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Abstract

A quadrotor offers a challenging control problem due to its inherently unstable nature.
An effective control methodology is therefore needed for such a unique airborne vehicle.
A robot with this capability could be useful for many applications including search and
rescue, exploration in hazardous environments, surveillance, etc. However, there are many
challenges that engineers must face before developing such a robot, including the strict
limitations in sensing technologies, power consumption, platform size and embedded pro-
cessing. A key direction of this research aims at designing a stable system for controlling
teleoperated quadrotor that is equipped with limited range of sensors. It is very difficult to
achieve autonomous aerial navigation in GPS denied environment toward a goal position
avoiding unpredictable collision. In order to safely maneuver within these environments,
it would be beneficial for such a robot to be able to hover. This alone introduces many
difficult problems including stability control, altitude control, platform drift, collision
avoidance, and platform design, all being important for a successful operation. The sys-
tem must also be able to sense its environment, prevent collisions and maneuver through
the environment safely. First part of this project we have developed semi-autonomous
aerial vehicle which is capable to control its altitude in GPS denied environment and it is
a future platform for developing fully autonomous agile aerial vehicle. Quadrotor UAVs
appear in miniature form in contrast to typical aerial vehicles, whereby the possibility of
aerial vehicle swarming becomes a reality. We can use this terrific technology in different
application and different purpose. Therefore, in the second part of this project we have
discussed couple of path planning algorithms in cluttered environment where reduction
of computational expense has given greater attention; one of them is rescue mission after
nuclear disaster. However, in this particular problem we want to localize all of radioactive
materials after nuclear disaster. The algorithm of informative path planning for mobile
UAVs is addressed to reduce the uncertainty in rapid localization of radiation contami-
nated quantities that is a prime interest of research in the future world. However, without
a priori knowledge on the whereabouts of the source of radiation substances leakages, it is
very difficult to select the region of interest and appropriate measurement locations which
are deemed to contain the most valuable information. Although sequential surrogate
modeling provides a global picture of the radiation exposure of an area, particularly for
fast emergency response, all the regions are not as informative as to explore. Therefore,
to minimize the number of UAVs and the operating time required to explore the whole
area, we propose a single UAV path planning algorithm for building an intensity contour
map with the budget based greedy algorithm. We have demonstrated the efficiency of
the proposed algorithm to create a surrogate model of intensity contour map with the
V-REP robot simulator and analyzed the contour map by numerical simulations using
MATLAB.
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Chapter 1

Introduction

This project work focuses on the development of teleoperated and semi-autonomous aerial
vehicles where Vertical Take-Off and Landing (VTOL) is demonstrated. The proposed
structure is a four propeller helicopter called quadrotor. In these last years, a growing
interest has been shown in robotics. In fact, several industries (automotive, medical,
manufacturing, space, . . . ), require robots to replace men in dangerous, boring or
onerous situations. A wide area of this research is dedicated to aerial platform. Besides
industrial application, this robot has terrific opportunities to contribute in following fields

• First response: Looks for intruder, gas leaks etc.

• Transportation: Recently amazon has introduced shipment of products and de-
livery to consumer by UAV

• Construction: It is capable to carry construction materials to build a large struc-
ture.

• Film shooting: Nowadays this kind of UAV is popular for filming due to its stable
dynamics.

• Search and rescue: We can send it to reactive building to map the radiation level.

Several structures and configurations have been developed to allow 3D movements. For
example, there are blimps, fixed-wing planes, single rotor helicopters, bird-like prototypes,
quadrotors, . . . Each of them has advantages and drawbacks. The Vertical Take-Off and
Landing requirement of this project exclude some of the previous configuration. However,
the platforms which show this characteristic have unique ability for vertical, stationary and
low speed flight. The quadrotor architecture has been chosen for this research for its low
dimension, good maneuverability, simple mechanics and payload capability. Quadrotor
is highly agile but fragility comes as a cost. As another main drawback, the high energy
consumption can be mentioned. However, the trade-off results very positive. In this paper,
teleoperated means UAV is connected to remote computer via wireless device as well as
it includes on board processor to communicate with motors and other devices. Basically,
this kind of teleoperated UAV has been developed with high speed communication to
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base node (computer). There are several advantages to have this kind of system. One
of the major benefits is that computationally expensive algorithm can be implemented
to high performance computer end without disturbing the basic hardware setup of UAV.
However, the disadvantage comes in that the situation when base node does not response
to the remote system (UAV). To overcome this problem we have built our UAV with on-
board processor and sensor so that it can cope with that by hovering until battery goes to
dead. Energetically, a closed-loop teleoperator is a two-port system with the master and
slave ports being coupled with the human operators and slave environments, respectively.
Therefore, the foremost and primary goal of the control (and communication) design
for the teleoperation should be to ensure interaction safety and coupled stability [21]
when mechanically coupled with a broad class of slave environments and humans. To
ensure such interaction safety and stability, energetic passivity (i.e., mechanical power
as the supply rate [90] ) of the closed-loop teleoperator has been widely used as the
control objective. This is due to the property of the passive systems [86] : a feedback
interconnection of any passive systems (with compatible supply rates) is necessarily stable
(and also passive). In this project we consider to indoor flight of UAV. The major problem
of indoor navigation is that global position is unknown. Since indoor is Global positioning
system (GPS) denied environment, it is very hard to localize UAV by itself. We have
introduced embedded sensors like gyro, accelerometer, ultrasonic sonar etc. to our system
so that it can minimize the error of localization locally, but this error will be accumulated
over time and it will cause a large error in global position. Human has versatility in this
regard. Sometimes human can work as a sensor that artificial complex sensor does. Our
objective is to reduce the burden of human so that without paying much concentration
and skilled operation, UAV could be controlled autonomously.
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Chapter 2

State of the art

In the last few years, the state of the art in Vertical Take-Off and Landing (VTOL)
Unmanned Aerial Vehicle (UAV) has received several contributes. Moreover, most of
the attention has been focused on, the quadrotor structure. Some projects are based
on commercially available platforms like Draganflyer, X-UF and MD4-200 [31] . Other
researchers prefer instead to build their own structure. A few examples are the mesicopter,
the X4-Flyer and the STARMAC. There are articles which present hybrid configuration
such as structure with non-symmetric rotation directions or with two directional rotors
[6, 93] . A few other works focus instead on modelling derivation [2, 34] and efficient
configurations [43] . Multi-agent task is also an interesting field for VTOL UAV [84] . Even
though there are a lot of different topics about the qudrotor structure, that one on which
most of the publications have focused on is the control algorithm. It can be stated that the
85 percent of the articles propose a control low or compare the performance of few of them.
The most important techniques and the respective publications are now presented: The
first control is done using Lyapunov Theory [12,18,19,75] . According to this technique, it
is possible to ensure, under certain condition, the asymptotical stability of the helicopter.
The second control is provided by PD 2 feedback and PID structures [13, 81, 82] . The
strength of the PD2 feedback is the exponential convergence property mainly due to the
compensation of the Coriolis and gyroscopic terms. On the contrary a PID structure
does not require some specific model parameters and the control law is much simpler to
implement. The third control uses adaptive techniques [4, 66] . These methods provide
good performance with parametric uncertainties and unmodeled dynamics. The fourth
control is based on Linear Quadratic Regulator (LQR) [13, 20] . The main advantage of
this technique is that the optimal input signal turns out to be obtainable from full state
feedback (by solving the Ricatti equation). On the other hand the analytical solution to
the Ricatti equation is difficult to compute. The fifth control is done with backstepping
control [59–61] . In the respective publications the convergence of the qudrotor internal
states is guaranteed, but a lot of computation is required. The sixth control is provided by
dynamic feedback [64,65] . The seventh control is based on visual feedback. The camera
used for this purpose can be mounted on-board [41, 63, 83] (fixed on the helicopter) or
offboard [3, 33] (fixed on the ground). Other control algorithms are done with fuzzy
techniques [23] , neural networks [32] and reinforcement learning [88].
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Chapter 3

Mathematical modeling

The quadrotor is an under-actuated system with four actuators controlling its six degrees-
of freedom position and orientation. The flight controller is responsible for achieving
two challenging goals simultaneously: (i) controlling the quadrotors position, while (ii)
stabilizing its attitude, i.e., orientation (roll, pitch and yaw angles). More specifically,
given a desired position (px, py, pz) and yaw angle , the goal is to design a controller to
force these control states to converge to their respective desired values, while maintaining
the pitch and roll angles as close to zero as possible. The quadrotor configuration space
C can be expressed by

q =
∂2

∂t2
(x, y, z, θ, φ, ψ) ∈ C (3.1)

Since the quadrotor c-space has 6 dimension, it has 6 degree of freedom.

C ⊂ R3 × S3 (3.2)

For quadrotors there are several coordinate systems that are of interest. We will define
and describe the following coordinate frames: the inertial frame, body frame and the vehi-
cle frame. Throughout the book we assume a flat, non-rotating earth: a valid assumption
for quadrotors

1 INERTIAL FRAME:The inertial frame,Fi = (−→xi ,−→yi ,−→zi ) , is an earth-fixed coor-
dinate system with the origin located on the ground, for example, at the base station.
By convention, the x-axis points towards the north, the y-axis points towards the
east, and the z-axis points towards the center of the earth.

2 BODY FRAME: The body frame,Fb = (−→xb ,−→yb ,−→zb ) with its origin located at the
center of gravity (COG) of the quadrotor, and its axes aligned with the quadrotor
structure such that the x-axis is along the arm with front motor, the y-axis is along
the arm with right motor, and the z-axis , where x denotes the cross product.

3 THE VEHICLE FRAME: The vehicle frame, Fv = (−→xv ,−→yv ,−→zv ) , is the inertial
frame withthe origin located at the COG of the quadrotor. The vehicle frame has
two variations, Fφ andFθ. Fφ is the vehicle frame, Fv, rotated about its z-axis −→zv by
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an angle so that −→xv and −→yv are aligned with −→xb and −→yb , respectively. F is frame F
rotated about its y-axis, −→yθ , by a pitching angle, θ, such that and are aligned with
−→xφ and −→zφ , respectively.

Figure 3.1: Quadrotor’s coordinate frame

The moment of inertia is calculated by assumingthe quadrotor as a central sphere of radius
r and mass Mo surrounded by four point masses representing the motors. Each motor is
supposed to have a mass m and attached to the central sphere through an arm of length l.
With the derived kinematic and dynamic model, we will now define the forces and torques
acting on the quadrotor. The forces include the aerodynamic lift generated by each rotor,
and the gravitational pull acting in counter to the total lift generated. The moments
are the torques generated in order to achieve the roll, pitch and yaw movements. The
following forces and torques are produced Upward Force (Thrust): The total quadrotor
thrust is the sum of the thrust produced by each propeller, as depicted in Figure 8(a):

T = Tf + Tr + Tb + Tl (3.3)

Rolling Torque: This is the torque produced by increasing the left rotors thrust while
decreasing that of the right rotor, or vice versa, as shown in Figure 8(b):

T = Tf + Tr + Tb + Tl (3.4)

Pitching Torque: The pitching torque in Figure 8(c) is produced by increasing the front
rotors thrust while decreasing that of the back rotor, or vice versa:

τθ = l(Tf − Tb) (3.5)

Yawing Torque: The yawing torque is the result of all four individual torques generated
due to the spinning rotors. The front and back rotors spin in the clockwise direction, while
the left and right rotors spin in the counterclockwise direction. As shown in Figure 8(d),
an imbalance between these two pairs results in a yawing torque causing the quadrotor
to rotate about its z-axis:

τψ = Tf + Tr − Tb − Tl (3.6)
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Figure 3.2: Quadrotor dynamics:(a) Quadrotor thrust; (b) Rolling torque; (c) Pitching
torque; and (d) Yawing torque.

Let P T
F = [px, py,−pz] and ΩT

F = [θ, φ, ψ] denote the quadrotor’s position and orientation
within a given frame F. M is the quadrotors total mass. The terms τθ , τφ , and τψ are
the roll, pitch and yaw torques respectively. Thus, the translation dynamic model can be
written as  p̈x

p̈y
p̈z

 =

 ψ̇ṗy − θ̇ṗz
φ̇ṗz − ψ̇ṗx
θ̇ṗx − φ̇ṗy

+
1

M

 fx
fy
fz

 (3.7)

while the rotational model is θ̈

φ̈

ψ̈

 =


jy−jz
jx

ψ̇θ̇
jz−jx
jy

φ̇ψ̇
jx−jy
jz

θ̇φ̇

+
1

M


1
jx
τφ

1
jy
τθ

1
jz
τψ

 (3.8)

where, J is inertia matrix that can be calculated by equation

jz = jy = jz =
2M0r

2

5
+ 2l2m (3.9)
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Chapter 4

Component selection

The following major components are used to develop our quadrotor :

1) Frame wheel and landing skid: We have used DJI 450 frame wheel which is built
by carbon fiber material. This frame is extremely durable and provides optimum
space for electronic components. Because of carbon fiber body, we can avoid the
error of magnetometer caused by metal body. However, our landing skid set also
made by carbon fiber and it provides abundant space from ground to vehicle body.
It also safety take off as well as landing and unwanted crash.

2) High speed DC brushless motors and propeller: DJI 2212 has been used
which can rotate at 920 kv speed. It is compatible with DJI 1045 propellers. Fur-
thermore, carbon fiber 10 propeller can produce more torque by consuming little
motor power.

3) Electronic Speed Controller (ESC): An Electronic Speed Controller, or ESC
controls the speed of the motor. ESCs will have a power limit. The more power
an ESC can handle, the larger, heavier and more expensive the ESC will be. When
choosing an ESC, it needs to match or exceed the motors peak amperage. We have
used DJI 30A Opto ESC which is wide range of compatibility to flight controller
boards.

4) Power distribution board: We have designed a separate power distribution board
for our UAV. We have used two different capacity lithium batteries. Our power dis-
tribution board offers individual operation of electronic circuit and motors. There-
for, it will provide long time battery life by preventing unnecessary draining by
motors and ESCs. Furthermore, the combine switch allow to couple to battery to
ensure more flight time during maneuvering of quadrotor.

5) Autopilot : Autopilot is a command and control system for UAV. It provides a
three-axis body orientation and moving map on the ground station. The unmanned
aerial robot has instrumentation for attitude, engine and position. There are branch
of autopilot system available in commercial market. We have used Ardru Pilot Mega
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F450 frame wheel F450 landing skid Dji motor 2212 8045 and 1045 propeller

Electronic signal controller
Power distribution board APM 2.5 Autopilot board Mission planner

Figure 4.1: Components used in developing quadrotor

(APM 2.5) autopilot board to our system. APM2.5 is an open source auto pilot
device that is easier to use compare to other devices.

6) Mission planner: APM 2.5 board comes with mission planner which is commercial
an environment for communicating to hardware. The APM 2.5 board has 3 PID
controllers to control roll, pitch and yaw orientations. However, it allows to change
the variable of different parameters that are programmed in hardware for instance
PID gains, radio calibration values, damping frequency value etc.
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Chapter 5

Hardware development

5.1 Transmitter Design

Our objective is to control the UAV from a remote computer where our main controller has
been implemented. Therefore, an interface is required that allows to connect our system
to computer. Conventional way is to use 7 to 9 channels radio (R/C) transmitter and
a commercial interface called PCTx to communicate with telepresence UAV. However,
the data transfer rate of this interface is slow and the communication medium is bit
complex[22]. Generally in R/C device uses either Pulse Width Modulation (PWM) or
Pulse Position Modulation (PPM) to communicate with autopilot. Some devices that use
PWM for control are ESC’s (electronic speed controls) and servos. PWM is a technique
used to relay data in the form of a varying pulse width. Usually in R/C equipment
an entire PWM pulse will last a total of 20ms. The entire pulse is called a frame. A
complete frame will include both the time the pulse is high (1-2ms) and the time the
pulse is low. The image below represents a typical PWM frame. Although the frame lasts
20ms the important part of the pulse is the time the pulse is on; 1-2ms. Although the
time between pulses is not as important it does play an important role. Usually keeping
the time between pulses around 20ms is best. If the delay is longer, a servo for example
will lose holding power. A pulse can be generated much faster but 20ms is best for the
most situations.

On the other hand, PPM basically is several PWM signals lined up back to back. A
PPM frame looks like this: Aside from the gaining servo holding power, the reason for the

Figure 5.1: PWM pulse generation

20ms frame is just having the ability to line up several PWM signals in the same frame.
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Like the time the pulse is on is what is important because we are able to strip out this
relevant data from a PPM frame to re-generate a PWM frame. For example, if a radio
only sent 1 PWM signal at a time, it would take 20ms per channel. If we use an 8 channel
radio each update would take 160ms. The same data can be packed into a PPM frame
and only take 20ms per update. Transmitters and receivers are the two most common
R/C devices that use PPM.

Figure 5.2: Designated transmitter

Ironically, neither PWM nor PPM can communicate to computer, serial communication
is used where at a time one bit data sequentially transmit to communication channel or
computer bus. The amount of digital signal transmission is expressed as baud rate where
higher baud rate means higher pulses per second. We have designed a novel transmitter
which offer higher data transmit rate and easier communication medium. To develop this
interface following components are used:

1. Arduino UNO microcontroller

2. XBEE wifi with Arduino shield

Figure 5.3: PPM pulse generation

The benefit of using XBEE wifi is that we dont have to use another device like R/C
transmitter at computer side since our computer is already connected to internet. XBEE
wifi offers higher data rate that is at most 3mb/s by using SPI communication. However,
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PCTx can communicate at 50Hz PPM refresh rate whereas by using XBEE wifi Universal
asynchronous receiver/transmitter (UART) communication media, we can use 115200
baud rate to talk to on board Arduino UNO microcontroller. Arduino UNO translate
serial data to PWM signal to communicate with autopilot board. XBEE wifi is mounted
on UNO board by Arduino Xbee shield. However, traditional Arduino Xbee shield does
not support XBEE series 6 wifi model since it consumes more power than previous model.
Therefore, 400uF capacitor is soldered to the shield for supplying extra current during
power spike. We have testified our wireless transmitter by using two different commercially
available software i.e. 1) mission planner for APM 2.5 autopilot board. 2) NAZA M V2
for DJI autopilot board. By sequentially increasing the value of servo speed, we can
determine exact numbers to communicate with autopilot board from radio calibration
option.

(a) APM 2.5 radio calibration (b) DJI Naza radio calibration

Figure 5.4: transmitter calibration by using two different environment

5.2 Sensor attachment

Although our IMU board includes different types of onboard sensors, we dont have any
access to that sensors due to commercial environment. Therefore, we have developed our
transmitter equipped with cheap but useful on-board sensors i.e. Motion sensors and
Ultrasonic sensor. Motion sensors include 3Axis gyro and 3 Axis acceleration information
and the particular model we have used for our system is called MPU-6050. It is very
accurate, as it contains 16-bits analog to digital conversion hardware for each channel.
Therefore, it captures the x, y, and z channel at the same time. Reading the raw values
for the accelerometer and gyro is easy. The sleep mode has to be disabled, and then the
registers for the accelerometer and gyro can be read. But the sensor also contains a 1024
byte FIFO buffer. The sensor values can be programmed to be placed in the FIFO buffer.
And the buffer can be read by the Arduino. The FIFO buffer is used together with the
interrupt signal. If the MPU-6050 places data in the FIFO buffer, it signals the Arduino
with the interrupt signal so the Arduino knows that there is data in the FIFO buffer
waiting to be read. The MPU-6050 always acts as a slave to the Arduino with the SDA
and SCL pins connected to the I2C-bus. But beside the normal I2C-bus, it has its own
I2C controller to be a master on a second (sub)-I2C-bus. It uses the pins AUX-DA and
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AUX-CL for that second (sub)-I2C-bus. It can control, for example, a magnetometer.
The values of the magnetometer can be passed on to the Arduino. MPU-6050 sends the
Least Significant Bit (LSB/g) to the Arduino. We can get the real acceleration by using
following formula

Acceleration = (9.81/LSB) ∗ 1000 (5.1)

Our next sensor is an ultrasonic range finder named HC-SR04. It detects the distance
of the closest object in front of the sensor (from 2 cm up to 4m). It works by sending out
a burst of ultrasound and listening for the echo when it bounces off of an object. The
Arduino board sends a short pulse to trigger the detection, then listens for a pulse on the
same pin using interrupt function. The duration of this second pulse is equal to the time
taken by the ultrasound to travel to the object and back to the sensor. Using the speed
of sound, this time can be converted to distance.

Distance = ((Durationofhighlevel) ∗ (Sonic : 340m/s))/2 (5.2)

(a) Dual motion sensor (b) Sonar sensor

Figure 5.5: Sensors attached to processor
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Chapter 6

Controller Design

We have designed our controller by using LabVIEW (short for Laboratory Virtual In-
strument Engineering Workbench) environment which is a system-design platform and
development environment for a visual programming language from National Instruments.
The benefits of using LABVIEW environment are as following:

a. Interfacing: A key of LabVIEW over other development environments is the exten-
sive support for accessing instrumentation hardware. Drivers and abstraction layers
for many different types of instruments and buses are included or are available for
inclusion. These present themselves as graphical nodes. The abstraction layers offer
standard software interfaces to communicate with hardware devices. The provided
driver interfaces save program development time.

b. Code compilation: In terms of performance, LabVIEW includes a compiler that
produces native code for the CPU platform. The LabVIEW syntax is strictly en-
forced during the editing process and compiled into the executable machine code
when requested to run or upon saving. The run-time environment makes the code
portable across platforms.

c. Large libraries: Many libraries with a large number of functions for data acqui-
sition, signal generation, mathematics, statistics, signal conditioning, analysis, etc.,
along with numerous graphical interface elements are provided in several LabVIEW
package options. The number of advanced mathematic blocks for functions such as
integration, filters, and other specialized capabilities usually associated with data
capture from hardware sensors is immense.

d. Code re-use: The fully modular character of LabVIEW code allows code reuse
without modifications: as long as the data types of input and output are consis-
tent, two sub VIs are interchangeable. The LabVIEW Professional Development
System allows creating stand-alone executables and the resultant executable can be
distributed an unlimited number of times. The run-time engine and its libraries can
be provided freely along with the executable.
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e. Parallel programming: LabVIEW is an inherently concurrent language, so it is
very easy to program multiple tasks that are performed in parallel by means of
multithreading.

f. Ecosystem: Due to the longevity and popularity of the LabVIEW language, and
the ability for users to extend the functionality, a large ecosystem of 3rd party
add-ons has developed through contributions from the community.

For explanation of designing controller in computer end, we have subdivided this chapter
to further three section.

6.1 Network design

After choosing appropriate environment the next thing that ought to do for teleoperated
UAV is networking that brings life to the vehicle. We have established our network by
Transmission Control Protocol (TCP) which is used to communicate with transmitter
interface. The main advantage of TCP over User Datagram Protocol (UDP) is that an
acknowledgement system works for prevention of losing packet. TCP provides a commu-
nication service at an intermediate level between an application program and the Internet
Protocol (IP). IP works by exchanging pieces of information called packets. A packet is
a sequence of octets (bytes) and consists of a header followed by a body. In our system,
before initiating transmission from our main controller end, we send an acknowledgment
signal what tells to on-board controller that we are ready to receive sensor data. However,
sensor yields different size of packet that makes difficulty in receiving end. Therefore, be-
fore transmitting the packet we use bit stuffing to ensure constant length of each packet.
However, in our specific problem we have used 10 bytes of packet and added zero in front
of packet if size is less than 10. In serial data communication abrupt high speed com-
munication stuck the system to deadlock situation. We have to sequentially increase the
speed of communication to establish safe and durable connection. To get 25 ms sampling
time we have reduced the time from hundred to 25 by 5 steps where each steps last about
100 ms. Finally we have got 25ms sampling time where samples taken from motion sensor
are 60 and 5 from ultrasonic sensor; 65 samples per package. Different size of sample data
from different sensors has been chosen.

6.2 Observer design

We have used accelerometer and Ultrasonic distant meter to measure the altitude of
UAV. However, the response time of two sensors is not equal and accelerometer response
much faster than sonar sensor. Therefore, between the sensing time interval of sonar and
accelerometer, we have calculated the approximate distance based on accelerometer value.
Approximate distance is calculated by following equation

Z+ = az × ∂t
Z = Z + Z+ (6.1)
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Where, Z is the previous distance achieved from sonar sensor, Z+ is the intermediate
distance calculated by accelerometer value and δt is the sampling time.

6.3 PID controller design

In the industrial area the most used liner regulators are surely the PID. The reasons of
this success are mainly three i.e simple structure, good performance for several process
and does not required specific model to design the controller. In robotics, PID technique
represents the basics of control. Even though a lot of different algorithms provide better
performance than PID, this last structure is often chosen for the reasons expressed above.
The traditional PID structure is composed of the addition of three contributes, as shown
in fig.(6.1) and eqn.(6.2). The blocks ”1/s” and ”s” represents the integration and

Figure 6.1: Traditional PID structure

derivation operations.

u (t) = KP e (t) +KI

∫ t

0

e (t) dt+ KZ
de (t)

dt
(6.2)

Where u is a generic controlled variable, e is the error between the task r and the process
output y, KP is the proportional coefficient, KI is the integral coefficient and KD is the
derivative coefficient. The first contribute (P) is proportional to the error and define the
proportional bandwidth. Inside this interval the output will be proportional to the error
while outside the output will be minimum or maximum. The second contribute (I) varies
according to the integral of the error. Even though this component increases the overshoot
and the settling time, it has a unique propriety: it eliminates the steady state error. The
third contribute (D) varies according to the derivate of the error. This component help
to decrease the overshoot and the settling time. In the Laplace domain, the traditional
PID structure can be rewritten according to eqn. (6.3).

u (s) =

(
KP +

KI

s
+ sKD

)
e (s) (6.3)

Since this function is improper, it is not physically feasible (because of the derivative
term). After a certain frequency, the D contribute must be attenuated to filter the off-
band noise. For this reason, in the real derivator a pole is added as shown in eqn. (6.4)

u (s) =

(
KP +

KI

s
+

sKD

1 + sKD/k KP

)
e (s) (6.4)
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The traditional PID structure presents two main drawbacks:

• The derivate action is calculated from the error. If the task adds a step in the refer-
ence, the output of the derivator would present an impulse. This sharp movement
can saturate the actuators and push away the system from the linear zone. For
this reasons most of the PID architecture presents the derivate action of the process
output only.

• The integral action combined with an actuator saturation can provide a non linear
effect which can decrease the performance of the control system. When the integral
value is large and the error changes sign it is necessary to wait a lot of time before
the system restores its linear behavior (after the discharging of the integral action).
This phenomenon is called integral wind-up. To avoid it, a saturator is added after
the integral to limit its maximum and minimum values.

In our experiment due to lack of indoor global position system, we have demonstrated
altitude control with the help of Ultrasonic sonar sensor and accelerometer. Block diagram
of Altitude control is as follow: zd[m] represents the desired height, ZAcc[m] is the height

Figure 6.2: Block diagram of height control

measured by the accelerometer module, ZSONAR[m] is the height measured by the SONAR
module, z [m] is the height estimated from the sensors, ez [m] is the height error, the block
”SAT” represent the saturator and U [N ] is the required thrust. KPz[s

−2], KIz[s
−3] and

KDz[s
−1] are the three control parameters. At last g[ms−2] is the acceleration due to

gravity, m[kg] is the mass of the quadrotor, cφ is the roll angle cosine and cθ is the pitch
angle cosine. Respect to the enhanced PID architecture, the block diagram of the height
control presents two main differences: The MIXER block must be added to process the
height data from the accelerometer module and the SONAR. Its purpose is to calculate
the height of the quadrotor with the best accuracy it can achieve from the two sensors.
Furthermore, MIXER block, the algorithm estimates the real height and avoids ambiguity.
According to eqn. (6.4) the height dynamics is more complex than the other three. In
fact, it also depends from the roll and pitch angles. Furthermore the acceleration due
to gravity must be compensated. The quadrotor mass, m (kg) has the same role as the
moments of inertia in the angular case.
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Chapter 7

Experimental result

Our developed UAV has 0.450 m length in diagonal. The total mass of this UAV is 1.63kg
and the peripheral mass is 0.375kg. Due to homogeneous structure the moment of inertia
is calculated by Eqn.3.9 The main controller at computer terminal includes two graph
indicators that show acceleration and height information of UAV. We have used gaussian
mean tool kit library to filter out noise comes through sensor. There are two independent
loops to capture the value of transmitter and receiver respectively. The sampling rate is
gradually fixed at 25ms (milliseconds). We have also designed a memory storage function
to capture and store the real time flight data. After experimental flight following graph
is obtained that includes a clear comparison between the accelerometer and sonar sensor
information. However, we have encountered a major problem of sonar sensor during
experiment. The sonar sensor responds slowly while moving above soft carpet due to the
most of signals emitted to measure the height is disrupted by rough surface of soft carpet.
The maximum delayed in responding is about 1.2 seconds. However, the respond time
is pretty good during maneuvering over hard surface e.g. floor, plastic board, wooden
table etc. There are eventually two individual algorithms i.e. Transmitter algorithm and

(a) Photo of assembled quadrotor
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Figure 7.1: Experiment with JAIST Quadrotor
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Controller Algorithm work together to fly this robot. However, first of all controller needs
to establish network connection by using TCP. UAV will respond to the controller after
getting default control signal from it. Moreover, if there is no data received from the
transmitter, controller can’t yield input command. Hence, it is very important to get the
real time data within bounded communication time.

Algorithm 1 Transmitter Algorithm

1: Data = Receive control signal()
2: if Data then
3: for i = 1; i < 3; i+ + do
4: S[i] = Get Acceleration() . Read accelerometer
5: S[i+ 3] = Get Gyro() . Read gyro sensor
6: end for
7: for j = 1; j < 11; j + + do
8: Send Motion values(S)
9: end for

10: for j = 1; j < 5; j + + do
11: D = Get Get altitude() . Read Ultrasonic sensor
12: Send Ultrasonic values(D)
13: end for
14: end if

Algorithm 2 Controller Algorithm

1: Get default values input
2: Send to transmitter
3: Data = Transmitter response()
4: if Data then
5: Decode Control Signal
6: Filter Out Noise()
7: Estimate Altitude()
8: Operate PID()
9: Send Inputs()

10: end if

After receiving signal from transmitter, controller decode the signal to understand specific
input and sensor values. The signal contains noise, therefore it is imperative to remove
noise from sensor values. Afterwards, Altitude is calculated by combining acceleration
and proximate distance values. Now, sensor reading is ready to input to the PID controller
as a process variable. However, PID yields values with the respect to distance, as a result
we have to scale up the output values to transmitter input domain which is between 1000
to 2000 in number.
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Chapter 8

Path planning Algorithm 1

3D Exploration Priority Based Heuristic Approach for

Path Planning of Unmanned Aerial Vehicles

This paper presents a 3D online path planning algorithm for Unmanned Aerial Vehicles
(UAVs) equipped with limited range sensors and computational resources in unknown
cluttered environments. Even though quadrotor UAVs are considered to be a promising
technology for surveillance purposes in indoor environments and for close observation in
outdoor urban areas, it is very difficult to achieve autonomous aerial navigation toward
a goal avoiding unpredicted collisions. Furthermore, greater attention and effort should
be aimed at improving the computational efficiency and performance of path planning
algorithms. The proposed heuristic algorithm offers on-the-fly path findings with a lesser
computational complexity. We demonstrate the efficiency of our algorithm in a real world
scenario implemented using the V-REP simulator.

8.1 Introduction

In this paper, we consider the surveillance and recovery mission after nuclear disasters
or severe accidents in industrial areas which are inaccessible by humans. We divide the
possible use of UAVs in the above-mentioned missions into three different categories:
1) indoor environment without having GPS or motion capture sensors [44], 2) indoor
environment with motion capture sensors, 3) outdoor environment for close observation
with the help of GPS.

In an indoor environment, one of the most important challenges for UAVs is to localize
itself and search for the position to move, since the GPS does not work. Moreover, vision
based localization is not always useful especially when after disaster situations are con-
sidered, since we cannot guarantee adequate lighting. Furthermore, scanning laser range
finders or different types of vision sensors increase the computational burden, as a result
it is quite difficult to implement in low-cost on-board processing units. Therefore, in the
first scenario, without considering the computationally expensive sensors, the Exploration
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Priority Based Heuristic Approach (EPBHA) to online path planning is proposed.

(a) Outdoor GPS coordinates (b) Indoor path planning

Figure 8.1: Initial nominal path with respect to GPS coordinates

Obviously, we must have an offline plan [70] before a surveillance mission that can be
made by choosing several waypoints using the satellite maps as shown in Fig. 8.1. The
waypoints are Cartesian coordinates representing spatial positions in the horizontal XY
plane where a nominal height is assumed in the Z axis. Since every movement of an
UAV creates its own coordinates, if we calibrate the UAV coordinate system with re-
spect to outdoor GPS coordinates, the UAV can reach its goal along a set of waypoints.
Moreover, we must have an approximate idea for maximum altitude for indoor environ-
ments. Specifically, if the previously unknown obstacles are detected, the UAV has to
re-plan its nominal path in real time. If the path planner fails to generate a safe path
within a bounded time, collisions with obstacles may result. Since the computational
time of deterministic and complete algorithm grows exponentially with the dimension of
the configuration space, those algorithms do not provide an adequate solution for online
UAV path planning in indoor environments. However, as the UAV can not compare its
coordinates with GPS or specific land coordinate systems, inertial navigation errors can
be accumulated with its exploration. The accuracy of goal findings depends on a proper
calibration system. Nevertheless, we assume that the requirements for the localization
accuracy are not very strict for surveillance missions particularly within a small arena.

In the next scenario, stationary motion capture sensors are used to identify the co-
ordinate of UAV. We can implement our algorithm in this scenario, since a number of
infrared reflective markers are used to identify the object, therefore the environment is
unknown unless the markers are attached to obstacles. Finally, our algorithm works for
close observation in outdoor environments, where different size and shape of obstacles
may appear in the path of a navigating UAV.

8.2 Related Works

Path planning has been one of the most important elements of mission definition and
management of vehicles and it became crucial after birth and growth of UAVs. Quadrotors
inaugurate the miniature form of UAV and furthermore their kinematics gives hovering
capabilities that make it easy to create paths on the fly. Several algorithms were developed
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for robotic ground vehicles [11, 48, 74]. Likewise, physics for potential field algorithms
[8,89], mathematics for probabilistic approaches [73], or computer science for graph search
algorithms [45] were applied to UAV path planning.

Binney et al. [9] presented a path planning method for autonomous underwater vehicles
(AUVs) to maximize mutual information. Pereira and Sukhatme [72] presented minimum-
risk path planning for AUVs operating in coastal regions with high ship traffic. Jung and
Tsiotras [52] explained on-line path generation for UAVs using B-spline path templates
where they investigated the problem of generating a smooth, planar reference path, given
a family of discrete optimal paths. Jun and D’Andrea [50] used the probability map and
Bellman-Ford shortest path algorithm in adversarial environments, maximizing the safety
of the vehicles. Yang and Sukkarieh [92] discussed 3D path planning for an UAV oper-
ating in cluttered natural environments. Hrabar [49] proposed a synthesis of techniques
for rotorcraft UAV navigation through obstacle-populated environments. Rohmer and
Randall provided the target position programming solution [40], where a low level control
of UAV was implemented with the target subdivided into horizontal control and vertical
control.

Many techniques were developed to tackle the independent components for safe vehi-
cle navigation in unknown environments. We handpick a selection of these that, when
combined, offers what we believe is the best solution for the disaster surveillance with
quadrotor UAVs. The need for off-line and real-time replanning substantially revises the
path planning strategy. Moreover, the computational performances of the control station,
where the mission management system is running, can influence the algorithm selection
and design. The use of evolutionary algorithms for path optimization is an important
solution permitting to apply kinematic constraints to the path. Using splines or ran-
dom trees to model the trajectory, these algorithms can reallocate the waypoint sequence
to generate optimum solutions in complex environments [42, 69]. Being interesting and
flexible, the evolutionary algorithms are spreading on different planning problems, but
their complexity is paid with a heavy computational effort [17]. The Dijkstra algorithm
is one of the first greedy algorithms for graph search and permits to find the minimum
path between two nodes of a graph with positive arc costs [30]. An evolution of the Di-
jkstra algorithm is the Bellman-Ford algorithm [7, 39] that finds the minimum path on
oriented graphs with positive and negative costs. Another important method is the Floyd-
Warshall algorithm [38,87] that finds the shortest path on a weighted graph with positive
and negative weights, but it reduces the number of evaluated nodes compared with the
Dijkstra algorithm. The A* algorithm is one of the most important solvers explicitly
oriented to robotics. A* improved the logic of graph search with heuristic evaluations
inside the loop [9]. Dynamic re-planning with graph search algorithms was introduced.
D* (Dynamic A*) represented the evolution of A* for re-planning [78]. Then, research
on dynamic re-planning brought to the development of Lifelong Planning A* (LPA*) and
D* Lite. They are based on the same principles of D* and D* focused, but they recall
the heuristic aspect of A* to improve the speed of the search process [54, 55]. Differ-
ent approaches were developed to cope with the suboptimal solutions problem, based on
post-processing algorithms or on improvements of the graph-search algorithm itself. Very
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important examples are Field D* [35] and Theta* [67]. These algorithms refined the graph
search obtaining generalized paths with any heading.

Comparing all of these algorithm, De Filippis et al. [25] conclude that Theta* is the most
promising solution for the path planning of fixed-wing UAVs. However, the shortcoming
of Theta* is the computational time. Our proposed algorithm is thus aimed at reducing
the computational time.

8.3 Problem Statement

We categorized indoor surveillance missions further into two cases: 1) navigate in the
obstacle free space and 2) avoid obstacles and escape from a deadend passageway. The
former case means that the UAV finds the minimum distance path toward a goal position,
if there is free space to move. The latter, however, must conform to several crucial condi-
tions: how to avoid unexpected obstacles that appear in the path (located in front, or to
the left or right, or any possible arrangement of obstacles, except for the upward direction).
A complex and unpredictably changing environment makes it difficult to accomplish safe
path planning. Moreover, using of vision sensors increases the computational complexity
that makes it difficult to accommodate on-board implementation requirements. There-
fore, without having any a priori knowledge of the environment, this paper proposes a
new heuristic approach to allow UAVs to navigate through complex terrains, ensuring
near-constant computations.

Now we address the path planning of UAV in unknown environments as follows: As-
suming a surveillance UAV equipped with limited range sensors exploring an arena, where
different types of unknown obstacles exist, how to make it go to a goal position avoiding
the obstacles with comparatively little computational cost?

The path planning problem above can be decomposed into two sub-problems:

• Sub-problem 1 (free space) How does it travel a minimum possible distance in an
obstacle free area?

• Sub-problem 2 (obstacle avoidance) How does it re-plan its position, while avoid-
ing obstacles in its path?

8.4 Algorithm Description

The idea underlying the proposed algorithm is similar to A* algorithm. However, in
A* algorithm for 2D plane, 8 Cartesian coordinates are computed and the coordinate of
minimum cost among the cost of all coordinates is required to determine the movement
position. Since the UAV does not know a priori the location of the obstacle, the cost
of each coordinate is calculated based on, for instance, ‘Manhattan Distance’. Although
the proposed algorithm is a 3D path planning algorithm, to reduce the computational
complexity, only one plane is chosen at a time for maneuvering. In practice, 6 movement
options (forward and backward, left and right, and up and down) are available for the
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proposed path planning, while up and down movements are considered the special cases
of obstacle avoidance maneuver. Therefore, normally for maneuvering UAV (U), costs are
calculated based on 4 coordinates, which are front (C12), left (C21), back (C32), right
(C23), respectively, as shown in Fig. 10.2.
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Figure 8.2: Reduced cost assessment

Definition 1 (Input Description) The Cartesian coordinates of current position and
goal position are given and the rest of coordinates are unknown. The UAV thus knows
its own position and goal position but does not know a priori the obstacle position. The
distance between one coordinate and the next coordinate is defined as step length d. The
value of d is propositional to the velocity of UAV. For larger value of d, the UAV increases
its velocity to cope with the distance that is required to travel within limited time boundary.
The goal position is divided into two parts, i.e., the goal in the XY plane and the YZ plane,
respectively. After reaching the goal in one plane, the goal is automatically shifted to the
other.

Definition 2 (Cost for coordinate) A coordinate cost is defined by the difference be-
tween the current position (x1, y1) and the next position (x2, y2) given by

Cost := A× (x1 − x2) +B × (y1 − y2),

where A and B are arbitrary even constants for emphasizing the straight forward (X-axis)
or straight sideward (Y-axis) movements instead of the diagonal movements travel. If
A > B, then the UAV moves forward or backward, while A < B indicates left or right
movements.

8.5 3D Exploration Priority based Heuristic Approach

for Obstacle Avoidance

In the proposed algorithm, the UAV searches two 2D planes separately to reduce the
complexity of computations. After achieving the goal in the XY plane, it will shift its
goal into the YZ plane that is the final goal. The searching algorithms is also divided
into the obstacle free area and the obstacle cluttered area. The UAV tries to identify the
shape of obstacle using its limited range of sensing which is analogous to the blind cane. It
then chooses appropriate predefined maneuvering behaviors to avoid the particular type of
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obstacle. The proposed algorithm is basically divided into four parts: 1) grid making, 2)
cost calculation, 3) obstacle avoidance, and 4) move to minimum cost point. Furthermore,
four subfunctions are used which are the heading axis, sensor value, movement option,
and next set position, respectively.

1. Grid making: The incremental distance between the parent coordinates and next
coordinates is termed as d as defined in the previous section. For the next set position,
one coordinate is chosen among four neighboring coordinates. The value of d could be
determined by calibrating in the real world environment. If we compare our result to
real world GPS values outdoors, then we have to calibrate it with respect to GPS values.
Moreover, the smaller value of d ensures lesser probability of colliding with obstacles.

Algorithm 3 Pseudocode for grid making

1: for i = 1; i < 5; i+ + do
2: grid[i][1] = i . indexing
3: grid[i][2] = x± d . next x-coordinate
4: grid[i][3] = y ± d . next y-coordinate
5: end for

2. Cost estimation: This part restricts the movement options of UAV: straight or
perpendicular movements are more emphasized than diagonal movements. Therefore,
costs of diagonal movements are higher than straight or perpendicular movements. This
cost estimation (which is defined in Definition 2) is valid when there is no obstacle around
the UAV.

3. Obstacle search: When the UAV finds an obstacle, it acquires two or more equal
minimum cost coordinates at the same time. Therefore, according to A* or other existing
algorithms, the UAV has to search every possible way to reach the goal, which we believe
is quite impractical. In this work, the UAV has a preplanned idea about ‘how to avoid
the obstacles’ and ‘how to reduce the computational complexity’. Specifically, during the
time of avoidance, it does not consider the cost for the goal. To acquire the knowledge of
‘how to avoid the obstacles’, we define several subfunctions detailed below.

Subfunction 1. (Direction of Heading) Comparing the current position (x1, y1) and
the previous position (x0, y0), the UAV determines the X-axis or Y-axis along which it
should move.

Algorithm 4 Pseudocode for heading direction in XY plane

1: if (x0− x1) > (y0− y1) then
2: heading_is x

3: else
4: heading_is y

5: end if

Since the UAV’s heading direction is likely to change, the variables of sensor value are
also re-oriented accordingly. In Fig. 8.3, s1, s2, s3, and s4 represent the front, right, back,
and left sensor value with respect to the UAV heading direction.
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Figure 8.3: Heading and sensor variables

Subfunction 2. (Sensor Value) Obstacle detection is limited by the detection range
and precision of sensors, where no detection range, the offset from the starting range, is
introduced for sharp angle avoidance. Higher sensor range ensures safety, but decreases
the accuracy to reach the goal.

Subfunction 3. (Movement Option) A sensor reports a certain range of numeric
values, when it finds an obstacle. The available movement options are determined by
counting the number of sensors that do not detect anything.

Algorithm 5 Pseudocode for movement option

1: for i = 1; i < 7; i+ + do
2: if value of sensor[i] > sensor range then
3: count+ = 1 . number of activated sensors
4: movement_option = 6− count
5: end if
6: end for

Subfunction 4. (Next Set Position) The set position at the next moment (x2, y2) can
be computed from the current heading and position (x1, y1) of the UAV.

Algorithm 6 Pseudocode for next set position in XY plane

1: if heading axis == X then
2: if y1 > y2 then
3: next_set_position_is = left

4: else
5: next_set_position_is = right

6: end if
7: else if heading axis == Y then
8: if x1 > x2 then
9: next_set_position_is = left

10: else
11: next_set_position_is = right

12: end if
13: end if

While the UAV moves along an axis and finds an obstacle in front of it, it calculates the
set position at the next moment with respect to the current position, which gives priority
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to a certain direction (Subfunction 4). This change of heading is due to the UAV’s myopia
in orienteering. In most cases, the position of obstacle is close to the ground, hence the
UAV may find an obstacle-free path at a certain height from the ground. As a result,
in this algorithm, passing over is another priority after the heading changing movement
for obstacle avoidance. The UAV will determine more than one obstacle from the sensor
value and movement option subfunctions.

Moreover, the most interesting feature of the proposed algorithm is to avoid the cave
type obstacle. In order to avoid such an obstacle, the UAV detects overhead obstacles
and looks for its backward movements with respect to its heading direction (Subfunction
1). To reduce the penalty of backward movements, we have emphasized a special diagonal
movement instead of straight backward movements.

4. Moving to minimum cost point: The UAV finds an optimal coordinate for its
next set position and relocates its position to this coordinate. When the UAV changes its
heading, the sensor indexes are also changed accordingly.

Below is a sketch of the proposed algorithm, incorporating the above-mentioned func-
tion modules:

Algorithm 8.5.1: Searching goal in XY plane(x, y)

repeat
gridMaking()
read sensor value
if obstacle exist

then EPBHA()
else costEstimation()

findMinimumIndex()
compare(UAV Pos(x, y), goalPos(x, y))
if goalPos(x, y)− UAV Pos(x, y) == desired accuracy

then xy search is finished
until xy search is not finished

Algorithm 8.5.2: Searching goal in YZ plane(y, z)

repeat
gridMaking()
read sensor value
if obstacle exist

then EPBHA()
else costEstimation()

findMinimumIndex()
compare(UAV Pos(y, z), goalPos(y, z))
if goalPos(y, z)− UAV Pos(y, z) == desired accuracy

then yz search is finished
until yz search is not finished
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8.6 Simulation Results and Discussion

Six infrared sensors are used as proximity sensors to detect obstacles which are mounted
on top, front, right, left, back, and bottom, of the UAV, respectively. The proximity
sensors have 0.5m range and 45◦ angle of detection. Moreover, it is imperative to place
the sensors 15◦ to 30◦ inclined to the surface of body for proper detection and safe avoid-
ance of obstacles. However, as we do not consider the measurement accuracy and signal
processing of the sensors, sensor data is assumed to be accurate, noiseless, and achieved
instantaneously. Although the proposed path planning is also valid for dynamically chang-
ing goals, the goal position is considered as static in this simulation. The initial status
of the UAV is the standard hovering position, where we specify the goal position, seen
in Fig. 10.3 (a) and (b), respectively, and the rest of the UAV kinematics are adjusted
automatically using the dynamic simulation engine. Furthermore, as this paper does not
deal with a low level control system, we therefore assume that we can accurately estimate
the next movement of UAV without dead reckoning and/or other aerodynamics errors.
Note that the flight path varies depending on the situation and environment as shown in
Fig. 10.3. Moreover, it is assumed that the sensing range for UAV is limited (i.e., 0.5m)
and there is no initial information such as map or pre-specified path. Therefore, the UAV
can not plan a long distance path and does not require to retrieve previously given data,
as a result the computation complexity is much lesser. We compare our algorithm with
existing A* and D* search algorithms which are commonly used for flight path planning
to find the shortest path. The main difference starts while the UAV finds any obstacle
along its path. When an obstacle appears in the path of UAV, it gets two or more mini-
mum points for its next move. To find the shortest path, the UAV needs to explore every
possible solution and decide which flight path it should choose.

In Fig. 8.5, the blue area indicates the searching area, where the yellow, black, red, and
orange indicates the starting position, obstacle, goal position, and shortest path, respec-
tively. From the figure, it is obvious that the proposed method offers less search, while
other algorithms ensure the shortest path with higher search. We assumed that there is
no initial information or map for the given place, therefore it is redundant for a single
UAV to explore every possible way and choose the best one. Instead of searching for the
minimum distance path, the 3D exploration capability of UAV allows it to easily avoid
the obstacles. The most notable feature of the proposed method is that, obstacles reduce
the searching time, while other existing searching algorithms always increase the compu-
tational parameters. Fig. 8.6 shows a significant decrease in coordinate cost estimation
according to the obstacles position.

Since this algorithm does not use the global information, it does not ensure the shortest
path. It assures one of the feasible paths with lesser computations. For the surveillance
mission considered, it is not essential to find the shortest path all the time. It should
ensure a close-up view for that place. Likewise, obstacles do not always prevent UAVs from
navigating a preplanned path, rather they could be also important items for surveillance
purposes.

Fig. 8.7 represents the offline path planning, where all the environment information is
initially available and the path obtained is the shortest path. Meanwhile, Fig. 8.8 shows a
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(a) Starting position, in a stable, flying
condition

(b) Goal position, the box under the ta-
ble

(c) Path traversing graph

Figure 8.4: Dynamics simulation setup and result

(a) A* Search (b) D* Search (c) EPBHA

Figure 8.5: Comparison between search algorithms and EPBHA

longer path compared to Fig. 8.7, but it ensures a close view for obstacles. This heuristic
algorithm does not always guarantee to find the goal. For instance, it does not give any
solution, while the UAV detects an obstacle in the backward direction. However, hovering
is proposed for such a deadlock situation. Furthermore, the goal position is very close to
the ground, therefore a small amount of error remains in the Y and the Z axis as shown in
Fig. 10.3 (c). For better accuracy, the goal position should be located somewhere above
the ground level and obstacle free environment. Fig. 8.9 shows that the real search time
for the worst case setup is 2 minutes 20.57 seconds calculated by the real time function.
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Figure 8.6: Coordinate cost calculation during obstacle avoidance

Figure 8.7: Offline path planning for known environment

Figure 8.8: EPBHA path planning

Figure 8.9: Real time of exploration
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Chapter 9

Path planning Algorithm 2

3D Exploration Priority Based Flocking of UAVs

This paper presents a 3D flocking algorithm for a team of unmanned aerial vehicles
(UAVs), where each member is equipped with limited range sensors and computational
resources. A minimal leader-follower communication scheme is proposed for maneuvering
huge swarm of UAVs. The proposed triangular formation compacts the overall group size.
Even though UAVs are considered for tactical, remote monitoring, and surveillance pur-
poses in both indoor and outdoor environments, it is very difficult to achieve autonomous
aerial flocking in unknown cluttered environments. Specifically, greater attention is placed
to reduce computational complexity for on-board implementation. We demonstrate the
efficiency of our algorithm in a real world scenario with the V-REP simulator employing
a group of five UAVs.

9.1 Introduction

In recent decades, unmanned aerial vehicles (UAVs) have attracted much attention due
to their wide range of applications and reasonable manufacturing cost. Among different
types of UAVs, researchers increase their focus on rotor wing UAVs particularly Quadrotor
UAVs, because their kinematics offers low speed maneuvering and hovering. Quadrotor
UAVs appear in miniature form in contrast to typical aerial vehicles, whereby the possi-
bility of aerial vehicle swarming becomes a reality. Flocking is one of the basic elements
of aerial swarm behavior. Considerable effort has been directed toward understanding
how a group of autonomous creatures creates a certain form of clusters. Similar problems
have been studied in ecology and theoretical biology, in context of animal aggregation
and social cohesion in animal groups [14] [80].

Reynolds [71] proposed the basic model that was later modified in different ways.
Delgado-Mata et al. [28] introduced the effects of fear by observing the activities of Ol-
faction to transmit emotion between animals through pheromones modeled as particles
in a free expansion gas. Hartman and Benes [46] incorporated a complementary force
to the alignment for a leadership change, where the steer defines the chance of the boid
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to become a leader and try to escape. Hemerlijk and Hildenbrandt [47] used attraction,
alignment and avoidance and extended the algorithm with a number of traits of starlings
given by

1) birds fly according to the fixed-wing aerodynamics, while rolling and turning

2) they coordinate with a limited number of neighbors

3) staying above a sleeping site is given priority and when moving outwards the sleeping
site, they return to it by turning,

4) fixed relative speed is proposed.

The authors claimed that the specifics of flying behavior as well as large flock size and
low number of interaction partners were essential to the creation of the variable shape
of flocks of starlings. Related problems have become a major thrust in system and con-
trol theory [24, 51, 53, 57, 77]. Vicsek et al. [85] proposed the leader following model, in
which one agent acted as a group leader and others would just follow the aforementioned
cohesion/separation/alignment rules.

Meanwhile, Lee and Chong [58] proposed the equilateral triangle lattice model in es-
tablishing selective local interactions among neighboring robots. They claimed that the
equilateral triangle can reduce the number of robots in a given location, and improve the
network connectivity and hole repair capability [16,37].

Inspired by the results of [85] and [58], this paper introduces the communication model
to the existing basic models of flocking behavior, where small intermediate equilateral tri-
angles are considered to communicate with neighbors. Each intermediate group consists
of three members i.e., one leader and two followers. We have previously proposed the
exploration priority based heuristic approach (EPBHA) for UAV collision-free path plan-
ning with lesser computational complexity in cluttered environments. EPBHA reorients
equilateral triangles into arbitrary triangular shapes depending on the type of obstacle
and allows flexible path planning to avoid collisions. The communication model increases
the overall team efficiency, since every robot is not required to find the position of obstacle
that will be discovered by one of the team members.

9.2 Problem Statement

We categorize aerial swarm missions further into three cases: 1) navigate in obstacle-
free environments 2) build/maintain a team via internal communications and 3) avoid
obstacles and escape from a deadend passageway. Case 1) lies in more general context,
which means if there is free space to move, the robot finds the minimum distance path
toward a goal position. Case 2) and Case 3), however, must conform to several crucial
conditions: how to build a large group, how to avoid unexpected obstacles that appear
in the path of navigating robots. A complex and unpredictably changing environment
makes it difficult to accomplish safe path planning. Moreover, vision sensors increase the
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computational complexity that makes it difficult to accommodate on-board implementa-
tion requirements. Therefore, without having any a priori knowledge of the environment,
this paper proposes a new heuristic approach to allow a group of UAVs consisting of two
intermidate small groups to navigate through complex terrains, only based on six infrared
sensors, ensuring a near-constant computational complexity.

Now we address the flocking problem of a group of UAVs in unknown environments as
follows:

Assuming a group of UAVs equipped with limited range sensors exploring an
arena, where different types of unknown obstacles exist, how to make it reaches
a goal position avoiding the obstacles with comparatively little computational
cost?

This problem can be decomposed into simpler problems:

• Sub-problem 1 (path planning for free space) How do all the members of a group
travel a minimum possible distance in an obstacle free environment?

• Sub-problem 2 (group formation) How to build and maintain a group?

• Sub-problem 3 (path planning for obstacle avoidance) How does a group re-plan
its next position, while avoiding any obstacles in its path?

9.3 Algorithm Description

Definition 3 (Triangular Configuration) Given the leader robot rl and neighbour robots
rf1 and rf2, a triangular configuration is defined as the set of their distinct positions
{Pl, Pf1, Pf2} denoted by

Ti = {Pl, Pf1, Pf2} .

One half of the interior angle ∠Pf1PlPf2 is denoted by θ.

Definition 4 (Sensing Range) Each robot is equipped with 6 proximity sensors detect-
ing up to Sd with a 45◦ angle of coverage

Definition 5 (Inter-robot Distance) Given Ti, a safe distance is configured between
the leader and follower robots, which must be greater than the sensing range (Sd) of indi-
vidual robots.

Definition 6 (Input Description) The leader robot knows its own position and goal
position but does not know a priori the obstacle position. The distance between one coor-
dinate and the next coordinate is defined as step length d. The value of d is responsible for
smooth motion planning which is propositional to the velocity of robot. The goal position
is divided into one goal for the XY plane and another for the YZ plane. After reaching a
goal in one plane, the goal is automatically shifted to the other plane.
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Definition 7 (Coordinate Cost) A coordinate cost is defined by the difference between
the current position (x1, y1) and the next position (x2, y2) given by

Cost := A× (x1 − x2) +B × (y1 − y2),

where A and B are arbitrary even constants for emphasizing the straight forward (X-axis)
or straight sideward (Y-axis) movements instead of the diagonal movements travel. If
A > B, then the robot moves forward or backward, while A < B indicates left or right
movements. Fig. 1 represents the cost reduction assessment where diagonal movement
cost calculation is omitted by introducing maneuvering options.

Now the proposed exploration priority based heuristic aerial swarming algorithm is
divided into three major functions:

1 Path planning in obstacle free environments

2 Communication to follower robots

3 Path planning in cluttered environments

9.3.1 Path planning in obstacle free environment

The leader robot moves forward to the goal position based on Manhattan distance. By
introducing maneuvering options, we restrict diagonal movements. Therefore, each robot
is capable to move only six directions, i.e., forward, backward, left, right, upward, and
downward, respectively. Fig. 2 represents the triangular configuration for group forma-
tion, where the red circle represents the leader robot and the blue represents followers,
respectively. The leader robot determines the positions for adjacent follower robots with
respect to its current position. A safe distance is ensured by maintaining inter-robot
distances greater than their sensing range. The leader robot plans for the equilateral tri-
angular configuration for its group. Every robot creates four square grids, while moving
towards the goal position. Among the four grids indicating four different coordinates,
robots choose the best coordinate for their next movement by calculating the minimum
cost.

Grid making The incremental distance between the parent coordinates and next co-
ordinates is termed as d. For the next set position of robots, one coordinate is chosen
among four neighboring coordinates. The value of d neds to be kept as small as possible
to ensure lesser probability of colliding with obstacles.

c11    12    13cc

c31    32    33cc

c21    22    23cc

 11    12    13c

 31    32    33c

c21    22    23cc

Maneuvering 

 option

Figure 9.1: Reduced cost assessment
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Algorithm 9.3.1: Grid making(x, y, d)

for i← 1 to 4

do



for j ← 1 to 3

do



Grid[i][1] = i
comment: indexing

Grid[i][2] = x± d
comment: next x coordinate

Grid[i][3] = y ± d
comment: next y coordinate

Maneuvering Option A sensor reports a certain range of numeric values, when it finds
any obstacle within its sensing range. The available movement options are determined by
counting the number of sensors that do not detect anything.

Algorithm 9.3.2: Maneuvering option(g, h, i)

for i← 1 to 6

do


if value of sensor[i] > sensor range

then


count+ = 1
comment: number of activated sensors

movement option = 6− count

Cost estimation The degree of freedom of robots is restricted by introducing maneu-
vering options, whereby straight or perpendicular movements are more emphasized than
diagonal movements. Therefore, costs of diagonal movements are higher than straight or
perpendicular movements. This cost estimation is valid when there is no obstacle around
the robot.

Moving to minimum cost point The robot finds an optimal coordinate for its next
set position and relocates its position to this coordinate.

Sensing boundary

Sd

Id

f1
f2

l

Sensing range

Intermediate Distance 

Figure 9.2: Triangular group formation
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9.3.2 Communication to follower robots

There are two kinds of goal for flocking, such as the user defined goal for overall team
maneuver and the leader defined intermediate goals. The leader robot is assumed to
know the user defined goal and it creates new goals for its followers equipped with a
wireless transceiver while traveling every new grids. To reduce communication between
robots, only the leader sends the position information to its followers and does not take
any feedback from them. Similarly, a follower which is the leader of the next triangular
group sends its position to its followers. Follower robots estimate a safe distance from the
information of leader position.

Send =

{
Position if obstacle = false
NULL otherwise

(9.1)

9.3.3 Path planning in cluttered environment

One half the interior angle between the leader and follower robots is denoted by θ whose
unit is degree/100. Let P (f1|l) indicate the probability of obstacle existence with respect
to the leader robot sensing value, whereas P (l) represent the probability of obstacle ex-
istence with respect to the position of leader. The value of P (l) is always 1 since the
leader only communicates when it finds an obstacle. Therefore the probability of existing
obstacle with respect to the follower position can be given by

P (f1) = P (f1|l)× p(l)
= (1− θ)× 1

It is obvious that the path distortion (i.e., probability of unexpected obstacle in the
navigating path) depends on the angle θ, since the leader robot does not know the situation
perpendicular to follower robots due to the triangular formation. We use the EPBHA
algorithm for obstacle avoidance. In swarming purposes, robots do not communicate to
others while avoiding any obstacle. This behavior enhances the efficiency of avoiding
obstacles within a short period of time but restricts the minimum limit of interior angle.
In Fig. 3, Sd and Id represent the sensing range and inter-robot distance. Moreover, the
blue dotted circle is the sensing boundary based on radius Sd. While the leader robot
avoids an obstacle by changing its position to the left or right side, it should be longer
than (Id ÷ 2), since the leader movements also affect the follower path plan. This function
is further divided into two functions:

a) Obstacle definition and avoidance: Robots identify the type of obstacle from
the number of active sensors as detailed below:

1. Easy: single-sided obstacles The number of active sensors is one, e.g., either
front, left, or right. Robots avoid this type of obstacle by moving towards the
goal direction.
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2. Medium: partition-type obstacles The number of active sensors is more
than one except upward and bottom sensors, e.g., either Π or Γ shape. Robots
pass over the obstacle.

3. Hard: one-side open box shape obstacles The number of active sensors is
more than one, including upward or downward sensors. Robots move backward
diagonally.

b) Waiting for the leader instruction: Since the leader does not communicate
while avoiding obstacles, followers wait after arriving in their goal given by the
leader. However, as soon as a new goal is informed, they boost their speed to
achieve that goal position.

Obstacle

Sensing boundary

Sd

Id

f1
f2

l

Figure 9.3: Path planning for obstacle avoidance

Below is a sketch of the proposed algorithm, incorporating the above-mentioned func-
tion modules: the common goal position is defined in terms of the leader position, therefore
the given orientation of group is automatically adjusted for others.

Algorithm 9.3.3: Common goal planning(x, y)

repeat
gridMaking()
read sensor value
if obstacle exist

then EPBHA()
else costEstimation()

findMinimumIndex() and send(Position)
compare(UAV Pos(x, y), goalPos(x, y))
if goalPos(x, y)− UAV Pos(x, y) == desired accuracy

then xy search is finished
until xy search is not finished
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Algorithm 9.3.4: Individual goal planning(y, z)

repeat
gridMaking()
read sensor value
if obstacle exist

then EPBHA()
else costEstimation()

findMinimumIndex()
compare(UAV Pos(y, z), goalPos(y, z))
if goalPos(y, z)− UAV Pos(y, z) == desired accuracy

then yz search is finished
until yz search is not finished

Algorithm 9.3.5: Follower robot path planning(x, y)

repeat
Receive(leaderPosition)
Estimate(ownPosition)
gridMaking()
read sensor value
if obstacle exist

then EPBHA()
else costEstimation()

findMinimumIndex() and send(Position)
compare(UAV Pos(y, z), goalPos(y, z))
if goalPos(y, z)− UAV Pos(y, z) == desired accuracy

then yz search is finished
until yz search is not finished

9.4 Simulation Result

Six infrared sensors having 0.5m range and 45◦ angle of detection are mounted on top,
front, right, left, back, and bottom of every robot, respectively. The sensor data is
assumed to be accurate, noiseless, and achieved instantaneously. As this paper does not
deal with a low level control system, dead reckoning and/or other aerodynamics errors
are assumed to be negligible. There is no a priori information such as map or pre-
specified path. The initial position of every robot is in a stable hovering position. Each
robot is capable of avoiding collisions and re-planning its path in real time. If the path
planner fails to generate a safe path within a bounded time, collisions may result. It is
advantageous to form a small group to minimize communication delays between robots
and expect fast responses from followers. The proposed algorithm accelerates the overall
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team speed, and followers require comparatively less time to find their path and effectively
carry out other missions. Thus we can create a binary tree [75] structure to form a large
team, where the node will be the leader and leaves will represent the followers. Once a

Figure 9.4: Vehicle trajectory analysis. The top graph represents the leader trajectory,
and the middle and bottom graphs represent the follower trajectories (robot no. 3 and 5
depicted in Fig. 5(c)), respectively.

huge triangular shape is formed, the members on the boundary have main responsibilities
to make decisions for overall team maneuvering. The leader does not communicate to
followers while avoiding obstacles. Therefore, followers wait until they receive obstacle
free path coordinates from the leader. This will boost the speed of path planning for
followers. As shown in Figure 4, followers exhibit faster translation compared to the
leader.

In short, every follower decides its path either: 1) self avoidance using its sensors, or 2)
prediction of obstacle position using the leader’s heads up. Predicting obstacle positions
offers fast path planning for followers, while self avoidance ensures safer path planning
despite of sensing errors. Open loop communication also increases overall communication
speed, since the leader does not need any feedback to be confirmed regarding the exact
positions of its followers. We have transformed 3D path planning into two separate XY
search and YZ search problems to reduce computational complexity and improve planning
efficiency.

As seen in Table 1 [12] , the triangle geometry offers higher converge density and better
connectivity. While following the leader instructions, two neighboring robots may collide
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Table 9.1: Comparison of lattice typed network pattern

Triangle Square Hexagon

Geometry

ri ri
ri

Coverage Area
√
3
2
× n× (du)

2 n× (du)
2 3×

√
3

4
× n× (du)

2

Coverage density 1.2
(du)

2
1

(du)
2

0.78
(du)

2

connectivity 6 4 3

with each other in the same plane during obstacle avoidance. To cope with this problem,
robots create a different layer while passing through a narrow passageway. With this
layered formation, robots maintain the pre-defined triangular geometry but do not fly at
the same height. This feature increases the volume flow rate of flocking, when passing
through a narrow opening. By using [13] illustrated in Fig. 5, we have defined the
common goal and individual goals and decided the common goal position based on the
first leader robot position (robot no. 1), while followers maintain their geometric shape
by maintaining the triangular configuration. After acquiring the common goal position,
the leader robot moves toward its individual goal position that is located underneath the
table.

To recapitulate all, we propose a heuristic approach to aerial flocking which ensures
lesser computational complexity, high volume flow rate, and lesser communication delay.
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Leader Robots

Follower Robots

(a) Initial stable flying condition

Obstacle avoided by leader

Followers awaiting for 
leader comment 

(b) Obstacle avoidance by the leader

Obtaining common goal

by leader robot 1

Robot 3

Robot 5

(c) Obtaining common goal by the leader

Goal position for 

         Robot 1

(d) Moving towards goal position

Individual Goal

(e) Obtaining individual goal position

Cost estimation

Distance remaining
to achieve goal 
position

(f) User interface

Figure 9.5: Aerial flocking simulation snapshots
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Chapter 10

Path planning Algorithm 3

A Fast Algorithm for Building Intensity Contour Maps

In this study, a fast algorithm is proposed to create a surrogate model of intensity contour
map from a limited number of intensity samples of the radiation field. Unmanned aerial
vehicles (UAVs) have been considered as the most promising technology for on-the-spot
investigation of accidental radiation releases. However, without a priori knowledge on
the whereabouts of the source of radiation substances leakages, it is very difficult to
select the region of interest and appropriate measurement locations which are deemed to
contain the most valuable information. Although sequential surrogate modeling provides
a global picture of the radiation exposure of an area, particularly for fast emergency
response, all the regions are not as informative as to explore. Therefore, to minimize the
number of UAVs and the operating time required to explore the whole area, we propose
a single UAV path planning algorithm for building an intensity contour map with the
budget based greedy algorithm. Furthermore, we have demonstrated the efficiency of the
proposed algorithm with the V-rep robot simulator and analyzed the contour map by
numerical simulations using Matlab.

10.1 Introduction

Natural disasters are sometimes inevitable. Thus, effective emergency relief and disaster
recovery coordination can be facilitated by immediate on-the-spot investigations. For
instance, if radioactivity levels spike in areas around nuclear power plants, it is very im-
portant to find contaminated hotspots and leaks to quickly characterize the severity of the
situation. Therefore, this paper aims at proposing a robotic algorithm to model, charac-
terize, and localize radiation hotspots in unknown environments, creating a preliminary
yet informative radiation map. When considering robots for a variety of rescue missions,
unmanned aerial vehicles (UAVs) come to first priority. Among the family of UAVs,
quadrotors have achieved more popularity for surveillance and rescue missions because
their kinematics and dynamics support hovering even in indoor environments. However,
surveillance, patrolling, and rescue must be accomplished within a limited time frame due
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to quadrotors’ short battery life. Therefore, an efficient navigation algorithm is needed
for obtaining informative radiation maps. There are several challenges to characterize
and localize radiation hotspots associated with quadrotor path planning in unknown en-
vironments. The problems can be summarized as: 1) how to model an unknown area
contaminated by radiation, 2) where to sense to model and localize radiation hotspots,
and 3) how fast contaminated area could be characterized.

Various types of devices can be used to detect radiation, e.g., Geiger counters, spec-
troscopy systems, etc. In nuclear search, the strength of the signal relative to noise (SNR)
has been considered to measure the intensity of radioactive materials in a certain posi-
tion, where the contaminated areas behave alike anisotropic field and it is very hard to
sense and model the environment by in-situ active sensing. In fact, the sensor yields
similar values for those areas which are not spatially distant. The problem turns into a
more acute form, since cumulative effects of radioactive materials make it ungovernable
to identify their individual existence by intensity values. However, to make the decision
for exploring among all the areas AT , where the robot ought to go in an unknown en-
vironment to get a significant sensing value difference so that we can avoid the problem
of in-situ active sensing in anisotropic fields, we want to sense some areas AS those are
spatially distributed so that coverage area A would be minimized. Therefore, we want
to develop an intelligent algorithm by which regions of interest could be converged into a
minimum coverage area for rapid rescue mission.

The contribution of this paper can be summarized in the following points: 1) modeling
of an anisotropic radiation field, 2) reduction of regions of interest to find the radiation
hotspots, 3) on-line preliminary contour map building technique, 4) faster exploration
algorithm for UAVs to localize radiation hotspots, and 5) a novel approach to the problems
of localization, classification, and mapping in anisotropic fields.

10.2 Related Work

The problem of exploring an unknown environment with mobile robots has been studied
intensively in the past. Dang [29] reported that learning an unknown environment is an
online NP hard problem. However, those algorithms were discussed as offline algorithms
in his paper. Later, online versions of those algorithms were proposed e.g., online TSP,
online Chinese postman problem, etc. Rudlof [36] revived several techniques of graph
theory for exploring an unknown environment defined as a fundamental problem of online
robotics. He also outlined the category of graph depending on objective function. Moni-
toring spatial phenomena with sensor networks or mobile robots is often achieved by the
concept of multi-robot exploration algorithms, i.e., leader follower approach [27,68], cen-
tral coordination mechanism [1], frontiers [91] which are boundaries between explored and
unexplored area. Another approach is based on the minimization of the energy consump-
tion by robots to converge the area [62]. Inspiration from biology has also been accounted
to solve this problem [26]. Furthermore, several authors proposed mutual information
based path planning to monitor the environmental phenomena [10]. Bayesian frameworks
have been further employed for rapid source localization and characterization [79]. This
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is one of the best time optimal algorithms to monitor dynamic environments [22].
A key problem of robotic environmental sensing and monitoring is that of active sensing.

[5] stated the problem of active sensing as a problem of controlling strategies applied to the
data acquisition process which will depend on the current state of the data interpretation
and the goal or the task of the process. To minimize the uncertainty in modelling and
predicting an environmental phenomenon, Dolan et. al. [15] proposed Gaussian process-
based anisotropic fields and they also reported that it can improve time efficiency while
preserving near-optimal active sensing performance.

Recently, Krauseet al. [56] discussed the problem of autonomous robotic exploration,
automatic diagnosis, and activity recognition as artificial intelligence problems. They
illustrated the effectiveness of sub-modular functions on problems of monitoring environ-
mental phenomena in contrast to heuristic approaches which cannot provide performance
guarantees. Furthermore, they also showed that the multiple robot problem can be re-
duced to optimizing paths for a single robot [76]. We have considered the problem of
conducting rapid rescue mission in an unknown radiation contaminated environment.
In our approach, which is basically inspired by the budget based greedy algorithm and
Gaussian process-based anisotropic fields, a single robot tries to converge the radiation-
contaminated area in two phases: In the learning phase, the robot discovers the highest
intensity area to get experience about the intensity gradient level in the environment.
Afterward in the execution phase, the robot tries to localize the hotspots of contaminated
sources via actively sensing an unknown area.

10.3 System Models

Detection of radio active materials in an unknown environment is similar to create an
online map in an unknown environment. Our focus is to provide accurate and energy-
efficient localization of radioactive materials by reducing exploration areas from a given
area. Based on the intensity value sensing, the coverage area for exploration can be
converged to detect the most probable area of radioactive materials being leaked, enabling
to create a real-time gradient map from the radiation field. Once the gradient map of
radiation contaminated area is created, we can quickly narrow down our region of interest
to further accurately localize the radio active materials. The total area (AT ) is sub-
divided by several coverage areas (Ai = {A1, A2, A3, ..., An}) that can be expressed using
the graph theory G = (V,E), where V,E are the vertex and edge of exploration area
Ai. In this paper, we focus on the convergence of coverage area based on the maximum
intensity level of radiation

AT >

n∑
i=1

Ai (10.1)
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and the efficiency of exploration is defined by

Ef =

n∑
i=1

Ai|I

AT
(10.2)

To converge the coverage area we have sub-divided the problems into the following two
steps:

1) Measure the intensity of coverage area: The intensity of radiation for a specific
area(Ij = {I1, I2, I3, ..., In}) is inversely proportional to the square of the distance
from the source of radioactive material. Therefore, the relation between the intensity
and distance motivates bringing the sensor to the source as closely as possible.
However, our target is to classify different gradient layers depending on the highest
intensity value obtained from the field and which layer is important to explore to
find abrupt increments in radiation value (details follow later).

2) Minimize the traveling distance to cover the area: All the vertices of G =
(V,E) need to be explored to measure the intensity values of coverage area Ai.
We have restricted the maximum sampling points denoted by N to be 5 (N =
{N1, N2..., N5}) around the robot position Pi ∈ R2 . If the environment is cluttered,
the traveling sales man algorithm is implemented to minimize the exploration dis-
tance.

Let, for a given position Pi, the intensity effect be defined by

I =

{
n∑
j=1

Ij|Pi ∈ R2.N

}
(10.3)

Next, the UAV maintains the same orientation to sense the environment in an anisotropic
field given by

ψi+1 = ψi (10.4)

While visiting neighbor nodes, the UAV derives the intensity gradient of each node with
the same orientation. Among all of the nodes, the UAV stores the highest intensity node.
The gradient of intensity in a specific neighbor point is defined by

∇INi
=

[
∂I

∂x
î+

∂I

∂y
ĵ

]
(10.5)

Now, the gradient matrix of given coverage area can be given by

IAi
=


IX1
N IY1

N

IX2
N IY2

N
...

...
IX5
N IY5

N

 = ∇Imax
i (10.6)
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However, to detect the contour shape in execution phase, besides the magnitude of inten-
sity, we are rather intend to determine the direction of gradient which is defined by

ui = k.dir (∇INi
) (10.7)

where dir() function is defined as

dir (v) =

{
v/||v||2

0
,

if ||v||2 6= 0
otherwise

(10.8)

The phenomena could be explained from any arbitrary initial state, the UAV finds
the gradient direction with respect to its local coordinate system. Changing sampling
orientation is defined as

Change orientation (Oi) =


1
1
0

,
Costpi → 0
if Ai /∈ TA
otherwise

, (10.9)

implying that the switching conditions depend on the geometry of area and the magnitude
of intensity.

Furthermore, we attempt to minimize the coverage area compliant to the reduction of
UAV flight time. To calculate the total UAV flight time required, we need to consider
both the exploration time te and sensing time ts. Cortex [13] described the procedure of
taking radiation measurements in such a way that the robot stays in a cell (an exploration
area is discretized by a large number of cells) until the desired variance threshold reaches.
However, the sensing time includes the computation time as well. Hence, the total flight
time tf is obtained by

tf = te + ts (10.10)

10.4 Algorithm Description

The main algorithm is subdivided by the following two functions: i.e., learning phase and
executing phase. Initially, the robot does not have a priori knowledge about the intensity
gradient field and hence in the learning phase, it tries to get experience to radiation
gradient level of a given area, AT .

10.4.1 Learning phase

The objective of learning phase is to converge to the highest radiation region, where the
intensity value is maximum. The learning phase has two sub-phases: i.e., move to the
maximum intensity region by sensing the environment in a spatially distributed way and
classify the different intensity level. After finding the peak intensity of radiation field,
the next objective is to classify the environment into different gradient layers. The areas
colored differently in 10.3 indicate the different gradient layers. An effective classification
of radiation field is a very difficult task without having a priori knowledge of radiation
field. Therefore, we have a novel budget function to classify the gradient layer. This
phase consists of the following sub-functions.
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1 Intensity sampling: Let Pi be the coordinate of UAV and ∀Ni are located at a
uniform θ interval. The angle θ depends on the field of view of UAV given by

θ =
Field of view

Sampling number
(10.11)

Figure 10.1: Spatially distributed sampling

The sampling point distance di is determined by the intensity value. The sampling
distance also indicates the coverage area Ai. The sampling distance di is not the
same for every neighbor point Ni, if there exists obstacles. The linear movement of
sampling point will be stopped by the obstacle. We assume that for every sampling
point, there exists a path among them. In this state the graph is K5 which is a non-
planar graph. Therefore, to use the Traveling Salesman Problem (TSP) algorithm,
we converted this non-planar graph to a planar graph. TSP gives the shortest path
to visit all the nodes at most once. If ∃INi

> IPi
, the UAV moves to PNi

for the
specific index i.

di∞ 1
IPi

where,

→ di = k1
1
IPi

k1 = performance gain
(10.12)

The value of K1 indicates the performance speed. However, larger values of K1 will
result poor gradient map acquisition.

2 Calculation of Coverage area: It is obvious from Fig. 2 that there are four
sequential triangles to make a coverage area Ai. The traveling distance between two
consecutive nodes is defined by ti = {t1, t2, t3, t4}
Hence,

Ai =
1

2

{
4∑
i=1

(ti × di)

}
(10.13)
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Figure 10.2: Coverage area

3 Online Path Planning to minimize traveling distance: TSP is basically an
offline NP hard algorithm. Therefore, we developed an online version of the al-
gorithm. If we focus on every single pixel captured by the vision system, it will
increase the computational complexity a lot. Instead of looking every pixel, we
want to follow the path through our sampling point and adjust d for valid explo-
ration. Furthermore, TSP cannot provide an exact solution for huge numbers of
samples. We therefore restricted our traveling points to be 5 sampling points. The
main idea underlying for a given graph G = (V,E), we do not know the order of
the graph (n = |V |), and accordingly the total number of edges for the given graph
is also unknown. Recalling Fig. 1, the UAV does not know the total number of
nodes and edges before exploration, however for exploration to each Ai, the number
of edges (|EAi

| = 6) are fixed.

4 Intensity calculation: Radioactive materials are characterized by anisotropic
fields that exhibit a higher spatial correlation along its forward direction than its
perpendicular direction. Initially, we assume that the UAV starts to explore the
environment, where the intensity of radiation is low, and as it further proceeds, the
intensity will increase according to its property. Furthermore, we consider Gaussian
process based anisotropic field for predicting the phenomena of spatially distributed
intensity over the environment. To mitigate the problem of active sensing versus
computational complexity trade offs, we only focus on the uncertainty to measure
the intensity of spatially distributed sampling points. The covariance structure is
defined as

σpi = σs
2 × E + σn

2δpi (10.14)

where

E = exp

{
−1

2

(
PNi+1

− PNi

)T
M−2 (PNi+1

− PNi

)}
In a transect sampling in neighborhood points, σs and σn represent the signal and
noise variance respectively. M is the diagonal matrix which indicates the correlation
or similarity between measurements along the horizontal and vertical directions, and
δPi

is the Kronecker delta of value 1 if Pi = PNi
and 0 otherwise.
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Let the sampled location be denoted by s and a column vector zs of corresponding
measurements. The mean and covariance matrix of Gaussian process are defined as

I = µu|s = µu +
∑

us

∑−1
ss (zs − µs) (10.15)∑

uu|s
=
∑

uu
−
∑

us

∑−1

ss

∑
su
, (10.16)

where µu or µs is a column vector with mean components for every neighbor position
PNi

, and, for corresponding location,
∑

us or
∑

ss represents a covariance matrix
with covariance components σPi

and
∑

su is the transpose of
∑

us.

Eq. 10.15 predicts the sensor values uncertainty of unobserved locations, whereas
Eq. 10.16 yields the quantification of its prediction. Finally, from Eq. 10.16, we
developed the gradient matrix ∇I based on the criteria that we discussed on system
models.

5 Concave problem solver: We assume that the intensity of the radiation field will
be high at a certain position and afterward it will decrease similar to the concave
problem. Therefore, a typical greedy algorithm can be implemented to find the peak
intensity value of radiation field but it also calculates upper bounds for further com-
parison. During environmental mapping, Gaussian normal distribution is assumed
to predict the next step which is closed under linear transformation.

The maximum intensity of a coverage area among five sampling positions is recorded
as Imax

i, where i indicates the step number.

If X1 = Imax
1 and X2 = Imax

2 are the first and second observed values, respectively,
then the prediction of next observation value of X̂3εImax

3 can be obtained by [66]
as follows:

X̂3 =
aX1 + bX2 − (a+ b)µ√

a2 + b2
+ µ, (10.17)

where µ is the mean of observed values and a, b are arbitrary real numbers. However,
we adjust the values of a, b after sensor measurements and remember those for each
step.

Theorem 1: Greedy algorithm gives a single solution of (a, b) to express the linear
relationship to X̂3 with (X1, X2).

Proof: Assume that A1, A2, A3 have the same intensity distribution since they
belong to the same gradient layer. Given (X1, X2) previous intensity values, where(
X1 = Imax

1, X2 = Imax
2
)
. X̂3 can be measured after reaching at A3. µ is assumed

to be equal to the maximum intensity value recorded in each coverage area Imax
i.

Hence, we can obtain the values of a and b as follows:

We assumed that initially the robot is at a position with low intensity level and
as the robot proceed toward the inside of AT through Y -Axis, the intensity value
is supposed to be higher. After covering an area, the maximum intensity value is
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Algorithm 7 Greedy algorithm for determining relationship

1: for a = 1; X̂3 ≥ Imax
3; a+ + do

2: for b = 1; b < 10||X̂3 ≥ Imax
3; b+ + do

3: X̂3 = aX1+bX2−(a+b)µ√
a2+b2

+ µ . Estimating(a, b)

4: end for . Imax
3 is measured value

5: end for

recorded and attached to the gradient level. Proceeding through the phase that in-
dicates moving toward the maximum intensity value will engender a frontier where
the robot would be trapped by the highest intensity region. However, it would be
computationally expensive to identify the deadlock region by comparing all the tra-
versed region. Therefore, immediate consecutive two previous regions are accounted
to determine the deadlock region.

Deadlock =

{
1 if Ai ∈ {Ai−1 ∪ Ai−2}

0 otherwise

6 Identification of gradient layer:
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Figure 10.3: Intensity gradient level due to radiation

Recalling the previous section, A is the set of area explored and I(Ai) is a func-
tion to calculate the maximum intensity for the intended area explored. However,
the greedy algorithm discussed in the concave solver is not only useful to find the
peak position, but also helpful to predict and to estimate errors of prediction field.
Furthermore, classification can be solved by comparing the intensity distribution of
areas rather than comparing the maximum intensity value.

Theorem 2: Assuming that I (Ai) = Imax
i;where, i = (1 to 5); therefore A4 would

have same distribution if X4 > I (A4) can be estimated by a and b which are calcu-
lated in previous step.
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Proof: Rewriting Eq. (10.17) as follows(√
a21 + b21

)
X̂3 = a1X1 + b1X2 − (a1 + b1 − 1)µi

CiX̂i = ai−2Xi−2 + bi−2Xi−1 −Di−1(generalized)
, (10.18)

where Ci means the gain of X̂3 which belongs to real number and C > 0; Di is
the stability of distribution. If ∀Xi ⊂same distribution, incremental |Di| indicates
the higher stability. However, the property of stability determines the distribution
which is either comparable or not. If X̂4 has higher stability, we can conclude that
the comparison is acceptable to explain the linear relationship of X̂4 to previous
related values. The value of Ci indicates the element of budget set B for exploring
an area which has the same intensity distribution.

X̂4 =
a2X2 + b2X3 −D3

C3

where, i = 4 (10.19)

If the explored area has a different intensity distribution (e.g. A5) compared to
others, the gradient of budget F (B) will be changed to compensate the different
value of X̂5. The gradient of budget is defined as

F (B) = ∇(B) = (Ci+1 − Ci) (10.20)

Now we can conclude that the budget gradient will be different whenever any of
previous coverage areas exist on different distribution. Classification of distribution
decision is taken as follows:

Same distribution =

{
1 if F (B) > 0
0 otherwise

(10.21)

However, the change of intensity level also indicates the change of gradient level in
the continuous domain. Therefore, we have to consider the gradient of budget func-
tion to classify different gradient layers. For finding the gradient level of unknown
environments, the robot needs to move through the same gradient level around the
environment. Therefore, the learning phase assigns an intensity value and starting
position of gradient level to the executing phase.

10.4.2 Executing phase

In the learning phase, the robot will

• [1] Control: values of (a, b)

• [2] Calculate: the gradient of budget F (B)

• [3] Observe: the stability Di
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However, in the executing phase, our objective is to find the specific contour shape.
Therefore, the robot would choose that gradient layer to explore where the intensity
drastically increases among the classified layers. The classified gradient layer is considered
as local maxima and by taking derivative of local maxima we can easily achieve a global
maximum layer. Furthermore, in this phase, the robot does not calculate the real intensity
value rather it tries to follow a fixed intensity value. Therefore, the intensity measured
function turns out to be the cost function in this phase. After the learning phase, the
robot memorizes the starting index of position Pi for different gradient levels, as a result,
it is easier in the executing phase to move through the layer which has the same intensity
value with a constant variance. To model this environment, we define the cost function
in the form of Gaussian normal distribution.

costPi
=

1

σ
√

2π
exp

{
−(x− µ)

2σ2

}
+Wc ×Di, (10.22)

where the mean, µ is the recorded intensity value assigned from the learning phase, and
the variable x is the current intensity value. The standard deviation σ is the difference
between the assigned layer and immediate previous layer in terms of intensity value. D is
the tability of measured cost that can be calculated by Eq. (10.17). Wc is the weighted
constant value.

Furthermore, to explore through the assigned gradient level, diagonal movements are
preferable in contrast to back and forth movements since during back and forth move-
ments, it may be trapped in deadlock regions due to the limited intensity boundary.
Therefore, diagonal samples are weighted by multiplying with some arbitrary constants.
The first part of cost function (before weighted constant part) will determine the position
which has a similar intensity compared to the assign gradient layer. The second part of
cost function (weighted by stability variable) will correct the estimation in terms of sensor
accuracy. As the phenomena could be explained among the five candidates positions, the
robot will choose the next position not only based on maintaining similar intensity values
but also accounting the resolution of gradient fields.

Therefore, we may summarize that the first part of cost function will provide the gra-
dient layer that would be filtered by the second part of cost function.

10.5 Simulation result

We have verified our algorithm using the V-rep simulator, where the open dynamics engine
has been used to obtain the simulation field data. The robot vision is considered as 180
degree where 5 samples point are taken at 35 degree angle interval. The sampling distance
can be estimated by the total area and expected number of coverage areas to model the
environment. However, too small sampling distance cannot yield a significant difference in
sensing values, whereas too large sampling step may avoid detecting intermediate gradient
layers. Hence, the sampling distance is determined empirically. Since there is no obstacle
in this simulation, our online TSP always yields the same sequence to explore. The
UAV has to keep the same orientation to sense every sampling vertex in the learning
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phase, because the correlation matrix M cannot produce relevant outputs with respect
to different orientations of UAV. The environment is modeled by Gaussian distribution,
where three radioactive materials exist in three different directions that yield cumulative
effects on the environment. Since the detection solely depends on the intensity value,
we can draw a contour depending on the gradient layer expected to cover radioactive
materials. We set up a 20×20meter floor, where three same effect of radioactive materials
exist in different directions. The UAV starts to explore the environment from Y -Axis in
the learning phase, and find the contour in X axis in the executing phase. The learning
phase is ended by the deadlock situation and Table 1 shows the normalized data sets from
the simulation field. Every coverage area remains the same due to absence of obstacles
in this simulation. Hence, without calculating the coverage area, we rather remember the
index number of coverage area. At least three steps are required to predict forthcoming
state, hence the index of coverage area as well as other parameters start after initial
three steps. The gradient layer boundaries are determined by the negative value of dC

dAi

which indicates the local maximum budget from the budget set F (B) with respect to the
coverage area. Finally, contour exploration execution decision has been made by taking
one more derivation among the local maximum budget i.e. d

2C
dAi

2 . Plotting the data, the
following graph can be obtained.
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Figure 10.4: Analysis of radiation field graph: gray line- stability of measurement,
bold black -line budget, dashed black line -error of estimation, red rectangular area- layer
boundary, red boxed number -subjected area

The budget is calculated from previous consecutive two observations values. When the
budget is not satisfied to predict the field state, i.e., the budget value is negative, the
gradient layer is supposed to change at the previous area. Table 1 clarifies the idea of
gradient layer detection. After the learning phase, 5 gradient layers have been classified
that could be explained by the analysis of radiation field graph and Table 1.
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Table 10.1: Boundary layer detection
Area Index Budget gradient Max budget

(Ai) (F (B))
(
d2C
dAi

2 )
)

9 -0.324 0
15 -0.243 -0.081
18 -0.713 0.470
28 -0.675 -0.038

From the area index 8 to 9, the budget slope decreases by 0.32461 that indicates the
boundary region (red rectangular area) of previous gradient layer and after entering into
the new gradient layer area 10, the slope increases again. Thus, the rest of the layers
follow the same rule. After taking one more derivative of budget from identified gradient
layers, we can determine which layer is more important for the executing phase. The layer
boundary at area index 18 shows the peak value of budget among others, as a result the
gradient layer boundary around the area index 17 and 18 will be further supervised to
determine the full shape of contour. After detecting the contour in the execution phase,
we have compared our gradient layer detection with the simulation result of Matlab [20].
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Figure 10.5: Simulation result and intensity contour map

Fig. 10.5 shows the combined pictorial view of our simulation field and Matlab graph.
For given setup of radioactive material, Matlab shows five prominent gradient layers, i.e.
black, red, orange, yellow, and white. The area index between 17-18 exists on the red
boundary layer. Therefore, in the executing phase, the gradient layer classified by the
red color is subjected to further explore to determine its contour shape. However, after
discovering the contour, we have seen that all three radioactive materials have covered by
the contour. It is explicitly obvious from Fig. 10.5 that the coverage area Ai marked by
separated orange triangular shapes are significantly lesser than the total area AT .
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Conclusion and future direction
This chapter addressed the problem of teleoperated and semi-autonomous flight control
of a quadrotor UAV. It was conducted as a research project at the School of Information
Science, Japan Advanced Institute of Science and Technology(JAIST). Detailed mathe-
matical modeling of the quadrotors kinematics and dynamics was provided. A modular
PID approach was proposed for the semi-autonomous control of quadrotors in general,
without the need for a precise mathematical model of their complex and ill-defined dy-
namics. Although we have received 6 axis motion information, without having an indoor
GPS system we can not control the quadrotor’s position perfectly. The future work is
directed towards achieving fully autonomous flight in indoor environments. Therefore, we
would focus on indoor localization system which is a fundamental problem in the field
of robotics. To solve this problem vision based localization would be considered where
multiple Kinect would be implemented to avail the global position of UAV. Moreover,
surveillance in unknown indoor environments is a challenging mission, since substantially
more compact spaces and obstacles exist compared to spacious outdoor environments.
The proposed first path planning algorithm offers one of the key technologies for low-cost
surveillance UAVs in complex, cluttered areas ensuring low computational complexity. In
addition, this algorithm envisions a new direction for online path planning, based on the
fact that the obstacle does not always hinder us from reaching a goal position, rather some-
times it is helpful to reach a goal position easily. To recapitulate, we may conclude that
first work proposed a universal path planning algorithm of quadrotor UAVs equipped with
limited range sensors and computational resources, particularly for small area surveillance
purposes. However, our second path planning algorithm eventually based on aerial flock-
ing in cluttered environments is challenging due to limited hardware resources and proper
swarm behaviors. As sticking to neighbor robots is not efficient in terms of overall team
maneuvering, a minimal internal communication scheme was proposed to increase the
team efficiency, where the triangular geometry offered better network connectivity and
coverage density. Furthermore, to cope with computational intractability for on-board
real-time computation, we implemented the exploration priority based approach yielding
a new aerial flocking controller for low-cost UAVs. Finally, third path planning work,
we have focused on converging our region of interest to detect and identify radioactive
materials for rapid rescue missions. The problem has been treated as the gradient layer
classification and identification of layer contour shape problem. We have classified the
radiation field into four different major gradient layers which were very similar to Matlab
numerical classification. Furthermore, we have also identified the most important layer
from which the radiation has drastically increased. Our method offers faster convergence
of areas of interest by partially mapping the environment, and effectively overcomes the
problem of sequential exploration over a whole area to model, map, and characterize the
environment.
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