True False False True False False
Migration + Monitor change True False False True False False

Table 4.2: Verification results for pattern B
No service halting No data inconsistency
Number of faults Number of faults
0 1 2 0 1 2

No operation True False False True True True
Migration True False False True True True

Monitor change True False False True False False
Migration + Monitor change True False False True False False

NuSMV version 2.5.4 for Windows. In the evaluation, we changed the number of possible
component faults from 0 to 2. The number of operations for live migration and changing
monitor target was limited to less than two. Tables 4.1 and 4.2 shows the satisfiability of
the defined properties in patterns A and B, respectively. Table 4.3 shows the operational
vulnerability in each pattern calculated from Tables 4.1 and 4.2.

From these results, we can summarize the evaluation results of the operational vul-
nerability as follows.

• With one component fault and no operation execution, pattern A satisfies both of
the properties, while the service halting failure occurs in pattern B. This is because
the physical server S4 accommodating DB2 and S5 accommodating DB1 are powered
by the same power unit P2 in pattern B. If P2 fails, both DB1 and DB2 shut down,
and the service cannot be available (Figure 4.12(a)). Therefore, we can conclude
that there is a single point of failure in pattern B, and it is more vulnerable than

Table 4.3: Evaluation results of operational vulnerability
Pattern A Pattern B

Number of faults Number of faults
0 1 2 0 1 2

No operation Lv.0 Lv.1 Lv.2 Lv.1 Lv.2 Lv.2
Migration Lv.1 Lv.2 Lv.2 Lv.1 Lv.2 Lv.2

Monitor change Lv.1 Lv.3 Lv.3 Lv.1 Lv.3 Lv.3

57

Web1

Web2

DB2

(backup)

InstantiatedOn

Server S5

Power P1 Power P2

PoweredBy

App1
(primary)

App2
(backup)

DB1

(primary)

monitor

Server S4 Server S3 Server S2 Server S1

Web3

Web4

(a) Service halting in pattern B

3

p)p)))

4

If P2 fails, both DB1

and DB2 fail.

dOdOndO

Web1

Web2

DB2

(backup)

Activated

InstantiatedOn

Server S5

Power P1 Power P2

PoweredBy

App1
(primary)

App2
(backup)

dOdOndO

DB1

(primary)

Activated

monitor

Server S4 Server S3 Server S2 Server S1

Web3

Web4

(b) Data inconsistency with monitor change in pattern A

If target is changed to Web 3

and it fails, both DB1 and DB2

are activated.

Figure 4.12: Deployment patterns of virtual machines

the placement in pattern A, which does not have a single point of failure. From this
result, the operational vulnerability of pattern B is level 1 (single point of failure)
when there is no fault, and level 2 (service halting) if a fault happens.

• When we execute only live migration operations, it does not lead to data inconsis-
tency (split brain). However, if we execute the operations that change the monitor
target, one component fault can lead to service halting or a split brain. For example,
if we change the monitoring target for the backup database server (DB2) from DB1
to Web3, then the fault of Web3 can invoke the starting up of DB2, resulting in both
DB1 and DB2 working (Figure 4.12(b)). Therefore, the operation that changes the
monitoring target is more risky, because it can more easily elevate the operational
vulnerability to level 3 compared to live migration.

• The vulnerability levels when we executed the live migration operation and opera-
tion changing monitor target are the same in both patterns A and B. Therefore, we
can conclude that the impacts of these operations are the same in these configuration

58

Table 4.4: Computational time (sec) for pattern A
No service halting No data inconsistency
Number of faults Number of faults
0 1 2 0 1 2

No operation 1.08 1.53 6.90 1.05 1.57 6.58
Migration 1.08 4.41 10.86 1.11 4.01 97.69

Monitor change 1.10 1.73 10.84 1.06 1.71 10.20
Migration + Monitor change 1.13 8.82 66.75 1.14 8.55 118.87

Table 4.5: Computational time (sec) for pattern B
No service halting No data inconsistency
Number of faults Number of faults
0 1 2 0 1 2

No operation 1.09 1.29 6.18 1.04 1.12 5.74
Migration 1.11 4.43 46.56 1.09 4.06 59.17

Monitor change 1.08 1.72 11.57 1.17 1.70 11.03
Migration + Monitor change 1.14 8.32 63.52 1.14 8.32 51.13

patterns.

Tables 4.4 and 4.5 show the computational time required for each evaluation. From
these tables, we can see that we obtained the results in about one second in the best-case
scenario, while it took over 100 seconds in the worst-case scenario.

4.5 Discussion

In the case study, we demonstrated that we can evaluate the operational vulnerability of
a system for component faults and improper operation executions. We summarize the
advantages of our approach as follows.

(1) It enables analyses to consider the states of system components and in-
teractions between them

In our approach, we defined a system model using components and interdependencies
between them through which the state transitions propagate to other components.
By doing this, we can represent the “domino effect” of state transitions that occur
in a system consisting of components with complex interdependencies. As a result,
we can evaluate the operational vulnerability hidden in the system, which is difficult
to identify from the static analysis of the system configurations.

(2) It enables impact evaluation for faults and operations

By defining the levels of operational vulnerability in information system manage-
ment, we enabled the impact evaluation for the occurrence of faults or the execution
of improper configuration change operations. By doing this, we can identify the

59

types of faults or operations that can seriously affect the system. By utilizing the
information and modifying the system configuration properly, we can improve the
robustness of the system for the faults.

On the other hand, to make our approach more practical, we need to solve the following
problems.

(1) Establishing efficient criteria to construct models for various operations

While we constructed state transition models for two types of operations (live mi-
gration and changing the monitor target) on NuSMV, various types of operations
can be executed in the cloud infrastructure management. Therefore, we need to
clarify the general criteria or principles when modeling these operations so that we
can construct models for any types of operations without ambiguity.

(2) Establishing a method to construct smaller models

From the evaluation of computational times in our case study, we found that the
model checking is capable of determining the vulnerability in a service with a typ-
ical system configuration. However, we also found that the computational times
increase significantly when we increase the number of possible fault components
and operation executions. Therefore, in order to realize the evaluation for more
complex and large-scale systems, we need to construct small-size models that can
be verified effectively. For example, while we constructed a state transition model
for each component in our case study, we may be able to reduce the number of states
by grouping some components into one state transition model if the grouping does
not affect the overall behavior of the system.

4.6 Summary

In order to improve the reliability in configuration changes in cloud system management,
administrators have to take care of the execution of the change as well as the planning of
it. However, estimating the outcome of operations for components which are interrelated
dynamically is quite difficult. To solve this problem, by using state transition models and
model checking approach, we proposed a method to evaluate the operational vulnerability
of services on a cloud computing infrastructure for component faults and improper oper-
ation executions. In our approach, we first defined the level of vulnerability for accidental
faults or improper operations based on their impact on services (service unavailable and
data inconsistency). Next, we constructed a model that represents the behavior of systems
by components and their interrelationships using state transition models. We enabled the
evaluation of the impact of events (component faults or operations) using our model, in
which state transitions can be propagated between components having interrelationships.
Then, we demonstrated that we can evaluate the vulnerability of services by carrying out
a case study in which the wrong target assignments for live migration and high availability
cluster are considered. In this case study, we verified the system model using the model
checking tool NuSMV and determined the single point of failures, possible system halting
and data inconsistencies.

60

We are now considering the following work for future study. First, we are going to
establish an efficient method for the construction of models for various operations. As
discussed in the previous section, we have to model various cloud management operations
such as taking snapshots of virtual machines and applying security patches to software
components. Next, we aim to improve the model construction method for obtaining
smaller models that can be verified with smaller computing resources (CPU time and
memory size). By improving our approach regarding its complexity (e.g., the variations
of configuration operations) and scalability (e.g., the size of model that can be analyzed),
it will become more practical for large-scale complex cloud computing systems. We be-
lieve that by realizing these goals, our method will contribute to the improvement of the
reliability of cloud system management by recognizing the risks hidden in the system
structure, and by correcting the configuration beforehand to prevent service failures.

61

Chapter 5

Discussion

5.1 Practicality and limitation of the proposed ap-

proach

In this dissertation, we discussed how to improve the reliability in cloud system man-
agement using formal methods. In our approach, we verified the possible behavior of
the target system by evaluating the system configurations and the operations executed
on them using formal methods. One of the most biggest advantages of the proposed
approach is that the formal methods can contribute to prevent system administrators
from overlooking flaws hidden in the system configurations and the management process
by making use of their capability to explore the large state space corresponding to the
possible situations. On the other hand, it also has limitaions such as scalabilities. In this
section, we summarize and discuss the practicality of the proposed approach for actual
cloud infrastructures based on the evaluation results presented in Chapter 3 and 4.

Through the case studies in Chapter 3 and 4, we evaluated the performance of verifi-
cations and found out that our technique can be applied for a system consisting of several
dozen components (physical servers or virtual machines). Therefore, we suppose that our
approach can be used in the problems in the following classes, though we need to do
further investigations for proving it.

• A private cloud infrastructure consisting of few racks with a few dozen physical
components (servers, network switches and storages). For example, when we use
Pureflex [118] system with 25-Unit rack on which we can mount 25 components, we
can execute the verification by our approach for a system with one or two racks.

• A virtual system consisting of dozens of virtual machines. For example, a social
game site gumi [63] handles 10 million users with 8 virtual machines for web-cum-
application servers and 2 virtual machines for database servers [64]. We can also
find some examples of virtual systems with several virtual machines from Amazon
AWS Cloud Design Patterns [126]. We suppose large portion of small Web services
can belong to this category.

On the other hand, from the viewpoint of scale and complexity, it is difficult to apply
our approach to systems in the following classes.

62

• A cloud system having over about 50 components. For example, a private cloud sys-
tem at Japan Advanced Institute of Science and Technology consists of 50 physical
nodes and hundreds of virtual machines [128].

• A virtual system with hundreds nodes. For example, a system for large amount of
data (e.g. hadoop [127]) can consist of hundred or thousand of virtual nodes.

We suppose that these limitations come from our straightforward modeling approach.
We prepare one object corresponding to each component comprising the target system
in the modeling in Chapter 3. Same thing can be said for Chapter 4 in which we use
one module for each component. The increases in the number of SAT clauses are more
than linear relationship with the number of components (see Table 3.1). Therefore, linear
reinforcement of processing power by methods such as parallel or distributed processing
for SAT solving does not seem to be an appropriate solution to scalability problem. One
of the possible fundamental solutions is to simplify the model before executing analysis
by formal methods. For example, some cloud infrastructures can be constructed in a
uniform way (e.g. consisting of many racks of the same type on which servers of the same
type are mounted). We might be able to make use of this type of repetitive structure of
cloud system for constructing smaller system models by omitting or abstracting the parts
having the same structure.

5.2 Possible application

While we mainly focused on the service transition stage in the system management life-
cycle in this dissertation, formal methods can also be applied for the other system man-
agement stages to improve the whole management cycle. For example, it is possible
that we can improve the remaining four stages (Service Strategy, Service Design, Service
Operation and Continual Service Improvement) by the following approaches.

1. Service Strategy stage

In this stage, it is needed to recognize the requirements for the system and specify
them without ambiguity. This can be achieved by defining a goal and decompose
it into several requirements. These tasks are difficult and time-consuming, since
they are usually conducted manually. Some approaches to support these tasks by
using formal methods have been proposed. For example, Alrajeh et al. proposed a
method to elaborate requirements for a system using model checking and inductive
learning [65]. In their approach, model checking is used to identify the incomplete-
ness in a partial operational requirement specification. Then they use Inductive
Logic Programming (ILP) to generate the missing part of the specification. This
kind of approach can contribute to improve the efficiency in request specification.

2. Service Design stage

In this stage, it is required to refine abstract service strategies and requirements
to make concrete tasks. Here we have to take care not to produce contradictions
between the abstract requirement and its refined task. One of the typical approaches
to achieve the safe refinement is theorem proving approach. For example, Event-B
and its Rodin tool can assist the refinement by providing theorem proving function

63

which can guarantee that the refined (lower) model satisfies the requirements in the
abstract (upper) model.

3. Service Operation stage

One of the most important tasks in the Service Operation stage is problem man-
agement in which system administrators have to identify the cause of problems
occurred in their systems and solve them. Different from the changes planned in
the Service Transition stage, the changes for problem solving should be conducted
as soon as possible. Therefore, formal verificaiton approach can be used to check
in a short period of time whether or not a procedure intended to be conducted to
solve a problem evoke another problem by its side-effects. Some system verification
methods such as [66] can be used for this purpose.

4. Continual Service Improvement stage

The main task in this stage is to evaluate the performance of a system and its
management to improve the service quality and cost effectiveness. From the view-
point of service quality, it is important to keep service level objectives. Since the
availability is the top of concerns for cloud users as shown in Table 2.1, evaluation
and improvement of availability are quite important. Formal methods can also be
used for the availability improvement. For example, Calinescu et al. proposed a
technique in [58] to estimate the service availability of a cloud system based on the
failure rates of components comprising the cloud system. By using their approach,
cloud administrators can determine whether or not the cloud system can satisfy a
given availability service level. If it is determined that the system cannot satisfy the
availability rate, administrators can plan the configuration change to improve the
availability.

The above approaches also suggest that formal methods can be used in various ways
in the system management lifecycle. By combining our approch for Service Transition
stage with the above approaches for the other stage, the effectiveness and availability of
a cloud system can be improved throughout the lifecycle of system management.

5.3 Related work

As mentioned before, configuration of complex ICT systems is widely regarded as one of
the key challenges in system management [16]. In this thesis, we focus on the improving
the reliability of change management by avoiding unnecessary failures by two approaches:
(1) configuration change planning in change design phase and (2) configuration verification
in execution phase. Although quick recovery by some techniques such as recovery oriented
computing [124] can be an alternative approach to improve the availability of systems, it
is out of scope of this thesis, because it is not an approach to prevent failures.

5.3.1 Configuration change planning

The design choices in configuration change planning can be categorized into the following
three categories: (1) autonomic management, (2) planning with procedural knowledge
and (3) planning with procedure and constraints.

64

Autonomic management

In 2003, autonomic computing framework [125] to make systems manage themselves has
been proposed. It is a technique to orchestrate the behavior of systems consisting of many
autonomic components working with simple if-then type policies.

Weyns et al. [72] surveyed the researches regarding the application of formal methods
for self-adaptive systems from 2000 to 2010. In this survey, it has been reported that
while the most dominant application domain of formal methods in self-adaptive systems
is embedded systems (46.7%), service-based systems (e.g. Web services) is in the second
position (26.7%) and have gained an increasing attention since 2005. For example, Cali-
nescu et al. [73, 74] proposed a framework to control web service resources (e.g. CPUs)
dynamically based on the quantitative verification results using PRISM model checker.
Xu et al. [62] proposed a method to determine the placement pattern of virtual machines
on physical servers in a datacenter so that the pattern satisfies constraints such as the
network bandwidth.

These researches of autonomic computing mainly focus on the realtime reaction for
the situation changes (e.g. increase of user requests) without making drastic changes in
system structures. Therefore, orchestrating the behavior of autonomic systems is different
from our purpose which is to synthesize procedure for scheduled configuration changes
consisting of several operations.

Planning with procedural knowledge

Multiple research projects have investigated the planning of procedures for system config-
urations using pre- and post-conditions of operations, including Plaint [17, 18] and LPG
[19]. Cordeiro et al. proposed ChangeLedge framework [60], which can synthesize the con-
figuration change procedure by refining a sequence of abstracted operation descriptions.
Hagen et al. [59, 61, 109, 110] conducted thorough research regarding configuration plan-
ning in cloud systems. In [59], a fundamental framework of a hybrid approach for IT
(information technology) Change Planning has been proposed. In this approach, Change
Requests (CRs) are decomposed into subtasks using Hierarchical Task Network (HTN)
method [111]. At the same time, the operations for objects in the target system are
described by means of extended restricted state-transition systems (eSTSs), an extended
version of restricted STSs [112]. Each object is in one of the three states representing its
status: Installed, Started or Removed. Each atomic change request (task) is represented
by a state transition with its pre- and post-conditions. The hybrid approach decomposes
a given task into subtasks and synthesizes a change plan by determining the order of
atomic change requests so that state changes for each objects do not conflict with each
other. This work has been extended in [61] for virtualized environments. For example, it
can handle preconditions for change requests such as “In order to install an application
in a virtual machine (VM), it needs to be in state ‘running’ and the physical machine
(PM) needs to be in state ‘on’ ”. The performance and usability of proposed approach
have been discussed in [109]. By comparison with other approaches such as Graphlan
algorithm with planning graphs and Prodigy algorithm based on means-end alaysis, they
concluded that Hierarchical Task Network outperformed the others. The HTN algorithm
has been improved in [110] by improving the process in the planning such as evaluation of
preconditions and determination of bindings between parameters in configuration change
activities and configuration items.

65

These techniques only rely on procedural knowledge containing information about each
operation’s pre- and post-conditions. They synthesize a procedure just by connecting
operations that comply with the procedural knowledge. This approach is different from
ours which utilizes both of the procedural and declarative knowledge.

Planning with procedure and constraints

As mentioned above, there are some cases in which administrators have to take into
account not only the procedures for making changes to configurations but also declarative
constraints that should be maintained in their system. For example, some constraints
in system management might be defined declaratively as “anti-pattern” or “not to do
list” which are independent from procedural knowledge as shown in [113]. Actually,
some researchers have started to realize the importance of using discrete and declarative
constraints for system management [22], although most of their research is at an early
stage and concerns the propositions of concepts or architecture.

Our approach is focusing on this category, while there are not so many approaches
which are based on sound logical and mathematical foundations like ours. One of the
few approaches for incorporating conditions independent of procedural knowledge into a
method of planning configurations is SPiCE [20, 21] by IBM. They, however, have re-
quired programming to define these constraints and have not been able to express these
constraints declaratively. We assumed that knowledge on system management could be
added, removed, or modified within the lifecycles of system management due to various
reasons such as changes in system management policies, emersions of new components,
and the disposition of knowledge on obsolete components. Therefore, it is very disadvan-
tageous to embed that knowledge in procedural program code, because it is too difficult
to modify the embedded knowledge scattered in a planning algorithm.

5.3.2 Configuration verification

As for the research regarding configuration verification, various types of researches re-
garding the formal approaches for information systems have been done so far. The major
research topic in this area so far is the verification of program code, not configuration
management. For example, Near et al. developed a verification tool called Rubicon [79]
for web applications developed by using Ruby on Rails framework [80]. Rubicon translates
the Ruby codes and specifications into Alloy language so that they can be verified by using
Alloy Analyzer. The authors executed the verifications for several open-source web appli-
cations and identified a previously unknown security bug in one of them. Bianculli et al.
[85] used Labelled Transition System Analyser (LTSA) [86, 87] to estimate the behaviors
of external service components as labelled transition systems (LTS) from the specifica-
tions of them. Artho et al. [96, 97] conducted the verification for several multi-threaded
network applications such as HTTP server and WebDAV server using Java PathFinder
(JPF) [99, 100]. They applied cache-based model checking approach which can backtrack
the verification for the multi-threaded processes with non-deterministic behaviors. The
cache captures the network traffic between the system under testing (SUT) and external
processes communicating with the SUT. In the backtracking, data previously received by
the SUT can be replayed by the cache when it is requested. The backtracking mechanism
conbributed to reduce the state space to be explored during the verification. Their work

66

has been extended by Leungwattanakit et al. [98] who added a checkpointing function
which enables to save and restore the states of peer nodes communicating with the target
SUT.

While these program verification is quite important in improving the reliability of
information systems, this is the out of the scope of this thesis regarding the system
configuration management.

Some researches have been focusing on formalizing system configuration and man-
agement process in cloud computing and virtualized systems. For example, Schroeter
et al. [83] proposed some models for describing requirements for multi-tenant systems.
They identified the requirements for configuration models based on the fact that there are
various types of stakeholders (e.g. cloud providers and tenants (users)) in multi-tenant
cloud service management. Based on the analysis, they proposed three types of models:
(1) an Extended Feature Model for describing the functionalities of components compris-
ing the services, (2) a View Model defining stakeholders and their views regarding the
configurations and (3) Configuration Process Model for representing the configuration
steps and involved stakeholders. While the authors intended to use verification methods
such as constraint satisfaction problem (CSP) solvers [84] to verify the consistency in
concurrent stakeholder configurations, the actual appication still remains as future work.
Antonescu et al. [88] proposed the specification language for cloud-based application. In
their specifications, the structure of a cloud service is described by using objects such as
assets (software, images, scripts or data necessary for the service to be executable) and
regions (compute and storage resource pools at different datacenters or cloud providers)
and relationships between them. Using the specification, they demonstrated the dynamic
resource provisioning based on the evaluation of the service level (e.g. response time).

Different from our approach, these researches regarding the formalization of system
configuration do not provide verification methods by themselves. These formalized models
can be the input data for the verification methods such as the ones proposed in this thesis.

As for the system configuration verification, we can consider two approaches: (1)
static configuration verification and (2) dynamic configuration verification. Related work
in each category is presented as follows.

Static configuration verification

The static configuration verification focuses on determining whether or not a fixed system
structure can satisfy given requirement.

One of the typical applications of formal methods for static verification is for networked
distributed systems. For example, Ritchey et al. [81] analyzed the vulnerabilities in net-
work configurations in web servers by using SMV model checker. Narain et al. [29, 30, 82]
used Alloy Analyzer to identify the single point of failure in a network and correct con-
figurations, though they concentrated on the verification for static configurations without
taking into account the events which can change the status of the system.

Researches involving the application of formal verification include the work done by
Bleikertz et al. [89, 90, 91, 92]. They proposed a generic way to specify and verify security
goals for virtualized infrastructure. In their framework, the system to be analyzed is
modeled as a graph by using AVANTSSAR Specification Language [93], and the inference
rules and goals to be maintained are specified as Horn clauses. They used verification tools
such as OFMC (On-the-Fly Model Checker) [94] for the verifications for three examples

67

of security problems: (1) Zone isolation meaning that any machines deployed in a security
zone (e.g. high, base, and test secutiry zones) should not be able to communicate with
a machine in the zone with different security level, (2) secure migration meaning that
intruders cannot transfer a target virtual machine by migration to a host for which the
intruders have administrative (root) privileges and (3) absence of single point of failure
meaning that there are at least 2 network paths between hosts which should be able to
communicate with each other. While they used model checking approach, the problems
investigated can be regard as reachability problems in static graphs. Another verification
for security issue is discussed in the work done by Almorsy et al. [95]. They represented
the signature of security vulnerabilities in web applications as OCL (Object Constraint
Language) constraints. By translating web application programs into abstract syntax tree
(AST) representation and executing the verification for them with OCL constraints, they
identified hidden flaws causing security vulnerabilities in the program codes.

The main difference between these researches and our approach is that ours can take
into account the dynamic system behaviors in configuration changes. The importance of
the dynamic verificaiton and related work are presented as follows.

Dynamic configuration verification

Some researches also emphasized the importance of verification in systems’ behaviors at
runtime [75, 76, 77, 78]. Since today’s information systems face changes (e.g. changes in
the system components, requirements, or development environments) which are unpre-
dictable at the development stage, some techniques such as formal methods have been
applied so that we can determine whether or not the required changes can induce poten-
tial conflicts with the systems’ specifications. In fact, as shown in [57], a large number
of management operations (live migration and taking snapshot) are executed in cloud
computing data centers every day. Therefore, the importance of dynamic verification will
increase along with the prevalation of cloud computing.

With respect to the analysis approach that applies to formal methods, Calinescu et al.
[58] proposed a modeling method for service availability, and analyzed the model using a
PRISM probabilistic model checker, while they do not consider the impact of operations
that can change the configuration of systems.

Etchevers [101] and Salaun et al. [102, 103, 129] have also conducted the verification
for distributed cloud applications. They proposed a framework named VAMP (Virtual
Application Management Platform) which can deploy services consisting of several virtual
machines deployed on some physical servers. They implemented a deployment process and
a self-configuration protocol used for communications between virtual machines so that
they can bind and compose the services in the autonomic way. Since the interactions
between autonomic virtual machines can be complex, they executed the verifications for
properties such as “all mandatory client interfaces are connected to servers”. In the
verification, first they generate a LTS from the specification and the target application by
using CADP (Construction and Analysis of Distributed Processes) exploration toolbox
[104]. Then they conducted the verificaition with EVALUATOR model checker [105] in
the toolbox. This research is rather the verification of autonomic protocols than the
verification for scheduled system management process we focus on.

As for the verification of change plans, in [107] inconsistencies between planned change
requests and system configurations have been discussed. They supposed that time-lags

68

Table 5.1: Comparison with Bleikertz’s and Hagen’s approaches
Work Advantages Disadvantages

Bleikertz Applied to various types of
scenarios (e.g. secure migra-
tion and single point of fail-
ure).

Only for static verification
for the constraints which do
not take into account the dy-
namic intaractions between
components.

Hagen High scalability for planning
and verification for configura-
tion changes.

Handle only procedural
knowledge (cannot use
declarative constraints).

Proposed (1) Able to take into account
both of procedural knowledge
and declarative constraints.
(2) Able to analyze domino-
effects triggered by opera-
tions or failures.

Difficult to apply to large
scale systems.

between the change planning and the execution of the planned change might make the
change plan obsolate and inconsistent with updated system configurations. They dis-
cussed three types of change plan adaptions: (1) Replanning to generate a new plan for
scratch, (2) Plan adaption to change some parts of the plan and (3) Parameter adaption
to assign new values to parameters to make the plan executable (e.g. “If a physical ma-
chine originally chosen does not have enough memory to accommodate a virtual machine
any more, alternative physical machine has to be chosen”), while only the solution for the
parameter adaption has been provided. In [108], the conflicts between change requests
have been discussed. The problems to be solved here is to identify change requests which
can make other change requests infeasible (e.g. a change request for changing the IP
address for a server can make another change request involving the access to the server
infeasible). The application example of the plan verification for Amazon EC2 outage has
been demonstrated in [59]. While the applied algorithm was tailor-made for the spe-
cific problem, it has been enhanced and implemented in [71] as a specific purpose model
checker utilizing partial-order reduction method. Through a case study of Amazon out-
age, they evaluated the performance and claimed that their implementation outperformed
general-purpose model checkers such as SPIN and NuSMV. While this approach seems
quite similar to ours, it does not take into account the dynamic interactions between com-
ponents comprising a system. In our vulnerability evaluation approach, the interaction
between components (e.g. a failure of a component can invoke the start up of its backup)
is an important factor.

5.3.3 Advantages and disadvantages

Here we summarize the advantages and disadvantages of our approach by comparing it
with related work described above. For comparison, we chose two approaches done by
Bleikertz et al. [89, 90, 91, 92] and Hagen et al. [59, 61, 71, 106, 107, 108, 109, 110],
because their targets (information systems consisting of nodes playing various functions)

69

and approaches (model checking) are quite similar to ours. The comparison is summarized
in Table 5.1. First, in Bleikertz’s work, they demonstrated various scenarios in which ver-
ifications were conducted by using various types of model checkers. They also evaluated
the performance (time measurement) for analysis for the zone isolation scenario. One of
the notable weakness of their approach is that all scenarios are rather static than dynamic.
Therefore, it cannot handle scenarios involving dynamic configuration changes or status
changes in components of target systems. Next, in Hagen’s work, scalability in configura-
tion planning and verification has been thoroughly investigated. Especially, in [71] they
implemented their own model checker utilizing partial-order reduction approach and com-
pared the performance with general-purpose model checkers such as SPIN and NuSMV in
real Amazon outage scenario presented in [59]. By concentrating on the procedural opera-
tion knowledge with pre- and post-conditions, they achieved high scalability. Conversely,
their approach cannot use declarative constraints in their planning and verification along
with procedural knowledge. Comparing with these two approaches, our approach can
take into account more vairous factors than only procedural operation knowledge. For
example, our configuration procedure synthesis method can construct a configuration plan
which can avoid declarative constraints. This is one of the advantages of ours because
sometimes constraints in system management are defined declaratively as “anti-pattern”
or “not to do list” which are independent from procedural knowledge as shown in [113].
In addition, our configuration verification method takes into account domino-effect which
is a sequence of state changes triggered by some events such as component failures. This
type of behavior analysis is difficult to do by using static configuration verification. On
the other hand, one of the biggest drawbacks of our approach for practicability is scalabil-
ity. We evaluated our approaches in small case study scenarios. While we improved the
procedure synthesis algorithm by using intermediate goal approach, we need to improve
its scalability so that we can make our approach more practical for large-scale system
analysis.

70

Chapter 6

Conclusion and future work

6.1 Summary

Along with the growth of cloud computing services, the role of cloud computing in our
society has been becoming more and more important. Therefore, keeping the availability
of cloud services are utmost importance in cloud system management. However, cloud
service outages caused by human errors such as misconfigurations and executing improper
operations happen every day. Therefore, it is indispensable to prevent service failures by
assisting system administrators using technical approaches.

Based on this background, in this dissertation we demonstrated how to improve the
reliability in cloud system management through case studies for the following two types
of approaches based on formal methods.

1. Configuration procedure synthesis

We proposed a framework for synthesizing configuration change procedures. In this
framework, first we prepare three types of knowledge related to system manage-
ment: (1) executable operations with their pre- and post-conditions, (2) declarative
constraints to be satisfied during the configuration change procedures and (3) goal
conditions to be achieved by executing the synthesized procedure. Next these types
of knowledge are translated into Alloy language. Then we input the knowledge
into Alloy Analyzer model finder which can identify models (or instances) to satisfy
given conditions. In other words, Alloy Analyzer identifies the sequence of opera-
tions which can achieve goal conditions without violating the declarative constraints.
This sequence of operations is output as the synthesized configuration change pro-
cedure. In order to reduce the memory size to synthesize the procedures, we devide
the path from the initial state to the goal state satisfying given goal conditions
into shorter paths with defining intermediate states. By shortening the paths of
state changes to be synthesized, we reduced size of memories required to procedure
synthesis.

2. Operational vulnerability evaluation

We proposed a method to evaluate the operational vulnerability of services on a
cloud computing infrastructure for component faults and improper operation exe-
cutions. In our approach, first we defined the level of operational vulnerability of
services based on the seriousness of situations. The operational vulnerability scale

71

has four levels: (Level 0) safe state, (Level 1) state with single point of failure,
(Level 2) service unavailable state and (Level 3) data inconsistency state. Next we
constructed system models representing the state transitions which can be triggered
by component failures or operation executions in a cloud infrastructure. In this
model, we take into account the interrelationships between components comprising
the cloud infrastructure. By executing the verification of this model using NuSVM
model checker, we analyzed the configuration of the cloud infrastructure and de-
termined the impact of component failures or operation executions on the cloud
infrastructure. From the verification results, we can determine the vunlerability
level of the infrastructure and identify the weakness hidden in the configuration of
the infrastructure.

These two approaches complement with each other. While the configuration procedure
synthesis approach can prevent some misconfigurations by synthesizing the procedure sat-
isfying given conditions, it might not be able to prevent all types of misconfigurations from
some reasons such as the flaws in the definition of declarative constraints. However, even if
some misconfigurations occur, operational vulnerability evaluation approach will be able
to identify some of them. By combining different approaches, we can expand the cover-
ages of misconfiguration preventions and improve the reliability of system management
processes.

The main contribution of this dissertation is that we demonstrated how to apply
formal methods for cloud management. In detail, we showed how to construct and analyze
the system models representing the system configurations and the changes triggered by
operation executions or components faults using the framework of formal methods. By
using the system models, we demonstrated that we can construct the operation procedures
and determine the operational vulnerability hidden in the system configurations.

6.2 Future work

We are now considering the following work for the future.

• Assisting translation of system management knowledge into formal rep-
resentations

In the proposed approaches, we suppose that system configuration information can
be automatically derived from configuration management database. Therefore, we
can construct the function to translate system configuration information into formal
descriptions such as Alloy language or NuSMV model description. However, we
defined the possible state transitions triggered by failures or operation executions
manually. For administrators who are not familiar with logical representations,
it might be difficult to define pre- and post-conditions of executable operations
precisely. Therefore, some technologies which can assist or automate the transition
of experts’ knowledge regarding executable operations into formal representations
can lessen the difficulties in the modeling.

• Improving the scalability of analysis and verification

From the evaluation results, we conclude that our approaches still have limitations
in the scalability. In the operation procedure synthesis, we reduced the memory size

72

required for the synthesis by dividing the sequence of operations into shorter paths.
However, we still need to improve computational time and memory size requred
for the analysis if we are going to apply our approach directly for mega-scale cloud
computing infrastructure. There can be several approaches to solve this problem.
For example, we might be able to reduce the size of system model by abstracting
some components comprising the cloud system if they are not related to the events
(faults or operations) directly. We also might be able to limit state transitions by
limiting the possible events or the order of them to reduce state space to be explored.

We can easily imagine that there is no technology which can solve all problems in
system management tasks. By combining several complemental techniques such as the
procedure synthesis and the operational vulnerability evaluation proposed in the disser-
tation, the reliability in system operations and management can be improved efficiently.

73

Bibliography

[1] Rich Miller, “Report: Google Uses About 900,000 Servers”,
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-
about-900000-servers/ , 2011.

[2] Huan Liu, “Amazon data center size”, http://huanliu.wordpress.com/2012/03/13/
amazon-data-center-size/ , 2012.

[3] Google, “Search Engine Strategies Conference, Conversation with Eric Schmidt
hosted by Danny Sullivan”, http://www.google.com/press/podium/ses2006.html ,
2006.

[4] Amazon Web Services, http://aws.amazon.com

[5] Google App Engine, https://developers.google.com/appengine

[6] Cloud computing (wikipedia), http://en.wikipedia.org/wiki/Cloud computing

[7] Peter Mell and Timothy Grance, The NIST Definition of Cloud Computing, 2011.

[8] itSMF, An Introductory Overview of ITIL V3, 2007.

[9] Amazon EC2 SLA, http://aws.amazon.com/ec2-sla

[10] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram
and Shankar Pasupathy, “An empirical study on configuration errors in commercial
and open source systems”, Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP ’11), 2011.

[11] Taro Kurita, Miki Chiba, and Yasumasa Nakatsugawa, “Application of a Formal
Specification Language in the Development of the “Mobile FeliCa” IC Chip Firmware
for Embedding in Mobile Phone”, Lecture Notes in Computer Science, Volume 5014,
pp 425-429, 2008.

[12] Jeannette M. Wing, “A Specifier’s Introduction to Formal Methods”, Computer,
Vol.23, No.9, pp.8-22, 1990.

[13] Event-B and the Rodin Platform, http://www.event-b.org/index.html

[14] Symantec Corporation: State of the Data Center Report 2007,
http://www.symantec.com/ , 2007.

[15] D. Jackson, Software Abstractions: Logic, Language, and Analysis, The MIT Press,
2006.

74

[16] Aaron B. Brown, Alexander Keller, Joseph L. Hellerstein, “A model of configuration
complexity and its applications to a change management system”, Proceedings of 9th
IFIP/IEEE International Symposium on Integrated Network Management (IM2005),
2005.

[17] Naveed Arshad, Dennis Heimbigner, and Alexander L. Wolf, “Deployment and dy-
namic reconfiguration planning for distributed software systems”, Software Quality
Control, Vol.15, No.3, pp.265-281, 2007.

[18] Naveed Arshad, “Automated Dynamic Reconfiguration using AI Planning”, Pro-
ceedings of 19th IEEE International Conference on Automated Software Engineering
(ASE 2004), 2004.

[19] Alfonso Gerevini and Ivan Serina, “LPG: a Planner based on Planning Graphs with
Action Costs”, Proceedings of the Sixth International Conference on Artificial Intel-
ligence Planning Systems (AIPS’02), AAAI Press, 2002.

[20] Tamar Eilam, Michael Kalantar, Alexander Konstantinou and Giovanni Pacifici,
“Model-Based Automation of Service Deployment in a Constrained Environment”,
IBM Research Report, 2004.

[21] Kaoutar El Maghraoui, Alok Meghranjani, Tamar Eilam, Michael Kalantar, and
Alexander V. Konstantinou, “Model driven provisioning: bridging the gap between
declarative object models and procedural provisioning tools”, Proceedings of the
ACM/IFIP/USENIX 2006 International Conference on Middleware (Middleware
’06), pp.404-423, Springer-Verlag, 2006.

[22] The Rise and Rise of the Declarative Datacentre, Microsoft Research Technical Re-
port, MSR-TR-2008-61, 2008.

[23] DMTF CMDB Federation Working Group, http://www.dmtf.org/

[24] itSMF - The IT Service Management Forum, http://www.itsmf.co.uk/

[25] Akira Katsuno, Satoshi Tsuchiya and Motomitsu Adachi, “TRIOLE Organic Com-
puting Architecture”, Fujitsu Scientific and Technical Journal, Vol.43, No.4, pp.412-
419, 2007.

[26] Alloy Analyzer 4, available at http://alloy.mit.edu/alloy4/

[27] SAT4J, available at http://www.sat4j.org/

[28] The Minisat Page, http://minisat.se/

[29] Sanjai Narain, “Network configuration management via model finding”, Proceedings
of the 19th conference on Large Installation System Administration Conference (LISA
’05), Vol.19, USENIX Association, 2005.

[30] Ian Warren, Jung Sun, Sanjev Krishnamohan and Thiranjith Weerasinghe, “An Au-
tomated Formal Approach to Managing Dynamic Reconfiguration”, Proceedings of
the 21st IEEE/ACM International Conference on Automated Software Engineering
(ASE2006), pp.37-46, 2006.

75

[31] Xen, available at http://www.xen.org/

[32] Interstage Application Server, http://www.fujitsu.com/global/services/software/

interstage/apserver/

[33] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/

[34] Apache AXIS2, available at http://ws.apache.org/axis2/

[35] Kazuhiro Nakamura, Tomohiro Naruse, Kazuyoshi Takagi and Naofumi Takagi, “Effi-
cient Translation of Logic Circuits to CNF Formulae with DBB”, IPSJ SIG Technical
Reports, 2007-SLDM-129, 2007.

[36] R. Reiter, “The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression,” Artificial Intelligence and the
Mathematical Theory of Computation, Academic Press, 1991.

[37] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, “A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths”, IEEE Transactions on Systems Science
and Cybernetics SSC4 (2), pp. 100-107, 1968.

[38] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton, 1963.

[39] Jing Sun, Hongyu Zhang, Hai Wang, “Formal Semantics and Verification for Feature
Modeling”, Proceedings of the 10th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS 2005), pp.303-312, 2005.

[40] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia, “Above the Clouds: A Berkeley View of Cloud Computing,” Technical
Report No. UCB/EECS-2009-28, University of California at Berkley, USA, Feb. 10,
2009.

[41] FirstServer, overview and causes of the large scale failure (midterm report), 2012,
http://support2.fsv.jp/urgent/ report.html (in Japanese)

[42] Data on 5,700 firms lost by Yahoo unit,

http://www.japantimes.co.jp/text/nb20120627a5.html, Japan Times, 2012.

[43] Amazon, Summary of the Amazon EC2 and Amazon RDS Service Disruption in the
US East Region, 2011, http://aws.amazon.com/message/65648/

[44] Xen, http://xen.org/

[45] VMware, http://www.vmware.com/

[46] Google Compute Engine, http://cloud.google.com/products/compute-engine.html

[47] The reason why Fujitsu’s cloud is chosen: Realization of 3-tier systems on Cloud,
http://jp.fujitsu.com/solutions/cloud/iaas/fgcps5/reasons/01.html (in Japanese)

76

[48] Naotaka Owada, Why Systems Go Down, Nikkei BP press, 2009. (in Japanese)

[49] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield, “Live migration of virtual machines,”
Proceedings of 2nd ACM/USENIX Symposium on Network Systems Design and Im-
plementation, pp. 273-286, 2005.

[50] Edmund M. Clarke, Orna Grumberg and Doron Peled, Model Checking, The MIT
Press, 1999.

[51] Bryant, R.E., “Graph-based algorithms for Boolean function manipulation,” IEEE
Transactions of Computer, Vol.C-35, No.8, pp.677-691 (1986).

[52] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on Software Engi-
neering, Vol.23, No.5, 1997.

[53] Marta Kwiatkowska, Gethin Norman, and David Parker, “Probabilistic Symbolic
Model Checking with PRISM: A Hybrid Approach,” International Journal on Soft-
ware Tools for Technology Transfer (STTT), 6(2), pp. 128-142, 2004.

[54] NuSMV, http://nusmv.irst.itc.it/

[55] Elastic Load Balancing, http://aws.amazon.com/elasticloadbalancing/

[56] Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/s3/

[57] Vijayaraghavan Soundararajan and Jennifer M. Anderson, “The impact of manage-
ment operations on the virtualized datacenter”, Proceedings of the 37th annual in-
ternational symposium on Computer architecture (ICSA’10), 2010.

[58] Radu Calinesu, Shinji Kikuchi and Kenneth Johnson, “Compositional Reverification
of Probabilistic Safety Properties for Large-Scale Complex IT Systems,” Develop-
ment, Operation and Management of Large-Scale Complex IT Systems, volume 7539
of LNCS, Springer, 2012.

[59] Sebastian Hagen, Michael Seibold, and Alfons Kemper, “Efficient verification of IT
change operations or: How we could have prevented Amazon’s cloud outage,” Pro-
ceedings of Network Operations and Management Symposium (NOMS), pp.368-376,
2012.

[60] Weverton Luis da Costa Cordeiro, Guilherme Sperb Machado, Fabricio Girardi An-
dreis, Alan Diego dos Santos, Cristiano Bonato Both, Luciano Paschoal Gaspary,
Lisandro Zambenedetti Granville, Claudio Bartolini, David Trastour, “ChangeLedge:
Change design and planning in networked systems based on reuse of knowledge and
automation,” Computer Networks, Volume 53, Issue 16, pp. 2782-2799, 2009.

[61] Sebastian Hagen, Alfons Kemper, “Model-Based Planning for State-Related Changes
to Infrastructure and Software as a Service Instances in Large Data Centers,” Pro-
ceedings of 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD),
pp.11-18, 2010.

77

[62] Jielong Xu, Jian Tang, Kevin Kwiat, Weiyi Zhang and Guoliang Xue, “Survivable
Virtual Infrastructure Mapping in Virtualized Data Centers,” Proceedings of 2012
IEEE 5th International Conference on Cloud Computing (CLOUD 2012), pp.196-203,
2012.

[63] gumi, http://gu3.co.jp/

[64] AWS Case Study: gumi Inc., http://aws.amazon.com/jp/solutions/case-
studies/gumi-english/

[65] Dalal Alrajeh, Jeff Kramer, Alessandra Russo and Sebastian Uchitel, “Elaborating
Requirements using Model Checking and Inductive Learning”, IEEE Transactions
on Software Engineering, vol.39, no.3, pp.361-383, 2013.

[66] Shinji Kikuchi, Satoshi Tsuchiya, Atuji Sekiguchi and Tsuneo Katsuyama, “Formal
Description and Verification of System Management Processes Using UML”, IPSJ
Journal, No.50, Vol.2, pp.637-650, 2009. (in Japanese)

[67] Kevin Lano, Specification in B: An Introduction using the B Toolkit, World Scientific
Publishing Company, Imperial College Press, 1996.

[68] Paris Metro Line 14 (wikipedia), https://en.wikipedia.org/wiki/Paris Metro Line 14

[69] M. Ben-Ari, Z.Manna, and A.Pnueli, “The temporal logic of branching time”, Acta
Informatica 20, pp.207-226, 1983.

[70] Fumio Machida, Masahiro Kawato, and Yoshiharu Maeno, “Just-in-Time Server Pro-
visioning Using Virtual Machine Standby and Request Prediction”, Proceedings of
the 2008 International Conference on Autonomic Computing (ICAC ’08), IEEE Com-
puter Society, 2008.

[71] Sebastian Hagen, Algorithms for the Efficient Verification and Planning of Infor-
mation Technology Change Operations, Ph.D. Dissertation, Technische Universitat
Munchen, 2013.

[72] Danny Weyns, M. Usman Iftikhar, Didac Gil de la Iglesia, and Tanvir Ahmad, “A
survey of formal methods in self-adaptive systems”, Proceedings of the Fifth Interna-
tional C* Conference on Computer Science and Software Engineering (C3S2E ’12),
pp.78-79, ACM, 2012.

[73] Radu Calinescu and Marta Kwiatkowska, “Using quantitative analysis to implement
autonomic IT systems”, Proceedings of the 31st International Conference on Software
Engineering (ICSE ’09), pp.100-110, 2009.

[74] Radu Calinescu, “Reconfigurable service-oriented architecture for autonomic com-
puting”, International Journal on Advances in Intelligent Systems, Vol.2 pp.38-57,
2009.

[75] Radu Calinescu and Shinji Kikuchi, “Formal methods @ runtime”, Proceedings of
the 16th Monterey conference on Foundations of computer software: modeling, de-
velopment, and verification of adaptive systems (FOCS’10), pp.122-135, 2010.

78

[76] Gordon Blair, Nelly Bencomo, Robert B. France, “Models @ run.time”, Computer,
vol.42, no.10, pp.22-27, 2009.

[77] Antonio Filieri, “QoS verification and model tuning @ runtime”, Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering (ESEC/FSE ’11), pp.408-411, 2011.

[78] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli, “Run-time efficient prob-
abilistic model checking”, Proceedings of the 33rd International Conference on Soft-
ware Engineering (ICSE ’11), pp.341-350, 2011.

[79] Joseph P. Near and Daniel Jackson, “Rubicon: bounded verification of web appli-
cations”, Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering (FSE ’12), 2012.

[80] Ruby on Rails, http://rubyonrails.org/

[81] Ronald W. Ritchey and Paul Ammann, “Using Model Checking to Analyze Network
Vulnerabilities”, Proceedings of the 2000 IEEE Symposium on Security and Privacy
(SP ’00). IEEE Computer Society, 2000.

[82] Sanjai Narain, Y.H. Alice Cheng, Alex Poylisher and Rajesh Talpade, “Network Sin-
gle Point of Failure Analysis via Model Finding”, Proceedings of First Alloy Work-
shop, 2006.

[83] Julia Schroeter, Peter Mucha, Marcel Muth, Kay Jugel, and Malte Lochau, “Dy-
namic configuration management of cloud-based applications”, Proceedings of the
16th International Software Product Line Conference (SPLC ’12), Vol.2, pp.171-178,
2012.

[84] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortes, “Us-
ing java CSP solvers in the automated analyses of feature models”, Proceedings of
the 2005 international conference on Generative and Transformational Techniques in
Software Engineering (GTTSE’05), pp.399-408, Springer-Verlag, 2005.

[85] Domenico Bianculli, Dimitra Giannakopoulou, and Corina S. Pasareanu, “Interface
decomposition for service compositions”, Proceedings of the 33rd International Con-
ference on Software Engineering (ICSE ’11), pp.501-510, ACM, 2011.

[86] Jeff Magee and Jeff Kramer, Concurrency: State Models and Java Programs, John
Wiley & Sons, 2006.

[87] LTSA - Labelled Transition System Analyser, http://www.doc.ic.ac.uk/ltsa/

[88] Alexandru-Florian Antonescu, Philip Robinson, and Torsten Braun, “Dynamic
Topology Orchestration for Distributed Cloud-Based Applications”, Proceedings of
the 2012 Second Symposium on Network Cloud Computing and Applications (NCCA
’12), pp.116-123, IEEE Computer Society, 2012.

79

[89] Soren Bleikertz, Matthias Schunter, Christian W. Probst, Dimitrios Pendarakis, and
Konrad Eriksson, “Security audits of multi-tier virtual infrastructures in public in-
frastructure clouds”, Proceedings of the 2010 ACM workshop on Cloud computing
security workshop (CCSW ’10), pp.93-102, ACM, 2010.

[90] Soren Bleikertz, Thomas Grob, and Sebastian Modersheim, “Automated verifica-
tion of virtualized infrastructures”, Proceedings of the 3rd ACM workshop on Cloud
computing security workshop (CCSW ’11), ACM, pp.47-58, 2011.

[91] Soren Bleikertz and Thomas Grob, “A Virtualization Assurance Language for Iso-
lation and Deployment”, Proceedings of the 2011 IEEE International Symposium
on Policies for Distributed Systems and Networks (POLICY ’11), pp.33-40, IEEE
Computer Society, 2011.

[92] Soren Bleikertz, Thomas Grob, Matthias Schunter, and Konrad Eriksson, “Auto-
mated information flow analysis of virtualized infrastructures”, Proceedings of the
16th European conference on Research in computer security (ESORICS’11), pp.392-
415, Springer-Verlag, 2011.

[93] AVANTSSAR: ASLan final version with dynamic service and pol-
icy composition. Deliverable D2.3, Automated Validation of Trust
and Security of Service-oriented Architectures (AVANTSSAR), 2010.
http://www.avantssar.eu/pdf/deliverables/avantssar-d2-3.pdf

[94] David Basin, Sebastian Modersheim, and Luca Vigano, “OFMC: A symbolic model
checker for security protocols”, International Journal of Information Security, Vol.4
No.3, pp.181-208, 2005.

[95] Mohamed Almorsy, John Grundy, and Amani S. Ibrahim, “Supporting automated
vulnerability analysis using formalized vulnerability signatures”, Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2012), pp.100-109, ACM, 2012.

[96] Cyrille Artho, Watcharin Leungwattanakit, Masami Hagiya, Yoshinori Tanabe, “Ef-
ficient Model Checking of Networked Applications”, TOOLS-EUROPE 2008, Lecture
Notes in Business Information Processing, Vol.11, pp.22-40, 2008.

[97] Cyrille Artho, Watcharin Leungwattanakit, Masami Hagiya, Yoshinori Tanabe, and
Mitsuharu Yamamoto, “Cache-Based Model Checking of Networked Applications:
From Linear to Branching Time”, Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering (ASE ’09), pp.447-458, IEEE Com-
puter Society, 2009.

[98] Watcharin Leungwattanakit, Cyrille Artho, Masami Hagiya, Yoshinori Tanabe, and
Mitsuharu Yamamoto, “Model Checking Distributed Systems by Combining Caching
and Process Checkpointing”, Proceedings of 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp.103-112, 2011.

[99] NASA, Java PathFinder, http://javapathfinder.sourceforge.net/

80

[100] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio
Lerda, “Model Checking Programs”, Automated Software Engineering, Vol.10, No.2,
pp.203-232, 2003.

[101] Xavier Etchevers, Thierry Coupaye, Fabienne Boyer, and Noel de Palma, “Self-
Configuration of Distributed Applications in the Cloud”, Proceedings of the 2011
IEEE 4th International Conference on Cloud Computing (CLOUD ’11). pp.668-675,
IEEE Computer Society, 2011.

[102] Gwen Salaun, Xavier Etchevers, Noel De Palma, Fabienne Boyer, and Thierry Cou-
paye, “Verification of a self-configuration protocol for distributed applications in the
cloud”, Proceedings of the 27th Annual ACM Symposium on Applied Computing
(SAC ’12), pp.1278-1283, ACM, 2012.

[103] Gwen Salaun, Fabienne Boyer, Thierry Coupaye, Noel De Palma, Xavier Etchevers,
and Olivier Gruber, “An experience report on the verification of autonomic protocols
in the cloud”, Innovations in Systems and Software Engineering, Vol.9, No.2, pp.105-
117, Springer-Verlag, 2013.

[104] Hubert Garavel, Frederic Lang, Radu Mateescu, and Wendelin Serwe, “CADP 2010:
a toolbox for the construction and analysis of distributed processes”, Proceedings of
the 17th international conference on Tools and algorithms for the construction and
analysis of systems: part of the joint European conferences on theory and practice
of software (TACAS’11/ETAPS’11), pp.372-387, Springer-Verlag, 2011.

[105] EVALUATOR4, http://cadp.inria.fr/man/evaluator4.html

[106] Sebastian Hagen, Nigel Edwards, Lawrence Wilcock, Johannes Kirschnick, and
Jerry Rolia, “One Is Not Enough: A Hybrid Approach for IT Change Planning”,
Proceedings of the 20th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM ’09), pp.56-70, Springer-Verlag, 2009.

[107] Sebastian Hagen and Alfons Kemper, “Facing the Unpredictable: Automated Adap-
tion of IT Change Plans for Unpredictable Management Domains”, Proceedings
of 6th IEEE/IFIP International Conference on Network and Service Management
(CNSM 2010), 2010.

[108] Sebastian Hagen and Alfons Kemper, “Towards Solid IT Change Management: Au-
tomated Detection of Conflicting IT Changes”, Proceedings of 12th IEEE/IFIP In-
ternational Symposium on Integrated Network Management (IM 2011), 2011.

[109] Sebastian Hagen and Alfons Kemper, “A performance and usability comparison of
automated planners for IT change planning”, Proceedings of the 7th International
Conference on Network and Services Management (CNSM ’11), pp.143-151, 2011.

[110] Sebastian Hagen, Weverton Luis da Costa Cordeiro, Luciano Paschoal Gaspary,
Lisandro Zambenedetti Granville, Michael Seibold, and Alfons Kemper, “Plannig
in the Large: Efficient Generation of IT Change Plans on Large Infrastructures”,
Proceedings of 8th International Conference on Network and Service Management
(CNSM 2012), 2012.

81

[111] Kutluhan Erol, James Hendler and Dana S. Nau, “HTN Planning: Complexity and
Expressivity”, Proceedings of the Twelfth National Conference on Artificial Intelli-
gence (AAAI-94), vol.2, pp.1123-1128, AAAI Press/MIT Press, 1994.

[112] Dana Nau, Malik Ghallab, and Paolo Traverso, Automated Planning: Theory &
Practice, Morgan Kaufmann Publishers Inc., 2004.

[113] Dana Glasner and Vugranam C. Sreedhar, “Configuration Reasoning and Ontology
For Web”, Proceedings of IEEE International Conference on Services Computing
(SCC 2007), pp.387-394, 2007.

[114] Klaus Schmidt, High Availability and Disaster Recovery, Springer, 2006.

[115] VMware, Resolving two active servers, http://kb.vmware.com/kb/1014405 , 2011.

[116] IDC Japan, Forecast of domestic private cloud market (in Japanese),
http://www.idcjapan.co.jp/Press/Current/20130812Apr.html , 2013.

[117] MM Research Institute, Trend of demand for domestic cloud service (in Japanese)
, http://www.m2ri.jp/newsreleases/main.php?id=010120130828500 , 2013.

[118] IBM, IBM PureFlex System, http://www-03.ibm.com/systems/pureflex/express/
index.html , 2012.

[119] IBM, IBM PureFlex System configurations, http://public.dhe.ibm.com/common/
ssi/ecm/en/wad12346usen/WAD12346USEN.PDF , 2012.

[120] Emerson, Knurr CoolLoop, http://www.emersonnetworkpower.com/en-
EMEA/Products/RACKSANDINTEGRATEDCABINETS/RackCooling/Pages/
KnurrCoolLoop10to30kWCoolingPower.aspx , 2013.

[121] Jing Xu and Jose A. B. Fortes, “Multi-objective Virtual Machine Placement in
Virtualized Data Center Environments”, Proceedings of 2010 IEEE/ACM Interna-
tional Conference on Green Computing and Communications & 2010 IEEE/ACM
International Conference on Cyber, Physical and Social Computing (GREENCOM-
CPSCOM ’10), pp.179-188, 2010.

[122] Ian Whalley and Malgorzata Steinder, “Licence-aware management of virtual ma-
chines”, Proceedings of 12th IFIP/IEEE International Symposium on Integrated Net-
work Management (IM2011), pp.169-176, 2011.

[123] Hewlett-Packard, HP Storage Essentials, http://h18006.www1.hp.com/storage/
software/srmgt/integrations/4AA2-0348ENW.PDF , 2008.

[124] George Candea, Aaron B. Brown, Armando Fox, and David Patterson, “Recovery-
Oriented Computing: Building Multitier Dependability”, Computer, Vol.37, No.11,
pp.60-67, 2004.

[125] Jeffrey O. Kephart and David M. Chess, “The Vision of Autonomic Computing”,
Computer, Vol.36, No.1, pp.41-50, 2003.

82

[126] Amazon, AWS Cloud Design Patterns, http://en.clouddesignpattern.org/index.php/
Main Page , 2012.

[127] Apache Hadoop, http://hadoop.apache.org/ , 2013.

[128] Fujitsu, Case Study JAIST, http://www.fujitsu.com/downloads/GBG/casestudies/
CS-JAIST-en.pdf , 2011.

[129] Rim Abid, Gwen Salaun, Francesco Bongiovanni, and Noel De Palma, “Verification
of a Dynamic Management Protocol for Cloud Applications”, Proceedings of 11th
International Symposium of Automated Technology for Verification and Analysis
(ATVA 2013), pp.178-192, 2013.

83

Publications

[1] Shinji Kikuchi and Satoshi Tsuchiya: “Configuration Procedure Synthesis for Com-
plex Systems Using Model Finder”, Proceedings of the 15th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 2010), March
2010.

[2] Shinji Kikuchi and Toshiaki Aoki, “Evaluation of Operational Vulnerability in Cloud
Service Management using Model Checking”, Proceedings of the 7th International
Symposium on Service Oriented System Engineering (SOSE 2013), March 2013.

[3] Shinji Kikuchi Satoshi Tsuchiya, and Kunihiko Hiraishi, “Configuration Change
Procedure Synthesis Using Model Finder”, IEICE Transactions on Information and
Systems, Vol.E96-D, No.8, pp.1696-1706, 2013.

84

