
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
プロダクトライン開発におけるアーキテクチャリファ

クタリングの研究

Author(s) 牧, 隆史

Citation

Issue Date 2013-12

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/11933

Rights

Description Supervisor:Defago Xavier, 情報科学研究科, 博士

Studies on Architecture Refactoring

for Software Product-Line Development

by

Takashi MAKI

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Tomoji Kishi

School of Information Science
Japan Advanced Institute of Science and Technology

December, 2013

Copyright © 2013 by Takashi Maki

 i

Abstract

In recent years, it has become increasingly important to maintain architecture in
product-line development (PLD), mainly because of the rapid changes in market
requirements and technical environments. In PLD, architecture maintenance is a more
complicated and difficult process compared to conventional software development
because architecture is key to achieve large-scale reuse in developing a product family.
In architecture maintenance, we have to consider both the reference and implemented
architectures. Here, reference architecture is a design intention that constraints the
implementation, and implemented architecture is an abstract expression of the existing
implementation.

Architecture maintenance includes both keeping the conformance of implemented
software architecture with the reference architecture and changing the reference
architecture to meet new requirements. These architecture changes are modifications of
software structure without changing the major feature of the product family. Thus, we
call such modifications architecture refactoring.

In PLD, requirements for reference architecture can change during the development
of the product family because the development period lasts longer than that in non-PLD.
Moreover, the implemented architecture can deteriorate over the development of
multiple products. Therefore, we can organize architecture refactoring more efficiently
by separately considering the implemented and reference architectures refactorings. In
this study, we propose a decision taking method for architecture refactoring that
considers both the implemented and reference architectures separately.

The main characteristic of this method is utilizing the portfolio analysis of the
problem factor to organize the architecture maintenance strategy. Furthermore, we
verified the effectiveness of the proposed method by applying actual project data to the
proposed method retroactively.

 ii

Acknowledgements

The author would like to thank Professor Tomoji Kishi for his continuous support and
suggestions to the research. The author would also like to thank Professor Koichiro
Ochimizu, Professor Mizuhito Ogawa, and Associate Professor Toshiaki Aoki of Japan
Advanced Institute of Science and Technology, and Professor Yoshiaki Fukazawa of
Waseda University for their valuable reviews, advices, and suggestions. Associate
Professor Masato Suzuki gave us helpful comments regarding the analysis of source
codes. Associate Professor Defago Xavier provided helpful comments in planning the
outline of the research. This research is motivated by the architecture refactoring
experiences in consumer product projects. We appreciate every member who
participated in the projects.
 Finally, I would like to give my special thanks to my family members, especially my
wife, whose encouragement and cooperation enabled me to complete this thesis. I would
not have been able to finish this thesis without my family's support.

 iii

Contents

Abstract ..i

Acknowledgements..ii

1 Introduction..1

2 Architecture Refactoring..3

2.1 Software Architecture ...3
2.2 Reference and Implemented Architecture ...4
2.3 Product Line Development ...6

2.3.1 PLD and Architecture..6
2.3.2 PLD in Embedded Software Development ...7

2.4 Difficulty of Maintaining Architecture...7
2.4.1 Changes of Environment ...7
2.4.2 Architecture Deterioration ..8
2.4.3 Architecture Gap..8

2.5 Utilizing Existing Artifact ..9
2.6 Architecture Refactoring ..9

2.6.1 Evolution and Refactoring...9
2.6.2 Refactoring in Former Study...10
2.6.3 Impact on Cost and Implementation Quality...10
2.6.4 Difficulty of Architecture Refactoring... 11
2.6.5 Refactoring Needs in PLD ...12
2.6.6 Refactoring of Reference Architecture ..12
2.6.7 Refactoring of Implementation in Architecture Level................................13

2.7 Refactoring Opportunity...14

3 Problems...15

3.1 Main Problem..15
3.2 Subsidiary Problems...16

4 Proposed Technique ...17

4.1 Requirements for the Technique ..17
4.2 Overview of the Technique ...18
4.3 Fundamental Ideas ...19

4.3.1 Bad Smells ...19
4.3.2 Problem Factor...20

 iv

4.3.3 Refactoring Items...24
4.3.4 Relationship among Fundamental Ideas..26

4.4 Steps of Proposed Technique ..27
4.4.1 STEP 1: Select Bad Smells ..28
4.4.2 STEP 2: Find Problem Factors..29
4.4.3 STEP 3: Plan Refactoring Items ...31
4.4.4 STEP 4: Quantify Problem Factors...33
4.4.5 STEP 5: Portfolio Analysis ..36
4.4.6 STEP 6: Judge Priority of Refactoring..54
4.4.7 STEP 7: Execute Refactoring ..57

5 A Sample Case..59

5.1 Domain Characteristics ..59
5.2 Outline of Reference Architecture ..61
5.3 Architecture Refactoring in the Project ...62
5.4 Effects by the Architecture Refactoring ...63

6 Evaluation and Discussion ..64

6.1 Approach of Applying Method ..64
6.2 Evaluation Using Project Data...65

6.2.1 STEP 1: Select Bad Smells ..65
6.2.2 STEP 2: Find Problem Factors..66
6.2.3 STEP 3: Plan Refactoring Items ...67
6.2.4 STEP 4: Quantify Problem Factors...69
6.2.5 STEP 5: Portfolio Analysis ..71
6.2.6 STEP 6: Judge Priority of Refactoring..73
6.2.7 STEP 7: Execute Refactoring ..75

6.3 Summary of Applying the Technique ...76
6.4 Confirmation of Past Instances ..79

7 Related Works ..86

7.1 Architecture Evaluation ...86
7.2 Architecture Migration ...86
7.3 Architecture Evolution in PLD...86

8 Conclusion ..88

Bibliography ..89

Publications ...92

 v

A Refactoring ...93
A.1 Source Code Refactoring ...93
A.2 Extension of Refactoring...94
A.3 Scale of Refactoring...94

B Smells and Refactoring Catalogs...95

B.1 Definition of Smells...95
B.1.1 Smells by Fowler ..95
B.1.2 Code Smells by Kerievsky ..96

B.2 Refactoring Catalogs ...96
B.2.1 Refactoring Catalog by Stal ...96
B.2.2 Refactoring Catalog by Fowler...97

 vi

List of Figures

Figure 1 Relationship between General Ideas for Architecture.................................4
Figure 2 Relationship of Reference and Implemented Architecture........................13
Figure 3 Process Flow in Cyclic Product Development ..14
Figure 4 Relationship between Fundamental Ideas ..26
Figure 5 Overview of the Steps ...27
Figure 6 Image of Finding Out Bad Smells in the Project29
Figure 7 Image of Filtering Out Problem Factors ..30
Figure 8 Problem Factor Portfolio (PFP) plane ..37
Figure 9 Plot with single problem factor...37
Figure 10 Plot with multiple problem factors...38
Figure 11 Typical improvement transition patterns ..41
Figure 12 Transition from TYPE III to TYPE I ..42
Figure 13 Transition from TYPE IV to TYPE II...43
Figure 14 Transition from TYPE IV to TYPE III ...44
Figure 15 Transition from TYPE II to TYPE I ...45
Figure 16 Transition from TYPE IV to TYPE I ..46
Figure 17 Typical deteriorating transition patterns ..47
Figure 18 Transition from TYPE I to TYPE III, TYPE II to TYPE IV48
Figure 19 Transition from TYPE I to TYPE II, TYPE III to TYPE IV49
Figure 20 Transition from TYPE I to TYPE IV ..50
Figure 21 Typical deteriorating transition patterns ..51
Figure 22 Transition from TYPE II to TYPE III ..52
Figure 23 Transition from TYPE III to TYPE II ..53
Figure 24 Refactoring Opportunity in Product Development Process.....................58
Figure 25 Image of Products Load Map ..60
Figure 26 Feature Model of Target Product..60
Figure 27 Outline of Reference Architecture ..61
Figure 28 Architecture Refactoring in the Project..63
Figure 29 Approach of the Evaluation ..65
Figure 30 Portfolio chart as an output of STEP5 ...72
Figure 31 Summary of Portfolio chart ..78
Figure 32 Portfolio Chart of Bad Smell #1..79
Figure 33 Transition of Reversed Dependency Count ..80
Figure 34 Transition of LOC in Each Layer ...81
Figure 35 Portfolio Char of Bad Smell #2 ...82
Figure 36 Transition of Inter-Layer Dependency Count per LOC...........................82
Figure 37 Portfolio Char of Bad Smell #3 ...83

 vii

Figure 38 Average Complexity...84
Figure 39 Densities of Compilation Switches ...85
Figure 40 Pulse-DSSA Process ..87
Figure 41 Quality Improvement Paradigm ..87
Figure 42 Relationship between Refactoring Scope and Design Granularity.........94

 viii

List of Tables

Table 1 Classification for Magnitude of Problem Factors ..24
Table 2 Outline of STEP1 ..28
Table 3 Outline of STEP2 ..29
Table 4 Outline of STEP3 ..31
Table 5 Outline of STEP4 ..33
Table 6 Example of Classification List..33
Table 7 Outline of STEP 5 ...36
Table 8 Outline of STEP 6 ...54
Table 9 Outline of STEP 7 ...57
Table 10 Bad Smells, Problem Factors, and Refactorin Items, on the Project........77

 1

Chapter 1

1 Introduction

For the efficient development of a series of products that have similar characteristics,
the Software product line (SPL) [9] technique is widely used in various areas, especially
in embedded software area. Composing SPL assets and product development using SPL
assets is called Product-line development (PLD).

In general, software architecture is important in software development because
architecture determines various restrictions on development. In PLD, software
architecture is more important for achieving large-scale reuse in developing product
families. In case of non-PLD, architecture quality mainly affects product specifications.
In case of PLD, architecture quality also affects software reusability. Therefore, many
architecture evaluation techniques have been proposed [3] [20] [21].

It is ideal to determine the architecture in advance for the development of all
products in the product scope. However, it is often difficult to retain the same
architecture during the product scope owing to the rapid changes in the business and
technical environments during relatively long periods of development in PLD. Therefore,
architecture evolution or refactoring is important for PLD.
 In PLD, there are roughly two approaches, reactive and proactive, to compose
product-line assets. In the proactive approach [8][25] , the necessity of architecture
evolution often arises because of changes in the business and technical environment
that occur after using the product-line core asset. Further, in the reactive approach [10],
incremental evolution of architecture is necessary because core assets are created by
evolving architecture from necessary parts. Therefore, in PLD, architecture evolution is
necessary in either approaches.
 In this study, we clearly distinguish reference architecture and implemented
architecture. Reference architecture represents the design intention of the software
structure, and is referred as the design target in implementing software. Implemented
architecture is an abstract structure that is realized by source codes of each product.
When architecture evolution is considered, we have to pay attention to reference
architecture evolution, implemented architecture evolution, and the consistency
between both architectures. In this study, we define reference architecture evolution as
the change of the design target for adapting new situations, and implemented
architecture evolution as the improvement of implementation in order to improve

 2

implementation quality. Because the range of influence and cost differ depending on the
kind of architecture, it is important to take decision appropriately when and how to
evolve the architecture by considering the situation of product development.
 We consider these architecture evolutions as architecture refactoring in the broad
sense, and we propose a decision taking method for architecture refactoring by focusing
on the difference between reference and implemented architectures.
 The rest of this paper is organized as follows: In Chapter 2, we describe the issues
obtained through our experience in project operation. In Chapter 3, we summarize the
problems that we will solve using our proposed method. In Chapter 4, we propose an
architecture refactoring technique. In Chapter 5, we describe the environment in which
we examined our technique on the project. In Chapter 6, we present the result obtained
using our technique and confirm the past instances using portfolio analysis. In Chapter
7, we show the difference between this study and related works. Finally, we conclude
this paper in Chapter 8.

 3

Chapter 2

2 Architecture Refactoring

In this chapter, we describe issues that are background of our research. In section 2.1,
we point out problems that are often found in recent embedded software development
especially for consumer products. In section 2.1, we summarize general ideas of
software architecture that are already known. In section 2.2, we explain reference and
implemented architecture that is our important idea in this study. In section 2.3, we
describe relationship of PLD and architecture. In section 2.4, we explain difficulty of
maintaining architecture. In section 2.5, we describe the usage of utilizing existing
artifacts. In section 2.6, we explain architecture refactoring. In section 2.7, we show an
example of refactoring opportunity along with the product development.

2.1 Software Architecture
It can be seen that software architecture in development means a set of design
restriction to keep overall appropriateness of software structure. In other words,
software architecture is an abstracted expression of software structure. The term
“software architecture” is used to indicate software structure in various abstraction
levels. Following are the examples:

 Architecture pattern level
Architecture pattern means typical pattern of assignment or roles and relationship

between elements. As a representative of architecture pattern, layers and broker and
so on are introduced in POSA. Also in GOF, several architecture patterns are
introduced.

 Functional decomposition and dependency at subsystem level
At this level, software architecture mainly determines functional decomposition

and dependency among subsystems in an architecture pattern.

 Local structure level in implementation
At this level, software architecture mainly determines local structure inside

subsystems.

 4

In this study, we focus on functional decomposition and dependency at subsystem level.
Subsystem level means coarse functional unit that is got at conceptual design phase,
and not mean local structure of implementation such as class or method.

2.2 Reference and Implemented Architecture
As abovementioned, software architecture is an abstracted expression of software
structure. In this study, we distinguish the reference architecture, the implemented
architecture, and the implementation as illustrated in Figure 1. Definition of these two
architectures and the implementation are as followings:

 Reference architecture
Architecture as a design intention

 Implemented architecture
Abstracted structure of the implementation

 Implementation
Substantial artifact such as source code and directory structure

Reference
Architecture

Implemented
Architecture

T
arge

t to

C
o
n
strain

s

A
bs

tr
ac

ti
o
n
 l
e
ve

l

Discrepancy

Explicitly described Not explicitly described

High

Low
Implementation

Figure 1 Relationship between General Ideas for Architecture

 5

Generally in software development, we plan a rough structure by considering various
trade-offs, at early stage of development. The word “architecture” sometimes indicates
the structure defined at this stage. In many cases, source code is implemented by
referring the architecture determined at this stage. In this study, we call this
architecture as “reference architecture”. Ideally consistency between the reference
architecture and the implemented architecture should be kept throughout the
development. However the gaps between them often appear. About the reasons of
appearing gaps, we explain in section 2.4.3 . In order to investigate the gap, it is useful
to understand the structure of the implementation at similar abstraction level of
structure. We call this structure of implementation as “implemented architecture”. In
other words, implemented architecture means the “architecture of the implementation”.
By making distinction between reference and implemented architecture, we can grasp
problems on these architectures and problems between them. Details of these
architectures are followings:

 Reference Architecture
It means architecture that is referred as a target in development. In single

development, architecture affects on the quality attributes of the products, such as
realization of the functional and nonfunctional requirements. In PLD, architecture
affects the reusability of products, in addition to the abovementioned quality
attribute. If the development of product family last to a long period, requirements to
the architecture may vary in the long period. Change of reference architecture cause
a big impact on cost, because it is a basis of reusability in the product scope.
Reference architecture is explicitly described as an architecture document.
Architecture document contains description of the role of subsystems and the
dependency between subsystems.

 Implemented Architecture

It means architecture as an abstracted structure of the implementation realized by
source code. Because the implementation can not be directly compared to the
reference architecture, we need the abstracted expression of the implementation that
is same abstraction level to the reference architecture, in order to check discrepancy
to the reference architecture. If the implementation is faithfully implemented to the
reference architecture, there ought to be no discrepancy between reference and
implemented architecture. To extract implemented architecture from the
implementation, we can use reverse engineering from source code. Several tools for
reverse engineering are available such as imagix [17] and lattix [27] [43]. Although it
is hard to extract up to the original design intention that lies as a background of
visualized structure by using these reverse engineering tools, they are useful to
visualize internal relationship between constituent elements to understand the

 6

abstracted structure of the implementation.

 Implementation
It means substantial artifact such as source code and folder structure. Regardless

of PLD or non-PLD, the implementation is expected to realize faithfully to the
reference architecture. Although the implementation is realization of the reference
architecture, the abstraction level of implementation differs from the reference
architecture. For example, information of role of subsystem and the dependency
between subsystems are not directly expressed on the implementation itself.
Therefore the implementation can not be directly compared with the reference
architecture. Implementation is explicitly described as source code of the directly
structure.

2.3 Product Line Development
In this chapter we describe positioning of software architecture in PLD.

2.3.1 PLD and Architecture
Software product line is defined as “a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way,” by Clements and Northrop [9]. As indicated in [9], PLD is effective for
product developments that have many common features. Generally in PLD, common
architecture is used for a product family to enable large reuse in practice. Differences of
architecture in PLD from non-PLD are as follows:

 Architecture centric development
In PLD, so-called product line or reference architecture (PLA) plays a key role

throughout the development. To enable large reuse in product family development,
we apply the same architecture commonly for the product scope. Software
architecture not only affects the structure of software itself, but also affects the
organization structure of the project. PLA is also used for communications during
stake holders in the projects. In non-PLD, architecture is mainly used to express
software structure inside development team, in many cases.

 Variability management

In PLD, common parts and variation point is clearly defined in the architecture.
In non-PLD, variation point is not always defined in the architecture.

 7

 Explicit product scope
In PLD, there is explicit product scope. Architecture is decided to realize all

changes within the product scope. In other words, we can optimize architecture for
the product scope. In non-PLD, product scope is not always clearly recognized.

2.3.2 PLD in Embedded Software Development
Generally PLD is suitable for development that the features of the products are
predictable to a certain extent. As an example, software development for some consumer
products matches the condition.

In addition, recent these software developments face problems of increase of
development scale and shortening of development time, together with product quality.
Development scale problem includes increase in number of products and number of
functions in each product. Increase in number of products brings needs of concurrent
development of product family. Increase in number of functions brings needs of
appropriate variability management.

As for shorting development time, it is mainly caused by shortening of products
release cycle. In products field appearing in market, product release cycle is not
established as a custom, release interval is relatively long. As the market grows,
consumer needs become high, number of participant at market increases.

PLD is expected to solve abovementioned problems, and actually it has become
widely used in such software development.

In products field that PLD is regarded effective, it is common that at least several
similar products are already released in market. This means that there exists an asset
such as source code for those similar products. In this situation, starting PLD with
existing asset is one of realistic plan, rather than a Greenfield scenario [9].

2.4 Difficulty of Maintaining Architecture
In this section, we describe difficulty of maintaining architecture that arises in products
development from several viewpoints.

2.4.1 Changes of Environment
Generally, software architecture is determined to incorporate considerable changes
during the architecture is used. Especially in PLD, software architecture is assessed by
several evaluation methods so as to incorporate changes in the product scope. However,
any product line needs to evolve and adapt over time to incorporate new customer
requirements and new technology constraints [44]. This is because not all changes are
predictable before starting developing products.

 8

As a result of those, architecture becomes old-fashioned in realizing new
changes.

2.4.2 Architecture Deterioration
Architecture deterioration is a problem that has been investigated for long time. It
means deterioration of implementation quality that is caused by incremental changes,
fixing defects or optimizing quality attributes. These phenomena of such architecture
deteriorations are known as architectural drift [38], software aging [37] or architecture
erosion [18], or design erosion [19].
 If all future variations are predictable, architecture deterioration by product
development will not occur. However, practically deterioration occurs in some extent,
because of the variations that was not forecasted at the time of determining
architecture.

2.4.3 Architecture Gap
Architecture gap is also known problem that happens along with product development
[36]. It means discrepancies between predetermined architecture and the
implementations. There are two origins that may cause architecture gap in PLD.

 Gaps along with the development
These are architecture gap that occur along with the progress of product

development. This is a kind of phenomenon that is known as architecture erosion or
design erosion. Ideally architecture gap is fixed as soon as it appeared. However it is
difficult to fix when it appeared almost the end of development of the product
because of the risk of change.

 Created gaps in reactive approach

As an approach of composing product line assets, there is reactive approach. In
reactive approach, core assets are prepared stepwise from the place that became
necessary. If we change the reference architecture to realize product line assets from
the existing implemented architecture, the architecture gaps between the
implemented and reference architecture are created.

In both cases, immediate correction of architecture gap is not realistic, because of the
risk of side effects by change and limitation of the allowed cost. Before bridging the
architecture gaps, we need to aware the characteristics of the reference architecture
and the implemented architecture, together with the characteristics of the gap between
these two architectures.

 9

2.5 Utilizing Existing Artifact
As mentioned in previous section, Greenfield scenarios [9] are seldom found in
industrial contexts. It means that utilizing existing artifacts such as source code and
documents is a key for saving development time and cost in creating product line core
assets. In such development, needs of architecture evolution often arise.
 In case of new products field development, because products continuity from
existing artifact is relatively low, it is conceivable to redesign architecture even if we
utilize existing artifact.

In case of similar development of products, there would not be necessary to change
architecture, if requirements for the new products are almost same from products
realized on existing assets. However market requirements for functional and
non-functional feature become usually higher than former similar products, in most
cases. In order to fulfill new requirement for the products, sometimes big change on the
architecture becomes necessary. That’s why architecture evolution is necessary. In this
case product scope is not always clearly aware, major function of the products is kept
before and after the architecture evolution. In other words, there is strong continuity
over architecture evolution. Utilizing existing artifact in creating product line assets
can be effective because of the continuity of products, in this case.

2.6 Architecture Refactoring
In this chapter, we describe issues related to architecture refactoring.

2.6.1 Evolution and Refactoring
From the viewpoint of maintainability and transportability of the software, refactoring
is known as a technique to change the internal structure of the program without
changing the behavior of the system. In this study, we call similar approach to software
architecture as “architecture refactoring”.

Architecture refactoring means architecture evolution to improve quality
characteristics such as the maintainability and transportability with keeping the main
function that is expected to be realized on the architecture. The architecture evolution
to cope with a technical and business environmental change may be accompanied by the
expanse of a function assumed on the architecture. It can have the side that is slightly
different from the refactoring of the source code that does not to change a function.

However, we deal with the situation to keep a continuity with the past product
group, and we don’t consider it until the change of an essential and large assumption
function, in this study. Therefore we use the term “refactoring” as a part of evolution

 10

aiming the improvement of the quality characteristics for assumption functions.

2.6.2 Refactoring in Former Study
The characteristic in a source code known as the sign which seem to cause a problem in
the future observed at the time of software development from experience is called “Bad
smell”. Fowler [13] mentions 22 kinds of bad smells such as “Duplicated code” or “Long
method”. (see appendix B)
 Although concerns of smells and the measures by Fowler are closed to the source
code, the idea of “Bad smells” can be extended to architecture level. Rooks [41] propose
idea of “Architecture smells” in order to utilize a trigger for big refactorings, where they
observe structure smell such as cyclic dependency or concentration of functions on
several architecture levels, such as package, subsystem, and layers. Regarding to
architecture smells, Pollack [40] also mentions five architecture smells such as
“Business logic is tightly coupled to non-functional requirements”.
 The methods for using an architectural smell to point out the need for refactoring
are described in [41][14]. These methods utilize the structural information of the
implemented architecture. Fenton et al. [12] suggest an approach to identify refactoring
needs by using software metrics. Metrics point out problems objectively, but the
difficulty is that the use of such metrics does not always point out the real need for
refactoring. This commonly takes place with “code smells,” as discussed in [13].
 Each of them is consideration for the implemented architecture, and it is not
enough to plan a strategy for refactoring that involve the reference architecture in PLD.

2.6.3 Impact on Cost and Implementation Quality
There are a lot of cases to be accompanied by a large-scale change of the implementation,
and the change of the architecture entails a modified cost generally. As an example, we
consider a case of changing functional decomposition between subsystems. In this case,
because changes occur in each related subsystem, cost for change increase along with
the number of change increases.

Furthermore, the quality risk by the change exists, too. Because a change point is
not closed in a specific module and subsystem by the change of the implementation with
the change of the architecture, the range that should confirm influence is wide in
comparison with the refactoring closed to a specific module.

Thus, because cost and influence on quality are big by the architecture refactoring,
we need enough assessment for influence range.

 11

2.6.4 Difficulty of Architecture Refactoring
The difficulty in refactoring PLA lies in determining an appropriate refactoring strategy
by considering the refactorings for both the reference architecture and the implemented
architecture. The term “architecture refactoring” refers to a large refactoring at the
architecture level. In [41], “large refactoring” is described as the composite of small
refactorings that improves detailed design and code quality. The basic behavior of the
outside of the system does not change before and after these architecture refactorings.
In refactoring PLA, we have to consider both the reference architecture and the
implemented architecture. The term “reference architecture” here refers to the planned
and targeted architecture. The term “implemented architecture” refers to the
architecture that is realized as the implementation.

In several product line practices [23][26], there are migration approaches of the
implementation toward the reference architecture. In these cases, the implemented
architecture is refactored in order to adjust the deviation from the reference
architecture.

To identify the refactoring needs for the implemented architecture itself, a method
of utilizing “architecture smell” [41] is available. Although this is useful to determine
the refactoring needs easily from the structure of the implementation, we need further
examination from the viewpoint of PLD in order to apply the abovementioned method to
PLA because architectural smells are based on the implementation at a certain point of
time.

With regard to the reference architecture, the objective of refactoring is to increase
the productivity and quality of future products, such as the ease of realizing future
variability and the testability of products. If a product line lasts for a long span of time,
sometimes a reengineering of the architecture becomes necessary in order to realize an
innovative feature to adapt to increasing market requirements. In order to optimize the
reference architecture, we might have to approach reengineering. However, in a large
software project, designing from scratch is often not realistic. In such a case, refactoring
from the existing architecture is rather useful. Thus there are different aspects to
reference architecture and implemented architecture, and we need to distinguish
between them for refactoring PLA.

Once the reference architecture is refactored, the corresponding implementation
needs to be refactored as well. When the latter procedure needs time to follow, there
appears a gap between the implemented architecture and the reference architecture
until the refactoring on the implementation is completed.

Although there are various refactoring needs that range from the reference
architecture to the implemented architecture, performing architecture refactoring ad
hoc induces confusion into the project. In order to conduct these refactorings effectively,
we need to carry out PLA refactorings under appropriate prioritization by considering

 12

the related metrics result, the influence and cost of refactoring, the situation of the
project, business objectives, and so on. We propose the means of doing so in this paper
by using a problem factor portfolio analysis that we explain in chapter 4.

2.6.5 Refactoring Needs in PLD
In PLD, it is important to determine product scope before preparing product line core
assets. However, even in the product scope, it is often found to update domain artifacts
for adapting new variability. In other words, small scale of architecture refactoring is
often taken place during the product scope.

In addition, we consider about composing product-line assets phase. In proactive
approach of PLD [20], reference architecture is defined prior to compose core assets, so
as to be used commonly for products within the product scope. Generally in PLD,
because same architecture is used for relatively long time compare to single system
development, architecture refactoring is sometimes necessary to adapt following
situations:

 Technology improvement: Major technology improvement may occur during the
period of product line scope.

 Unexpected requirement from market: Market requirements are always changing.

Sometimes market requirement that can not be expected at the beginning of
product-line scope.

In reactive approach of PLD [10], core assets are composed stepwise by using existing
assets. It means that at least the related part of the architecture is refactored in order
to composing core asset.

As we mentioned above, architecture refactoring is necessary in PLD, whether the
approach of composing product-line core asset is reactive or proactive. Architecture
refactoring is not only necessary, but also an essential technique in order to lengthen
the life of PLA.

2.6.6 Refactoring of Reference Architecture
In considering architecture refactoring, changes occurs in both implemented and
reference architectures. In addition, there can be discrepancy between them, in
products development project. Therefore, we think that we can make problems clear by
considering problems belong to reference and implemented architecture separately.

Figure 2 expresses the relationship between the reference architecture and the
implemented architecture. The implementation is refactored so as to resolve the

 13

discrepancies between the reference and implemented architecture, and the reference
architecture is refactored so as to fulfill new requirements.

Reference Architecture

Refactoring

Consistency check
Refactoring to resolve Discrepancy

Implemented Architecture

Figure 2 Relationship of Reference and Implemented Architecture

Refactoring of reference architecture is change of rule that restrain software design.
When these changes cause discrepancies between reference architecture and the
implementation, it is recommended to change the implementation to follow the
reference architecture, as soon as possible. Those discrepancies that is caused by the
change of reference architecture is caused by changes of the rule between components,
it might need a big impact on the implementation.

As Roock points out, large change of implementation in subsystem level induces a
lot of cost. Change of reference architecture induces more cost and influence to the
project. In general, there are various candidates of refactoring at a certain moment of
development, therefore effects and influence to the project depends on choice of
refactoring from candidates and timing of performing them. We treat this as an issue of
decision taking, and we propose a technique in this study.

2.6.7 Refactoring of Implementation in Architecture Level
Refactoring of implementation in architecture level means large scale refactoring which
affects overall structure of the software. Such large refactoring on the implementation
is a combination of each small source code refactoring. Although each small refactoring
is same as fowler’s refactoring, the difference from small scale of source code refactoring
is its scale or number of combination. Roock [41] mentions that we need different
attention in addition to regular refactoring that Fowler [13] describes. For example,
consideration of refactoring timing and preservation of working hours on the products’
project belongs to them. However, almost all examples of large refactoring by Roock
focus on refactoring on the local structure such as moving class or change of inheritance.
To solve architectural problems at subsystem level, we need other viewpoints and
techniques that consider relation to the reference architecture.

 14

2.7 Refactoring Opportunity
Figure 3 shows the process flow in cyclic product development after the application of
the abovementioned method. Smells are projected to a refactoring item by considering
the problem factors. The derived refactoring items are assessed using problem factor
portfolio (PFP) that we explain in section 4.4.5 . The assessment here refers to the
process that determines the position of each refactoring item in the PFP plane and the
effort required for the item. Refactoring items are then selected after a consideration of
the magnitude of the problem factor, the effort required, and the situation of the project.
Refactoring is then performed on the selected item, and the rest are assessed at the next
assessment opportunity together with new refactoring items derived from new bad
smells that we explain in section 4.3.1 .

PLA smells

Designing reference
architecture and

evaluation

Selection of refactoring
items to be performed

Assessment by using
PFP

Perform
refactoring

Remaining refactoring items

Refactoring items

Selected refactoring items

(optional)

Problem
factors

 Figure 3 Process Flow in Cyclic Product Development

 15

Chapter 3

3 Problems

In this chapter, we describe the problems that we are going to solve in this study. In
section 3.1, we explain the main problem that we have to solve. In section 3.2, we
describe the subsidiary problems as practical techniques to solve the main problem.

3.1 Main Problem
We set the objectives of this study is to provide a technique for architecture refactoring
as follows;

 A technique to support decision taking of prioritizing architecture refactoring

items

In the development of family products in product-line context, it is essential to select
architecture in consideration of overall optimization of product development in the
product scope.

As techniques for selecting architecture, ATAM, SAAM, Pulse-DSSA and such are
known. These techniques are useful for selecting architecture at the early stage of
development, because they judge the good or bad of architecture based on requirement
analysis, without considering the continuity with the existing assets. In PLD, we often
encounter the needs of architecture refactoring to adapt new requirements, because
PLD ranges for long time compare to non-PLD development. In considering architecture
refactoring, we have to consider the continuity with the existing assets.

As techniques for refactoring, methods of Fowler [13] or Roock [41] are known.
Fowler describes the detailed techniques for detecting refactoring needs and specific
refactoring techniques in source code level. Roock proposes similar techniques to
Fowler’s that handle large scale refactoring. In architecture refactoring in PLD,
treatment of reference architecture is important, because it regulates the relationship
among the components for large reuse. Although these techniques cover refactoring of
implementation, they do not cover the relationship between the reference architecture
as the design intention and the implemented architecture as an abstracted expression
of the implementation.

 16

Because architecture refactoring need high cost, generally it is hard to deal with all
candidates of architecture refactorings that we thought of. Therefore we have to select
effective items under the limited resource of cost for refactoring. However there were
not appropriate technique to select effective refactoring items, we have selected them
ad-hoc based on the past experiences.

3.2 Subsidiary Problems
In order to solve the main problem described in previous section, we found subsidiary
problems as practical techniques. We explain those subsidiary problems as follows:

 Detecting problems related to development of series products
In large software project, it is hard to specify the bad symptoms to be improved,

because of complexity of the software itself and the complexity of the development
process.

As a technique for detecting bad symptoms, using “smells” is known in Fowler etc.
However known “smells” are based on the structural observation at a moment, it is
difficult to find out problems that come from development of series products. Our
objective related to detecting problems is to provide techniques to find out problems
that lie on plural development of products.

 Quantification of the magnitude of problems

There are various kind in problems related to architecture. Generally it is
considered to be difficult to compare different kind of problems because the metrics
means for each problem differ. Therefore the magnitude of the problems has been
judged only subjectively. Our objective for handling magnitude of problems is to
make possible to compare different kind of problems.

 Prioritization of refactorings
However there can be many refactoring candidates depending on projects, we don’t

have appropriate to means to judge the order to deal with.
In taking decision on refactoring, many factors should be concerned, because

architecture refactoring affects big impact on quality and development cost. These
factors involve the extent of problems being solved, cost and risk for the refactoring,
and future product plan. Our objective for prioritization of refactoring is to provide
useful materials for decision based on metrics.

 17

Chapter 4

4 Proposed Technique

In this chapter, we propose a technique for decision taking method for architecture
refactoring, in which we consider the background and problems we discussed in chapter
2 and 3. In section 4.1, we explain requirements for the technique. In section 4.2, we
outline the proposed technique. In section 4.3, we explain fundamental ideas that are
necessary to describe our technique. In section 4.4, we explain the detail of the
technique.

4.1 Requirements for the Technique
Because an influence range is wide and its cost is high as for architecture refactoring,
the misjudgment for refactoring brings big damage on the project. Therefore, we need to
be careful in planning architecture refactoring. In addition, technique for architecture
refactoring should fulfill appropriate requirements. From this viewpoint, by referring
subsidiary problems mentioned in section 3.2, we set following three points as
important requirements for the decision taking technique of architecture refactoring.
We propose technique to satisfy these in this study.

 Based on observed data
The design of the software architecture is often carried out based on the intuitive

judgment by the expert. When there are not enough data becoming the grounds of
the architecture decision, such as in case of designing a new type of product line,
those intuitive judgment is often useful. However, because those judgments are not
based on explicit knowledge, sometimes it is difficult to judge the authenticity of the
judgment objectively.

In case of architecture refactoring, we can observe facts to become the motive and
the grounds of the architecture refactoring from the data of the existing project. We
utilize such data by the proposed technique and aim at providing objective technique.

 Targeting common problems that affect most products in the project

In PLD, we develop family products under the common architecture. Problems due
to the architecture cause a similar problem to the other products in the product scope.

 18

By solving the problem that was common to the project group, similar effect can be
expected in a project of afterward. Therefore, a big effect is expected for the whole
projects, by solving the common problem.

 Providing quantitative information for taking decision

Generally, cost and time that is allowed to refactoring is limited, we need to
prioritize refactoring considering the situation of the project. Here the situation of
project means the factor of allowed cost and time, variations of products of
afterwards, and the number of products planned. For example, if there are several
refactoring candidates that have similar cost and effects, we can decide the priorities
among them according to the situation of the project. In addition, we can take a
decision of leaving a refactoring plan, even if it is really cost effective, by considering
the situation of the project. For such decision taking, we need quantitative
information regarding to the problems.

4.2 Overview of the Technique
Proposed technique comprises 7 steps. Followings are summary of the steps in proposed
technique.

STEP 1 Select bad smells

Based on the experience of products development by using common infrastructure,
we detect problematic phenomena that seem to obstruct the smooth execution for
product development.

STEP 2 Find problem factors for bad smells
By analyzing bad smells that are gathered in STEP1, list up the origins that cause
those bad smells. We list up the origins as problem factor (see section 4.3.2). Then
group them into problem factors that are related to the reference architecture and
the implemented architecture.

STEP 3 Determine refactoring items
Plan refactoring items to solve the problem factors got in STEP2. In addition
estimate the effort needed for the refactoring.

STEP 4 Quantification of the magnitude of problem factor
Quantify the magnitude of problem factor identified in STEP2. Problems are
quantified by using appropriate metrics for each problem factor. In order to
compare the result of different metrics, we normalize the result according to the
five-grade system to express the degree of annoying developers. The boundaries of

 19

five-grades are predetermined from project’s experiment.

STEP 5 Portfolio analysis
Plot normalized magnitudes of problem factors on PFP plane. Then grasp the
trends of problems for reference of decision taking to deal with them.

STEP 6 Judge priority of refactoring

Judge priorities of refactoring items of refactoring under total consideration of
refactoring efforts obtained in STEP 3, the magnitudes of problem factor obtained
in STEP 4, trends of bad smells plotted in STEP 5, and current situation of project.

STEP 7 Execute refactoring

Execute refactoring according to the judgement in STEP 6.

4.3 Fundamental Ideas
We explain general ideas that are backgrounds of our approach. In section 4.3.1 we
explain bad smells in this study by comparing with bad smells that is already known in
former study. In section 4.3.2 we explain problem factors which are structural reasons
inducing bad smells. In section 4.3.3 we explain refactoring items which are measures
for those problem factors.

4.3.1 Bad Smells
In our proposed technique, we define bad effects to the cost and quality that is
continuously observed during architecture related activity in development of product
family as “bad smell”. Here the activity means the achievement of addition, change of
the function and non-functional requirement and quality properties.

In former study such as Fowler [13] and Roock [41], bad smell is based on
structural observations of the implementation, as we mentioned in section 2.6.2 .
Because they are based on structural observation at a moment of development, we need
another technique to detect bad symptoms that is specific to the development of product
family such as PLD.

These bad smells, of course, involve various issues that include architecture,
personnel, and management. In this study, however, we confine ourselves to the bad
smells that originate in architecture. In addition, we call those bad smells that originate
in architecture as “PLA smells”. We ascertained PLA smells can be categorized in S1
through S3 as follows.

 20

 Influence to cost for change of implementation (S1)
Changes on the implementation are inevitable in development. Followings are bad

smells on cost that is induced by the change.

Ex.1) Large man-hour for inspecting influence by the change or adding functions
Ex.2) Need long time to find out change point in a specific huge subsystem

 Influence to quality (S2)

Whenever we change the implementation, there are risks on quality. Followings
are bad smells related to quality of products.

Ex.1) Relatively large numbers of bug are reported in comparison with other

subsystems.
Ex.2) Similar bugs found repeatedly

 Influence to the cost for verification(S3)

In addition to development cost, cost for verification occupies not negligible in total
development cost. Test cost often depends on the structure of implementation of
software. Followings are those examples

Ex.1) Too many combination in test

Depends on the number of branch, we should prepare test case.
Ex.2) Too many number of regression test

Large set of regression test is always necessary, when we can not specify the
influence range in a small range.

4.3.2 Problem Factor
We call architectural cause of bad smells as “problem factor” in this study. Generally
bad smells originate in various causes, such as software structure, technical skills of
developer, or development processes. Among them, we pay attentions on the cause
related to software architecture. In this section, we explain the kinds of problem factor
and magnitude of problem factor.

(1) Kinds of Problem Factor
In order to find out problem factor, we need to investigate artifacts such as source codes
and architecture documents in detail. Architecture documents include description of
software structure such as role of subsystems and the relationship between subsystems.
To investigate these artifacts, hearing to the development engineer facing a problematic
phenomenon on a daily basis is effective.

 21

Problem factor can be divided into reference architecture related and implemented
architecture related. We ascertained problem factors can be categorized in Pr1 through
Pr2 for reference architecture and Pi1 through Pi3 for implanted architecture. For
perspective, we refer to code smells and architecture smells known for an existing study.

Problem factors due to the reference architecture

Problem factor due to the reference architecture are mainly related to
inappropriateness of roll assignment of subsystem. Inappropriateness can be
categorized into concentration and desperation.

 Concentration of functions (Pr1)

Followings are typical example of concentration of functions.

Ex.1) Role assignment for specific subsystem is too wide, so the code size of the

subsystem is large.
Ex.2) Dependencies from other subsystem is concentrated to specific subsystem.
Ex.3) Too many global access

 Dispersion of functions (Pr2)

Followings are typical example of dispersion of functions.

Ex.1) Inappropriate assignment of role
Ex.2) Too many dependencies between subsystems

Problem factors due to the implemented architecture
Problem factor due to the implemented architecture can be categorized into following
thee categories.

 Kinds of implementation techniques (Pi1)
This category of problem factor is caused by the selected techniques for

implementation.

Ex.1) Maintainability problem because of too many compilation switches

 Quality of the implementation (Pi2)
This category of problem factor is caused by the quality of implementation.

Ex.1) Long functions
Ex.2) High complexity
Ex.3) Considerably complicated relationship between components

 22

 Alignment to the reference architecture (Pi3)

This category of problem factor is caused by the gaps between planned and actual
architecture.

Ex.1) Different contents that compose the subsystem
Ex.2) Discrepancy in dependencies
Ex.3) Misplacement of component

The term “component” refers to an element that composes an asset such as a function,
group of functions, class, package, or subsystem. In many cases, a PLA smell is not
related simply to only one category because the problematic symptom is often
multifaceted. For example, when there are difficulties in fulfilling a certain requirement,
the problem often lies in both the architecture and the complexity of the
implementation.

When a project has reference architecture, discrepancies between the reference
architecture and the implemented architecture can often be observed. In the practice
involving several product lines [23][26], a migration approach is used in the
implementation of reference architecture. In such a case, a planned refactoring of the
implementation is important because the implemented architecture reflects the original
difference from the reference architecture.

Even if there is sufficient consistency between the implemented and the reference
architecture, the implementation is in the danger of deteriorating if its consistency is
not checked regularly [36]. Several tools that are useful in detecting deviations in the
architecture’s implementation have been reported [11][43].

On the other hand, the reference architecture is also in danger of becoming
outdated. To adapt to the new requirements of the product or to make its development
more sophisticated; it then becomes necessary to refactor the reference architecture. For
PLD, it is important to optimize refactoring by considering the reference-architecture
related and the implemented-architecture related problem factors.

(2) Magnitude of Problem Factor
For quantitative comparison of problem factors, we need to measure the magnitude of
each problem factor. Using metrics is an objective method for measuring problem
factors quantitatively. We should choose metrics to meet each problem factors. Table 1
shows an example of metrics and problem factor that is used in our project based on
experiences of product development.
 As for metrics of the reference architecture, there are two approaches to measure.
First one is direct method that measures the magnitude of reference architecture, such
as scoring on architecture document. Second one is indirect method that measure

 23

through the implementation deliverables including implemented structure and the
source code that reflected design rationale such as the folder constitution. However the
direct measurement seems to be ideal, there are pros and cons for each approach as
follows:

 Direct method
Although this method can perform architecture evaluation directly to the reference

architecture, the result is not always accurate because of inaccuracy comes from
description of architecture documents that is written in natural language and
inaccuracy of scoring method that is based on the intuition such as feeling or
impression by the human who evaluates the architecture.

 Indirect method

Although this method has intrinsic inaccuracy that is based on the discrepancies
between the reference and implemented architecture, there is no inaccuracy that lies
in direct method as abovementioned. Under the condition that the implementation is
done almost close to the reference architecture, and the characteristics obtained from
metrics of is enough remarkable, we can use the indirect method for measuring the
magnitude of the reference architecture.

Table 1 is an example of choice of metrics in case of the second approach mentioned
above. In this example, as a result, the number of dependence is used by both
evaluations of reference and implemented architecture, but we perform the
measurement at a point reflecting a factor in each structure. About concrete values at
variable expression in Table 1, we predetermine based on the experiences on the target
project in advance. By normalizing each metrics in 5-step, we can compare the
magnitude of different problem factors.

 24

Table 1 Classification for Magnitude of Problem Factors

1 2 3 4 5

Broad Responsibility of
Subsystems

Reference LOC of the sybsytem ＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

Dependencies from
everywhere

Reference
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Too many
dependencies

Reference
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Too many compilation
switches

Implemented
Dencity of Compilation

Switches
＜(R1)% ＜(R2)% ＜(R3)% ＜(R4)% (R4)%≦

Long functions Implemented
Average LOC per

functions
＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

High complexity Implemented
Avarage of Cyclomatic

Complexity
＜(C1) ＜(C2) ＜(C3) ＜(C4) (C4)≦

High connectivity Implemented
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Different components Implemented
Numbe of different

components
＜(F1) ＜(F2) ＜(F3) ＜(F4) (F4)≦

Discrepancy in
Dependency

Implemented
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Problem factor
Problem
Located

Metrics

5 Degrees of Evaluation
Small 　　（Magnintude of Problems）　　 Large

4.3.3 Refactoring Items
The term “refactoring items” refers to an individual refactoring plan to resolve the
corresponding problem factors. Because factoring items corresponds to problems of
architectural level, its granularity is larger than regular source code refactoring.
Whereas regular source code refactoring indicates refactoring actions on specific portion
of codes, refactoring items generally involves plural refactoring actions. In other words,
it is a kind of policy for refactoring to solve the problem.

Refactoring items corresponding to reference architecture
Refactoring items for reference architecture are planned from the viewpoint of
improving functional decomposition. We ascertained refactoring items corresponding to
reference architecture can be categorized in Rr1 through Rr3 as follows.

 Splitting or creating subsystem (Rr1)
Refactoring items in this category are that increase the number of subsystems.

Ex.1) Separate portions that is related to specific concern
Ex.2) Create new subsystem to prepare realizing new functions

 25

 Merging subsystems (Rr2)
Refactoring items in this category are that decrease the number of subsystems.

Ex.1) Gather similar subsystems into one subsystem
Ex.2) Extend the role of subsystem to include new functions (assume that once

assign new subsystem for new functions, then absorb it into existing
subsystem)

 Change role of subsystems (Rr3)

This is the case that the number of subsystem does not change before and after the
refactoring.

Ex.1) Change functional decomposition between subsystems

Refactoring items corresponding to implementation
Refactoring items for implementation are planned from the viewpoint of improving
functional decomposition.

Refactoring item involves actions of modification to the implemented source code,
such as “Move package A from layer X to layer Y,” “Split package B into packages P and
Q,” or “Merge module A and module B.” Practical operations in a source code are the
same as general source code refactoring, but they differ from general source code
refactoring in that these refactoring items affect the software architecture. We
ascertained refactoring items corresponding to reference architecture can be categorized
in Ri1 through Ri2 as follows.

 Refactoring involving changes of implementation technology (Ri1)
Refactoring items in this category changes a way of implementation to make it

more sophisticated.

Ex.1) Change realization technique of variation point

As realization techniques, three timing is known. These are compilation time,
binding time, and execution time. Changing techniques for realization means
change of timing. As an example, there is a method to change from compilation
switch to binding options.

Ex.2) Virtualization of procedure by applying function pointer

 Refactoring without changing implementation technology (Ri2)

Refactoring items in this category improves quantitative aspect of the
implementation.

 26

Ex.1) Split long functions into small ones
Ex.2) Shallow condition nest
Ex.3) Remove unused compilation switches
Ex.4) Move implementation between subsystems.

4.3.4 Relationship among Fundamental Ideas
Generally relationship between bad smells, problem factor and refactoring items are
many-to-many as illustrated in Figure 4. This means, there are multiple problem
factors that cause a bad smell, and we need to combine several refactoring items to deal
with these problem factor.

 Figure 4 Relationship between Fundamental Ideas

 27

4.4 Steps of Proposed Technique
In this section, we describe detailed process of each step in the proposed technique.
Figure 5 shows an overview of the steps. In Figure 5 arrows connecting each step
means process order and delivery of information. For example, in step 1 we select bad
smells from bad effects observed in the projects, then the bad smells are used as an
input for step 2, and so on.

Step 1
 Select Bad Smells

Step 2
 Find Problem Factors

Step 3
 Plan Refactoring Items

Step 5
 Portfolio Analysis

Step 7
 Execute Refactoring

Step 4
 Quantify Problem Factros

Step 6
 Judge Priorities

Figure 5 Overview of the Steps

 28

4.4.1 STEP 1: Select Bad Smells
In this step, we find out bad smells from the experience of products developments. Table
2 shows outline of STEP1.

Table 2 Outline of STEP1
Items Descriptions
Objective Sorting out bad smells from project data
Input Bad effects observed in projects of product development
Output List of “Bad smells”
Procedure 1. List up bad effects from the project data

2. Pick up bad smells from bad effects
Note Viewpoints for finding bad effects are production cost and

quality of the products.
Pick up bad effects that emerge in multiple products as bad
smells.

In order to find bad smells, first we collect bad effects on development that seem to
obstruct smooth execution for a product development. Then we repeat collections of bad
effects for several products. Viewpoint to collect those bad effects are follows:

 Production cost for development
 Quality of the products

After we collect these bad effects for several products, we select bad effects that appear
commonly in several products. We call those bad effects “bad smells” from the project in
our study. Conditions for detecting bad smells are follows:

 Should appear at least two or more products.
 They may appear in future products.

In most cases, candidate of bad smells appear in two different products. However, even
if they appear in two different products, when they are obviously limited to those two
products, they can not be bad smells. Regarding to appearing timing, we don’t care.
Target products can be developed at same time, or can be developed sequentially.

Figure 6 shows an image of finding out bad smells at the project. In Figure 6, circles
correspond to existence of problem. For example, product 1 has problems 1, 2, 3 and n,
product 2 has problems 1, 3, 4 and n, and so on. Here we can see that problem1, 3 and n

 29

are found commonly in several products, while problem 2 and problem 4 found at only
one project. We indentify those commonly found problems as “bad smells”.

 Figure 6 Image of Finding Out Bad Smells in the Project

4.4.2 STEP 2: Find Problem Factors
By analyzing bad smells that is gathered in STEP1, we find out the architecture-related
origins that cause those bad smells. Analyzing means investigation into source code and
architecture documents. Table 3 shows outline of STEP2.

Table 3 Outline of STEP2
Items Descriptions
Objective Finding out problem factors for bad smells
Input Bad smells
Output Problem factors for bad smells
Procedure 1. Seek origins of bad smells

2. Exclude origins that are not related to architecture.
3. Classify the problem factors into reference-architecture

related and implemented-architecture related.
Note Analyze by investigating into source code and architecture

documents

 30

Figure 7 shows an image of filtering out problem factors that has no relationship to the
architecture. In many cases, we can find multiple origins for a bad smell. Generally
origins contain architecture related, skill related, and process related. We select
architecture-related origins as problem factors for architecture refactoring. Architecture
related means that the cause of problem is based on the structure of software or
characteristics of the implementation. Here we exclude the problem factor that is not
related to architecture. At this point, we also exclude bad smells that does not have any
architecture related problem factor, because they can not be fixed by architecture
refactoring. Examples of these excluded origins are, such as educational problems,
communication between stake holders, and development process. Off course these are
also problems for the problems to be taken measure appropriately in the project.
However our proposed technique does not include them as its scope in this study.

After filtering out extra problem factors, we classify the remaining problem factors
into reference-architecture related and implemented-architecture related.

S(a)

S(b)

S(c)

Bad smell Origins of bad smells

problem factors
related to implemented architecture

problem factors
related to reference architecture

matters related to process
organizational, educational etc.

S(d)

Non architecture
related

Architecture related

Problem factors

Figure 7 Image of Filtering Out Problem Factors

 31

4.4.3 STEP 3: Plan Refactoring Items
In this step, we plan refactoring items to solve the problem factors got in STEP2.
Refactoring item means an individual refactoring plan to resolve the corresponding
problem factor. For each refactoring item, we estimate the effort to perform the
refactoring actually. Table 4 shows outline of this step.

Table 4 Outline of STEP3
Items Descriptions
Objective Planning refactoring items
Input Problem factors
Output Refactoring items to solve problem factors

Effort needed for each refactoring items
Procedure 1. List up conceivable refactoring items for each problem factor.

2. Calculate man-hour for each refactoring item
Note Viewpoint for planning refactoring items is to decrease

magnitude of problems.
Estimate effort for refactoring item by using unit man-hour for a
refactoring action and total number of refactoring portion.

(1) Plan refactoring items
We plan refactoring items so as to solve the problems by changing architecture. View
points for planning refactoring items are follows:

 Refactoring items to decrease the magnitude of problems
 Refactoring items to improve or preserve the quality of products

If the problem factor is enough concrete, refactoring items can be found in relatively
small range. However, if the definition of problem is broad, there may be several
candidates for refactoring items. When there are multiple candidates as refactoring
items, it is recommended to list up all of them at this moment. Depending on the
problem factors, we may reach same refactoring item for different problems problem
factors. It is no problem. After estimating man-hour, we choose the most effective one.
The criteria for choosing refactoring item among them are follows.

 Most effective in man-hour
 Common refactoring items for different problem factor

 32

(2) Estimating the effort for each refactoring items
Effort means man-our or production cost that is necessary to perform refactoring on
implementation. Implementation means source code, corresponding architecture
document that represents software structure, and subsidiary artifacts that are
necessary to compose an executable module for the target products.

Generally the total production cost can be calculated by accumulating each unit
refactoring production cost. Following equation (1) shows the calculation of production
costs of total refactoring.

documenttest
m n

modifytotal CostCostmCostCost ++= ∑∑)((1)

In equation (1), Costtotal represent the total production cost of total refactoring.
Parameter “m” represents the number of kinds of refactoring operation, and parameter.
“n” represents the number of point targeted for the operation. Kinds of refactoring
operation are based on the difference of actual operation. For example, splitting
function, move definition of variables or functions, change interface of module, removing
compilation switches, and so on. Costmodify(m) represents the average production cost for
one target point for the kind of refactoring operation on source code. Costtest represents
the cost for regression test for detecting side effects by the change. Depending on the
project, regular product test can substitute for the regression test. Then the term
Costtest is estimated as zero. Costdocument means the cost to occur indirectly that is
represented by maintaining architecture document. The term Costtest occurs in case of
reference architecture refactoring. There are costs for education, communication with
stakeholders, and subsidiaries as Costdocument, other than cost for documenting, too. It is
convenient to classify the total production cost into grades such as H/M/L for a rough
analysis.

 33

4.4.4 STEP 4: Quantify Problem Factors
In this step, we quantify and normalize the magnitudes of problem factors identified in
STEP2. Table 5 shows outline of this step.

Table 5 Outline of STEP4
Items Descriptions
Objective Quantification and normalization of magnitude of problem

factors to compare different kinds of problems.
Input Problem factors

Classification list for magnitude of problem factors
Output Magnitude for each problem factor in five-grades
Procedure Quantify magnitude of problems using appropriate metrics.

Prepare classification list for normalization of magnitude
Normalize the magnitude of the problem factor in five-grades by
consulting a classification list.

Note Prepare classification list before consulting.

(1) Quantification
We quantify magnitude of problem factors by using appropriate scoring or metrics for
each problem. Guideline of selecting scoring or metric is whether it represents the
magnitude of problem with objectivity. Table 6 shows examples of typical problem
factors that due to reference architecture and implemented architecture respectively.

Table 6 Example of Classification List

1 2 3 4 5

Broad Responsibility of
Subsystems

Reference Scoring LL LM MM HM HH

Broad Responsibility of
Subsystems

Reference LOC of the sybsytem ＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

Discrepancy in
Dependency

Implemented
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Problem factor
Problem
Located

Metrics
5 Degrees of Evaluation

Small 　　（Magnintude of Problems）　　 Large

In Table 6, two metrics are shown for a problem of “broad responsibility of

subsystems”. As we described in section 4.3.2 , problems due to reference architecture
can be measured by scoring or metrics of the implementation. Scoring method is
superior in universal use, but there is a problem on accuracy. In using scoring method,

 34

using scenario is effective to make the problems clear. Although metrics got from
implementation is numerically accurate, it contains the effect of discrepancy between
implementation and the reference architecture. When the tendency indicated by metrics
is remarkable enough and the implementation roughly agrees with the reference
architecture, we would say the effect of discrepancy is small enough for measuring the
magnitude of reference architecture. In this situation we take the method of using
metrics preferentially, otherwise we use scoring method.

As for selecting metrics, we find the target of measurement in following viewpoint.
Here target means the number of elements or the number of relations, depending on the
subject.

 Number of target for measurement
 Number of relationship between elements

For example, problem factor “discrepancy in dependency” in Table 6 is based on
dependency. Because dependency is relationship between subsystems, we look for
measurement subject at a viewpoint of “Number of relationship between elements”.
 For reverse engineering of dependency among subsystems, using the DSM
(dependency structure matrix) [43] is one of the intelligible methods. DSM is
originally invented as a tool for analyzing process of work. Nowadays DSM is also
applied to analyze software structure, especially analyzing dependencies between
components or subsystems. Several software tools are available.

(2) Normalizing magnitude of problem factor
In normalizing magnitude of problem factor, it is necessary to prepare classification list
such as Table 6 before starting normalization. If the measuring magnitude is done by
scoring in five-degree, the result can be used directly as the five-degree of evaluation
result. However, if the magnitude of problem is measured by some metrics with
numerical output, we have to decide the borders between the five-grades. In the
classification list, values at borders of five-grade are essential. Values of border are the
concrete values of L1-L4, N1-N4, etc in Table 6. There are two basic approaches to
decide those values of border in the classification list.

Relative method

This is a method to decide the borders based on the measured values. Once we focus
on a certain metrics, measure the same metrics in other portion, in order to survey
the relative position of the metrics value of the problematic portion. For example,
when we focus on “LOC in subsystem” as metrics for the problem factor of “Broad
responsibility in subsystem” in Table 6, we take LOC of other subsystems as well. By
discovering the dynamic range of the metric in the system, we decide the values of

 35

borders so that the values in the system can be sorted in five-degrees appropriately.
Pros and cons of this method are as follows:

Pros:
 The results are sorted appropriately in five-degrees.
Cons:
 The results can not be used for judgement based on absolute value.

Absolute method

This is a method to decide the borders based on the past experience of project.
Prior to evaluate each problem factor, we prepare the borders based on the past
experience of project. If the metrics value is numeric such as number of dependency,
LOC, or cyclomatic complexity, we determine the borders from a viewpoint of how the
metrics value contributes to the bad effects on the development. Bad effect means
bad symptoms on development cost and the quality of products. If there are objective
correlation between metrics values and the degree of bad effects, we can utilize them
to decide values of borders. However, for projects that do not have such correlation
data, we have to decide them in a convincing method. Following is one of the methods
to decide absolute value based on the experience of experts.

1. Evaluating the degree of problem for each subsystem

Evaluate major subsystems by scoring regarding to the same problem. For
example, evaluate the largeness of subsystems by H/M/L scoring from a point of
view of easiness of handling by experts. Evaluating can be done for similar
project in the past.

2. Measure the metrics of those subsystems
Measure the related metrics for those subsystems for comparison with scoring
result. For example, measure LOC for the largeness of subsystems.

3. Determine the borders
Determine the borders by comparing the result of metrics and scoring result.

Pros and cons of this method are as follows:

Pros:
 The results can be used for judgement based on absolute value.
Cons:
 The results may be unevenly distributed near some degree.

 36

4.4.5 STEP 5: Portfolio Analysis
In this step, we analyze characteristics of each bad smells using a portfolio chart, in
which the magnitudes of reference and implemented architecture are mapped onto
X-axis and Y-axis, respectively. Table 7 shows outline of this step.

Table 7 Outline of STEP 5
Items Descriptions
Objective Analyze characteristics of bad smells
Input List of Bad smells

Problem factors with magnitude
Output Portfolio chart
Procedure 1. Plot smells by normalized magnitude of problem factors on

PFP plane.
2. Roughly prioritize the smells to be fixed.

Note Use candlestick chart for multiple problem factor

(1) Plot Bad Smells
For analyzing bad smells, we have found that it is useful to type bad smells according to
the combination of the magnitudes of the problems of reference and implemented
architecture. In which the magnitudes of reference and implemented architecture are
mapped onto X-axis and Y-axis, respectively. We named this categorization “Problem
Factor Portfolio” (PFP) and have outlined it in Figure 8.

We plot each smells by normalized magnitude of problem factors on PFP plane,
then analyze them based on absolute and relative position on the PFP plane, in order to
grasp the characteristics of problems. Magnitudes in PFP plane are normalized values
that we quantified in STEP4. Relative positions of the plot of each smell can be a
reference for decision taking of priority of architecture refactoring. Way of plotting
varies according to the multiplicity of problem factors.

 37

 Figure 8 Problem Factor Portfolio (PFP) plane

Single problem factor for a type of problem

 If problem factor is single for a type of problem, we plot it simply on the PFP plane.
Type of problem means that the problem is based on which reference architecture or
implemented architecture. Figure 9 shows an example of plot that both reference and
implemented architecture have single problem factor. In Figure 9, a bad smell is
illustrated as black circle at the position of 4 at reference architecture and 5 at
implemented architecture in magnitude.

Magnitude of problem factor in
reference architecture

M
ag

n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

1 32 4 5

1

2

3

4

5

Figure 9 Plot with single problem factor

 38

Multiple problem factors for a type of problem

 If problem factors are multiple for a type of problem, we plot the average value on
the PFP plane, and plot maximum and minimum values as bars like candlestick
chart. Figure 10 shows an example of plot that both reference and implemented
architecture have multiple problem factors. In Figure 10, average of bad smell is
illustrated as black circle at the position of 3.5 and 4 at reference and implemented
architecture. The end of bars represents the minimum and maximum value of the
problem factors.

1 32 4 5

1

2

3

4

5

Magnitude of problem factor in
reference architecture

Figure 10 Plot with multiple problem factors

Part of the candlestick chart has following meaning

 Center spot
Center spot represents the average of problems related to the smell. We can

understand the rough tendency of problem factors by the position of center spot.

 Worst value of candlestick
Center spot represents the average of problems related to the smell. This is

used to compare relative values.

 Best value of candlestick
This is Center spot represents the average of problems related to the smell. This

is used to compare relative values.

 39

(2) Four Typical Groups
Similar to the practice of “Product Portfolio Management” that is used in marketing, in
this categorization, the bad smells can be characterized in a four-quadrant matrix. Each
type in the four-quadrant matrix represents the following different characteristics.
While taking a decision related to the refactoring items, besides referring to each
characteristic, we can sort the refactoring items according to the position on the PFP,
depending on the situation of the project.

Figure 8 Problem Factor Portfolio (PFP) plane

TYPE I－Not a problem

The reference and implemented architecture both have fewer problems as
compared to the bad smells in another category. We can judge the priority enforcing
refactoring to be low in this case.

TYPE II－Problems of reference architecture dominant

This is the case in which the reference architecture is more problematic. This
situation typically occurs when the existing reference architecture needs to be
modified to fulfill new requirements, which means that it is no longer capable of
dealing with upcoming requirements. In short, the current reference architecture
has become outdated. Because problem of implemented architecture is low,
discrepancy between implementation and reference architecture can not be so big.
This situation is caused by such as following reasons:

 External requirement such as industrial standards was revised.
 For smell of TYPE IV, problem of implementation was fixed earlier before

dealing with reference architecture.

 40

TYPE III－Problems of implemented architecture dominant:

This is the case in which the implemented architecture is more problematic. Even
when the reference architecture shows a problem of small magnitudes, it is capable
of dealing with upcoming requirements. In some cases in this group, discrepancies
are found between the implemented and the reference architecture. In the case of
such discrepancies, we recommend that the implementation be refactored early
because the problem is concentrated in the implemented architecture. This
situation is caused by such as following reasons:

 An implementation skill did not meet the concept or intention of reference
architecture.

 Implementation deteriorated over product development.
 Discrepancy between implementation and reference architecture emerged by

reactive approach of creating product-line infrastructure.

TYPE IV－Problems complicated

The implemented and the reference architecture are both problematic. In this type,
even if discrepancies between the implemented and reference architecture are
found, it is not recommended that the implementation be refactored in order to
recover its consistency with the existing reference architecture. If we refactor the
implementation so as to recover the architecture gap without dealing with
reference architecture, problems of the reference architecture remain. After all, we
need to refactor the implementation again after the revision of the reference
architecture. This brings costing twice the labor for a project clearly. So the
reference architecture should be refactored, and then the refactoring of the
implementation should be carried out to recover the consistency between the
implemented and the reference architecture. This situation is caused by such as
following reasons:

 Implementation deteriorated under the reference architecture is inappropriate.

 41

(3) Transition in Four Types
By the progress of refactoring, positions of bad smell changes on problem factor portfolio
plane. Generally the magnitude of problem gets smaller by the progress of refactoring.
However, depending on the smells, there are transitions that include deterioration in
others of simple improvement. We explain the transitions that we think of, by grouping
them into improvement, deterioration, and mixed pattern.

1. Group of Improvement
This is a group that improvement is observed in transition. There are typically five
transition pattern in this group. Figure 11 shows typical improvement transition
pattern. We describe the transition patterns in 1-(a) through 1-(e).

M
ag

n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

Figure 11 Typical improvement transition patterns

 42

Pattern 1-(a)
This is a pattern of transition from TYPE III to TYPE I. Figure 12 shows the transition
on the PFP plane. This transition is seen mostly the implementation is improved when
the reference architecture is not so problematic.

Figure 12 Transition from TYPE III to TYPE I

This pattern can be typically observed in following causes:

 Discrepancies between reference and implemented architecture are dissolved
 Implementation technology is improved

 43

Pattern 1-(b)
This is a pattern of transition from TYPE IV to TYPE II. Figure 13 shows the transition
on the PFP plane. This transition is seen mostly the implementation is improved when
the problem of reference architecture are left.

Figure 13 Transition from TYPE IV to TYPE II

This pattern can be typically observed in following causes:

 Problems on implementation are fixed without fixing the problems on reference

architecture.
 Implementation technology is improved

 44

Pattern 1-(c)
This is a pattern of transition from TYPE IV to TYPE III. Figure 14 shows the
transition on the PFP plane. This transition is seen mostly the reference architecture is
improved under the problems on the implemented architecture is left.

M

ag
n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

Figure 14 Transition from TYPE IV to TYPE III

This pattern can be typically observed in following causes:

 The reference architecture is improved prior to change the implementation.
 On the way of overall architecture refactoring from TYPE IV to TYPE I.

 45

Pattern 1-(d)
This is a pattern of transition from TYPE II to TYPE I. Figure 15 shows the transition
on the PFP plane. This transition is seen when the reference architecture is improved
under the condition that the implementation is not so problematic.

M

ag
n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

Figure 15 Transition from TYPE II to TYPE I

This pattern can be typically observed in following causes:

 The reference architecture is improved and the related refactoring on the

implementation followed immediately.

 46

Pattern 1-(e)
This is a pattern of transition from TYPE IV to TYPE I. Figure 16 shows the transition
on the PFP plane. This transition is seen when the reference and implemented
architecture is fixed at a time.

Magnitude of problem factor in
reference architecture

1 32 4 5

TYPE I

TYPE IV

M
ag

n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
em

e
nt

e
d

ar
c
hi

te
c
tu

re

1

2

3

4

5

Figure 16 Transition from TYPE IV to TYPE I

This pattern can is typically observed in following causes:

 The reference architecture is improved and the related refactoring on the
implementation followed immediately.

 47

2. Group of Deteriorating
This is a group that deterioration is observed in transition. There are typically five
transition pattern in this group. Figure 17 shows typical improvement transition
pattern. We describe the transition patterns in 2-(a) through 2-(e).

M
ag

n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

Figure 17 Typical deteriorating transition patterns

These deteriorations are seen under following situations:

 Along with the progress of project
 On the way of overall refactoring activities

 48

Pattern 2-(a),2-(b)
This is a pattern of transition from TYPE I to TYPE III, and TYPE II to TYPE IV.
Figure 18 shows the transitions on the PFP plane. These transitions are seen when the
implementation is deteriorated regardless of the magnitude of problem factor of the
reference architecture.

Magnitude of problem factor in
reference architecture

M
ag

n
it
u
de

 o
f
p
ro

b
le

m
 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

ch
it
e
c
tu

re

1 32 4 5

1

2

3

4

5

TYPE I

TYPE III

1 32 4 5

1

2

3

4

5

TYPE II

TYPE IV

Magnitude of problem factor in
reference architecture

M
ag

n
it
u
de

 o
f

pr
o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
ec

tu
re

Figure 18 Transition from TYPE I to TYPE III, TYPE II to TYPE IV

Such deteriorations on implementation typically occur on following causes:

 Changes on the implementation are made without understanding the design

intention of reference architecture
 Problems on implementation technology

 49

Pattern 2-(c),2-(d)
This is a pattern of transition from TYPE III to TYPE IV, and TYPE I to TYPE II.
Figure 19 shows the transitions on the PFP plane.

M
ag

n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

M
ag

n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
em

e
nt

e
d

ar
c
h
it
e
ct

u
re

Figure 19 Transition from TYPE I to TYPE II, TYPE III to TYPE IV

Such increase of magnitude of problem factor on the reference architecture typically
occurs on following causes:

 These transitions are seen when the problem of the reference architecture emerged

because of the change of outside requirements. Scenario based evaluation is good at
eliciting these kind of problems, rather than using metrics.

 50

Pattern 2-(e)
This is a pattern of transition from TYPE I to TYPE IV.. Figure 20 shows the transitions
on the PFP plane.

1 32 4 5

1

2

3

4

5

TYPE I

TYPE IV

Magnitude of problem factor in
reference architecture

Figure 20 Transition from TYPE I to TYPE IV

Such increase of magnitude of problem factor on both the reference and implemented
architecture typically occurs on following causes:

 Combination of other transition.

 51

3. Group of Mixture
This is a group that deterioration and improvement occur at same time. Figure 17
shows typical improvement transition pattern. We describe the transition patterns in
3-(a) an 3-(b).

M
ag

n
it
u
de

 o
f

pr
o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

Figure 21 Typical deteriorating transition patterns

 52

Pattern 3-(a)
This is a pattern of transition from TYPE II to TYPE III. Figure 22 shows the
transitions on the PFP plane.

1 32 4 5

1

2

3

4

5

TYPE II

TYPE III

M
ag

n
it
u
de

 o
f

pr
o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

Magnitude of problem factor in
reference architecture

Figure 22 Transition from TYPE II to TYPE III

Such transition typically occurs on following causes:

 Architecture gap appeared because the change of reference architecture at TYPE II.
 On the way of refactoring reference architecture at TYPE II.

 53

Pattern 3-(b)
This is a pattern of transition from TYPE III to TYPE II. Figure 23 shows the
transitions on the PFP plane.

M
ag

n
it
u
de

 o
f

pr
o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

Figure 23 Transition from TYPE III to TYPE II

Such transition typically occurs on following causes:

 Both transition of 1-(a) and 2-(c) occurred.

 54

4.4.6 STEP 6: Judge Priority of Refactoring
Considering effort for refactoring calculated in STEP3, Magnitude of each refactoring
items in STEP4, Characteristics of bad smells in STEP5, we judge the priority of
refactoring items to be performed. Table 8 shows outline of this step.

Table 8 Outline of STEP 6
Items Descriptions
Objective Prioritize Refactoring Items
Input Result of problem factor portfolio analysis

Effort for refactoring
Magnitude of problems
Characteristics of problems
Situation of the project

Output Prioritized refactoring items
Procedure 1. Roughly categorize smells by portfolio analysis

2. Select problems to deal with
3. Prioritize refactoring items

Note Prioritize the refactoring items that have good ratio of the
magnitude of problem per refactoring effort.

(1) Categorizing by portfolio
Basic ideas for dealing with those smells are as followings;

TYPE I－Not a problem

This is a group that problems of both reference and implemented architecture are
low. Because the refactoring needs are considered to be low, basically we left these
types of bad smells.

TYPE II－Problems of reference architecture dominant

This is a group that problems of reference architecture are relatively higher than
problems of implemented architecture. Way of dealing with the problems differs
depending on the history of the problem. Histories are as followings:

 Change of outside requirement.
Requirement such as industrial standards was revised. If the changed
requirement last in future, we deal with the refactoring of reference

 55

architecture.

 On the way of refactoring from TYPE IV
It is the case of on the way of refactoring from TYPE IV aiming at TYPE I,
problem of implementation was fixed earlier before dealing with reference
architecture. We continue refactoring by continuing refactoring of reference
architecture.

TYPE III－Problems of implemented architecture dominant

This is a group that problems of implemented architecture are relatively higher
than problems of reference architecture.
Detailed way of dealing with the problems differs depending on the history of the
problem, but basically we deal with the problems by planning refactoring on the
implementation. Histories are as followings:

 Problem of implementation technique
It is the case that the implementation technique did not meet the concept or
intention of reference architecture. We consider improving implementation
technique to meet the reference architecture.

 Architecture gap over product development
It is the case that architecture gap between the reference and implemented
architecture over products development. We recover the implementation so as
to meet the reference architecture.

 Architecture gap by reactive approach

It is the case that discrepancy between implementation and reference
architecture emerged by reactive approach of creating product-line
infrastructure. We continue refactoring on the implementation to meet the
reference architecture.

TYPE IV－Problems complicated

This is a group that problems of both implemented and reference architecture are
high. For this group, it is recommended to deal with the problem of reference
architecture first. Reason of this is as follows;

If we refactor the implementation first for this type, transition from TYPE IV
to TYPE II occurs. In TYPE II, problems of the reference architecture still remain.
By improving the reference architecture in TYPE II, new architecture gap between
the reference and implemented architecture arise. This causes the transition from
TYPE II to TYPE III. For TYPE III, we have to fix the problems of implementation

 56

again to bridge the gaps of architectures. After all, by fixing the problems of
implementation first we need three steps to reach TYPE I from TYPE IV, via TYPE
II and TYPE III.

Contrary to above, if we choose to fix problems of the reference architecture, we
need only two step to reach TYPE I from TYPE IV via TYPE II.

(2) Select problem factors to deal with
We take bad smells that belongs to the TYPE II, TYPE III, and TYPE IV. For bad smells
that belongs to TYPE II, we select problem factors related to the implemented
architecture. For bad smells that belong to TYPE III and IV, we select problem factors
related to the reference architecture.

(3) Prioritize refactoring items
For problem factor selected above, we calculate the ratio of the magnitude of problem
per refactoring effort. Then we sort the refactoring items by the ratio calculated.

Basic idea for determining priority is as follows;

 Prioritize the refactoring items that have good ratio of the magnitude of problem
per refactoring effort.

 Prioritize refactoring items that solves larger problems, if the ratios are the same.
 Select refactoring items within the production costs allowed for refactoring in the

project.
 Leave refactoring if big changes may happen in the near future.

 57

4.4.7 STEP 7: Execute Refactoring
Execute refactoring according to the judgement in STEP 6. Table 9 shows outline of this
step.

Table 9 Outline of STEP 7
Items Descriptions
Objective Execute Refactoring for future development efficiency

improvement and quality improvement
Input Prioritized refactoring items

Left over of refactoring items from previous project
Output Refactored reference architecture

Refactored implementation
Procedure Change implementation and related document according to the

prioritized refactoring items
Note Select refactoring items to fulfill man-hour restriction in the

project.
For leftovers, pass them to next project.

 Refactoring of implementation

Most of the effort of this step is refactoring of implementation. Figure 24 shows a
diagram of the steps involved in refactoring in the course of product development. As
can be seen in the diagram, products are released at several intervals and the
opportunity to refactor arises between product releases. Architecture assessment
involves activities ranging from detecting smells to taking decisions regarding the
refactoring items.

The best time for architecture assessment to take place is immediately following a
product release and before the start of development of the next product because we
then benefit from the access to smells from both the experience of previous projects
and the requirements of the upcoming product.

In this model, the period of refactoring is shown to be in a relatively early stage of
the product development period. This is why refactoring that affects the architecture
has a strong impact on development as compared to refactoring in a closed domain.

 58

Product
Release

Time

Product
Development

Product
Development

Product
Development

Architecture
Assessment

Architecture
Assessment

Product
Release

Refactoring

Refactoring

Figure 24 Refactoring Opportunity in Product Development Process

 Refactoring of reference architecture

Refactoring of architecture in this step means maintenance of architecture
documents. It is essential to keep architecture document up to date, in order to not
cause confusion on the project. At the same time of maintaining the documents,
appropriate announcement of change is also indispensable for the project.

 59

Chapter 5

5 A Sample Case

In this chapter, we outline the system on which we examined our technique
retroactively. Reasons of selecting this project for examining our technique are as
followings:

 This is a project that actually architecture refactoring is performed.
 Decision takings are done by experts, and the effect of architecture refactoring are

confirmed.
 Project data including source code are available for analyzing.

In section 5.1 we describe the projects’ overview. In section 5.2 we show the former
reference architecture that has been used in development of products. In section 5.3, we
describe architecture refactoring that is performed in actual project. Our technique for
architecture refactoring is not applied yet at that time.

5.1 Domain Characteristics
We explain the characteristics of target project. The target project is development of
control software of digital still camera products for consumer. Development scale is
about 500,000 lines of codes (LOC) excluding empty lines and comments. Averagely 5
products in 2 series are released in a year. Those two series are concurrently developed,
total product release intervals are 2 to 6 month.

Figure 25 shows an image of products load map in a year. Each circle corresponds to
product. H1 and H2 belong to the high-end lines, and R1 through R3 belong to the
regular lines. H2 and R2 are successors of H1 and R2, R3 is derived model from R1.
Both lines belong under the same kind of products, so roughly over 80% of functions are
common in both lines. We used common core asset for developing both lines because of
abovementioned commonality.

 60

Figure 25 Image of Products Load Map

As for variability, there are two groups. We show extraction of feature model of target
product in Figure 26. First one is variability related to hardware key parts such as
image sensor or lens unit. This variability is relatively predictable in some extent,
because progress of hardware technology is informed beforehand by their suppliers.

Second one is variability related to functions that is mainly actualized by software.
Major functions are common among products regardless of high-end line or regular line.
There are some exclusive functions for high-end and regular line respectively. These
functions grow under development successor models, and some of them are spread into
other line. These decisions related to adding functions are often made after starting
development, so it is important to have capability to accept such variability that arise
later.

Lens Unit

Camera

NetworkImage Sensor Shooting Playback

MovieStill Retouch ResizeUSBType 3

Type1

CMOS

Type 2

Type 1

High-Spped
Continuous

CCD

Type 2

Type 1

Type 2
TrimmingSkew

Correction

Figure 26 Feature Model of Target Product

 61

In developing multiple similar products, problematic phenomena for efficient
development are found out that seems to be caused by the existing software architecture.
In order to solve those problems, redesigning from the scratch can be a possible choice.
However, as for target project, we thought it is difficult to choose redesigning strategy,
considering the intervals of product release and the total scale of the project. Therefore
we concluded to improve architecture step-by-step instead of changing at once.

5.2 Outline of Reference Architecture
In Figure 27 shows the reference architecture before refactoring. Some adjacent layers
are merged to simplify explanation. Totally it is almost layered structure [7], but it does
not force strict layering. The reason of allowing non-strict layering is to avoid increase
of redundant interpreter in middle layer that merely relay information between upper
layer and lover layer. Although we allowed jumped dependency from upper layer to
lower layer without relaying at middle layer, we decided to avoid reversed dependency
such as from lower layer to middle or upper layer.

In Figure 27, upper layer ‘ui’ contains highly abstracted procedure such as user
interfaces, middle layer ’apl’ contains application logic that realize main functions of the
products, lower layer ’dev’ comprises procedure that treats hardware, and common part
‘com’ is commonly accessed from all other layers. Although there are several layers in
practical system, we omitted those layers that do not related to architecture
refactorings mentioned in this paper.

In the reference architecture illustrated in Figure 27, we determined basic access
direction as “from upper layer to lower layer”. However there exists not negligible
number of reversed access on the implementation, and these reversed accesses compose
cyclic dependency between layers. Consequently, this was one of the reasons that lower
implementation quality especially maintainability.

ui

apl

dev

com

Figure 27 Outline of Reference Architecture

 62

5.3 Architecture Refactoring in the Project
In this section, we describe the architecture refactorings that are practically done in the
project. In the project we observed following problematic phenomena at that time
through the development of product family.

 Phenomenon 1
Large number of modification effort is needed when adding new function in ‘apl’

layer. Because the layer takes charge of characterizing each new product on
functionalities, modifications always occurs in every product. In those modifications,
we found that we needed to understand a lot of related part in the system.

 Phenomenon 2

Necessary change for adding functions is not closed in specific layer. In other words,
there are related portion in other layer that need change together in many cases.

 Phenomenon 3

Relatively a lot of bugs are detected in a certain layer in testing process of
development on every product, compare to other layer.

To solve those problematic phenomena, we decided to change architecture from left side
to the right side of Figure 28. On this decision of architecture refactoring, we targeted to
reduce cyclic dependency between layers, which is regularly measured on the project.
In practical project, we did not always aware about the place where the problem is
(Table 2), which was found via the proposed technique in chapter 4. Although we aware
about the causes of the problematic phenomena qualitatively, we did not have ideas of
measuring magnitude of problem factors. We refactored architecture based on this
awareness.
 In the project, we took measures as follows:

 Measures for Phenomenon 1
We moved portion A from layer ‘apl’ to ‘dev’ in order to resolve reversed access from

layer ‘dev’ to ‘apl’. Portion A has been located in ‘apl’ layer, despite it includes direct
hardware control.

 Measures for Phenomenon 2

We introduced layer ‘sv’ in order to reduce inter-layer dependencies, to push aside
parts that related to whole system.

 63

 Measures for Phenomenon 3
We moved portion B from layer ‘ui’ to layer ‘com’ that contains data commonly

referred from other layers.

ui

apl

dev

comA

ui

apl

dev

com

A

B

sv

Figure 28 Architecture Refactoring in the Project

5.4 Effects by the Architecture Refactoring
By performing architecture refactoring, efficiency of development raised compare to the
development under the old architecture. Although we cannot try direct comparison of
efficiency such as executing development of the same product on the different
architecture, we can say the typical good effect is an increase of the number of products
of simultaneous development after the architecture refactoring. This supports the
rightness of the judgement by the experts for the refactoring.

 64

Chapter 6

6 Evaluation and Discussion

In this chapter, we describe the evaluation result of proposed technique, using the result
of practical architecture refactoring that we introduced in chapter 5. In section 6.1, we
explain retroactive application of technique that is used in this evaluation. In section
6.2, we show the result of retroactive application of our proposed technique along with
the steps, using actual project data. In section 6.3, summarize the result of application.
In section 6.4, we discuss the usefulness of proposed technique by comparing the
suggestion that derived by applying technique to the project data and the decision that
is made by the experts in the practical project.

6.1 Approach of Applying Method
We depict evaluation approach that is used by this research in Figure 29. In the
practical project, by investigating problematic phenomena that are observed in the
products project, reference architecture and the implementation are refactored. As a
result, effects of refactoring are found such as increase of number of products by
simultaneous development as we explained in section 5.4 .

In this research, by using same problematic phenomena that are observed in
practical project, we tried quantitative analysis of problem factors based on proposed
technique. Furthermore, we try to visualize quality attributes of architecture
improvement before and after the architecture refactoring.

 65

Figure 29 Approach of the Evaluation

6.2 Evaluation Using Project Data
In this Section, we describe the result of retroactive application of our proposed
technique along with the steps, using actual project data.

6.2.1 STEP 1: Select Bad Smells
In this step, we find out bad smells from the experience of development of products.
Table 2 shows outline of STEP1.

Table 2 Outline of STEP1
Items Descriptions
Objective Sorting out bad smells from project data
Input Bad effects observed in projects of product development
Output List of “Bad smells”
Procedure 1. List up bad effects from the project data

2. Pick up bad smells from bad effects
Note Viewpoints for finding bad effects are production cost and

quality of the products.
Pick up bad effects that emerge in multiple products as bad
smells.

According to the outline of STEP1 shown in Table2, we worked along the step. We used
bad effects observed in the project as input, and identified bad smells as output from the
viewpoint of emerging in multiple products, as followings:

 66

Input: Bad effects observed in projects of product development
 1. Need to check a lot of related part when modifying in layer ‘apl’ (S1)
 2. Need to modify two or more layers for one modification reason (S2)
 3. Need big effort on modification on layer ‘ui’, and easy to cause bugs (S3)
 4. Need time to adapt new similar hardware unit (S1)

Output: List of “Bad smells”
 Bad smells #1: Need to check a lot of related part when modifying in layer ‘apl’ (S1)
 Bad smells #2: Need to modify two or more layers for one modification reason (S2)
 Bad smells #3: Need big effort on modification on layer ‘ui’, and easy to cause bugs

(S3)

6.2.2 STEP 2: Find Problem Factors
By analyzing bad smells that is gathered in STEP1, we find out the architecture-related
origins that cause those bad smells. Analyzing means investigation into source code and
architecture documents. Table 3 shows outline of STEP2.

Table 3 Outline of STEP2
Items Descriptions
Objective Finding out problem factors for bad smells
Input Bad smells
Output Problem factors for bad smells
Procedure 1. Seek origins of bad smells

2. Exclude origins that are not related to architecture.
3. Classify the problem factors into reference-architecture

related and implemented-architecture related.
Note Analyze by investigating into source code and architecture

documents

According to the outline of STEP2 shown in Table 3, we worked along the step. We used
bad smells that is output of STEP1 as input, and found out problem factors as output, as
followings:

Input: List of “Bad smells”
 Bad smells #1: Need to check a lot of related part when modifying in layer ‘apl’ (S1)
 Bad smells #2: Need to modify two or more layers for one modification reason (S2)
 Bad smells #3: Need big effort on modification on layer ‘ui’, and easy to cause bugs

(S3)

 67

Output: Problem factors
 Problem factors for bad smell #1

1. Number of reversed dependency from lower layer (dev) is high, hard to
estimate affection scope by modification (Pi3)

2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1)
 Problem factor for bad smell #2

3. Large number of inter-layer dependency because portion that have global
dependency is high (Pr2)

 Problem factor for bad smell #3
4. Low maintainability because of cyclomatic complexity value is high (Pi2)
5. Low maintainability because of too many compilation switches (Pi1)
6. Number of reversed dependency from lower layer 'apl' is high, because setting

data is located in layer 'ui' (Pr3)
7. LOC of layer 'ui' increases because code that achieve functions is concentrated

in layer 'ui'.（Pr1）

6.2.3 STEP 3: Plan Refactoring Items
In this step, we plan refactoring items to solve the problem factors got in STEP2.
Refactoring item means an individual refactoring plan to resolve the corresponding
problem factor. For each refactoring item, we estimate the effort to perform the
refactoring actually. Table 4 shows outline of this step.

Table 4 Outline of STEP3
Items Descriptions
Objective Planning refactoring items
Input Problem factors
Output Refactoring items to solve problem factors

Effort needed for each refactoring items
Procedure 1. List up conceivable refactoring items for each problem factor.

2. Estimate man-hour for each refactoring item
Note Viewpoint for planning refactoring items is to decrease

magnitude of problems.
Estimate effort for refactoring item by using unit man-hour for a
refactoring action and total number of refactoring portion.

According to the outline of STEP3 shown in Table 4, we worked along the step. We used
problem factors as input, and planned refactoring items and the estimated man-hour in
3 degrees as outputs, as followings:

 68

Input: Problem factors
1. Number of reversed dependency from lower layer (dev) is high, hard to estimate

affection scope by modification (Pi3)
2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1)
3. Large number of inter-layer dependency because portion that have global

dependency is high (Pr2)
4. Low maintainability because of cyclomatic complexity value is high (Pi2)
5. Low maintainability because of too many compilation switches (Pi1)
6. Number of reversed dependency from lower layer 'apl' is high, because setting data

is located in layer 'ui' (Pr3)
7. LOC of layer 'ui' increases because code that achieve functions is concentrated in

layer 'ui'（Pr1）

Output1: Refactoring items to solve problem factors
 Refactoring Item for problem factor 1

1. Correct reversed dependency at dev→apl (Ri1),
 Refactoring Item for problem factor 2

2. Move hardware-related portion into layer ‘dev’ (Rr2)
 Refactoring Item for problem factor 3

3. Split the part that have global dependency (Rr3)
 Refactoring Item for problem factor 4

4. Lower cyclomatic complexity by splitting long and complex functions (Ri1)
 Refactoring Item for problem factor 5

5. Remove extra compilation switches and related source codes (Ri2)
 Refactoring Item for problem factor 6

6. Move setting information into commonly accessed layer 'com' (Rr2)
 Refactoring Item for problem factor 7

Not investigated

Output2: Effort needed for each refactoring items

1. Correct reversed dependency at dev→apl (Ri1): L
2. Move hardware-related portion into layer ‘dev’ (Rr2): H
3. Split the part that have global dependency (Rr3): M
4. Lower cyclomatic complexity by splitting long and complex functions (Ri1): M
5. Remove extra compilation switches and related source codes (Ri2): L
6. Move setting information into commonly accessed layer 'com' (Rr2): M

 69

6.2.4 STEP 4: Quantify Problem Factors
In this step, we quantify and normalize the magnitudes of problem factors identified in
STEP2. Table 5 shows outline of this step.

Table 5 Outline of STEP4
Items Descriptions
Objective Quantification and normalization of magnitude of problem

factors to compare different kinds of problems.
Input Problem factors

Classification list for magnitude of problem factors
Output Magnitude for each problem factor in five-grades
Procedure Quantify magnitude of problems using appropriate metrics.

Prepare classification list for normalization of magnitude
Normalize the magnitude of the problem factor in five-grades by
consulting a classification list.

Note Prepare classification list before consulting.

According to the outline of STEP4 shown in Table 5, we worked along the step. We used
problem factors and classification list for magnitude of problem factors as inputs, and
classified the result of metrics that represents magnitudes of each problem factor as
output as followings:

Input1: Problem factors

1. Number of reversed dependency from lower layer (dev) is high, hard to estimate
affection scope by modification (Pi3)

2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1)
3. Large number of inter-layer dependency because portion that have global

dependency is high (Pr2)
 4. Low maintainability because of cyclomatic complexity value is high (Pi2)

5. Low maintainability because of too many compilation switches (Pi1)
6. Number of reversed dependency from lower layer 'apl' is high, because setting

data is located in layer 'ui' (Pr3)
7. LOC of layer 'ui' increases because code that achieve functions is concentrated in

layer 'ui'（Pr1）

 70

Input2: Classification list for magnitude of problem factors

1 2 3 4 5

Broad Responsibility
of Subsystems

Reference LOC of the sybsytem ＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

Dependencies from
everywhere

Reference
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Too many
dependencies

Reference
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Too many
compilation switches

Implemente
d

Dencity of
Compilation Switches

＜(R1)% ＜(R2)% ＜(R3)% ＜(R4)% (R4)%≦

Long functions
Implemente

d
Average LOC per

functions
＜(L1) ＜(L2) ＜(L3) ＜(L4) (L4)≦

High complexity
Implemente

d

Avarage of
Cyclomatic
Complexity

＜(C1) ＜(C2) ＜(C3) ＜(C4) (C4)≦

High connectivity
Implemente

d
Number of

dependencies
＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Different
components

Implemente
d

Numbe of different
components

＜(F1) ＜(F2) ＜(F3) ＜(F4) (F4)≦

Discrepancy in
Dependency

Implemente
d

Number of
dependencies

＜(N1) ＜(N2) ＜(N3) ＜(N4) (N4)≦

Problem factor
Problem
Located

Metrics

5 Degrees of Evaluation
Small 　　（Magnintude of Problems）　　 Large

Output: Magnitude for each problem factor in five-grades
 Magnitude of problem factor 1: 5
 Magnitude of problem factor 2: 5
 Magnitude of problem factor 3: 4
 Magnitude of problem factor 4: 5
 Magnitude of problem factor 5: 5
 Magnitude of problem factor 6: 4
 Magnitude of problem factor 7: 4

 71

6.2.5 STEP 5: Portfolio Analysis
In this step, we analyze characteristics of each bad smells using a portfolio chart, in
which the magnitudes of reference and implemented architecture are mapped onto
X-axis and Y-axis, respectively. Table 7 shows outline of this step.

Table 7 Outline of STEP 5
Items Descriptions
Objective Analyze characteristics of bad smells
Input List of bad smells

Problem factors with magnitude
Output Portfolio chart
Procedure 1. Plot smells by normalized magnitude of problem factors on

PFP plane.
2. Prioritize the smells to be fixed.

Note Use candlestick chart for multiple problem factor

According to the outline of STEP5 shown in Table 7, we worked along the step. We used
bad smells and problem factors with magnitude as input, and depicted portfolio chart as
output, as followings:

Input1: List of bad smells
 Bad smells #1: Need to check a lot of related part when modifying in layer ‘apl’ (S1)
 Bad smells #2: Need to modify two or more layers for one modification reason (S2)
 Bad smells #3: Need big effort on modification on layer ‘ui’, and easy to cause bugs

(S3)

Input2: Problem factors with magnitude
 Problem factors for bad smell #1:

1. Number of reversed dependency from lower layer (dev) is high, hard to estimate
affection scope by modification (Pi3): Magnitude=5

2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1):
Magnitude=5

 Problem factors for bad smell #2:
3. Large number of inter-layer dependency because portion that have global

dependency is high (Pr2): Magnitude=4
 Problem factors for bad smell #3:
 4. Low maintainability because of cyclomatic complexity value is high (Pi2):

Magnitude=5

 72

5. Low maintainability because of too many compilation switches (Pi1):
Magnitude=5

6. Number of reversed dependency from lower layer 'apl' is high, because setting
data is located in layer 'ui' (Pr3): Magnitude=4

7. LOC of layer 'ui' increases because code that achieve functions is concentrated in
layer 'ui' (Pr1): Magnitude=4

Output: Portfolio chart

Procedure 1: Plot smells by normalized magnitude of problem factors on PFP plane.

Magnitude of problem factor in
reference architecture

M
ag

n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

1 32 4 5

1

2

3

4

5
#3 #1

#2

Figure 30 Portfolio chart as an output of STEP5

・For smells that have only problems on reference architecture, we assumed the

magnitude of reference architecture to 1 as a most low value.
・For smells that have two or more problem factor in the same type of architecture,

we used average of them.

Procedure 2: Prioritize the smells to be fixed.

 We identified the order of magnitude of problem are #1,#3,and #2.

 73

6.2.6 STEP 6: Judge Priority of Refactoring
Considering effort for refactoring calculated in STEP3, Magnitude of each refactoring
items in STEP4, Characteristics of bad smells in STEP5, we judge the priority of
refactoring items to be performed. Table 8 shows outline of this step.

Table 8 Outline of STEP 6
Items Descriptions
Objective Prioritize Refactoring Items
Input Result of problem factor portfolio analysis

Effort for refactoring
Magnitude of problems
Situation of the project

Output Prioritized refactoring items
Procedure 1. Roughly categorize smells by portfolio analysis

2. Select problems to deal with
3. Prioritize refactoring items

Note Prioritize the refactoring items that have good ratio of the
magnitude of problem per refactoring effort.

According to the outline of STEP6 shown in Table 8, we worked along the step. We
prioritized refactoring items by following steps using output of abovementioned steps as
inputs of this step.

Procedure 1: Roughly categorize smells by portfolio analysis

We took bad smells that belong to TYPE II, TYPE III, and TYPE IV. In this case, all
bad smells fit to the condition.

 Bad smells #1: Need to check a lot of related part when modifying in layer ‘apl’ (S1)
 Bad smells #2: Need to modify two or more layers for one modification reason (S2)
 Bad smells #3: Need big effort on modification on layer ‘ui’, and easy to cause bugs

(S3)

Procedure 2: Selected problem factors to deal with:
 Problem factors for bad smell #1:

2. LOC of layer 'apl' is high because hardware related portion are mixed in (Pr1):
Magnitude=5

 Problem factors for bad smell #2:
3. Large number of inter-layer dependency because portion that have global

 74

dependency is high (Pr2): Magnitude=4
 Problem factors for bad smell #3:

6. Number of reversed dependency from lower layer 'apl' is high, because setting
data is located in layer 'ui' (Pr3): Magnitude=4

7. LOC of layer 'ui' increases because code that achieve functions is concentrated in
layer 'ui' (Pr1): Magnitude=4

Procedure 3: Prioritize refactoring items

2. Move hardware-related portion into layer ‘dev’ (Rr2):
Effort=H, Magnitude=5, Ratio of Magnitude/Effort =1.67

 3. Split the part that have global dependency (Rr3):
Effort=M, Magnitude=4, Ratio of Magnitude/Effort=2.00

6. Move setting information into commonly accessed layer 'com' (Rr2):
Effort=M, Magnitude=4, Ratio of Magnitude/Effort= 2.00

For calculation of ration of magnitude/effort, we applied value 3/2/1 for effort of
H/M/L.

Output: Prioritized refactoring items
By considering the ration of magnitude of problems and effort for refactoring, we got
prioritized refactoring items as followings:
 First priority: (Ratio = 2.00)

 3. Split the part that have global dependency (Rr3)
 Second priority: (Ratio =2.00)

6. Move setting information into commonly accessed layer 'com' (Rr2):
 Third priority: (Ratio = 1.67)

2. Move hardware-related portion into layer ‘dev’ (Rr2)

 75

6.2.7 STEP 7: Execute Refactoring
Execute refactoring according to the result of judge in STEP 6. Table 9 shows outline of
this step.

Table 9 Outline of STEP 7
Items Descriptions
Objective Execute Refactoring for future development efficiency

improvement and quality improvement
Input Prioritized refactoring items

Left over of refactoring items from previous project
Output Refactored reference architecture

Refactored implementation
Procedure Change implementation and related document according to the

prioritized refactoring items
Note Select refactoring items to fulfill man-hour restriction in the

project.
For leftovers, pass them to next project.

We did not examined execution of refactoring in this study, because main objective of
this study is to confirm the decision taking result by the proposed technique.

 76

6.3 Summary of Applying the Technique
We show the result of analysis applying STEP1 through STEP4 of our technique in
Table 10. Bad smells in Table 10 are the same bad smells that referred in architecture
migration at the project. Information written in Table 10 is obtained by analyzing
source code of those days in the project. All bad smells and some problem factors are
known in the project, others are got by latter analysis. Magnitudes of problem factor in
Table 10 are normalized values. In normalizing, we applied guideline written in Table 1.

We also show the result of problem factor portfolio analysis in Figure 31. Black and
white circles represent the characteristics of the bad smells before and after
architecture refactoring, respectively.

 77

Table 10 Bad Smells, Problem Factors, and Refactorin Items, on the Project

B
e
fo

re
R

e
fa

c
to

ri
n
g

A
ft

e
r

R
e
fa

c
to

ri
n
g

Im
pl

e
m

e
n
te

d

1
.
n
u
m

b
e
r

o
f

re
ve

rs
e
d

d
e
pe

n
de

n
c
y

fr
o
m

lo
w

e
r

la
ye

r
(d

e
v)

 i
s

h
ig

h
,
h
ar

d
 t

o
e
st

im
at

e
 a

ff
e
c
ti
o
n
 s

c
o
pe

 b
y

m
o
d
if
ic

at
io

n
(P

i3
)

R
e
ve

rs
e
d
 d

e
p
e
n
d
e
n
c
y

at
de

v→
ap

l
5

2
1
.
c
o
rr

e
c
t

re
ve

rs
e
d

d
e
pe

n
d
e
n
c
y

at
 d

e
v→

ap
l

(R
i1

)

R
e
fe

re
n
c
e

2
.
L
O

C
 o

f
la

ye
r

'a
pl

'
is

 h
ig

h
 b

e
c
au

se
h
ar

dw
ar

e
 r

e
la

te
d

p
o
rt

io
n
 a

re
 m

ix
e
d

in
.(
P

r1
)

T
o
ta

l
L
O

C
 o

f
la

ye
r

'a
p
l'

5
4

2
.
m

o
ve

 h
ar

dw
ar

e
-
re

la
te

d
p
o
rt

io
n
 i
n
to

 l
ay

e
r

'd
e
v'

(R
r2

)

#
2

N
e
e
d

to
 m

o
di

fy
 t

w
o
 o

r
m

o
re

la
ye

rs
 f
o
r

o
n
e
 m

o
d
if
ic

at
io

n
re

as
o
n
 (

S
2
)

R
e
fe

re
n
c
e

3
.
L
ar

ge
 n

u
m

b
e
r

o
f

in
te

r-
la

ye
r

d
e
pe

n
d
e
n
c
y

be
c
au

se
 p

o
rt

io
n
 t

h
at

 h
av

e
gl

o
b
al

 d
e
pe

n
de

n
c
y

is
 h

ig
h
(P

r2
)

in
te

r-
la

ye
r

d
e
pe

n
de

n
c
y

p
e
r

L
O

C
4

3
3
.
S
pl

it
 t

h
e
 p

ar
t

th
at

 h
av

e
gl

o
ba

l
d
e
pe

n
de

n
c
y(

R
r3

)

4
.
L
o
w

 m
ai

n
ta

in
ab

ili
ty

 b
e
c
au

se
 o

f
c
yc

lo
m

at
ic

 c
o
m

p
le

xi
ty

 v
al

u
e
 i
s

h
ig

h
(P

i2
)

A
va

ra
ge

 o
f

c
yc

lo
m

at
ic

c
o
m

p
le

xi
ty

5
4

4
.
L
o
w

e
r

c
yc

lo
m

at
ic

c
o
m

p
le

xi
ty

 b
y

sp
lit

ti
n
g

lo
n
g

an
d

c
o
m

p
le

xe
d
 f

u
n
c
ti
o
n
s(

R
i1

)

5
.
L
o
w

 m
ai

n
ta

in
ab

ili
ty

 b
e
c
au

se
 o

f
to

o
m

an
y

c
o
m

p
ila

ti
o
n
 s

w
it
c
h
e
s(

P
i1

)
D

e
n
si

ty
 o

f
c
o
m

p
ila

ti
o
n

sw
it
c
h
e
s

5
5

5
.
R

e
m

o
ve

 e
xt

ra
 c

o
m

p
ila

ti
o
n

sw
it
c
h
ie

s
an

d
re

la
te

d
so

u
rc

e
c
o
d
e
s(

R
i2

)

6
.
n
u
m

ve
r

o
f

re
ve

rs
e
d
 d

e
pe

n
de

n
c
y

fr
o
m

lo
w

e
r

la
ye

r
'a

pl
'
is

 h
it
h
,
be

c
au

se
 s

e
tt

in
g

d
at

a
is

 l
o
c
at

e
d
 i
n
 l
ay

e
r

'u
i'

(P
r3

)

R
e
ve

rs
e
d
 d

e
p
e
n
d
e
n
c
y

at
ap

l→
u
i

4
2

6
.
m

o
ve

 s
e
tt

in
g

in
fo

rm
at

io
n

in
to

 c
o
m

m
o
n
ly

 a
c
c
e
ss

e
d

la
ye

r
'c

o
m

'
((

R
i2

)

7
.
L
O

C
 o

f
la

ye
r

'u
i'

in
c
re

as
e
s

be
c
au

se
c
o
de

 t
h
at

 a
c
h
ie

ve
 f

u
n
c
ti
o
n
s

is
c
o
n
c
e
n
tr

at
e
d

in
 l
ay

e
r

'u
i'.

（
P

r1
）

T
o
ta

l
L
O

C
 o

f
la

ye
r

'u
i'

4
4

N
o
t

in
ve

st
ig

at
e
d
 a

t
th

is
 t

im
e

P
ro

b
le

m
 F

ac
to

rs
M

ag
n
it
u
de

 o
f

P
ro

b
le

m
 F

ac
to

r
R

e
fa

c
to

ri
n
g

It
e
m

s

#
3

N
e
e
d

bi
g

e
ff

o
rt

 o
n
 m

o
d
if
ic

at
io

n
o
n
 l
ay

e
r

'u
i',

 e
as

y
to

 c
au

se
 b

u
gs

.
(S

3
)

Im
pl

e
m

e
n
te

d

R
e
fe

re
n
c
e

M
ag

n
it
u
de

 o
f

P
ro

b
le

m

#
1

N
e
e
d

to
 c

h
e
c
k

a
lo

t
o
f

re
la

te
d

pa
rt

 w
h
e
n
 m

o
d
if
yi

n
g

in
 l
ay

e
r

'a
pl

'
(S

1
)

P
ro

b
le

m
L
o
c
at

e
d

B
ad

 S
m

e
lls

 78

Magnitude of problem factor in
reference architecture

M
ag

n
it
u
de

 o
f
pr

o
bl

e
m

 f
ac

to
r

in
 i
m

pl
e
m

e
n
te

d
ar

c
h
it
e
c
tu

re

1 32 4 5

1

2

3

4

5
#3 #1

#2

Figure 31 Summary of Portfolio chart

In order to judge the necessity of refactoring, let’s see the black circles in the portfolio
plot on in Figure 31.

In Figure 31 bad smells #1 and #3 belong to TYPE IV (problems complicated) in
Figure 8. It means that we had better to begin refactoring with reference architecture
rather than the implemented architecture.

Bad smells #2 belongs to TYPE II (reference dominant) in Figure 8. It means that
the necessity of refactoring on reference architecture is indicated, while there are not
big problem found in the implemented architecture.

We show the result of individual confirmation result in detail for those bad smells
in next section.

 79

6.4 Confirmation of Past Instances
We confirmed the past instances that have done in the actual project, by applying the
proposed technique. In this section, we show the result of portfolio analysis for each bad
smells, that we had intuitive understandings for each bad effect.

Bad smell #1
Figure 32 shows portfolio chart of bad smell #1. Black and white circles represent the
characteristics of the bad smells before and after architecture refactoring, respectively.
Bad smell #1 belongs to TYPE IV (problems) in Figure 8. where problem of
implementation and reference architecture is both high. That is, we had better to begin
with refactoring on reference architecture first, because problem factors on both axes
are high.

Magnitude of problem factor in
reference architecture

1 32 4 5

1

2

3

4

5

Figure 32 Portfolio Chart of Bad Smell #1

Figure 33 shows the transition of major inter-layer dependency along with produces
development. The target system is written in standard-C, dependency count is total of
following relations in source code.

 Function calls
 Variable reference
 Macro reference

 80

Prod.1 through Prod.4 corresponds to the products before architecture refactoring,
Prod.5 correspond to the product after architecture refactoring. By observing bad smells
from Prod.1 to Prod.4, we determined reference architecture refactoring, and performed
implemented architecture refactoring between Prod.4 and Prod.5. According to Table 10,
metrics of problem factor correspond to the number of reversed dependency between
dev-apl. So we discuss further below.

Prod.1 Prod.2 Prod.3 Prod.4 Prod.5

R
e
ve

rs
e
d

D
e
pe

n
de

n
c
e

be
tw

e
e
n
 L

ay
e
rs

dev->apl

apl->ui

dev->ui

Figure 33 Transition of Reversed Dependency Count

In the project, we aware the problem of reversed dependency, we tried to correct
whenever it seems to be necessary. Big decrease of reversed dependency between Prod.1
and Prod.2 is the result of such activity. However, improvements are not found between
Prod.2 and Prod.4. This means, almost of easily-correctable reversed dependencies are
corrected at Prod.2. In Prod.5, where the architecture refactoring is done, those
remaining reversed dependencies are almost corrected. This matches the time of
reference architecture refactoring. In other words, to correct those remaining reversed
dependencies in the implementation, architecture refactoring of reference architecture
was necessary.

Next, we verify the effect of reference architecture refactoring, on the metrics. In
Figure 34 show the transition of LOC(Line Of Codes) in major layers. LOC means the
number of source code that excludes comments and empty lines. X-axis means time
corresponds to development of products, same as Figure 33. The problem factor on
reference architecture related to the bad smell #1 is the LOC of layer ‘apl’. We can find
LOC of each layer decreased at Pord.5 in Figure 34.

 81

Prod.1 Prod.2 Prod.3 Prod.4 Prod.5

L
O

C

apl

dev

com

ui

Figure 34 Transition of LOC in Each Layer

In refactoring at Prod.5, we moved hardware-related portion depicted as ‘A’ in
Figure 28. As a result of refactoring, we expected improvement of reversed dependency
count from layer ‘dev’ to layer ‘apl’, as well as the decrease of LOC of layer ‘apl’. In fact,
those reversed dependency is almost disappeared in Prod.5, as shown in Figure 33.

That is, for measure to bad smell #1, because the effect of implemented architecture
refactoring between Prod.1 and Prod.2 was limited, we need to wait for the reference
architecture refactoring at Prod.5. This agrees with the indication of ‘refactor reference
architecture first’ in TYPE IV (problems) in Chapter 4

 82

Bad smell #2
Figure 35 shows portfolio chart of bad smell #2. Black and white circles represent the
characteristics of the bad smells before and after architecture refactoring, respectively.
Bad smell #2 belongs to TYPE II (outdated) in Figure 8, where it is well implemented in
accordance with the reference architecture, but there seems to be necessary to refactor
reference architecture. We used metrics of dependency ratio per unit LOC between
layers for measuring magnitude of reference architecture.

Magnitude of problem factor in
reference architecture

1 32 4 5

1

2

3

4

5

Figure 35 Portfolio Char of Bad Smell #2

Bad smell #2 belongs to TYPE (outdated).in Figure 8, where it is well implemented in
accordance with the reference architecture, but there seems to be necessary to refactor
reference architecture. We used metrics of dependency ratio per unit LOC between
layers for measuring magnitude of reference architecture. Figure 36 shows the
transition of dependency ratio per unit LOC.

Prod.1 Prod.2 Prod.3 Prod.4 Prod.5

D
e
p
e
n
d
e
n
c
ie

s
b
e
tw

e
e
 l
ay

e
r

p
e
r
L
O

C

Figure 36 Transition of Inter-Layer Dependency Count per LOC

 83

The number of inter-layer dependencies increased in Prod.3 and Prod.4 because of
increase of functions in Prod.3 and Prod.4. However, in Prod.5 where we refactored
reference architecture, we found that little improvement compare to Prod.1, despite the
number of function did not decreased from Prod.3 and Prod.4.

Through our analysis, refactoring items 3 in Table 10 is derived so as to separate
layer ‘sv’ that have global dependency. The refactoring item 3 is a means to the problem
that is caused by scattering of part that have global dependency. It agrees with the
decision at real project that aimed to raise independency of layers.

Bad smell #3
Figure 37 shows portfolio chart of bad smell #3. Black and white circles represent the
characteristics of the bad smells before and after architecture refactoring, respectively.
Bad smell #3 belongs to TYPE IV (problems) in Figure 8, as well as bad smell #1.

Magnitude of problem factor in
reference architecture

1 32 4 5

1

2

3

4

5

Figure 37 Portfolio Char of Bad Smell #3

We identified problem factors 6 and 7 in Table 10, for problem related to the reference
architecture. As for problem factor 6, because almost of all dependency toward layer ‘ui’
are setting data of the system, it is expected to be corrected by moving setting data from
layer ‘ui’ to layer ‘com’ . The portion of setting data is depicted as ‘B’ in Figure 28. This
agrees with the result that is done in project.

We chose metrics of reversed dependency from layer ‘apl’ to layer ’ui’ for problem
factor 6. As shown in Figure 33, reversed dependency from layer ‘apl’ to layer ’ui’ almost
disappeared in Prod.5.

 84

As for problem factor 7, we did not investigate refactoring items at this time. This is
because we thought it is inevitable to some extent as long as the layer ‘ui’ take in charge
of functional achievement of the system.
 As for problem factor 4 and 5, because those problem factors did not have not
necessarily related to the layer structure, it is corrected without waiting for refactoring
of reference architecture. We used average complexity to measure problem factor 4.
Figure 38 shows the transition of average complexity. Although the average complexity
of ‘ui’ layer is higher than all other layer, the value decreased along with the product
development.

Prod.1 Prod.2 Prod.3 Prod.4 Prod.5

A
v
e
ra

ge
 C

o
m

p
le

xi
ty

apl

dev

com

ui

Figure 38 Average Complexity

 85

For problem factor 5, we used metrics of density of compilation switches. Figure 39
shows the transition of density of compilation switches. Compilation switch is one of
most easiest in coding and intuitive way for implementing variability. Because of this,
there is trend of increasing along with development of products. However the increase of
compilation switches introduces bad influence for maintainability of source code.
Compilation switch basically controls conditional compilation. So it is similar to if
statement, increase of compilation switch is kind of equivalent of increasing cyclomatic
complexity. Figure 39 indicate the density of compilation switch of ui layer is high and
continuously increasing. In the project, extra compilation switches are removed at all
time. As a result, density of apl layer gradually decreased, but density of ui layer
increased through development from Prod.1 to Prod.5. This means that layers that
always have changes are difficult on decreasing compilation switches against the
increase of functions of target product.

Prod.1 Prod.2 Prod.3 Prod.4 Prod.5

D
e
n
si

ty

apl

dev

com

ui

Figure 39 Densities of Compilation Switches

From those result, we can conclude that the indication of TYPE IV “refactor reference
architecture first” is not necessarily true, if the problem factor is not strongly related to
relationship to other layers.

 86

Chapter 7

7 Related Works

In this chapter, we show difference between this study and related works from the
viewpoint of architecture evaluation, migration, and evolution in PLD.

7.1 Architecture Evaluation
Regarding to architecture evaluation, various method have been proposed so far, such
as ATAM [20], SAAM [21], PuLSE [3], etc. These techniques are effective for evaluation
and comparison of architecture. However they do not give direct answers for
architecture refactoring that is proceeded along with the development of products.

7.2 Architecture Migration
Facts related to refactoring in various software projects are surveyed in [35], in which
the refactoring of the architecture is not explicitly distinguished from the refactoring of
the source code. P. Bengtsson et al. [4] introduces a method of architecture
reengineering that utilizes a specific scenario. Rosso [42] reports on the experience of
high-impact refactoring and says that an analysis of architecture violations and
“architecture smells” was used to identify refactoring opportunities. They also suggest
the possibility of an iterative refactoring process, but this was not mentioned with
respect to a method for prioritizing and identifying each refactoring opportunity. They
mention the importance of the continuous evolution of software architecture for a family
of products. They focus on the assessment of architecture and reports on the basis of
their experience using three different assessment methods: scenario-based,
performance-based, and experience-based assessments.

7.3 Architecture Evolution in PLD
Figure 40 shows process of PuLSE-DSSA that is proposed by Fraunhofer IESE [24], and
the general idea of cyclic improvement is based on QIP (Quality Improvement
Paradigm) [2] shown in Figure 41. Although, general idea of iterative architecture
improvement is shown in those, they need tailoring for adapting to each project, because
the description is still abstractive for practical use. Our proposed technique provides a

 87

decision taking method for architecture refactoring in practical software development
scene.

Figure 40 Pulse-DSSA Process

Figure 41 Quality Improvement Paradigm

 88

Chapter 8

8 Conclusion

In this thesis, we proposed technique for decision taking method for architecture
refactoring in PLD, and evaluated the method by using actual project data retroactively.
Our proposed technique comprises an idea of separating architecture into reference and
implemented architecture, a method for comparing magnitude between different kind of
problems, and problem factor portfolio as analyzing tools that is useful for decision
taking of refactoring.

By verifying our method by using project data, we confirmed that our technique
provides similar result to experts about judgment on architecture refactoring. Moreover,
we also confirmed the portfolio reflects the trend of problems that occurred in the
project.

In a practical scene, it is important to concern the effort that is necessary for
architecture refactoring. Our future works includes the refinement of the method so as
to consider the balance of effort and effect for the architecture refactoring.

 89

Bibliography

[1] Atkinson, C., Bayer, J., Bunse, et al.: Component-based Product Line Engineering,

Addison-Wesley (2002)
[2] Basili, V. R. and Green, S. Software Process Evolution at the SEL. IEEE Software
11(4):58–66, 1994.
[3] Bayer, J., Flege, O., Knauber, et al.: Pulse: A Methodology to Develop Software

Product Lines, Proceedings of the Fifth ACM SIGSOFT Symposium on Software
Reusability (SSR ’99), pp.122-131 (1999)

[4] Bengtsson, P. and Bosch, J.: Scenario-Based Software Architecture Reengineering.
International Conference on Software Reuse, 1998, 308-317

[5] Boeckle, G., Clements P., McGregor, et al.: Calculating ROI for Software Product
Lines, IEEE Software Vol.21, No.3 (2004)

[6] Bourquin, F.: High-Impact Refactoring based on Architecture Violations. 11th
European Conference on Software Maintenance and Reengineering, pp.149-158
(2007)

[7] Buschmann, F., Meunier R., Rohnert. H., et al.: Pattern-Oriented Software
Architecture: A System of Patterns, John Wiley & Sons (1996)

[8] Clements, P.: Being Proactive Pays Off, IEEE Software July/August 2002, pp.28-30
(2002)

[9] Clements, P. and Northrop, L.M.: Software Product Lines: Practices and Patterns,
Addison-Wesley (2001).

[10] Deelstra, S., Sinnema, M. And Bosch, J.: Product derivation in software product
families : a case study, Journal of Systems and Software Vol.74 Issue 2, pp.173-194
(2005)

[11] Duszynski. S., Knodel, J. and Lindvall, M.: SAVE: Software Architecture
Visualization and Evaluation. European Conference on Software Maintenance and
Reengineering, 2009, 323-324

[12] Fenton, N. E. and Pfleeger, S. L.: Software Metrics: A Rigorous and Practical
Approach, PWS Publishing Company (1996)

[13] Fowler, M.: Refactoring: Improving the Design of Existing Code, Addison-Wesley
(1999)

[14] Garcia, J. et al.: Identifying Architectural Bad Smells. European Conference on
Software Maintenance and Reengineering, 2009, 255-258
[15] Gamma, E.,Helm, R.,Johnson, R., and Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley (1995)
[16] Gomaa, H.: Designing Software Product Lines with UML, Addison-Wesley (2005)
[17] http://www.imagix.com/

 90

[18] Jaktman, C. B., Leaney, J., Liu, M., “Structural Analysis of the Software
Architecture – A Maintenance Assessment Case Study”, in Proceedings of the First
Working IFIP Conference on Software Architecture (WICSA1), 1999.

[19] Jilles van Gurp, Bosch, J., Brinkkemper, S. “Design Erosion in Evolving Software
Products”, position paper, International workshop on the Evolution of Large-scale
Industrial Software Applications, ICSM 2003.

[20] Kazman, R., Klein, M., Barbacci, M., et al.: The Architecture Tradeoff Analysis
Method, Software Engineering Institute, Technical Report CMU/SEI-98-TR-008
(1998)

[21] Kazman, R., Abowd, G., Bass, L., and Webb, M.: SAAM: A Method for Analyzing
the Properties of Software Architectures. Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 1994, pp.81-90 (1994)

[22] Kerievsky, J.: Refactoring to Patterns, Addison-Wesley (2004)
[23] Kolb, R., John, I., Muthig D., et al.: Experiences with Product Line Development of

Embedded Systems at Testo AG., Proc. 10th International Software Product Line
Conference, pp.172-181 (2006)

[24] Kolb, R., Muthig, D., et al.: A case study in refactoring a legacy component for
reuse in a product line, Proc. of the 21st IEEE International Conference on Software
Maintenance, 2005. ICSM'05. pp.369-378 (2005)

[25] Krueger, C.: Easing the Transition to Software Mass Customization, Proceedings
of the 4th International Workshop on Software Product Family Engineering,
pp.282-293, Springer (2001)

[26] Knodel, J., Muthig, D. et al.: Architecture Compliance Checking - Experiences
from Successful Technology Transfer to Industry. European Conference on Software
Maintenance and Reengineering, 2008, 43-52

[27] http://www.lattix.com
[28] Linden, F.V.D.: Software Product Families in Europe: The Esaps & Café Projects,

IEEE Software, Vol.19, No.4 (2002)
[29] Maki, T., Kishi, T.: Problem Factor Portfolio Analysis for Product Line Architecture

Refactoring, 17th Asia-Pacific Software Engineering Conference (APSEC 2010):
Industry Papers (2010)

[30] Maki, T., Kishi, T.: Problem Factor Portfolio Analysis for Product Line Architecture
Refactoring, Proceeding of 14th Software Product Line Conference (SPLC 2010) the
second volume pp.205-208.

[31] Maki, T., Kishi, T.: A Decision Making Method for Product-Line Architecture
Refactoring (submitted to IPSJ Journal) (2013)

[32] Maki, T.: Architecture Migration Using DSM in a Large-Scale Software Project,
Proceeding of 14th International DSM Conference (DSMC 2012)

[33] Maki, T.: Architecture Migration in Large-Scale Embedded Software Project,
MODULARITY: aosd 13, Special Sessions, SPL Symposium, (AOSD 2013)

 91

[34] Maki, T. and Suzuki, M.: Experiment of Adapting Feature Model for Variability
Management in Embedded Systems - Extracting Features from Compilation
Switches, SIGSE 2012-SE-175(22) pp.1-8, March, 2012. (In Japanese)

[35] Murphy-Hill, E., Parnin, C., and Black, A. P.: How We Refactor, and How We Know
It. In ICSE ’09 Proceedings of the 31th International Conference on Software
Engineering, 2009, 287-297

[36] Muthig, D.: Bridging the Software Architecture Gap. IEEE Computer, June 2008,
98-101

[37] Parnas, D. L. “Software Aging”, in Proceedings of ICSE 1994 pp.280-287, 1994.
[38] Perry, D.E., Wolf, A. L. “Foundations for the Study of Software Architecture”, in

ACM SIGSOFT Software Engineering Notes, vol 17 no 4, 1992.
[39] Phol, K., Boeckle, G.. and Linden, F.V.D.: Software Product Line Engineering:

Foundations, Principles And Techniques, Springer-Verlag New York Inc.(2005)
[40] Pollack, M.: Architecture Refactoring: Improving the Design of Existing

Application Architectures, Presentation slides of Microsoft Tech.ed North America
(2009)

[41] Roock, S. and Lippert, M.: Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully, John Wiley & Sons (2006)

[42] Rosso, C. D.: Continuous Evolution through Software Architecture Evaluation: A
Case Study. J. Softw. Maint. Evol.: Res. Pract., 2006, 18, 351-383

[43] Sangal, N: Lightweight Dependency Models for Product Lines. 10th International
Software Product Line Conference, pp.228 (2006)

[44] Tischer, C, Schmid, K., et al.: Developing Long-Term Stable Product Line
Architectures, Proc. 16th International Software Product Line Conference,
pp.86-95 (2012)

 92

Publications

Refereed:

[1] Maki, T., Kishi, T.: Problem Factor Portfolio Analysis for Product Line Architecture

Refactoring, 17th Asia-Pacific Software Engineering Conference (APSEC 2010):
Industry Papers (2010)

[2] Maki, T., Kishi, T.: Problem Factor Portfolio Analysis for Product Line Architecture
Refactoring, Proceeding of 14th Software Product Line Conference (SPLC 2010) the
second volume pp.205-208.

[3] Maki, T., Kishi, T.: A Decision taking Method for Product-Line Architecture
Refactoring, IPSJ Journal (conditional acceptance) (2013)

[4] Maki, T.: Architecture Migration Using DSM in a Large-Scale Software Project,
Proceeding of 14th International DSM Conference (DSMC 2012)

Non-Refereed:

[5] Maki, T.: Architecture Migration in Large-Scale Embedded Software Project,

MODULARITY: aosd 13, Special Sessions, SPL Symposium, (AOSD 2013)
[6] Maki, T. and Suzuki, M.: Experiment of Adapting Feature Model for Variability

Management in Embedded Systems - Extracting Features from Compilation
Switches, SIGSE 2012-SE-175(22) pp.1-8, March, 2012. (In Japanese)

 93

Appendix A

 A Refactoring

In this chapter, we describe general idea of architecture refactoring. Prior to explain
architecture refactoring, we mention source code refactoring in section A.1. In section
A.2, we describe extension of refactoring from source code to architecture. In section A.3,
we mention scale of architecture refactoring.

A.1 Source Code Refactoring
Refactoring is well-known technique for changing internal structure of the program
without changing its functionality, from the viewpoint of maintainability and portability.
Originally this was a technique for maintaining source code.

Fowler covers major techniques of refactoring in [13]. According to Fowler,
candidates for refactoring can be detected from several phenomena that are observed on
source code, for example “duplicated code”, “long method”, etc. These are called “bad
smells in code” in [13], and 22 kinds of bad smells are introduced there. Basically these
bad smells are based on structural observation of source code. Benefit for utilizing these
structural characteristics is, even someone who is not so familiar to the system can
point out the possibility of problems. However, not all these smelled portions are
necessarily contains problems. So necessity of refactoring should be judged individually
by considering project’s situation.
 Regarding source code refactoring in action, Fowler [13] lists refactoring catalog,
where 72 kinds of refactoring operation are introduced, for example “extract method”,
“move method”, “remove parameter”, and so on. This refactoring catalogue provides
guidelines for local rearrangement of source code. By performing these modifications on
source code, implementation quality such as maintainability is expected to improve in
many cases. Because these refactoring operations are very primitive and elementary,
some of these refactoring can be commonly used in architecture refactoring that is
mentioned in section A.2.
 As upper concept to elemental refactoring, Kerievsky proposes refactoring
catalogues in [22], from the viewpoint of design pattern [15]. Compare to Fowler’s low
level refactoring catalogue, it gives us middle level refactoring goals according to design
pattern. Similar to Fowler’s approach, Kerievsky also utilizes “code smells” to find

 94

refactoring candidates. They mention 12 kinds of code smells in [22]. Some of the smells
are common to Fowler’s smells, such as “Duplicated Code”, “Long Method”, “Lazy Class”,
and “Large Class”.

A.2 Extension of Refactoring
The general idea of source code refactoring can be extended to software architecture. We
call the similar operation to the architecture “architecture refactoring”. Architecture
refactoring is same as architecture evolution that is done in order to improve quality
attributes such as maintainability or portability, with keeping major function of the
products that is expected to be developed on the architecture.

Because architecture evolution for adapting change of business and engineering
environment can include functional enhancement, it may have different side from
source code refactoring that does not change functionality. However, we use the term
“architecture refactoring” for such architecture evolution by following reasons:

 There is continuity of products before and after the architecture refactoring
 We don’t consider essential change on major functionality
 Basically for improvement of quality attributes for major functionality

A.3 Scale of Refactoring
Corresponding to design granularity, scale of refactoring can be categorized into source
code level and architecture level. Figure 42 shows correspondence between design
granularity and refactoring scope. Refactoring scope of source code refactoring is closed
within class and package. On the other hand, scope of architecture refactoring covers up
to layers. Because the scope is large and it affects is widespread, architecture
refactoring should be conducted under appropriate decision.

Figure 42 Relationship between Refactoring Scope and Design Granularity

 95

Appendix B

 B Smells and Refactoring Catalogs

B.1 Definition of Smells
Followings are lists of bad smells that are proposed in previous research. We utilized
them as a reference of problem factors on software structure, because they are based on
observation of the structure of the implementation.

B.1.1 Smells by Fowler
 Duplicated Code
 Long Method
 Large Class
 Long Parameter List
 Divergent Change
 Shotgun Surgery
 Feature Envy
 Data Clumps
 Primitive Obsession
 Switch Statements
 Parallel Inheritance Hierarchies
 Lazy Class
 Speculative generality
 Temporary Field
 Message Chains
 Middle Man
 Inappropriate Intimacy
 Alternative Classes with Different Interfaces
 Incomplete Library Class
 Data Class
 Refused Bequest
 Comments

 96

B.1.2 Code Smells by Kerievsky
 Duplicated Code
 Long Method
 Conditional Complexity
 Primitive Obsession
 Indecent Exposure
 Solution Sprawl
 Alternative Classes with Different Interfaces
 Lazy Class
 Large Class
 Switch Statements
 Combinatorial Explosion
 Oddball Solution

B.2 Refactoring Catalogs
Followings are refactoring catalogs that are proposed in previous research. Compared
with a catalog of Fowler, catalog of Stal includes refactorings more in architecture level
that corresponds to refactoring items in our study.

B.2.1 Refactoring Catalog by Stal
 Rename Entities
 Remove Duplicates
 Introduce Abstraction Hierarchies
 Remove Unnecessary Abstractions
 Substitute Mediation with Adaptation
 Break Dependency Cycles
 Inject Dependencies
 Insert Transparency Layer
 Reduce Dependencies with Facades
 Merge Subsystems
 Split Subsystems
 Enforce Strict Layering
 Move Entities
 Add Strategies
 Enforce Symmetry
 Extract Interface
 Enforce Contract

 97

 Provide Extension Interfaces
 Substitute Inheritance with Delegation
 Provide Interoperability Layers
 Introduce Aspects
 Integrate DSLs
 Add Uniform Support to Runtime Aspects
 Add Configuration Subsystem
 Introduce the Open/Close Principle
 Optimize with Caching
 Replace Singleton
 Separate Synchronous and Asynchronous Processing
 Replace Remote Methods with Messages
 Add Object Manager
 Change Unidirectional Association to Bidirectional

B.2.2 Refactoring Catalog by Fowler
 Extract Method
 Inline Method
 Inline Temp
 Replace Temp with Query
 Introduce Explaining Variable
 Split Temporary Variable
 Remove Assignments to Parameters
 Replace Method with Method Object
 Substitute Algorithm
 Move Method
 Move Field
 Extract Class
 Inline Class
 Hide Delegate
 Remove Middle Man
 Introduce Foreign Method
 Introduce Local Extension
 Self Encapsulate Field
 Replace Data Value with Object
 Change Value to Reference
 Change Reference to Value
 Replace Array with Object
 Duplicate Observed Data

 98

 Change Unidirectional Association to Bidirectional
 Change Bidirectional Association to Unidirectional
 Replace Magic Number with Symbolic Constant
 Encapsulate Field
 Encapsulate Collection
 Replace Magic Number with Symbolic Constant
 Encapsulate Field
 Encapsulate Collection
 Replace Record with Data Class
 Replace Type Code with Class
 Replace Type Code with Subclasses
 Replace Type Code with State/Strategy
 Replace Subclass with Fields
 Decompose Conditional
 Consolidate Conditional Expression
 Consolidate Duplicate Conditional Fragments
 Remove Control Flag
 Replace Nested Conditional with Guard Clauses
 Replace Conditional with Polymorphism
 Introduce Null Object
 Introduce Assertion
 Rename Method
 Add Parameter
 Remove Parameter
 Separate Query from Modifier
 Parameterize Method
 Replace Parameter with Explicit Methods
 Preserve Whole Object
 Replace Parameter with Method
 Introduce Parameter Object
 Remove Setting Method
 Hide Method
 Replace Constructor with Factory Method
 Encapsulate Downcast
 Replace Error Code with Exception
 Replace Exception with Test
 Pull Up Field
 Pull Up Method
 Pull Up Constructor Body
 Push Down Method

 99

 Push Down Field
 Extract Subclass
 Extract Superclass
 Extract Interface
 Collapse Hierarchy
 Form Template Method
 Replace Inheritance with Delegation
 Replace Delegation with Inheritance
 Tease Apart Inheritance
 Convert Procedural Design to Objects
 Separate Domain from Presentation
 Extract Hierarchy

