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Abstract 
 

In recent years, it has become increasingly important to maintain architecture in 
product-line development (PLD), mainly because of the rapid changes in market 
requirements and technical environments. In PLD, architecture maintenance is a more 
complicated and difficult process compared to conventional software development 
because architecture is key to achieve large-scale reuse in developing a product family. 
In architecture maintenance, we have to consider both the reference and implemented 
architectures. Here, reference architecture is a design intention that constraints the 
implementation, and implemented architecture is an abstract expression of the existing 
implementation. 

Architecture maintenance includes both keeping the conformance of implemented 
software architecture with the reference architecture and changing the reference 
architecture to meet new requirements. These architecture changes are modifications of 
software structure without changing the major feature of the product family. Thus, we 
call such modifications architecture refactoring. 

In PLD, requirements for reference architecture can change during the development 
of the product family because the development period lasts longer than that in non-PLD. 
Moreover, the implemented architecture can deteriorate over the development of 
multiple products. Therefore, we can organize architecture refactoring more efficiently 
by separately considering the implemented and reference architectures refactorings. In 
this study, we propose a decision taking method for architecture refactoring that 
considers both the implemented and reference architectures separately. 

The main characteristic of this method is utilizing the portfolio analysis of the 
problem factor to organize the architecture maintenance strategy. Furthermore, we 
verified the effectiveness of the proposed method by applying actual project data to the 
proposed method retroactively. 
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Chapter 1 
 

1   Introduction 
 
For the efficient development of a series of products that have similar characteristics, 
the Software product line (SPL) [9] technique is widely used in various areas, especially 
in embedded software area. Composing SPL assets and product development using SPL 
assets is called Product-line development (PLD). 

In general, software architecture is important in software development because 
architecture determines various restrictions on development. In PLD, software 
architecture is more important for achieving large-scale reuse in developing product 
families. In case of non-PLD, architecture quality mainly affects product specifications. 
In case of PLD, architecture quality also affects software reusability. Therefore, many 
architecture evaluation techniques have been proposed [3] [20] [21]. 

It is ideal to determine the architecture in advance for the development of all 
products in the product scope. However, it is often difficult to retain the same 
architecture during the product scope owing to the rapid changes in the business and 
technical environments during relatively long periods of development in PLD. Therefore, 
architecture evolution or refactoring is important for PLD. 
    In PLD, there are roughly two approaches, reactive and proactive, to compose 
product-line assets. In the proactive approach [8][25] , the necessity of architecture 
evolution often arises because of changes in the business and technical environment 
that occur after using the product-line core asset. Further, in the reactive approach [10], 
incremental evolution of architecture is necessary because core assets are created by 
evolving architecture from necessary parts. Therefore, in PLD, architecture evolution is 
necessary in either approaches. 
    In this study, we clearly distinguish reference architecture and implemented 
architecture. Reference architecture represents the design intention of the software 
structure, and is referred as the design target in implementing software. Implemented 
architecture is an abstract structure that is realized by source codes of each product. 
When architecture evolution is considered, we have to pay attention to reference 
architecture evolution, implemented architecture evolution, and the consistency 
between both architectures. In this study, we define reference architecture evolution as 
the change of the design target for adapting new situations, and implemented 
architecture evolution as the improvement of implementation in order to improve 



 2

implementation quality. Because the range of influence and cost differ depending on the 
kind of architecture, it is important to take decision appropriately when and how to 
evolve the architecture by considering the situation of product development. 
    We consider these architecture evolutions as architecture refactoring in the broad 
sense, and we propose a decision taking method for architecture refactoring by focusing 
on the difference between reference and implemented architectures. 
  The rest of this paper is organized as follows: In Chapter 2, we describe the issues 
obtained through our experience in project operation. In Chapter 3, we summarize the 
problems that we will solve using our proposed method. In Chapter 4, we propose an 
architecture refactoring technique. In Chapter 5, we describe the environment in which 
we examined our technique on the project. In Chapter 6, we present the result obtained 
using our technique and confirm the past instances using portfolio analysis. In Chapter 
7, we show the difference between this study and related works. Finally, we conclude 
this paper in Chapter 8. 
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Chapter 2 
 

2   Architecture Refactoring 
 
In this chapter, we describe issues that are background of our research. In section 2.1, 
we point out problems that are often found in recent embedded software development 
especially for consumer products. In section 2.1, we summarize general ideas of 
software architecture that are already known. In section 2.2, we explain reference and 
implemented architecture that is our important idea in this study. In section 2.3, we 
describe relationship of PLD and architecture. In section 2.4, we explain difficulty of 
maintaining architecture. In section 2.5, we describe the usage of utilizing existing 
artifacts. In section 2.6, we explain architecture refactoring. In section 2.7, we show an 
example of refactoring opportunity along with the product development. 
 

2.1  Software Architecture 
It can be seen that software architecture in development means a set of design 
restriction to keep overall appropriateness of software structure. In other words, 
software architecture is an abstracted expression of software structure. The term 
“software architecture” is used to indicate software structure in various abstraction 
levels. Following are the examples: 
 

 Architecture pattern level 
Architecture pattern means typical pattern of assignment or roles and relationship 

between elements. As a representative of architecture pattern, layers and broker and 
so on are introduced in POSA. Also in GOF, several architecture patterns are 
introduced. 
 

 Functional decomposition and dependency at subsystem level 
At this level, software architecture mainly determines functional decomposition 

and dependency among subsystems in an architecture pattern. 
 

 Local structure level in implementation 
At this level, software architecture mainly determines local structure inside 

subsystems. 
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In this study, we focus on functional decomposition and dependency at subsystem level. 
Subsystem level means coarse functional unit that is got at conceptual design phase, 
and not mean local structure of implementation such as class or method.  
 

2.2  Reference and Implemented Architecture 
As abovementioned, software architecture is an abstracted expression of software 
structure. In this study, we distinguish the reference architecture, the implemented 
architecture, and the implementation as illustrated in Figure 1. Definition of these two 
architectures and the implementation are as followings: 
 

 Reference architecture 
Architecture as a design intention 

 Implemented architecture 
Abstracted structure of the implementation 

 Implementation 
Substantial artifact such as source code and directory structure 
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Figure 1 Relationship between General Ideas for Architecture 
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Generally in software development, we plan a rough structure by considering various 
trade-offs, at early stage of development. The word “architecture” sometimes indicates 
the structure defined at this stage. In many cases, source code is implemented by 
referring the architecture determined at this stage. In this study, we call this 
architecture as “reference architecture”. Ideally consistency between the reference 
architecture and the implemented architecture should be kept throughout the 
development. However the gaps between them often appear. About the reasons of 
appearing gaps, we explain in section 2.4.3 . In order to investigate the gap, it is useful 
to understand the structure of the implementation at similar abstraction level of 
structure. We call this structure of implementation as “implemented architecture”. In 
other words, implemented architecture means the “architecture of the implementation”. 
By making distinction between reference and implemented architecture, we can grasp 
problems on these architectures and problems between them. Details of these 
architectures are followings: 
 

 Reference Architecture 
It means architecture that is referred as a target in development. In single 

development, architecture affects on the quality attributes of the products, such as 
realization of the functional and nonfunctional requirements. In PLD, architecture 
affects the reusability of products, in addition to the abovementioned quality 
attribute. If the development of product family last to a long period, requirements to 
the architecture may vary in the long period. Change of reference architecture cause 
a big impact on cost, because it is a basis of reusability in the product scope. 
Reference architecture is explicitly described as an architecture document. 
Architecture document contains description of the role of subsystems and the 
dependency between subsystems. 

 
 Implemented Architecture 

It means architecture as an abstracted structure of the implementation realized by 
source code. Because the implementation can not be directly compared to the 
reference architecture, we need the abstracted expression of the implementation that 
is same abstraction level to the reference architecture, in order to check discrepancy 
to the reference architecture. If the implementation is faithfully implemented to the 
reference architecture, there ought to be no discrepancy between reference and 
implemented architecture. To extract implemented architecture from the 
implementation, we can use reverse engineering from source code. Several tools for 
reverse engineering are available such as imagix [17] and lattix [27] [43]. Although it 
is hard to extract up to the original design intention that lies as a background of 
visualized structure by using these reverse engineering tools, they are useful to 
visualize internal relationship between constituent elements to understand the 
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abstracted structure of the implementation. 
 

 Implementation 
It means substantial artifact such as source code and folder structure. Regardless 

of PLD or non-PLD, the implementation is expected to realize faithfully to the 
reference architecture. Although the implementation is realization of the reference 
architecture, the abstraction level of implementation differs from the reference 
architecture. For example, information of role of subsystem and the dependency 
between subsystems are not directly expressed on the implementation itself. 
Therefore the implementation can not be directly compared with the reference 
architecture. Implementation is explicitly described as source code of the directly 
structure.  

 

2.3  Product Line Development 
In this chapter we describe positioning of software architecture in PLD. 
 

2.3.1  PLD and Architecture 
Software product line is defined as “a set of software-intensive systems that share a 
common, managed set of features satisfying the specific needs of a particular market 
segment or mission and that are developed from a common set of core assets in a 
prescribed way,” by Clements and Northrop [9]. As indicated in [9], PLD is effective for 
product developments that have many common features. Generally in PLD, common 
architecture is used for a product family to enable large reuse in practice. Differences of 
architecture in PLD from non-PLD are as follows: 
 

 Architecture centric development 
In PLD, so-called product line or reference architecture (PLA) plays a key role 

throughout the development. To enable large reuse in product family development, 
we apply the same architecture commonly for the product scope. Software 
architecture not only affects the structure of software itself, but also affects the 
organization structure of the project. PLA is also used for communications during 
stake holders in the projects. In non-PLD, architecture is mainly used to express 
software structure inside development team, in many cases. 

 
 Variability management 

In PLD, common parts and variation point is clearly defined in the architecture.  
In non-PLD, variation point is not always defined in the architecture. 
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 Explicit product scope 
In PLD, there is explicit product scope. Architecture is decided to realize all 

changes within the product scope. In other words, we can optimize architecture for 
the product scope. In non-PLD, product scope is not always clearly recognized. 

 

2.3.2  PLD in Embedded Software Development 
Generally PLD is suitable for development that the features of the products are 
predictable to a certain extent. As an example, software development for some consumer 
products matches the condition. 

In addition, recent these software developments face problems of increase of 
development scale and shortening of development time, together with product quality. 
Development scale problem includes increase in number of products and number of 
functions in each product. Increase in number of products brings needs of concurrent 
development of product family. Increase in number of functions brings needs of 
appropriate variability management. 

As for shorting development time, it is mainly caused by shortening of products 
release cycle. In products field appearing in market, product release cycle is not 
established as a custom, release interval is relatively long. As the market grows, 
consumer needs become high, number of participant at market increases. 

PLD is expected to solve abovementioned problems, and actually it has become 
widely used in such software development. 

In products field that PLD is regarded effective, it is common that at least several 
similar products are already released in market. This means that there exists an asset 
such as source code for those similar products. In this situation, starting PLD with 
existing asset is one of realistic plan, rather than a Greenfield scenario [9]. 
 

2.4  Difficulty of Maintaining Architecture 
In this section, we describe difficulty of maintaining architecture that arises in products 
development from several viewpoints. 
 

2.4.1  Changes of Environment 
Generally, software architecture is determined to incorporate considerable changes 
during the architecture is used. Especially in PLD, software architecture is assessed by 
several evaluation methods so as to incorporate changes in the product scope. However, 
any product line needs to evolve and adapt over time to incorporate new customer 
requirements and new technology constraints [44]. This is because not all changes are 
predictable before starting developing products. 
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As a result of those, architecture becomes old-fashioned in realizing new 
changes. 
 

2.4.2  Architecture Deterioration 
Architecture deterioration is a problem that has been investigated for long time. It 
means deterioration of implementation quality that is caused by incremental changes, 
fixing defects or optimizing quality attributes. These phenomena of such architecture 
deteriorations are known as architectural drift [38], software aging [37] or architecture 
erosion [18], or design erosion [19]. 
    If all future variations are predictable, architecture deterioration by product 
development will not occur. However, practically deterioration occurs in some extent, 
because of the variations that was not forecasted at the time of determining 
architecture. 
 

2.4.3  Architecture Gap 
Architecture gap is also known problem that happens along with product development 
[36]. It means discrepancies between predetermined architecture and the 
implementations. There are two origins that may cause architecture gap in PLD. 
 

 Gaps along with the development 
These are architecture gap that occur along with the progress of product 

development. This is a kind of phenomenon that is known as architecture erosion or 
design erosion. Ideally architecture gap is fixed as soon as it appeared. However it is 
difficult to fix when it appeared almost the end of development of the product 
because of the risk of change. 

 
 Created gaps in reactive approach 

As an approach of composing product line assets, there is reactive approach. In 
reactive approach, core assets are prepared stepwise from the place that became 
necessary. If we change the reference architecture to realize product line assets from 
the existing implemented architecture, the architecture gaps between the 
implemented and reference architecture are created. 

 
In both cases, immediate correction of architecture gap is not realistic, because of the 
risk of side effects by change and limitation of the allowed cost. Before bridging the 
architecture gaps, we need to aware the characteristics of the reference architecture 
and the implemented architecture, together with the characteristics of the gap between 
these two architectures. 
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2.5  Utilizing Existing Artifact 
As mentioned in previous section, Greenfield scenarios [9] are seldom found in 
industrial contexts. It means that utilizing existing artifacts such as source code and 
documents is a key for saving development time and cost in creating product line core 
assets. In such development, needs of architecture evolution often arise. 
    In case of new products field development, because products continuity from 
existing artifact is relatively low, it is conceivable to redesign architecture even if we 
utilize existing artifact. 

In case of similar development of products, there would not be necessary to change 
architecture, if requirements for the new products are almost same from products 
realized on existing assets. However market requirements for functional and 
non-functional feature become usually higher than former similar products, in most 
cases. In order to fulfill new requirement for the products, sometimes big change on the 
architecture becomes necessary. That’s why architecture evolution is necessary. In this 
case product scope is not always clearly aware, major function of the products is kept 
before and after the architecture evolution. In other words, there is strong continuity 
over architecture evolution. Utilizing existing artifact in creating product line assets 
can be effective because of the continuity of products, in this case. 
 

2.6  Architecture Refactoring 
In this chapter, we describe issues related to architecture refactoring. 
 

2.6.1  Evolution and Refactoring 
From the viewpoint of maintainability and transportability of the software, refactoring 
is known as a technique to change the internal structure of the program without 
changing the behavior of the system. In this study, we call similar approach to software 
architecture as “architecture refactoring”.  

Architecture refactoring means architecture evolution to improve quality 
characteristics such as the maintainability and transportability with keeping the main 
function that is expected to be realized on the architecture. The architecture evolution 
to cope with a technical and business environmental change may be accompanied by the 
expanse of a function assumed on the architecture. It can have the side that is slightly 
different from the refactoring of the source code that does not to change a function. 

However, we deal with the situation to keep a continuity with the past product 
group, and we don’t consider it until the change of an essential and large assumption 
function, in this study. Therefore we use the term “refactoring” as a part of evolution 
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aiming the improvement of the quality characteristics for assumption functions. 
 

2.6.2  Refactoring in Former Study 
The characteristic in a source code known as the sign which seem to cause a problem in 
the future observed at the time of software development from experience is called “Bad 
smell”. Fowler [13] mentions 22 kinds of bad smells such as “Duplicated code” or “Long 
method”. (see appendix B) 
    Although concerns of smells and the measures by Fowler are closed to the source 
code, the idea of “Bad smells” can be extended to architecture level. Rooks [41] propose 
idea of “Architecture smells” in order to utilize a trigger for big refactorings, where they 
observe structure smell such as cyclic dependency or concentration of functions on 
several architecture levels, such as package, subsystem, and layers. Regarding to 
architecture smells, Pollack [40] also mentions five architecture smells such as 
“Business logic is tightly coupled to non-functional requirements”.  
    The methods for using an architectural smell to point out the need for refactoring 
are described in [41][14]. These methods utilize the structural information of the 
implemented architecture. Fenton et al. [12] suggest an approach to identify refactoring 
needs by using software metrics. Metrics point out problems objectively, but the 
difficulty is that the use of such metrics does not always point out the real need for 
refactoring. This commonly takes place with “code smells,” as discussed in [13]. 
    Each of them is consideration for the implemented architecture, and it is not 
enough to plan a strategy for refactoring that involve the reference architecture in PLD. 
 

2.6.3  Impact on Cost and Implementation Quality 
There are a lot of cases to be accompanied by a large-scale change of the implementation, 
and the change of the architecture entails a modified cost generally. As an example, we 
consider a case of changing functional decomposition between subsystems. In this case, 
because changes occur in each related subsystem, cost for change increase along with 
the number of change increases. 

Furthermore, the quality risk by the change exists, too. Because a change point is 
not closed in a specific module and subsystem by the change of the implementation with 
the change of the architecture, the range that should confirm influence is wide in 
comparison with the refactoring closed to a specific module. 

Thus, because cost and influence on quality are big by the architecture refactoring, 
we need enough assessment for influence range. 
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2.6.4  Difficulty of Architecture Refactoring 
The difficulty in refactoring PLA lies in determining an appropriate refactoring strategy 
by considering the refactorings for both the reference architecture and the implemented 
architecture. The term “architecture refactoring” refers to a large refactoring at the 
architecture level. In [41], “large refactoring” is described as the composite of small 
refactorings that improves detailed design and code quality. The basic behavior of the 
outside of the system does not change before and after these architecture refactorings. 
In refactoring PLA, we have to consider both the reference architecture and the 
implemented architecture. The term “reference architecture” here refers to the planned 
and targeted architecture. The term “implemented architecture” refers to the 
architecture that is realized as the implementation. 

In several product line practices [23][26], there are migration approaches of the 
implementation toward the reference architecture. In these cases, the implemented 
architecture is refactored in order to adjust the deviation from the reference 
architecture.  

To identify the refactoring needs for the implemented architecture itself, a method 
of utilizing “architecture smell” [41] is available. Although this is useful to determine 
the refactoring needs easily from the structure of the implementation, we need further 
examination from the viewpoint of PLD in order to apply the abovementioned method to 
PLA because architectural smells are based on the implementation at a certain point of 
time.  

With regard to the reference architecture, the objective of refactoring is to increase 
the productivity and quality of future products, such as the ease of realizing future 
variability and the testability of products. If a product line lasts for a long span of time, 
sometimes a reengineering of the architecture becomes necessary in order to realize an 
innovative feature to adapt to increasing market requirements. In order to optimize the 
reference architecture, we might have to approach reengineering. However, in a large 
software project, designing from scratch is often not realistic. In such a case, refactoring 
from the existing architecture is rather useful. Thus there are different aspects to 
reference architecture and implemented architecture, and we need to distinguish 
between them for refactoring PLA.  

Once the reference architecture is refactored, the corresponding implementation 
needs to be refactored as well. When the latter procedure needs time to follow, there 
appears a gap between the implemented architecture and the reference architecture 
until the refactoring on the implementation is completed.  

Although there are various refactoring needs that range from the reference 
architecture to the implemented architecture, performing architecture refactoring ad 
hoc induces confusion into the project. In order to conduct these refactorings effectively, 
we need to carry out PLA refactorings under appropriate prioritization by considering 
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the related metrics result, the influence and cost of refactoring, the situation of the 
project, business objectives, and so on. We propose the means of doing so in this paper 
by using a problem factor portfolio analysis that we explain in chapter 4. 
 

2.6.5  Refactoring Needs in PLD 
In PLD, it is important to determine product scope before preparing product line core 
assets. However, even in the product scope, it is often found to update domain artifacts 
for adapting new variability. In other words, small scale of architecture refactoring is 
often taken place during the product scope. 

In addition, we consider about composing product-line assets phase. In proactive 
approach of PLD [20], reference architecture is defined prior to compose core assets, so 
as to be used commonly for products within the product scope. Generally in PLD, 
because same architecture is used for relatively long time compare to single system 
development, architecture refactoring is sometimes necessary to adapt following 
situations: 
 

 Technology improvement: Major technology improvement may occur during the 
period of product line scope. 

 
 Unexpected requirement from market: Market requirements are always changing. 

Sometimes market requirement that can not be expected at the beginning of 
product-line scope.  
 

In reactive approach of PLD [10], core assets are composed stepwise by using existing 
assets. It means that at least the related part of the architecture is refactored in order 
to composing core asset. 

As we mentioned above, architecture refactoring is necessary in PLD, whether the 
approach of composing product-line core asset is reactive or proactive. Architecture 
refactoring is not only necessary, but also an essential technique in order to lengthen 
the life of PLA. 
 

2.6.6  Refactoring of Reference Architecture 
In considering architecture refactoring, changes occurs in both implemented and 
reference architectures. In addition, there can be discrepancy between them, in 
products development project. Therefore, we think that we can make problems clear by 
considering problems belong to reference and implemented architecture separately. 

Figure 2 expresses the relationship between the reference architecture and the 
implemented architecture. The implementation is refactored so as to resolve the 
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discrepancies between the reference and implemented architecture, and the reference 
architecture is refactored so as to fulfill new requirements. 
 

Reference Architecture 
 

Refactoring 
 

Consistency check 
Refactoring to resolve Discrepancy 

Implemented Architecture 
 

Figure 2 Relationship of Reference and Implemented Architecture 
 

Refactoring of reference architecture is change of rule that restrain software design. 
When these changes cause discrepancies between reference architecture and the 
implementation, it is recommended to change the implementation to follow the 
reference architecture, as soon as possible. Those discrepancies that is caused by the 
change of reference architecture is caused by changes of the rule between components, 
it might need a big impact on the implementation.  

As Roock points out, large change of implementation in subsystem level induces a 
lot of cost. Change of reference architecture induces more cost and influence to the 
project. In general, there are various candidates of refactoring at a certain moment of 
development, therefore effects and influence to the project depends on choice of 
refactoring from candidates and timing of performing them. We treat this as an issue of 
decision taking, and we propose a technique in this study. 
 

2.6.7  Refactoring of Implementation in Architecture Level 
Refactoring of implementation in architecture level means large scale refactoring which 
affects overall structure of the software. Such large refactoring on the implementation 
is a combination of each small source code refactoring. Although each small refactoring 
is same as fowler’s refactoring, the difference from small scale of source code refactoring 
is its scale or number of combination. Roock [41] mentions that we need different 
attention in addition to regular refactoring that Fowler [13] describes. For example, 
consideration of refactoring timing and preservation of working hours on the products’ 
project belongs to them. However, almost all examples of large refactoring by Roock 
focus on refactoring on the local structure such as moving class or change of inheritance. 
To solve architectural problems at subsystem level, we need other viewpoints and 
techniques that consider relation to the reference architecture. 
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2.7  Refactoring Opportunity 
Figure 3 shows the process flow in cyclic product development after the application of 
the abovementioned method. Smells are projected to a refactoring item by considering 
the problem factors. The derived refactoring items are assessed using problem factor 
portfolio (PFP) that we explain in section 4.4.5 . The assessment here refers to the 
process that determines the position of each refactoring item in the PFP plane and the 
effort required for the item. Refactoring items are then selected after a consideration of 
the magnitude of the problem factor, the effort required, and the situation of the project. 
Refactoring is then performed on the selected item, and the rest are assessed at the next 
assessment opportunity together with new refactoring items derived from new bad 
smells that we explain in section 4.3.1 . 
 

PLA smells 

Designing reference 
architecture  and 

evaluation 

Selection of  refactoring 
items to be performed 

Assessment  by using 
PFP 

Perform 
refactoring 

Remaining refactoring items  

 

Refactoring items 

Selected refactoring items 

(optional) 

Problem 
factors 

 
 Figure 3 Process Flow in Cyclic Product Development 
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Chapter 3 
 

3   Problems 
 
In this chapter, we describe the problems that we are going to solve in this study. In 
section 3.1, we explain the main problem that we have to solve. In section 3.2, we 
describe the subsidiary problems as practical techniques to solve the main problem. 
 

3.1  Main Problem 
We set the objectives of this study is to provide a technique for architecture refactoring 
as follows; 

 
  A technique to support decision taking of prioritizing architecture refactoring 

items 
 
In the development of family products in product-line context, it is essential to select 
architecture in consideration of overall optimization of product development in the 
product scope. 

As techniques for selecting architecture, ATAM, SAAM, Pulse-DSSA and such are 
known. These techniques are useful for selecting architecture at the early stage of 
development, because they judge the good or bad of architecture based on requirement 
analysis, without considering the continuity with the existing assets. In PLD, we often 
encounter the needs of architecture refactoring to adapt new requirements, because 
PLD ranges for long time compare to non-PLD development. In considering architecture 
refactoring, we have to consider the continuity with the existing assets. 

As techniques for refactoring, methods of Fowler [13] or Roock [41] are known. 
Fowler describes the detailed techniques for detecting refactoring needs and specific 
refactoring techniques in source code level. Roock proposes similar techniques to 
Fowler’s that handle large scale refactoring. In architecture refactoring in PLD, 
treatment of reference architecture is important, because it regulates the relationship 
among the components for large reuse. Although these techniques cover refactoring of 
implementation, they do not cover the relationship between the reference architecture 
as the design intention and the implemented architecture as an abstracted expression 
of the implementation. 
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Because architecture refactoring need high cost, generally it is hard to deal with all 
candidates of architecture refactorings that we thought of. Therefore we have to select 
effective items under the limited resource of cost for refactoring. However there were 
not appropriate technique to select effective refactoring items, we have selected them 
ad-hoc based on the past experiences. 
 

3.2  Subsidiary Problems 
In order to solve the main problem described in previous section, we found subsidiary 
problems as practical techniques. We explain those subsidiary problems as follows: 
 

 Detecting problems related to development of series products 
In large software project, it is hard to specify the bad symptoms to be improved, 

because of complexity of the software itself and the complexity of the development 
process. 

As a technique for detecting bad symptoms, using “smells” is known in Fowler etc.  
However known “smells” are based on the structural observation at a moment, it is 
difficult to find out problems that come from development of series products. Our 
objective related to detecting problems is to provide techniques to find out problems 
that lie on plural development of products. 

 
 Quantification of the magnitude of problems 

There are various kind in problems related to architecture. Generally it is 
considered to be difficult to compare different kind of problems because the metrics 
means for each problem differ. Therefore the magnitude of the problems has been 
judged only subjectively. Our objective for handling magnitude of problems is to 
make possible to compare different kind of problems. 
 

 Prioritization of refactorings 
However there can be many refactoring candidates depending on projects, we don’t 

have appropriate to means to judge the order to deal with. 
In taking decision on refactoring, many factors should be concerned, because 

architecture refactoring affects big impact on quality and development cost. These 
factors involve the extent of problems being solved, cost and risk for the refactoring, 
and future product plan. Our objective for prioritization of refactoring is to provide 
useful materials for decision based on metrics. 
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Chapter 4 
 

4   Proposed Technique 
 
In this chapter, we propose a technique for decision taking method for architecture 
refactoring, in which we consider the background and problems we discussed in chapter 
2 and 3. In section 4.1, we explain requirements for the technique. In section 4.2, we 
outline the proposed technique. In section 4.3, we explain fundamental ideas that are 
necessary to describe our technique. In section 4.4, we explain the detail of the 
technique. 
 

4.1  Requirements for the Technique 
Because an influence range is wide and its cost is high as for architecture refactoring, 
the misjudgment for refactoring brings big damage on the project. Therefore, we need to 
be careful in planning architecture refactoring. In addition, technique for architecture 
refactoring should fulfill appropriate requirements. From this viewpoint, by referring 
subsidiary problems mentioned in section 3.2, we set following three points as 
important requirements for the decision taking technique of architecture refactoring. 
We propose technique to satisfy these in this study. 
 

 Based on observed data 
The design of the software architecture is often carried out based on the intuitive 

judgment by the expert. When there are not enough data becoming the grounds of 
the architecture decision, such as in case of designing a new type of product line, 
those intuitive judgment is often useful. However, because those judgments are not 
based on explicit knowledge, sometimes it is difficult to judge the authenticity of the 
judgment objectively.  

In case of architecture refactoring, we can observe facts to become the motive and 
the grounds of the architecture refactoring from the data of the existing project. We 
utilize such data by the proposed technique and aim at providing objective technique.   

 
 Targeting common problems that affect most products in the project 

In PLD, we develop family products under the common architecture. Problems due 
to the architecture cause a similar problem to the other products in the product scope. 
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By solving the problem that was common to the project group, similar effect can be 
expected in a project of afterward. Therefore, a big effect is expected for the whole 
projects, by solving the common problem. 

 
 Providing quantitative information for taking decision 

Generally, cost and time that is allowed to refactoring is limited, we need to 
prioritize refactoring considering the situation of the project. Here the situation of 
project means the factor of allowed cost and time, variations of products of 
afterwards, and the number of products planned. For example, if there are several 
refactoring candidates that have similar cost and effects, we can decide the priorities 
among them according to the situation of the project. In addition, we can take a 
decision of leaving a refactoring plan, even if it is really cost effective, by considering 
the situation of the project. For such decision taking, we need quantitative 
information regarding to the problems. 

 

4.2  Overview of the Technique 
Proposed technique comprises 7 steps. Followings are summary of the steps in proposed 
technique. 

 
STEP 1 Select bad smells 

Based on the experience of products development by using common infrastructure, 
we detect problematic phenomena that seem to obstruct the smooth execution for 
product development. 
 

STEP 2 Find problem factors for bad smells 
By analyzing bad smells that are gathered in STEP1, list up the origins that cause 
those bad smells. We list up the origins as problem factor (see section 4.3.2 ). Then 
group them into problem factors that are related to the reference architecture and 
the implemented architecture. 
 

STEP 3 Determine refactoring items 
Plan refactoring items to solve the problem factors got in STEP2. In addition 
estimate the effort needed for the refactoring.  
 

STEP 4 Quantification of the magnitude of problem factor 
Quantify the magnitude of problem factor identified in STEP2. Problems are 
quantified by using appropriate metrics for each problem factor. In order to 
compare the result of different metrics, we normalize the result according to the 
five-grade system to express the degree of annoying developers. The boundaries of 
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five-grades are predetermined from project’s experiment. 
 

STEP 5 Portfolio analysis 
Plot normalized magnitudes of problem factors on PFP plane. Then grasp the 
trends of problems for reference of decision taking to deal with them. 

 
STEP 6 Judge priority of refactoring 

Judge priorities of refactoring items of refactoring under total consideration of 
refactoring efforts obtained in STEP 3, the magnitudes of problem factor obtained 
in STEP 4, trends of bad smells plotted in STEP 5, and current situation of project. 

 
STEP 7 Execute refactoring 

Execute refactoring according to the judgement in STEP 6. 
 

4.3  Fundamental Ideas 
We explain general ideas that are backgrounds of our approach. In section 4.3.1 we 
explain bad smells in this study by comparing with bad smells that is already known in 
former study. In section 4.3.2 we explain problem factors which are structural reasons 
inducing bad smells. In section 4.3.3 we explain refactoring items which are measures 
for those problem factors. 
 

4.3.1  Bad Smells 
In our proposed technique, we define bad effects to the cost and quality that is 
continuously observed during architecture related activity in development of product 
family as “bad smell”. Here the activity means the achievement of addition, change of 
the function and non-functional requirement and quality properties. 

In former study such as Fowler [13] and Roock [41], bad smell is based on 
structural observations of the implementation, as we mentioned in section 2.6.2 . 
Because they are based on structural observation at a moment of development, we need 
another technique to detect bad symptoms that is specific to the development of product 
family such as PLD. 

These bad smells, of course, involve various issues that include architecture, 
personnel, and management. In this study, however, we confine ourselves to the bad 
smells that originate in architecture. In addition, we call those bad smells that originate 
in architecture as “PLA smells”. We ascertained PLA smells can be categorized in S1 
through S3 as follows. 
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 Influence to cost for change of implementation (S1) 
Changes on the implementation are inevitable in development. Followings are bad 

smells on cost that is induced by the change. 
 
Ex.1) Large man-hour for inspecting influence by the change or adding functions 
Ex.2) Need long time to find out change point in a specific huge subsystem 

 
 Influence to quality (S2) 

Whenever we change the implementation, there are risks on quality. Followings 
are bad smells related to quality of products. 

 
Ex.1) Relatively large numbers of bug are reported in comparison with other 

subsystems. 
Ex.2) Similar bugs found repeatedly 

 
 Influence to the cost for verification(S3) 

In addition to development cost, cost for verification occupies not negligible in total 
development cost. Test cost often depends on the structure of implementation of 
software. Followings are those examples 

 
Ex.1) Too many combination in test 

Depends on the number of branch, we should prepare test case.  
Ex.2) Too many number of regression test 

Large set of regression test is always necessary, when we can not specify the 
influence range in a small range. 

 

4.3.2  Problem Factor 
We call architectural cause of bad smells as “problem factor” in this study. Generally 
bad smells originate in various causes, such as software structure, technical skills of 
developer, or development processes. Among them, we pay attentions on the cause 
related to software architecture. In this section, we explain the kinds of problem factor 
and magnitude of problem factor. 
 
(1) Kinds of Problem Factor 
In order to find out problem factor, we need to investigate artifacts such as source codes 
and architecture documents in detail. Architecture documents include description of 
software structure such as role of subsystems and the relationship between subsystems. 
To investigate these artifacts, hearing to the development engineer facing a problematic 
phenomenon on a daily basis is effective. 
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Problem factor can be divided into reference architecture related and implemented 
architecture related. We ascertained problem factors can be categorized in Pr1 through 
Pr2 for reference architecture and Pi1 through Pi3 for implanted architecture. For 
perspective, we refer to code smells and architecture smells known for an existing study. 

 
Problem factors due to the reference architecture 

Problem factor due to the reference architecture are mainly related to 
inappropriateness of roll assignment of subsystem. Inappropriateness can be 
categorized into concentration and desperation. 

 
 Concentration of functions (Pr1) 

Followings are typical example of concentration of functions. 
 
Ex.1) Role assignment for specific subsystem is too wide, so the code size of the 

subsystem is large. 
Ex.2) Dependencies from other subsystem is concentrated to specific subsystem. 
Ex.3) Too many global access 
 
 Dispersion of functions (Pr2) 

Followings are typical example of dispersion of functions. 
 
Ex.1) Inappropriate assignment of role 
Ex.2) Too many dependencies between subsystems 
 

Problem factors due to the implemented architecture 
Problem factor due to the implemented architecture can be categorized into following 
thee categories. 
 

 Kinds of implementation techniques (Pi1) 
This category of problem factor is caused by the selected techniques for 

implementation. 
 

Ex.1) Maintainability problem because of too many compilation switches 
 

 Quality of the implementation (Pi2) 
This category of problem factor is caused by the quality of implementation. 

 
Ex.1) Long functions 
Ex.2) High complexity 
Ex.3) Considerably complicated relationship between components 
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 Alignment to the reference architecture (Pi3) 

This category of problem factor is caused by the gaps between planned and actual 
architecture.  

 
Ex.1) Different contents that compose the subsystem 
Ex.2) Discrepancy in dependencies 
Ex.3) Misplacement of component 
 

The term “component” refers to an element that composes an asset such as a function, 
group of functions, class, package, or subsystem. In many cases, a PLA smell is not 
related simply to only one category because the problematic symptom is often 
multifaceted. For example, when there are difficulties in fulfilling a certain requirement, 
the problem often lies in both the architecture and the complexity of the 
implementation. 

When a project has reference architecture, discrepancies between the reference 
architecture and the implemented architecture can often be observed. In the practice 
involving several product lines [23][26], a migration approach is used in the 
implementation of reference architecture. In such a case, a planned refactoring of the 
implementation is important because the implemented architecture reflects the original 
difference from the reference architecture. 

Even if there is sufficient consistency between the implemented and the reference 
architecture, the implementation is in the danger of deteriorating if its consistency is 
not checked regularly [36]. Several tools that are useful in detecting deviations in the 
architecture’s implementation have been reported [11][43].  

On the other hand, the reference architecture is also in danger of becoming 
outdated. To adapt to the new requirements of the product or to make its development 
more sophisticated; it then becomes necessary to refactor the reference architecture. For 
PLD, it is important to optimize refactoring by considering the reference-architecture 
related and the implemented-architecture related problem factors.  
 
(2) Magnitude of Problem Factor 
For quantitative comparison of problem factors, we need to measure the magnitude of 
each problem factor. Using metrics is an objective method for measuring problem 
factors quantitatively. We should choose metrics to meet each problem factors. Table 1 
shows an example of metrics and problem factor that is used in our project based on 
experiences of product development. 
    As for metrics of the reference architecture, there are two approaches to measure. 
First one is direct method that measures the magnitude of reference architecture, such 
as scoring on architecture document. Second one is indirect method that measure 
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through the implementation deliverables including implemented structure and the 
source code that reflected design rationale such as the folder constitution. However the 
direct measurement seems to be ideal, there are pros and cons for each approach as 
follows: 
 

 Direct method 
Although this method can perform architecture evaluation directly to the reference 

architecture, the result is not always accurate because of inaccuracy comes from 
description of architecture documents that is written in natural language and 
inaccuracy of scoring method that is based on the intuition such as feeling or 
impression by the human who evaluates the architecture. 

 
 Indirect method 

Although this method has intrinsic inaccuracy that is based on the discrepancies 
between the reference and implemented architecture, there is no inaccuracy that lies 
in direct method as abovementioned. Under the condition that the implementation is 
done almost close to the reference architecture, and the characteristics obtained from 
metrics of is enough remarkable, we can use the indirect method for measuring the 
magnitude of the reference architecture. 

 
Table 1 is an example of choice of metrics in case of the second approach mentioned 
above. In this example, as a result, the number of dependence is used by both 
evaluations of reference and implemented architecture, but we perform the 
measurement at a point reflecting a factor in each structure. About concrete values at 
variable expression in Table 1, we predetermine based on the experiences on the target 
project in advance. By normalizing each metrics in 5-step, we can compare the 
magnitude of different problem factors. 
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Table 1 Classification for Magnitude of Problem Factors 

1 2 3 4 5

Broad Responsibility of
Subsystems

Reference LOC of the sybsytem ＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

Dependencies from
everywhere

Reference
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Too many
dependencies

Reference
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Too many compilation
switches

Implemented
Dencity of Compilation

Switches
＜(R1)% ＜(R2)% ＜(R3)% ＜(R4)% (R4)%≦

Long functions Implemented
Average LOC per

functions
＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

High complexity Implemented
Avarage of Cyclomatic

Complexity
＜(C1) ＜(C2) ＜(C3) ＜(C4) (C4)≦

High connectivity Implemented
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Different components Implemented
Numbe of different

components
＜(F1) ＜(F2) ＜(F3) ＜(F4) (F4)≦

Discrepancy in
Dependency

Implemented
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Problem factor
Problem
Located

Metrics

5 Degrees of Evaluation
Small  　　（Magnintude of Problems）　　  Large

 

4.3.3  Refactoring Items 
The term “refactoring items” refers to an individual refactoring plan to resolve the 
corresponding problem factors. Because factoring items corresponds to problems of 
architectural level, its granularity is larger than regular source code refactoring. 
Whereas regular source code refactoring indicates refactoring actions on specific portion 
of codes, refactoring items generally involves plural refactoring actions. In other words, 
it is a kind of policy for refactoring to solve the problem. 

 
Refactoring items corresponding to reference architecture 
Refactoring items for reference architecture are planned from the viewpoint of 
improving functional decomposition. We ascertained refactoring items corresponding to 
reference architecture can be categorized in Rr1 through Rr3 as follows. 
 

 Splitting or creating subsystem (Rr1) 
Refactoring items in this category are that increase the number of subsystems. 

 
Ex.1) Separate portions that is related to specific concern 
Ex.2) Create new subsystem to prepare realizing new functions 
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 Merging subsystems (Rr2) 
Refactoring items in this category are that decrease the number of subsystems. 

 
Ex.1) Gather similar subsystems into one subsystem 
Ex.2) Extend the role of subsystem to include new functions (assume that once 

assign new subsystem for new functions, then absorb it into existing 
subsystem) 

 
 Change role of subsystems (Rr3) 

This is the case that the number of subsystem does not change before and after the 
refactoring. 
 
Ex.1) Change functional decomposition between subsystems 

 
Refactoring items corresponding to implementation 
Refactoring items for implementation are planned from the viewpoint of improving 
functional decomposition.  

Refactoring item involves actions of modification to the implemented source code, 
such as “Move package A from layer X to layer Y,” “Split package B into packages P and 
Q,” or “Merge module A and module B.” Practical operations in a source code are the 
same as general source code refactoring, but they differ from general source code 
refactoring in that these refactoring items affect the software architecture. We 
ascertained refactoring items corresponding to reference architecture can be categorized 
in Ri1 through Ri2 as follows. 
 

 Refactoring involving changes of implementation technology (Ri1) 
Refactoring items in this category changes a way of implementation to make it 

more sophisticated. 
 
Ex.1) Change realization technique of variation point 

As realization techniques, three timing is known. These are compilation time, 
binding time, and execution time. Changing techniques for realization means 
change of timing. As an example, there is a method to change from compilation 
switch to binding options. 

Ex.2) Virtualization of procedure by applying function pointer 
 
 Refactoring without changing implementation technology (Ri2) 

Refactoring items in this category improves quantitative aspect of the 
implementation. 

 



 26

Ex.1) Split long functions into small ones 
Ex.2) Shallow condition nest 
Ex.3) Remove unused compilation switches 
Ex.4) Move implementation between subsystems. 
 

4.3.4  Relationship among Fundamental Ideas 
Generally relationship between bad smells, problem factor and refactoring items are 
many-to-many as illustrated in Figure 4. This means, there are multiple problem 
factors that cause a bad smell, and we need to combine several refactoring items to deal 
with these problem factor. 

 

 
 

 Figure 4 Relationship between Fundamental Ideas 
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4.4  Steps of Proposed Technique 
In this section, we describe detailed process of each step in the proposed technique. 
Figure 5 shows an overview of the steps.  In Figure 5 arrows connecting each step 
means process order and delivery of information. For example, in step 1 we select bad 
smells from bad effects observed in the projects, then the bad smells are used as an 
input for step 2, and so on. 
 

Step 1
  Select Bad Smells

Step 2
  Find Problem Factors

Step 3
  Plan Refactoring Items

Step 5
  Portfolio Analysis

Step 7
  Execute Refactoring

Step 4
   Quantify Problem Factros

Step 6
  Judge Priorities

 
Figure 5 Overview of the Steps 
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4.4.1  STEP 1: Select Bad Smells 
In this step, we find out bad smells from the experience of products developments. Table 
2 shows outline of STEP1. 
 

Table 2 Outline of STEP1 
Items Descriptions 
Objective Sorting out bad smells from project data 
Input Bad effects observed in projects of product development 
Output List of “Bad smells” 
Procedure 1. List up bad effects from the project data 

2. Pick up bad smells from bad effects 
Note Viewpoints for finding bad effects are production cost and 

quality of the products. 
Pick up bad effects that emerge in multiple products as bad 
smells. 

 
In order to find bad smells, first we collect bad effects on development that seem to 
obstruct smooth execution for a product development. Then we repeat collections of bad 
effects for several products. Viewpoint to collect those bad effects are follows: 
 

 Production cost for development 
 Quality of the products 

 
After we collect these bad effects for several products, we select bad effects that appear 
commonly in several products. We call those bad effects “bad smells” from the project in 
our study. Conditions for detecting bad smells are follows: 
 

 Should appear at least two or more products. 
 They may appear in future products. 

 
In most cases, candidate of bad smells appear in two different products. However, even 
if they appear in two different products, when they are obviously limited to those two 
products, they can not be bad smells. Regarding to appearing timing, we don’t care. 
Target products can be developed at same time, or can be developed sequentially. 

Figure 6 shows an image of finding out bad smells at the project. In Figure 6, circles 
correspond to existence of problem. For example, product 1 has problems 1, 2, 3 and n, 
product 2 has problems 1, 3, 4 and n, and so on. Here we can see that problem1, 3 and n 
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are found commonly in several products, while problem 2 and problem 4 found at only 
one project. We indentify those commonly found problems as “bad smells”. 
 

 
 Figure 6 Image of Finding Out Bad Smells in the Project 

 

4.4.2  STEP 2: Find Problem Factors 
By analyzing bad smells that is gathered in STEP1, we find out the architecture-related 
origins that cause those bad smells. Analyzing means investigation into source code and 
architecture documents. Table 3 shows outline of STEP2. 
 

Table 3 Outline of STEP2 
Items Descriptions 
Objective Finding out problem factors for bad smells 
Input Bad smells 
Output Problem factors for bad smells 
Procedure 1. Seek origins of bad smells 

2. Exclude origins that are not related to architecture. 
3. Classify the problem factors into reference-architecture 

related and implemented-architecture related. 
Note Analyze by investigating into source code and architecture 

documents 
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Figure 7 shows an image of filtering out problem factors that has no relationship to the 
architecture. In many cases, we can find multiple origins for a bad smell. Generally 
origins contain architecture related, skill related, and process related. We select 
architecture-related origins as problem factors for architecture refactoring. Architecture 
related means that the cause of problem is based on the structure of software or 
characteristics of the implementation. Here we exclude the problem factor that is not 
related to architecture. At this point, we also exclude bad smells that does not have any 
architecture related problem factor, because they can not be fixed by architecture 
refactoring. Examples of these excluded origins are, such as educational problems, 
communication between stake holders, and development process. Off course these are 
also problems for the problems to be taken measure appropriately in the project. 
However our proposed technique does not include them as its scope in this study. 

After filtering out extra problem factors, we classify the remaining problem factors 
into reference-architecture related and implemented-architecture related.  
 

S(a)

S(b)

S(c)

Bad smell Origins of bad smells

problem factors
related to implemented architecture

problem factors
related to reference architecture

matters related to process
organizational, educational etc.

S(d)

Non architecture 
related

Architecture related

Problem factors

 
 

Figure 7 Image of Filtering Out Problem Factors 
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4.4.3  STEP 3: Plan Refactoring Items 
In this step, we plan refactoring items to solve the problem factors got in STEP2. 
Refactoring item means an individual refactoring plan to resolve the corresponding 
problem factor. For each refactoring item, we estimate the effort to perform the 
refactoring actually. Table 4 shows outline of this step. 
 

Table 4 Outline of STEP3 
Items Descriptions 
Objective Planning refactoring items 
Input Problem factors 
Output Refactoring items to solve problem factors 

Effort needed for each refactoring items 
Procedure 1. List up conceivable refactoring items for each problem factor. 

2. Calculate man-hour for each refactoring item 
Note Viewpoint for planning refactoring items is to decrease 

magnitude of problems. 
Estimate effort for refactoring item by using unit man-hour for a 
refactoring action and total number of refactoring portion. 

 
 
(1) Plan refactoring items 
We plan refactoring items so as to solve the problems by changing architecture. View 
points for planning refactoring items are follows: 
 

 Refactoring items to decrease the magnitude of problems 
 Refactoring items to improve or preserve the quality of products 

 
If the problem factor is enough concrete, refactoring items can be found in relatively 
small range. However, if the definition of problem is broad, there may be several 
candidates for refactoring items. When there are multiple candidates as refactoring 
items, it is recommended to list up all of them at this moment. Depending on the 
problem factors, we may reach same refactoring item for different problems problem 
factors. It is no problem. After estimating man-hour, we choose the most effective one. 
The criteria for choosing refactoring item among them are follows. 
 

 Most effective in man-hour 
 Common refactoring items for different problem factor 
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(2) Estimating the effort for each refactoring items 
Effort means man-our or production cost that is necessary to perform refactoring on 
implementation. Implementation means source code, corresponding architecture 
document that represents software structure, and subsidiary artifacts that are 
necessary to compose an executable module for the target products.  

Generally the total production cost can be calculated by accumulating each unit 
refactoring production cost. Following equation (1) shows the calculation of production 
costs of total refactoring.  
 

documenttest
m n

modifytotal CostCostmCostCost ++= ∑∑ )(      (1) 

 
In equation (1), Costtotal represent the total production cost of total refactoring. 
Parameter “m” represents the number of kinds of refactoring operation, and parameter. 
“n” represents the number of point targeted for the operation. Kinds of refactoring 
operation are based on the difference of actual operation. For example, splitting 
function, move definition of variables or functions, change interface of module, removing 
compilation switches, and so on. Costmodify(m) represents the average production cost for 
one target point for the kind of refactoring operation on source code. Costtest represents 
the cost for regression test for detecting side effects by the change. Depending on the 
project, regular product test can substitute for the regression test. Then the term 
Costtest is estimated as zero. Costdocument means the cost to occur indirectly that is 
represented by maintaining architecture document. The term Costtest occurs in case of 
reference architecture refactoring. There are costs for education, communication with 
stakeholders, and subsidiaries as Costdocument, other than cost for documenting, too. It is 
convenient to classify the total production cost into grades such as H/M/L for a rough 
analysis. 
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4.4.4  STEP 4: Quantify Problem Factors 
In this step, we quantify and normalize the magnitudes of problem factors identified in 
STEP2. Table 5 shows outline of this step. 
 

Table 5 Outline of STEP4 
Items Descriptions 
Objective Quantification and normalization of magnitude of problem 

factors to compare different kinds of problems. 
Input Problem factors 

Classification list for magnitude of problem factors 
Output Magnitude for each problem factor in five-grades 
Procedure Quantify magnitude of problems using appropriate metrics. 

Prepare classification list for normalization of magnitude 
Normalize the magnitude of the problem factor in five-grades by 
consulting a classification list. 

Note Prepare classification list before consulting. 
 
(1) Quantification 
We quantify magnitude of problem factors by using appropriate scoring or metrics for 
each problem. Guideline of selecting scoring or metric is whether it represents the 
magnitude of problem with objectivity. Table 6 shows examples of typical problem 
factors that due to reference architecture and implemented architecture respectively. 
 

Table 6 Example of Classification List 

1 2 3 4 5

Broad Responsibility of
Subsystems

Reference Scoring LL LM MM HM HH

Broad Responsibility of
Subsystems

Reference LOC of the sybsytem ＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

Discrepancy in
Dependency

Implemented
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Problem factor
Problem
Located

Metrics
5 Degrees of Evaluation

Small  　　（Magnintude of Problems）　　  Large

 
In Table 6, two metrics are shown for a problem of “broad responsibility of 

subsystems”. As we described in section 4.3.2 , problems due to reference architecture 
can be measured by scoring or metrics of the implementation. Scoring method is 
superior in universal use, but there is a problem on accuracy. In using scoring method, 
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using scenario is effective to make the problems clear. Although metrics got from 
implementation is numerically accurate, it contains the effect of discrepancy between 
implementation and the reference architecture. When the tendency indicated by metrics 
is remarkable enough and the implementation roughly agrees with the reference 
architecture, we would say the effect of discrepancy is small enough for measuring the 
magnitude of reference architecture. In this situation we take the method of using 
metrics preferentially, otherwise we use scoring method.  

As for selecting metrics, we find the target of measurement in following viewpoint. 
Here target means the number of elements or the number of relations, depending on the 
subject. 
 

 Number of target for measurement 
 Number of relationship between elements 

 
For example, problem factor “discrepancy in dependency” in Table 6 is based on 
dependency. Because dependency is relationship between subsystems, we look for 
measurement subject at a viewpoint of “Number of relationship between elements”. 
    For reverse engineering of dependency among subsystems, using the DSM 
(dependency structure matrix) [43]  is one of the intelligible methods. DSM is 
originally invented as a tool for analyzing process of work. Nowadays DSM is also 
applied to analyze software structure, especially analyzing dependencies between 
components or subsystems. Several software tools are available. 
 
(2) Normalizing magnitude of problem factor 
In normalizing magnitude of problem factor, it is necessary to prepare classification list 
such as Table 6 before starting normalization. If the measuring magnitude is done by 
scoring in five-degree, the result can be used directly as the five-degree of evaluation 
result. However, if the magnitude of problem is measured by some metrics with 
numerical output, we have to decide the borders between the five-grades. In the 
classification list, values at borders of five-grade are essential. Values of border are the 
concrete values of L1-L4, N1-N4, etc in Table 6. There are two basic approaches to 
decide those values of border in the classification list. 
 
Relative method 

This is a method to decide the borders based on the measured values. Once we focus 
on a certain metrics, measure the same metrics in other portion, in order to survey 
the relative position of the metrics value of the problematic portion. For example, 
when we focus on “LOC in subsystem” as metrics for the problem factor of “Broad 
responsibility in subsystem” in Table 6, we take LOC of other subsystems as well. By 
discovering the dynamic range of the metric in the system, we decide the values of 
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borders so that the values in the system can be sorted in five-degrees appropriately. 
Pros and cons of this method are as follows: 

 
Pros: 
    The results are sorted appropriately in five-degrees. 
Cons: 
    The results can not be used for judgement based on absolute value. 

 
Absolute method 

This is a method to decide the borders based on the past experience of project. 
Prior to evaluate each problem factor, we prepare the borders based on the past 
experience of project. If the metrics value is numeric such as number of dependency, 
LOC, or cyclomatic complexity, we determine the borders from a viewpoint of how the 
metrics value contributes to the bad effects on the development. Bad effect means 
bad symptoms on development cost and the quality of products. If there are objective 
correlation between metrics values and the degree of bad effects, we can utilize them 
to decide values of borders. However, for projects that do not have such correlation 
data, we have to decide them in a convincing method. Following is one of the methods 
to decide absolute value based on the experience of experts. 

 
1. Evaluating the degree of problem for each subsystem 

Evaluate major subsystems by scoring regarding to the same problem. For 
example, evaluate the largeness of subsystems by H/M/L scoring from a point of 
view of easiness of handling by experts. Evaluating can be done for similar 
project in the past.  

2. Measure the metrics of those subsystems 
Measure the related metrics for those subsystems for comparison with scoring 
result. For example, measure LOC for the largeness of subsystems. 

3. Determine the borders 
Determine the borders by comparing the result of metrics and scoring result. 

 
Pros and cons of this method are as follows: 

 
Pros: 
    The results can be used for judgement based on absolute value. 
Cons: 
    The results may be unevenly distributed near some degree. 
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4.4.5  STEP 5: Portfolio Analysis 
In this step, we analyze characteristics of each bad smells using a portfolio chart, in 
which the magnitudes of reference and implemented architecture are mapped onto 
X-axis and Y-axis, respectively. Table 7 shows outline of this step.  
 

Table 7 Outline of STEP 5 
Items Descriptions 
Objective Analyze characteristics of bad smells 
Input List of Bad smells 

Problem factors with magnitude 
Output Portfolio chart 
Procedure 1. Plot smells by normalized magnitude of problem factors on 

PFP plane. 
2. Roughly prioritize the smells to be fixed. 

Note Use candlestick chart for multiple problem factor 
 

 
(1) Plot Bad Smells 
For analyzing bad smells, we have found that it is useful to type bad smells according to 
the combination of the magnitudes of the problems of reference and implemented 
architecture. In which the magnitudes of reference and implemented architecture are 
mapped onto X-axis and Y-axis, respectively. We named this categorization “Problem 
Factor Portfolio” (PFP) and have outlined it in Figure 8.  

We plot each smells by normalized magnitude of problem factors on PFP plane, 
then analyze them based on absolute and relative position on the PFP plane, in order to 
grasp the characteristics of problems. Magnitudes in PFP plane are normalized values 
that we quantified in STEP4. Relative positions of the plot of each smell can be a 
reference for decision taking of priority of architecture refactoring. Way of plotting 
varies according to the multiplicity of problem factors. 
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 Figure 8 Problem Factor Portfolio (PFP) plane 

 
 
Single problem factor for a type of problem 

  If problem factor is single for a type of problem, we plot it simply on the PFP plane. 
Type of problem means that the problem is based on which reference architecture or 
implemented architecture. Figure 9 shows an example of plot that both reference and 
implemented architecture have single problem factor. In Figure 9, a bad smell is 
illustrated as black circle at the position of 4 at reference architecture and 5 at 
implemented architecture in magnitude. 
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Figure 9 Plot with single problem factor 
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Multiple problem factors for a type of problem 

  If problem factors are multiple for a type of problem, we plot the average value on 
the PFP plane, and plot maximum and minimum values as bars like candlestick 
chart. Figure 10 shows an example of plot that both reference and implemented 
architecture have multiple problem factors. In Figure 10, average of bad smell is 
illustrated as black circle at the position of 3.5 and 4 at reference and implemented 
architecture. The end of bars represents the minimum and maximum value of the 
problem factors.  
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Figure 10 Plot with multiple problem factors 

 
Part of the candlestick chart has following meaning 
 

 Center spot 
Center spot represents the average of problems related to the smell. We can 

understand the rough tendency of problem factors by the position of center spot. 
 

 Worst value of candlestick 
Center spot represents the average of problems related to the smell. This is 

used to compare relative values. 
 

 Best value of candlestick 
This is Center spot represents the average of problems related to the smell. This 

is used to compare relative values. 
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(2) Four Typical Groups 
Similar to the practice of “Product Portfolio Management” that is used in marketing, in 
this categorization, the bad smells can be characterized in a four-quadrant matrix. Each 
type in the four-quadrant matrix represents the following different characteristics. 
While taking a decision related to the refactoring items, besides referring to each 
characteristic, we can sort the refactoring items according to the position on the PFP, 
depending on the situation of the project. 

 

 
Figure 8 Problem Factor Portfolio (PFP) plane 

 
TYPE I－Not a problem 

The reference and implemented architecture both have fewer problems as 
compared to the bad smells in another category. We can judge the priority enforcing 
refactoring to be low in this case. 

 
TYPE II－Problems of reference architecture dominant 

This is the case in which the reference architecture is more problematic. This 
situation typically occurs when the existing reference architecture needs to be 
modified to fulfill new requirements, which means that it is no longer capable of 
dealing with upcoming requirements. In short, the current reference architecture 
has become outdated. Because problem of implemented architecture is low, 
discrepancy between implementation and reference architecture can not be so big. 
This situation is caused by such as following reasons: 
 

 External requirement such as industrial standards was revised. 
 For smell of TYPE IV, problem of implementation was fixed earlier before 

dealing with reference architecture. 
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TYPE III－Problems of implemented architecture dominant: 

This is the case in which the implemented architecture is more problematic. Even 
when the reference architecture shows a problem of small magnitudes, it is capable 
of dealing with upcoming requirements. In some cases in this group, discrepancies 
are found between the implemented and the reference architecture. In the case of 
such discrepancies, we recommend that the implementation be refactored early 
because the problem is concentrated in the implemented architecture. This 
situation is caused by such as following reasons: 
 

 An implementation skill did not meet the concept or intention of reference 
architecture. 

 Implementation deteriorated over product development. 
 Discrepancy between implementation and reference architecture emerged by 

reactive approach of creating product-line infrastructure. 
 
TYPE IV－Problems complicated 

The implemented and the reference architecture are both problematic. In this type, 
even if discrepancies between the implemented and reference architecture are 
found, it is not recommended that the implementation be refactored in order to 
recover its consistency with the existing reference architecture. If we refactor the 
implementation so as to recover the architecture gap without dealing with 
reference architecture, problems of the reference architecture remain. After all, we 
need to refactor the implementation again after the revision of the reference 
architecture. This brings costing twice the labor for a project clearly. So the 
reference architecture should be refactored, and then the refactoring of the 
implementation should be carried out to recover the consistency between the 
implemented and the reference architecture. This situation is caused by such as 
following reasons: 
 

 Implementation deteriorated under the reference architecture is inappropriate. 
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(3) Transition in Four Types 
By the progress of refactoring, positions of bad smell changes on problem factor portfolio 
plane. Generally the magnitude of problem gets smaller by the progress of refactoring. 
However, depending on the smells, there are transitions that include deterioration in 
others of simple improvement. We explain the transitions that we think of, by grouping 
them into improvement, deterioration, and mixed pattern. 
 
1. Group of Improvement 
This is a group that improvement is observed in transition. There are typically five 
transition pattern in this group. Figure 11 shows typical improvement transition 
pattern. We describe the transition patterns in 1-(a) through 1-(e).  
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Figure 11 Typical improvement transition patterns 
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Pattern 1-(a) 
This is a pattern of transition from TYPE III to TYPE I. Figure 12 shows the transition 
on the PFP plane. This transition is seen mostly the implementation is improved when 
the reference architecture is not so problematic. 

 

 
Figure 12 Transition from TYPE III to TYPE I 

 
This pattern can be typically observed in following causes: 

 
 Discrepancies between reference and implemented architecture are dissolved 
 Implementation technology is improved 
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Pattern 1-(b) 
This is a pattern of transition from TYPE IV to TYPE II. Figure 13 shows the transition 
on the PFP plane. This transition is seen mostly the implementation is improved when 
the problem of reference architecture are left. 

 

  
Figure 13 Transition from TYPE IV to TYPE II 

 
This pattern can be typically observed in following causes: 

 
 Problems on implementation are fixed without fixing the problems on reference 

architecture. 
 Implementation technology is improved 
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Pattern 1-(c) 
This is a pattern of transition from TYPE IV to TYPE III. Figure 14 shows the 
transition on the PFP plane. This transition is seen mostly the reference architecture is 
improved under the problems on the implemented architecture is left. 
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Figure 14 Transition from TYPE IV to TYPE III 

 
This pattern can be typically observed in following causes: 

 
 The reference architecture is improved prior to change the implementation. 
 On the way of overall architecture refactoring from TYPE IV to TYPE I. 
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Pattern 1-(d) 
This is a pattern of transition from TYPE II to TYPE I. Figure 15 shows the transition 
on the PFP plane. This transition is seen when the reference architecture is improved 
under the condition that the implementation is not so problematic. 
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Figure 15 Transition from TYPE II to TYPE I 

 
This pattern can be typically observed in following causes: 

 
 The reference architecture is improved and the related refactoring on the 

implementation followed immediately. 
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Pattern 1-(e) 
This is a pattern of transition from TYPE IV to TYPE I. Figure 16 shows the transition 
on the PFP plane. This transition is seen when the reference and implemented 
architecture is fixed at a time. 
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Figure 16 Transition from TYPE IV to TYPE I 

 
This pattern can is typically observed in following causes: 
 

 The reference architecture is improved and the related refactoring on the 
implementation followed immediately. 
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2. Group of Deteriorating 
This is a group that deterioration is observed in transition. There are typically five 
transition pattern in this group. Figure 17 shows typical improvement transition 
pattern. We describe the transition patterns in 2-(a) through 2-(e). 
 

M
ag

n
it
u
de

 o
f 
pr

o
bl

e
m

 f
ac

to
r 

in
 i
m

pl
e
m

e
n
te

d 
ar

c
h
it
e
c
tu

re

 
Figure 17 Typical deteriorating transition patterns 

 
These deteriorations are seen under following situations: 
 

 Along with the progress of project 
 On the way of overall refactoring activities 
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Pattern 2-(a),2-(b) 
This is a pattern of transition from TYPE I to TYPE III, and TYPE II to TYPE IV. 
Figure 18 shows the transitions on the PFP plane. These transitions are seen when the 
implementation is deteriorated regardless of the magnitude of problem factor of the 
reference architecture. 
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Figure 18 Transition from TYPE I to TYPE III, TYPE II to TYPE IV 
 
Such deteriorations on implementation typically occur on following causes: 

 
 Changes on the implementation are made without understanding the design 

intention of reference architecture 
 Problems on implementation technology 
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Pattern 2-(c),2-(d) 
This is a pattern of transition from TYPE III to TYPE IV, and TYPE I to TYPE II. 
Figure 19 shows the transitions on the PFP plane.  
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Figure 19 Transition from TYPE I to TYPE II, TYPE III to TYPE IV 

 
Such increase of magnitude of problem factor on the reference architecture typically 
occurs on following causes: 

 
 These transitions are seen when the problem of the reference architecture emerged 

because of the change of outside requirements. Scenario based evaluation is good at 
eliciting these kind of problems, rather than using metrics. 
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Pattern 2-(e) 
This is a pattern of transition from TYPE I to TYPE IV.. Figure 20 shows the transitions 
on the PFP plane. 
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Figure 20 Transition from TYPE I to TYPE IV 

 
Such increase of magnitude of problem factor on both the reference and implemented 
architecture typically occurs on following causes: 

 
 Combination of other transition. 
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3. Group of Mixture 
This is a group that deterioration and improvement occur at same time. Figure 17 
shows typical improvement transition pattern. We describe the transition patterns in  
3-(a) an 3-(b).  
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Figure 21 Typical deteriorating transition patterns 
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Pattern 3-(a) 
This is a pattern of transition from TYPE II to TYPE III. Figure 22 shows the 
transitions on the PFP plane. 
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Figure 22 Transition from TYPE II to TYPE III 

 
Such transition typically occurs on following causes: 
 
 Architecture gap appeared because the change of reference architecture at TYPE II. 
 On the way of refactoring reference architecture at TYPE II. 
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Pattern 3-(b) 
This is a pattern of transition from TYPE III to TYPE II. Figure 23 shows the 
transitions on the PFP plane. 
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Figure 23 Transition from TYPE III to TYPE II 

 
Such transition typically occurs on following causes: 
 

 Both transition of 1-(a) and 2-(c) occurred. 
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4.4.6  STEP 6: Judge Priority of Refactoring 
Considering effort for refactoring calculated in STEP3, Magnitude of each refactoring 
items in STEP4, Characteristics of bad smells in STEP5, we judge the priority of 
refactoring items to be performed. Table 8 shows outline of this step. 
 

Table 8 Outline of STEP 6 
Items Descriptions 
Objective Prioritize Refactoring Items 
Input Result of problem factor portfolio analysis 

Effort for refactoring 
Magnitude of problems  
Characteristics of problems 
Situation of the project 

Output Prioritized refactoring items 
Procedure 1. Roughly categorize smells by portfolio analysis 

2. Select problems to deal with 
3. Prioritize refactoring items  

Note Prioritize the refactoring items that have good ratio of the 
magnitude of problem per refactoring effort. 

 
 
(1) Categorizing by portfolio 
Basic ideas for dealing with those smells are as followings; 
 
TYPE I－Not a problem 

This is a group that problems of both reference and implemented architecture are 
low. Because the refactoring needs are considered to be low, basically we left these 
types of bad smells. 

 
TYPE II－Problems of reference architecture dominant 

This is a group that problems of reference architecture are relatively higher than 
problems of implemented architecture. Way of dealing with the problems differs 
depending on the history of the problem. Histories are as followings: 
 

 Change of outside requirement. 
Requirement such as industrial standards was revised. If the changed 
requirement last in future, we deal with the refactoring of reference 
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architecture. 
 

 On the way of refactoring from TYPE IV 
It is the case of on the way of refactoring from TYPE IV aiming at TYPE I, 
problem of implementation was fixed earlier before dealing with reference 
architecture. We continue refactoring by continuing refactoring of reference 
architecture.  

 
TYPE III－Problems of implemented architecture dominant 

This is a group that problems of implemented architecture are relatively higher 
than problems of reference architecture. 
Detailed way of dealing with the problems differs depending on the history of the 
problem, but basically we deal with the problems by planning refactoring on the 
implementation. Histories are as followings: 
 

 Problem of implementation technique 
It is the case that the implementation technique did not meet the concept or 
intention of reference architecture. We consider improving implementation 
technique to meet the reference architecture. 
 

 Architecture gap over product development 
It is the case that architecture gap between the reference and implemented 
architecture over products development. We recover the implementation so as 
to meet the reference architecture. 

 
 Architecture gap by reactive approach 

It is the case that discrepancy between implementation and reference 
architecture emerged by reactive approach of creating product-line 
infrastructure. We continue refactoring on the implementation to meet the 
reference architecture. 

 
TYPE IV－Problems complicated 

This is a group that problems of both implemented and reference architecture are 
high. For this group, it is recommended to deal with the problem of reference 
architecture first. Reason of this is as follows; 

If we refactor the implementation first for this type, transition from TYPE IV 
to TYPE II occurs. In TYPE II, problems of the reference architecture still remain. 
By improving the reference architecture in TYPE II, new architecture gap between 
the reference and implemented architecture arise. This causes the transition from 
TYPE II to TYPE III. For TYPE III, we have to fix the problems of implementation 
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again to bridge the gaps of architectures. After all, by fixing the problems of 
implementation first we need three steps to reach TYPE I from TYPE IV, via TYPE 
II and TYPE III. 

Contrary to above, if we choose to fix problems of the reference architecture, we 
need only two step to reach TYPE I from TYPE IV via TYPE II. 

 
(2) Select problem factors to deal with 
We take bad smells that belongs to the TYPE II, TYPE III, and TYPE IV. For bad smells 
that belongs to TYPE II, we select problem factors related to the implemented 
architecture. For bad smells that belong to TYPE III and IV, we select problem factors 
related to the reference architecture. 
 
(3) Prioritize refactoring items 
For problem factor selected above, we calculate the ratio of the magnitude of problem 
per refactoring effort. Then we sort the refactoring items by the ratio calculated. 
 
Basic idea for determining priority is as follows;  
 

 Prioritize the refactoring items that have good ratio of the magnitude of problem 
per refactoring effort. 

 Prioritize refactoring items that solves larger problems, if the ratios are the same. 
 Select refactoring items within the production costs allowed for refactoring in the 

project. 
 Leave refactoring if big changes may happen in the near future. 
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4.4.7  STEP 7: Execute Refactoring 
Execute refactoring according to the judgement in STEP 6. Table 9 shows outline of this 
step.  
 

Table 9 Outline of STEP 7 
Items Descriptions 
Objective Execute Refactoring for future development efficiency 

improvement and quality improvement 
Input Prioritized refactoring items 

Left over of refactoring items from previous project 
Output Refactored reference architecture 

Refactored implementation 
Procedure Change implementation and related document according to the 

prioritized refactoring items 
Note Select refactoring items to fulfill man-hour restriction in the 

project. 
For leftovers, pass them to next project. 

 
 Refactoring of implementation 

Most of the effort of this step is refactoring of implementation. Figure 24 shows a 
diagram of the steps involved in refactoring in the course of product development. As 
can be seen in the diagram, products are released at several intervals and the 
opportunity to refactor arises between product releases. Architecture assessment 
involves activities ranging from detecting smells to taking decisions regarding the 
refactoring items.  

The best time for architecture assessment to take place is immediately following a 
product release and before the start of development of the next product because we 
then benefit from the access to smells from both the experience of previous projects 
and the requirements of the upcoming product.  

In this model, the period of refactoring is shown to be in a relatively early stage of 
the product development period. This is why refactoring that affects the architecture 
has a strong impact on development as compared to refactoring in a closed domain. 
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Figure 24 Refactoring Opportunity in Product Development Process 

 
 Refactoring of reference architecture 

Refactoring of architecture in this step means maintenance of architecture 
documents. It is essential to keep architecture document up to date, in order to not 
cause confusion on the project. At the same time of maintaining the documents, 
appropriate announcement of change is also indispensable for the project. 
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Chapter 5 
 

5   A Sample Case 
 
In this chapter, we outline the system on which we examined our technique 
retroactively. Reasons of selecting this project for examining our technique are as 
followings: 
 

 This is a project that actually architecture refactoring is performed. 
 Decision takings are done by experts, and the effect of architecture refactoring are 

confirmed. 
 Project data including source code are available for analyzing. 

 
In section 5.1 we describe the projects’ overview. In section 5.2 we show the former 
reference architecture that has been used in development of products. In section 5.3, we 
describe architecture refactoring that is performed in actual project. Our technique for 
architecture refactoring is not applied yet at that time. 
 

5.1  Domain Characteristics 
We explain the characteristics of target project. The target project is development of 
control software of digital still camera products for consumer. Development scale is 
about 500,000 lines of codes (LOC) excluding empty lines and comments. Averagely 5 
products in 2 series are released in a year. Those two series are concurrently developed, 
total product release intervals are 2 to 6 month. 

Figure 25 shows an image of products load map in a year. Each circle corresponds to 
product. H1 and H2 belong to the high-end lines, and R1 through R3 belong to the 
regular lines. H2 and R2 are successors of H1 and R2, R3 is derived model from R1. 
Both lines belong under the same kind of products, so roughly over 80% of functions are 
common in both lines. We used common core asset for developing both lines because of 
abovementioned commonality. 
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Figure 25 Image of Products Load Map 
 

As for variability, there are two groups. We show extraction of feature model of target 
product in Figure 26. First one is variability related to hardware key parts such as 
image sensor or lens unit. This variability is relatively predictable in some extent, 
because progress of hardware technology is informed beforehand by their suppliers. 

Second one is variability related to functions that is mainly actualized by software. 
Major functions are common among products regardless of high-end line or regular line. 
There are some exclusive functions for high-end and regular line respectively. These 
functions grow under development successor models, and some of them are spread into 
other line. These decisions related to adding functions are often made after starting 
development, so it is important to have capability to accept such variability that arise 
later. 
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Figure 26 Feature Model of Target Product 
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In developing multiple similar products, problematic phenomena for efficient 
development are found out that seems to be caused by the existing software architecture. 
In order to solve those problems, redesigning from the scratch can be a possible choice. 
However, as for target project, we thought it is difficult to choose redesigning strategy, 
considering the intervals of product release and the total scale of the project. Therefore 
we concluded to improve architecture step-by-step instead of changing at once.  

 

5.2  Outline of Reference Architecture 
In Figure 27 shows the reference architecture before refactoring. Some adjacent layers 
are merged to simplify explanation. Totally it is almost layered structure [7], but it does 
not force strict layering. The reason of allowing non-strict layering is to avoid increase 
of redundant interpreter in middle layer that merely relay information between upper 
layer and lover layer. Although we allowed jumped dependency from upper layer to 
lower layer without relaying at middle layer, we decided to avoid reversed dependency 
such as from lower layer to middle or upper layer. 

In Figure 27, upper layer ‘ui’ contains highly abstracted procedure such as user 
interfaces, middle layer ’apl’ contains application logic that realize main functions of the 
products, lower layer ’dev’ comprises procedure that treats hardware, and common part 
‘com’ is commonly accessed from all other layers. Although there are several layers in 
practical system, we omitted those layers that do not related to architecture 
refactorings mentioned in this paper. 

In the reference architecture illustrated in Figure 27, we determined basic access 
direction as “from upper layer to lower layer”. However there exists not negligible 
number of reversed access on the implementation, and these reversed accesses compose 
cyclic dependency between layers. Consequently, this was one of the reasons that lower 
implementation quality especially maintainability. 

 

ui

apl

dev 

com

 
Figure 27 Outline of Reference Architecture 

 



 62

 

5.3  Architecture Refactoring in the Project 
In this section, we describe the architecture refactorings that are practically done in the 
project. In the project we observed following problematic phenomena at that time 
through the development of product family. 
 

 Phenomenon 1 
Large number of modification effort is needed when adding new function in ‘apl’ 

layer. Because the layer takes charge of characterizing each new product on 
functionalities, modifications always occurs in every product. In those modifications, 
we found that we needed to understand a lot of related part in the system. 

 
 Phenomenon 2 

Necessary change for adding functions is not closed in specific layer. In other words, 
there are related portion in other layer that need change together in many cases. 

 
 Phenomenon 3 

Relatively a lot of bugs are detected in a certain layer in testing process of 
development on every product, compare to other layer. 

 
To solve those problematic phenomena, we decided to change architecture from left side 
to the right side of Figure 28. On this decision of architecture refactoring, we targeted to 
reduce cyclic dependency between layers, which is regularly measured on the project. 
In practical project, we did not always aware about the place where the problem is 
(Table 2), which was found via the proposed technique in chapter 4. Although we aware 
about the causes of the problematic phenomena qualitatively, we did not have ideas of 
measuring magnitude of problem factors. We refactored architecture based on this 
awareness. 
    In the project, we took measures as follows: 
 

 Measures for Phenomenon 1 
We moved portion A from layer ‘apl’ to ‘dev’ in order to resolve reversed access from 

layer ‘dev’ to ‘apl’. Portion A has been located in ‘apl’ layer, despite it includes direct 
hardware control. 

 
 Measures for Phenomenon 2 

We introduced layer ‘sv’ in order to reduce inter-layer dependencies, to push aside 
parts that related to whole system. 

 



 63

 Measures for Phenomenon 3 
We moved portion B from layer ‘ui’ to layer ‘com’ that contains data commonly 

referred from other layers. 
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Figure 28 Architecture Refactoring in the Project 
 

5.4  Effects by the Architecture Refactoring 
By performing architecture refactoring, efficiency of development raised compare to the 
development under the old architecture. Although we cannot try direct comparison of 
efficiency such as executing development of the same product on the different 
architecture, we can say the typical good effect is an increase of the number of products 
of simultaneous development after the architecture refactoring. This supports the 
rightness of the judgement by the experts for the refactoring. 
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Chapter 6 
 

6   Evaluation and Discussion 
 
In this chapter, we describe the evaluation result of proposed technique, using the result 
of practical architecture refactoring that we introduced in chapter 5. In section 6.1, we 
explain retroactive application of technique that is used in this evaluation. In section 
6.2, we show the result of retroactive application of our proposed technique along with 
the steps, using actual project data. In section 6.3, summarize the result of application. 
In section 6.4, we discuss the usefulness of proposed technique by comparing the 
suggestion that derived by applying technique to the project data and the decision that 
is made by the experts in the practical project. 
 

6.1  Approach of Applying Method 
We depict evaluation approach that is used by this research in Figure 29. In the 
practical project, by investigating problematic phenomena that are observed in the 
products project, reference architecture and the implementation are refactored. As a 
result, effects of refactoring are found such as increase of number of products by 
simultaneous development as we explained in section 5.4 . 

In this research, by using same problematic phenomena that are observed in 
practical project, we tried quantitative analysis of problem factors based on proposed 
technique. Furthermore, we try to visualize quality attributes of architecture 
improvement before and after the architecture refactoring. 
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Figure 29 Approach of the Evaluation 

 

6.2  Evaluation Using Project Data 
In this Section, we describe the result of retroactive application of our proposed 
technique along with the steps, using actual project data. 
 

6.2.1  STEP 1: Select Bad Smells 
In this step, we find out bad smells from the experience of development of products. 
Table 2 shows outline of STEP1. 
 

Table 2 Outline of STEP1 
Items Descriptions 
Objective Sorting out bad smells from project data 
Input Bad effects observed in projects of product development 
Output List of “Bad smells” 
Procedure 1. List up bad effects from the project data 

2. Pick up bad smells from bad effects 
Note Viewpoints for finding bad effects are production cost and 

quality of the products. 
Pick up bad effects that emerge in multiple products as bad 
smells. 

 
According to the outline of STEP1 shown in Table2, we worked along the step. We used 
bad effects observed in the project as input, and identified bad smells as output from the 
viewpoint of emerging in multiple products, as followings: 
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Input: Bad effects observed in projects of product development 
   1. Need to check a lot of related part when modifying in layer ‘apl’ (S1) 
   2. Need to modify two or more layers for one modification reason (S2) 
   3. Need big effort on modification on layer ‘ui’, and easy to cause bugs (S3) 
   4. Need time to adapt new similar hardware unit (S1)  
 
Output: List of “Bad smells” 
   Bad smells #1: Need to check a lot of related part when modifying in layer ‘apl’ (S1) 
   Bad smells #2: Need to modify two or more layers for one modification reason (S2) 
   Bad smells #3: Need big effort on modification on layer ‘ui’, and easy to cause bugs 

(S3) 
 

6.2.2  STEP 2: Find Problem Factors 
By analyzing bad smells that is gathered in STEP1, we find out the architecture-related 
origins that cause those bad smells. Analyzing means investigation into source code and 
architecture documents. Table 3 shows outline of STEP2. 
 

Table 3 Outline of STEP2 
Items Descriptions 
Objective Finding out problem factors for bad smells 
Input Bad smells 
Output Problem factors for bad smells 
Procedure 1. Seek origins of bad smells 

2. Exclude origins that are not related to architecture. 
3. Classify the problem factors into reference-architecture 

related and implemented-architecture related. 
Note Analyze by investigating into source code and architecture 

documents 
 

According to the outline of STEP2 shown in Table 3, we worked along the step. We used 
bad smells that is output of STEP1 as input, and found out problem factors as output, as 
followings: 
 
Input: List of “Bad smells” 
   Bad smells #1: Need to check a lot of related part when modifying in layer ‘apl’ (S1) 
   Bad smells #2: Need to modify two or more layers for one modification reason (S2) 
   Bad smells #3: Need big effort on modification on layer ‘ui’, and easy to cause bugs 

(S3) 
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Output: Problem factors 
   Problem factors for bad smell #1 

1. Number of reversed dependency from lower layer (dev) is high, hard to 
estimate affection scope by modification (Pi3) 

2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1) 
   Problem factor for bad smell #2 

3. Large number of inter-layer dependency because portion that have global 
dependency is high (Pr2) 

   Problem factor for bad smell #3 
4. Low maintainability because of cyclomatic complexity value is high (Pi2) 
5. Low maintainability because of too many compilation switches (Pi1) 
6. Number of reversed dependency from lower layer 'apl' is high, because setting 

data is located in layer 'ui' (Pr3) 
7. LOC of layer 'ui' increases because code that achieve functions is concentrated 

in layer 'ui'.（Pr1） 
 

6.2.3  STEP 3: Plan Refactoring Items 
In this step, we plan refactoring items to solve the problem factors got in STEP2. 
Refactoring item means an individual refactoring plan to resolve the corresponding 
problem factor. For each refactoring item, we estimate the effort to perform the 
refactoring actually. Table 4 shows outline of this step. 
 

Table 4 Outline of STEP3 
Items Descriptions 
Objective Planning refactoring items 
Input Problem factors 
Output Refactoring items to solve problem factors 

Effort needed for each refactoring items 
Procedure 1. List up conceivable refactoring items for each problem factor. 

2. Estimate man-hour for each refactoring item 
Note Viewpoint for planning refactoring items is to decrease 

magnitude of problems. 
Estimate effort for refactoring item by using unit man-hour for a 
refactoring action and total number of refactoring portion. 

 
According to the outline of STEP3 shown in Table 4, we worked along the step. We used 
problem factors as input, and planned refactoring items and the estimated man-hour in 
3 degrees as outputs, as followings: 
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Input: Problem factors 
1. Number of reversed dependency from lower layer (dev) is high, hard to estimate 

affection scope by modification (Pi3) 
2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1) 
3. Large number of inter-layer dependency because portion that have global 

dependency is high (Pr2) 
4. Low maintainability because of cyclomatic complexity value is high (Pi2) 
5. Low maintainability because of too many compilation switches (Pi1) 
6. Number of reversed dependency from lower layer 'apl' is high, because setting data 

is located in layer 'ui' (Pr3) 
7. LOC of layer 'ui' increases because code that achieve functions is concentrated in 

layer 'ui'（Pr1） 
 

Output1: Refactoring items to solve problem factors 
   Refactoring Item for problem factor 1 

1. Correct reversed dependency at dev→apl (Ri1), 
   Refactoring Item for problem factor 2 

2. Move hardware-related portion into layer ‘dev’ (Rr2) 
   Refactoring Item for problem factor 3 

3. Split the part that have global dependency (Rr3) 
   Refactoring Item for problem factor 4 

4. Lower cyclomatic complexity by splitting long and complex functions (Ri1) 
   Refactoring Item for problem factor 5 

5. Remove extra compilation switches and related source codes (Ri2) 
   Refactoring Item for problem factor 6 

6. Move setting information into commonly accessed layer 'com' (Rr2) 
   Refactoring Item for problem factor 7 

Not investigated 
 
Output2: Effort needed for each refactoring items 

1. Correct reversed dependency at dev→apl (Ri1): L 
2. Move hardware-related portion into layer ‘dev’ (Rr2): H 
3. Split the part that have global dependency (Rr3): M 
4. Lower cyclomatic complexity by splitting long and complex functions (Ri1): M 
5. Remove extra compilation switches and related source codes (Ri2): L 
6. Move setting information into commonly accessed layer 'com' (Rr2): M 

 
 



 69

 

6.2.4  STEP 4: Quantify Problem Factors 
In this step, we quantify and normalize the magnitudes of problem factors identified in 
STEP2. Table 5 shows outline of this step. 
 

Table 5 Outline of STEP4 
Items Descriptions 
Objective Quantification and normalization of magnitude of problem 

factors to compare different kinds of problems. 
Input Problem factors 

Classification list for magnitude of problem factors 
Output Magnitude for each problem factor in five-grades 
Procedure Quantify magnitude of problems using appropriate metrics. 

Prepare classification list for normalization of magnitude 
Normalize the magnitude of the problem factor in five-grades by 
consulting a classification list. 

Note Prepare classification list before consulting. 
 
According to the outline of STEP4 shown in Table 5, we worked along the step. We used 
problem factors and classification list for magnitude of problem factors as inputs, and 
classified the result of metrics that represents magnitudes of each problem factor as 
output as followings: 
 
Input1: Problem factors 

1. Number of reversed dependency from lower layer (dev) is high, hard to estimate 
affection scope by modification (Pi3) 

2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1) 
3. Large number of inter-layer dependency because portion that have global 

dependency is high (Pr2) 
   4. Low maintainability because of cyclomatic complexity value is high (Pi2) 

5. Low maintainability because of too many compilation switches (Pi1) 
6. Number of reversed dependency from lower layer 'apl' is high, because setting 

data is located in layer 'ui' (Pr3) 
7. LOC of layer 'ui' increases because code that achieve functions is concentrated in 

layer 'ui'（Pr1） 
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Input2: Classification list for magnitude of problem factors 

1 2 3 4 5

Broad Responsibility
of Subsystems

Reference LOC of the sybsytem ＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

Dependencies from
everywhere

Reference
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Too many
dependencies

Reference
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Too many
compilation switches

Implemente
d

Dencity of
Compilation Switches

＜(R1)% ＜(R2)% ＜(R3)% ＜(R4)% (R4)%≦

Long functions
Implemente

d
Average LOC per

functions
＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

High complexity
Implemente

d

Avarage of
Cyclomatic
Complexity

＜(C1) ＜(C2) ＜(C3) ＜(C4) (C4)≦

High connectivity
Implemente

d
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Different
components

Implemente
d

Numbe of different
components

＜(F1) ＜(F2) ＜(F3) ＜(F4) (F4)≦

Discrepancy in
Dependency

Implemente
d

Number of
dependencies

＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Problem factor
Problem
Located

Metrics

5 Degrees of Evaluation
Small  　　（Magnintude of Problems）　　  Large

 

 
Output: Magnitude for each problem factor in five-grades 
   Magnitude of problem factor 1: 5 
   Magnitude of problem factor 2: 5 
   Magnitude of problem factor 3: 4 
   Magnitude of problem factor 4: 5 
   Magnitude of problem factor 5: 5 
   Magnitude of problem factor 6: 4 
   Magnitude of problem factor 7: 4 
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6.2.5  STEP 5: Portfolio Analysis 
In this step, we analyze characteristics of each bad smells using a portfolio chart, in 
which the magnitudes of reference and implemented architecture are mapped onto 
X-axis and Y-axis, respectively. Table 7 shows outline of this step.  
 

Table 7 Outline of STEP 5 
Items Descriptions 
Objective Analyze characteristics of bad smells 
Input List of bad smells 

Problem factors with magnitude 
Output Portfolio chart 
Procedure 1. Plot smells by normalized magnitude of problem factors on 

PFP plane. 
2. Prioritize the smells to be fixed. 

Note Use candlestick chart for multiple problem factor 
 

According to the outline of STEP5 shown in Table 7, we worked along the step. We used 
bad smells and problem factors with magnitude as input, and depicted portfolio chart as 
output, as followings: 
 
Input1: List of bad smells 
   Bad smells #1: Need to check a lot of related part when modifying in layer ‘apl’ (S1) 
   Bad smells #2: Need to modify two or more layers for one modification reason (S2) 
   Bad smells #3: Need big effort on modification on layer ‘ui’, and easy to cause bugs 

(S3) 
 
Input2: Problem factors with magnitude 
  Problem factors for bad smell #1: 

1. Number of reversed dependency from lower layer (dev) is high, hard to estimate 
affection scope by modification (Pi3): Magnitude=5 

2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1): 
Magnitude=5 

  Problem factors for bad smell #2: 
3. Large number of inter-layer dependency because portion that have global 

dependency is high (Pr2): Magnitude=4 
  Problem factors for bad smell #3: 
   4. Low maintainability because of cyclomatic complexity value is high (Pi2): 

Magnitude=5 
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5. Low maintainability because of too many compilation switches (Pi1): 
Magnitude=5 

6. Number of reversed dependency from lower layer 'apl' is high, because setting 
data is located in layer 'ui' (Pr3): Magnitude=4 

7. LOC of layer 'ui' increases because code that achieve functions is concentrated in 
layer 'ui' (Pr1): Magnitude=4 

 
Output: Portfolio chart 

Procedure 1: Plot smells by normalized magnitude of problem factors on PFP plane. 
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Figure 30 Portfolio chart as an output of STEP5 

 
・For smells that have only problems on reference architecture, we assumed the 

magnitude of reference architecture to 1 as a most low value. 
・For smells that have two or more problem factor in the same type of architecture,  

we used average of them. 
 
Procedure 2: Prioritize the smells to be fixed. 

     We identified the order of magnitude of problem are #1,#3,and #2. 
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6.2.6  STEP 6: Judge Priority of Refactoring 
Considering effort for refactoring calculated in STEP3, Magnitude of each refactoring 
items in STEP4, Characteristics of bad smells in STEP5, we judge the priority of 
refactoring items to be performed. Table 8 shows outline of this step. 
 

Table 8 Outline of STEP 6 
Items Descriptions 
Objective Prioritize Refactoring Items 
Input Result of problem factor portfolio analysis 

Effort for refactoring 
Magnitude of problems  
Situation of the project 

Output Prioritized refactoring items 
Procedure 1. Roughly categorize smells by portfolio analysis 

2. Select problems to deal with 
3. Prioritize refactoring items  

Note Prioritize the refactoring items that have good ratio of the 
magnitude of problem per refactoring effort. 

 
According to the outline of STEP6 shown in Table 8, we worked along the step. We 
prioritized refactoring items by following steps using output of abovementioned steps as 
inputs of this step. 
 
Procedure 1: Roughly categorize smells by portfolio analysis 

We took bad smells that belong to TYPE II, TYPE III, and TYPE IV. In this case, all 
bad smells fit to the condition. 

    Bad smells #1: Need to check a lot of related part when modifying in layer ‘apl’ (S1) 
    Bad smells #2: Need to modify two or more layers for one modification reason (S2) 
    Bad smells #3: Need big effort on modification on layer ‘ui’, and easy to cause bugs 

(S3) 
 
Procedure 2: Selected problem factors to deal with: 
  Problem factors for bad smell #1: 

2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1): 
Magnitude=5 

  Problem factors for bad smell #2: 
3. Large number of inter-layer dependency because portion that have global 
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dependency is high (Pr2): Magnitude=4 
  Problem factors for bad smell #3: 

6. Number of reversed dependency from lower layer 'apl' is high, because setting 
data is located in layer 'ui' (Pr3): Magnitude=4 

7. LOC of layer 'ui' increases because code that achieve functions is concentrated in 
layer 'ui' (Pr1): Magnitude=4 

 
Procedure 3: Prioritize refactoring items 

2. Move hardware-related portion into layer ‘dev’ (Rr2):  
Effort=H, Magnitude=5, Ratio of Magnitude/Effort =1.67 

   3. Split the part that have global dependency (Rr3): 
Effort=M, Magnitude=4, Ratio of Magnitude/Effort=2.00 

6. Move setting information into commonly accessed layer 'com' (Rr2): 
Effort=M, Magnitude=4, Ratio of Magnitude/Effort= 2.00 

For calculation of ration of magnitude/effort, we applied value 3/2/1 for effort of 
H/M/L. 
 

Output: Prioritized refactoring items 
By considering the ration of magnitude of problems and effort for refactoring, we got 
prioritized refactoring items as followings: 
  First priority: (Ratio = 2.00) 

        3. Split the part that have global dependency (Rr3) 
     Second priority: (Ratio =2.00) 

6. Move setting information into commonly accessed layer 'com' (Rr2): 
  Third priority: (Ratio = 1.67) 

2. Move hardware-related portion into layer ‘dev’ (Rr2) 
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6.2.7  STEP 7: Execute Refactoring 
Execute refactoring according to the result of judge in STEP 6. Table 9 shows outline of 
this step.  
 

Table 9 Outline of STEP 7 
Items Descriptions 
Objective Execute Refactoring for future development efficiency 

improvement and quality improvement 
Input Prioritized refactoring items 

Left over of refactoring items from previous project 
Output Refactored reference architecture 

Refactored implementation 
Procedure Change implementation and related document according to the 

prioritized refactoring items 
Note Select refactoring items to fulfill man-hour restriction in the 

project. 
For leftovers, pass them to next project. 

 
We did not examined execution of refactoring in this study, because main objective of 
this study is to confirm the decision taking result by the proposed technique. 
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6.3  Summary of Applying the Technique 
We show the result of analysis applying STEP1 through STEP4 of our technique in 
Table 10. Bad smells in Table 10 are the same bad smells that referred in architecture 
migration at the project. Information written in Table 10 is obtained by analyzing 
source code of those days in the project. All bad smells and some problem factors are 
known in the project, others are got by latter analysis. Magnitudes of problem factor in 
Table 10 are normalized values. In normalizing, we applied guideline written in Table 1.  

We also show the result of problem factor portfolio analysis in Figure 31. Black and 
white circles represent the characteristics of the bad smells before and after 
architecture refactoring, respectively.  
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Table 10 Bad Smells, Problem Factors, and Refactorin Items, on the Project 
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Figure 31 Summary of Portfolio chart 

 
In order to judge the necessity of refactoring, let’s see the black circles in the portfolio 
plot on in Figure 31. 

In Figure 31 bad smells #1 and #3 belong to TYPE IV (problems complicated) in 
Figure 8. It means that we had better to begin refactoring with reference architecture 
rather than the implemented architecture. 

Bad smells #2 belongs to TYPE II (reference dominant) in Figure 8. It means that 
the necessity of refactoring on reference architecture is indicated, while there are not 
big problem found in the implemented architecture. 

We show the result of individual confirmation result in detail for those bad smells 
in next section. 
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6.4  Confirmation of Past Instances 
We confirmed the past instances that have done in the actual project, by applying the 
proposed technique. In this section, we show the result of portfolio analysis for each bad 
smells, that we had intuitive understandings for each bad effect. 
 
Bad smell #1 
Figure 32 shows portfolio chart of bad smell #1. Black and white circles represent the 
characteristics of the bad smells before and after architecture refactoring, respectively. 
Bad smell #1 belongs to TYPE IV (problems) in Figure 8. where problem of 
implementation and reference architecture is both high. That is, we had better to begin 
with refactoring on reference architecture first, because problem factors on both axes 
are high. 
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Figure 32 Portfolio Chart of Bad Smell #1 
 
Figure 33 shows the transition of major inter-layer dependency along with produces 
development. The target system is written in standard-C, dependency count is total of 
following relations in source code. 

 
 Function calls 
 Variable reference 
 Macro reference 
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Prod.1 through Prod.4 corresponds to the products before architecture refactoring, 
Prod.5 correspond to the product after architecture refactoring. By observing bad smells 
from Prod.1 to Prod.4, we determined reference architecture refactoring, and performed 
implemented architecture refactoring between Prod.4 and Prod.5. According to Table 10, 
metrics of problem factor correspond to the number of reversed dependency between 
dev-apl. So we discuss further below. 
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Figure 33 Transition of Reversed Dependency Count 
 
In the project, we aware the problem of reversed dependency, we tried to correct 
whenever it seems to be necessary. Big decrease of reversed dependency between Prod.1 
and Prod.2 is the result of such activity. However, improvements are not found between 
Prod.2 and Prod.4. This means, almost of easily-correctable reversed dependencies are 
corrected at Prod.2. In Prod.5, where the architecture refactoring is done, those 
remaining reversed dependencies are almost corrected. This matches the time of 
reference architecture refactoring. In other words, to correct those remaining reversed 
dependencies in the implementation, architecture refactoring of reference architecture 
was necessary. 

Next, we verify the effect of reference architecture refactoring, on the metrics. In 
Figure 34 show the transition of LOC(Line Of Codes) in major layers. LOC means the 
number of source code that excludes comments and empty lines. X-axis means time 
corresponds to development of products, same as Figure 33. The problem factor on 
reference architecture related to the bad smell #1 is the LOC of layer ‘apl’. We can find 
LOC of each layer decreased at Pord.5 in Figure 34. 
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Figure 34 Transition of LOC in Each Layer 

 
In refactoring at Prod.5, we moved hardware-related portion depicted as ‘A’ in  
Figure 28. As a result of refactoring, we expected improvement of reversed dependency 
count from layer ‘dev’ to layer ‘apl’, as well as the decrease of LOC of layer ‘apl’. In fact, 
those reversed dependency is almost disappeared in Prod.5, as shown in Figure 33. 

That is, for measure to bad smell #1, because the effect of implemented architecture 
refactoring between Prod.1 and Prod.2 was limited, we need to wait for the reference 
architecture refactoring at Prod.5. This agrees with the indication of ‘refactor reference 
architecture first’ in TYPE IV (problems) in Chapter 4   
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Bad smell #2 
Figure 35 shows portfolio chart of bad smell #2. Black and white circles represent the 
characteristics of the bad smells before and after architecture refactoring, respectively. 
Bad smell #2 belongs to TYPE II (outdated) in Figure 8, where it is well implemented in 
accordance with the reference architecture, but there seems to be necessary to refactor 
reference architecture. We used metrics of dependency ratio per unit LOC between 
layers for measuring magnitude of reference architecture. 
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Figure 35 Portfolio Char of Bad Smell #2 
 

Bad smell #2 belongs to TYPE (outdated).in Figure 8, where it is well implemented in 
accordance with the reference architecture, but there seems to be necessary to refactor 
reference architecture. We used metrics of dependency ratio per unit LOC between 
layers for measuring magnitude of reference architecture. Figure 36 shows the 
transition of dependency ratio per unit LOC. 
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Figure 36 Transition of Inter-Layer Dependency Count per LOC 
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The number of inter-layer dependencies increased in Prod.3 and Prod.4 because of 
increase of functions in Prod.3 and Prod.4. However, in Prod.5 where we refactored 
reference architecture, we found that little improvement compare to Prod.1, despite the 
number of function did not decreased from Prod.3 and Prod.4.  

Through our analysis, refactoring items 3 in Table 10 is derived so as to separate 
layer ‘sv’ that have global dependency. The refactoring item 3 is a means to the problem 
that is caused by scattering of part that have global dependency. It agrees with the 
decision at real project that aimed to raise independency of layers. 

 
Bad smell #3 
Figure 37 shows portfolio chart of bad smell #3. Black and white circles represent the 
characteristics of the bad smells before and after architecture refactoring, respectively. 
Bad smell #3 belongs to TYPE IV (problems) in Figure 8, as well as bad smell #1.  
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Figure 37 Portfolio Char of Bad Smell #3 
 

We identified problem factors 6 and 7 in Table 10, for problem related to the reference 
architecture. As for problem factor 6, because almost of all dependency toward layer ‘ui’ 
are setting data of the system, it is expected to be corrected by moving setting data from 
layer ‘ui’ to layer ‘com’ . The portion of setting data is depicted as ‘B’ in Figure 28. This 
agrees with the result that is done in project. 

We chose metrics of reversed dependency from layer ‘apl’ to layer ’ui’ for problem 
factor 6. As shown in Figure 33, reversed dependency from layer ‘apl’ to layer ’ui’ almost 
disappeared in Prod.5.  
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As for problem factor 7, we did not investigate refactoring items at this time. This is 
because we thought it is inevitable to some extent as long as the layer ‘ui’ take in charge 
of functional achievement of the system. 
    As for problem factor 4 and 5, because those problem factors did not have not 
necessarily related to the layer structure, it is corrected without waiting for refactoring 
of reference architecture. We used average complexity to measure problem factor 4. 
Figure 38 shows the transition of average complexity. Although the average complexity 
of ‘ui’ layer is higher than all other layer, the value decreased along with the product 
development.  
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Figure 38 Average Complexity 
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For problem factor 5, we used metrics of density of compilation switches. Figure 39 
shows the transition of density of compilation switches. Compilation switch is one of 
most easiest in coding and intuitive way for implementing variability. Because of this, 
there is trend of increasing along with development of products. However the increase of 
compilation switches introduces bad influence for maintainability of source code. 
Compilation switch basically controls conditional compilation. So it is similar to if 
statement, increase of compilation switch is kind of equivalent of increasing cyclomatic 
complexity. Figure 39 indicate the density of compilation switch of ui layer is high and 
continuously increasing. In the project, extra compilation switches are removed at all 
time. As a result, density of apl layer gradually decreased, but density of ui layer 
increased through development from Prod.1 to Prod.5. This means that layers that 
always have changes are difficult on decreasing compilation switches against the 
increase of functions of target product. 
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Figure 39 Densities of Compilation Switches 

 
From those result, we can conclude that the indication of TYPE IV “refactor reference 
architecture first” is not necessarily true, if the problem factor is not strongly related to 
relationship to other layers. 
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Chapter 7 
 

7   Related Works 
 
In this chapter, we show difference between this study and related works from the 
viewpoint of architecture evaluation, migration, and evolution in PLD. 

7.1  Architecture Evaluation 
Regarding to architecture evaluation, various method have been proposed so far, such 
as ATAM [20], SAAM [21], PuLSE [3], etc. These techniques are effective for evaluation 
and comparison of architecture. However they do not give direct answers for 
architecture refactoring that is proceeded along with the development of products. 
 

7.2   Architecture Migration 
Facts related to refactoring in various software projects are surveyed in [35], in which 
the refactoring of the architecture is not explicitly distinguished from the refactoring of 
the source code. P. Bengtsson et al. [4] introduces a method of architecture 
reengineering that utilizes a specific scenario. Rosso [42] reports on the experience of 
high-impact refactoring and says that an analysis of architecture violations and 
“architecture smells” was used to identify refactoring opportunities. They also suggest 
the possibility of an iterative refactoring process, but this was not mentioned with 
respect to a method for prioritizing and identifying each refactoring opportunity. They 
mention the importance of the continuous evolution of software architecture for a family 
of products. They focus on the assessment of architecture and reports on the basis of 
their experience using three different assessment methods: scenario-based, 
performance-based, and experience-based assessments. 
 

7.3  Architecture Evolution in PLD 
Figure 40 shows process of PuLSE-DSSA that is proposed by Fraunhofer IESE [24], and 
the general idea of cyclic improvement is based on QIP (Quality Improvement 
Paradigm) [2] shown in Figure 41. Although, general idea of iterative architecture 
improvement is shown in those, they need tailoring for adapting to each project, because 
the description is still abstractive for practical use. Our proposed technique provides a 
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decision taking method for architecture refactoring in practical software development 
scene. 

 

 
Figure 40 Pulse-DSSA Process 

 
 
 

 
Figure 41 Quality Improvement Paradigm 
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Chapter 8 
 

8   Conclusion 
 
In this thesis, we proposed technique for decision taking method for architecture 
refactoring in PLD, and evaluated the method by using actual project data retroactively. 
Our proposed technique comprises an idea of separating architecture into reference and 
implemented architecture, a method for comparing magnitude between different kind of 
problems, and problem factor portfolio as analyzing tools that is useful for decision 
taking of refactoring. 

By verifying our method by using project data, we confirmed that our technique 
provides similar result to experts about judgment on architecture refactoring. Moreover, 
we also confirmed the portfolio reflects the trend of problems that occurred in the 
project. 

In a practical scene, it is important to concern the effort that is necessary for 
architecture refactoring. Our future works includes the refinement of the method so as 
to consider the balance of effort and effect for the architecture refactoring. 
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Appendix A 
 

 A  Refactoring 
 
In this chapter, we describe general idea of architecture refactoring. Prior to explain 
architecture refactoring, we mention source code refactoring in section A.1. In section 
A.2, we describe extension of refactoring from source code to architecture. In section A.3, 
we mention scale of architecture refactoring. 
 

A.1 Source Code Refactoring 
Refactoring is well-known technique for changing internal structure of the program 
without changing its functionality, from the viewpoint of maintainability and portability. 
Originally this was a technique for maintaining source code.  

Fowler covers major techniques of refactoring in [13]. According to Fowler, 
candidates for refactoring can be detected from several phenomena that are observed on 
source code, for example  “duplicated code”, “long method”, etc. These are called “bad 
smells in code” in [13], and 22 kinds of bad smells are introduced there. Basically these 
bad smells are based on structural observation of source code. Benefit for utilizing these 
structural characteristics is, even someone who is not so familiar to the system can 
point out the possibility of problems. However, not all these smelled portions are 
necessarily contains problems. So necessity of refactoring should be judged individually 
by considering project’s situation. 
    Regarding source code refactoring in action, Fowler [13] lists refactoring catalog, 
where 72 kinds of refactoring operation are introduced, for example “extract method”, 
“move method”, “remove parameter”, and so on. This refactoring catalogue provides 
guidelines for local rearrangement of source code. By performing these modifications on 
source code, implementation quality such as maintainability is expected to improve in 
many cases. Because these refactoring operations are very primitive and elementary, 
some of these refactoring can be commonly used in architecture refactoring that is 
mentioned in section A.2.  
    As upper concept to elemental refactoring, Kerievsky proposes refactoring 
catalogues in [22], from the viewpoint of design pattern [15]. Compare to Fowler’s low 
level refactoring catalogue, it gives us middle level refactoring goals according to design 
pattern. Similar to Fowler’s approach, Kerievsky also utilizes “code smells” to find 
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refactoring candidates. They mention 12 kinds of code smells in [22]. Some of the smells 
are common to Fowler’s smells, such as “Duplicated Code”, “Long Method”, “Lazy Class”, 
and “Large Class”. 
 

A.2 Extension of Refactoring 
The general idea of source code refactoring can be extended to software architecture. We 
call the similar operation to the architecture “architecture refactoring”. Architecture 
refactoring is same as architecture evolution that is done in order to improve quality 
attributes such as maintainability or portability, with keeping major function of the 
products that is expected to be developed on the architecture. 

Because architecture evolution for adapting change of business and engineering 
environment can include functional enhancement, it may have different side from 
source code refactoring that does not change functionality. However, we use the term 
“architecture refactoring” for such architecture evolution by following reasons: 

 
 There is continuity of products before and after the architecture refactoring 
 We don’t consider essential change on major functionality 
 Basically for improvement of quality attributes for major functionality 

 

A.3 Scale of Refactoring 
Corresponding to design granularity, scale of refactoring can be categorized into source 
code level and architecture level. Figure 42 shows correspondence between design 
granularity and refactoring scope. Refactoring scope of source code refactoring is closed 
within class and package. On the other hand, scope of architecture refactoring covers up 
to layers. Because the scope is large and it affects is widespread, architecture 
refactoring should be conducted under appropriate decision. 
 

 
Figure 42 Relationship between Refactoring Scope and Design Granularity 
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Appendix B 
 

 B  Smells and Refactoring Catalogs 
 

B.1 Definition of Smells 
Followings are lists of bad smells that are proposed in previous research. We utilized 
them as a reference of problem factors on software structure, because they are based on 
observation of the structure of the implementation. 
 

B.1.1 Smells by Fowler 
 Duplicated Code 
 Long Method 
 Large Class 
 Long Parameter List 
 Divergent Change 
 Shotgun Surgery 
 Feature Envy 
 Data Clumps 
 Primitive Obsession 
 Switch Statements 
 Parallel Inheritance Hierarchies 
 Lazy Class 
 Speculative generality 
 Temporary Field 
 Message Chains 
 Middle Man 
 Inappropriate Intimacy 
 Alternative Classes with Different Interfaces 
 Incomplete Library Class 
 Data Class 
 Refused Bequest 
 Comments 
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B.1.2 Code Smells by Kerievsky 
 Duplicated Code 
 Long Method 
 Conditional Complexity 
 Primitive Obsession 
 Indecent Exposure 
 Solution Sprawl 
 Alternative Classes with Different Interfaces 
 Lazy Class 
 Large Class 
 Switch Statements 
 Combinatorial Explosion 
 Oddball Solution 

 

B.2 Refactoring Catalogs 
Followings are refactoring catalogs that are proposed in previous research. Compared 
with a catalog of Fowler, catalog of Stal includes refactorings more in architecture level 
that corresponds to refactoring items in our study. 
 

B.2.1 Refactoring Catalog by Stal 
 Rename Entities 
 Remove Duplicates 
 Introduce Abstraction Hierarchies 
 Remove Unnecessary Abstractions 
 Substitute Mediation with Adaptation 
 Break Dependency Cycles 
 Inject Dependencies 
 Insert Transparency Layer 
 Reduce Dependencies with Facades 
 Merge Subsystems 
 Split Subsystems 
 Enforce Strict Layering 
 Move Entities 
 Add Strategies 
 Enforce Symmetry 
 Extract Interface 
 Enforce Contract 
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 Provide Extension Interfaces 
 Substitute Inheritance with Delegation 
 Provide Interoperability Layers 
 Introduce Aspects 
 Integrate DSLs 
 Add Uniform Support to Runtime Aspects 
 Add Configuration Subsystem 
 Introduce the Open/Close Principle 
 Optimize with Caching 
 Replace Singleton 
 Separate Synchronous and Asynchronous Processing 
 Replace Remote Methods with Messages 
 Add Object Manager 
 Change Unidirectional Association to Bidirectional 

 

B.2.2 Refactoring Catalog by Fowler 
 Extract Method 
 Inline Method 
 Inline Temp 
 Replace Temp with Query 
 Introduce Explaining Variable 
 Split Temporary Variable 
 Remove Assignments to Parameters 
 Replace Method with Method Object 
 Substitute Algorithm 
 Move Method 
 Move Field 
 Extract Class 
 Inline Class 
 Hide Delegate 
 Remove Middle Man 
 Introduce Foreign Method 
 Introduce Local Extension 
 Self Encapsulate Field 
 Replace Data Value with Object 
 Change Value to Reference 
 Change Reference to Value 
 Replace Array with Object 
 Duplicate Observed Data 
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 Change Unidirectional Association to Bidirectional 
 Change Bidirectional Association to Unidirectional 
 Replace Magic Number with Symbolic Constant 
 Encapsulate Field 
 Encapsulate Collection 
 Replace Magic Number with Symbolic Constant 
 Encapsulate Field 
 Encapsulate Collection  
 Replace Record with Data Class 
 Replace Type Code with Class 
 Replace Type Code with Subclasses 
 Replace Type Code with State/Strategy 
 Replace Subclass with Fields 
 Decompose Conditional 
 Consolidate Conditional Expression 
 Consolidate Duplicate Conditional Fragments 
 Remove Control Flag 
 Replace Nested Conditional with Guard Clauses 
 Replace Conditional with Polymorphism 
 Introduce Null Object 
 Introduce Assertion 
 Rename Method 
 Add Parameter 
 Remove Parameter 
 Separate Query from Modifier 
 Parameterize Method 
 Replace Parameter with Explicit Methods 
 Preserve Whole Object 
 Replace Parameter with Method 
 Introduce Parameter Object 
 Remove Setting Method 
 Hide Method 
 Replace Constructor with Factory Method 
 Encapsulate Downcast 
 Replace Error Code with Exception 
 Replace Exception with Test 
 Pull Up Field 
 Pull Up Method 
 Pull Up Constructor Body 
 Push Down Method 
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 Push Down Field 
 Extract Subclass 
 Extract Superclass 
 Extract Interface 
 Collapse Hierarchy 
 Form Template Method 
 Replace Inheritance with Delegation 
 Replace Delegation with Inheritance 
 Tease Apart Inheritance 
 Convert Procedural Design to Objects 
 Separate Domain from Presentation 
 Extract Hierarchy 

 
 


