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Model Checking Conformance of Design Model
to Its Formal Specification

Dieu-Huong Vu, Yuki Chiba, Kenro Yatake, Toshiaki Aoki

School of Information Science,
Japan Advanced Institute of Science and Technology
{huongvd, chiba, k-yatake, toshiaki}@jaist.ac.jp

Abstract. Verification of a design with respect to its requirement spec-
ification is important to prevent errors before constructing an actual
implementation. Existing works focus on the verifications where specifi-
cations are described using temporal logics or using the same languages
as that used to describe designs. In this paper, we consider cases where
specifications and designs are described using different languages. For
verifying such cases, we propose a framework to check if a design con-
forms to its specification based on their simulation relation. Specifically,
we define the semantics of specifications and designs commonly as la-
belled transition systems (LTS), and check if a design conforms to its
specification based on the simulation relation of their LTS. In this pa-
per, we present our framework specialized for the verification of reactive
systems, and we present the case where specifications and the designs are
described in Event-B and Promela/Spin, respectively. As a case study,
we show an experiment of applying our framework to the conformance
check of the specification and the design of OSEK/VDX OS.

Keywords: Specification, Design, Simulation Relation, Model Checking

1 Introduction

In a general process of software development, we start from informal require-
ments which target software is expected to satisfy. Such requirements are trans-
lated into formal specifications in order to describe them properly. We then
develop system designs as models of implementations. Finally, we construct im-
plementations based on the designs using programming languages. In this de-
velopment process, it is expected that designs satisfy requirements described by
formal specifications, because this allows incorrect designs to be revised before
significant investments are paid for actual implementations.

For verifying designs with respect to their specifications, existing works focus
on the cases where specifications are described using temporal logics or using
the same languages as that used to describe designs. In this paper, we consider
cases where specifications and designs are described using different languages.
For verifying such cases, we propose a framework to check if a design conforms to
its specification based on their simulation relation [17]. Specifically, we define the
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semantics of specifications and designs commonly as labelled transition systems
(LTS), and check if a design conforms to its specification based on the simulation
relation of their LTS.

In this paper, we present our framework specialized for the verification of
reactive systems, and present the case where specifications and designs are de-
scribed in Event-B [1] and Promela/Spin [9], respectively. Event-B is effective
for describing event driven systems, and Promela can also describe functions
of reactive systems as a set of (inline) functions. Figure 1 summarizes our ap-
proach. Firstly, we describe specification formally in Event-B model [19]. This
is to remove ambiguity and inconsistency in the specification which is written
in a natural language. Then, we generate execution sequences from this formal
specification. This is performed by a tool called execution sequence generator.
Execution sequences are represented as an LTS, and from each state, verification
conditions which must be met by the corresponding state of the design are gen-
erated. Finally, we apply model checking [3] to the design in combination with
the execution sequences to check the verification conditions. By this, we can
check the correspondence of state transitions, or simulation relation, between
the execution sequences and the design. This ensures that the design conforms
to the specification.

Generate

Design in Promela

Informal Specification

Specification 
in Event-B

Execution Sequences
Model Check

Simulation Relation

Fig. 1: Scenario for the formal verification of the design

In this paper, we present the formal definition of our framework, and as a case
study, we show an experiment of applying our framework to the conformance
check of the specification and the design of OSEK/VDX OS [15] (OSEK OS, for
short).

The paper is organized as follows: In Section 2, we show the definitions of
LTS and simulation relation. In Section 3 and 4, we present the definitions of
specifications and designs, respectively. In Section 5, we present the definition
of our verification framework. In Section 6 and 7, we present a case study of
verifying OSEK OS, and discuss the effectiveness of our framework. In Section
8, we cite related work. In Section 9, we conclude this paper.

2 Preliminaries

In this section, we introduce the definitions of LTS and simulation relation.
First, we show the definition of LTS which is used to represent semantics of

specifications and designs.

Definition 1. (LTS). A labeled transition system ( LTS, for short) is a tuple
〈Q,Σ, δ, I〉 where Q is a non-empty set of states, Σ is a set of actions, δ ⊆
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Q×Σ×Q is a transition relation, and I ⊆ Q is a set of initial states. We write
(p, a, p′) ∈ δ as p

a→ p′ ∈ δ.

Then, we define n-steps transition relation.

Definition 2. (n-steps transition relation). Let M = 〈Q,Σ, δ, I〉 be an LTS, Σ+

the set of non-empty strings of Σ, and p and p′ states. We say p′ is reachable
from p with respect to a string a1a2...an ∈ Σ+ by δ (denoted p

a1a2...an−→ p′ ∈ δ+),

if there exist states p1, p2, ..., pn−1 ∈ Q such that p
a1→ p1 ∈ δ, pi−1

ai→ pi ∈ δ for

2 ≤ i ≤ n− 1, and pn−1
an→ p′ ∈ δ.

Finally, we define the simulation relation based on the above definitions.

Definition 3. (Simulation relation). Let M1 = 〈Q1, Σ1, δ1, I1〉 and M2 = 〈Q2,
Σ2, δ2, I2〉 be LTSs, and f : Σ1 → Σ+

2 a function from Σ1 to Σ+
2 . Suppose a

relation �⊆ Q1 × Q2 is given. M2 simulates M1 with respect to � if for all
q1, q

′
1 ∈ Q1, q2 ∈ Q2, a ∈ Σ1 such that q1 � q2 and q1

a→ q′1 ∈ δ1, there exist

q′2 ∈ Q2 such that q′1 � q′2 and q2
f(a)→ q′2 ∈ δ+2 . If M2 simulates M1 with respect

to �, we denote M1�M2.

3 Specifications

3.1 Specification in Event-B

A reactive system is the system that responds to external events. A reactive sys-
tem is captured as a collection of services which respond to the invocations from
the outside. Event-B is the specification language which is useful to model the
event-driven systems like the reactive systems. Formal specification described in
Event-B is as a highly abstracted level description of the systems. This descrip-
tion mainly consists of state variables, operations on the variables, and state
invariant. The variables are typed using set theoretic constructs such as sets,
relations, and functions. The events (operations) specify substitutions, which
allow both deterministic and nondeterministic state transitions. Figure 2 illus-
trates a part of the formal specification of OSEK OS described in Event-B: (i)
the variables represent sets of entities managed by OSEK OS for instance tasks,
resources, and the ready queue; and (ii) the events describe system services such
as task activation, task termination, and resource getting. System services rep-
resent the interface between the operating system and the outside. Behavior of
events is described by value assignments to variables.

3.2 Formalization

We introduce the notion of models for specifications in our framework. Our
model of specifications is based on Event-B, but not restricted to it.
V is the set of variables. D is the domain, which is the set of values. Exp is the

set of expressions in specifications. An expression may contain variables in V,
values in D, arithmetic operator, and set operators. BExp is the set of boolean
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VARIABLES tasks, res, inr, evt, t_state, rdyQu, pri
INVARIANTS
 ta,tb·ta tasks tb tasks tstate(ta)=run tstate(tb)=run ta=tb 
EVENTS
activateTask = 
any t 
where grd1 : t  tasks, grd2 : t_state(t) = sus
then act1 : t_state(t) := Rdy, act2 : rdyQu := rdyQu  {t}
end
chainTask = 
any t1, t2
where grd1 : t1, t2  tasks, grd2 : t_state(t1) = run, grd2 : t_state(t2) = sus
then act1 : t_state(t1) := sus, act2 : t_state(t2) := rdy, act3 : rdyQu := rdyQu  {t2}
end

Fig. 2: A specification of OSEK OS in Event-B

expressions (BExp ⊂ Exp). A substitution is a mapping from V to Exp. We
note that value assignments are also substitutions because D ⊆ Exp. ACT is
the set of substitutions for specifications. A guard is a boolean expression. GRD
is the set of guards. An event is a pair 〈g, a〉 of a guard g and a substitution a.
E is the set of events. If e = 〈g, a〉 then we write grd(e) = g and act(e) = a. A
state is a value assignment. [exp]σ denotes the interpretation of the value of an
expression exp in a state σ. We say a guard g holds in a state σ iff [g]σ = tt. Init
is the initialization, which is the set of events whose guards hold for any states
and actions are value assignments. We denote σ

e−→ σ′ for an event e = 〈g, a〉
and states σ and σ′ if σ(g) holds and σ′ = {v 7→ [a(v)]σ | v ∈ V }.

Sematics of specifications is provided by specification models.

Definition 4. (Specification models). A specification model is a tuple S =
〈VS ,DS , ΣS , InitS , Inv〉 where VS ⊆ V is the set of variables used in S, DS ⊆ D
is the domain in S, ΣS ⊆ E is the set of events defined in S, InitS ∈ Init
is the initialization of S, and Inv ∈ BExp is the invariant of S. An LTS de-
rived from the specification model S is defined as MS = 〈QS , ΣS , δS , IS〉 where

QS = {σ | σ : VS → DS}, δS = {σ e−→ σ′ | σ, σ′ ∈ QS , e ∈ ΣS}, and
IS = {act(e) | e ∈ InitS}.

4 Designs and Environments of target system

4.1 Design in Promela

In Promela, service functions of reactive systems can be described by using
inline functions. The left hand side of Figure 3 illustrates a design of OSEK
OS. We call this model a design model. It is constructed based on the informal
specification of OSEK OS and described in about 2800 lines of Promela code,
according to the approach in [2]. It first defines data structures such as tsk,
res, and ready which represent an array of tasks, an array of resources, and
ready queues, respectively. Following these data structure, a set of functions are
defined. For example, _ActivateTask and _TerminateTask are the functions to
perform activation and termination of tasks, respectively.

Since a reactive system only defines a set of functions, it cannot operate by
itself. To operate it, we need an environment which calls functions to the reactive
system. In the case of operating systems, an environment means a software
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typedef TCB {int id, pr, dpr,   }
typedef RCB {int id, pr, tid,    }
TCB tsk[5];
RCB res[5];
int ready[25];
inline _schedule() {   }
inline _DeclareTask(tid, pr) {   }
inline _ActivateTask(tid) {   }
inline _ChainTask(tid, id) {   }
inline _TerminateTask(tid) {   }
inline _GetTaskState(tid) {   }

typedef Taskinfor {   }
Taskinfor tsk1, tsk2, tsk3;
      /* Invocations */
_DeclareTask(tsk1.id, tsk1.pr1);
_DeclareTask(tsk2.id, tsk2.pr2);
_DeclareTask(tsk3.id, tsk3.pr3);
_ActivateTask(tsk1.id);
_ChainTask(tsk1.id, tsk2.id);
_ChainTask(tsk2.id, tsk3.id);
_ActivateTask(tsk2.id);
_TerminateTask(tsk3.id);
_TerminateTask(tsk2.id);
_ActivateTask(tsk3.id);

Fig. 3: A design model of OSEK OS and its environment in Promela

application running on it. The right hand side of Figure 3 shows an example of an
environment for the OSEK OS design. We call this model an environment model.
It first defines entities in the environment such as tasks and resources. Then, it
defines a sequence of function calls to the OSEK OS. By combining the design
and environment, we can make a closed system which can operate by itself. We
call this model a combination model. In terms of Promela, a combination model
can be obtained by including the Promela code of the design into that of the
environment model. As we explain later, an environment model is constructed
from the specification model, and input to Spin to check simulation relation.

4.2 Formalization

P is the set of parameters (function arguments). A parameterized expression
may contain constants, variables, parameters and arithmetic operators. The set
of parameterized expression is denoted as PExp. A p-substitution (function body)
is a mapping from V to PExp. The set of p-substitution is denoted as PSubst. Id
is the set of identifiers (used as function names). For the simplicity, we assume
that functions has only one parameter. Design models are defined as follows.

Definition 5. (Design model). A design model is a tuple D = 〈VD,DD,PD, F,
ΣD, ID〉 where VD ⊆ V is the set of variables used in D, DD ⊆ D is the domain of
D, PD ⊆ P is a finite set of parameters for D, F is a set of function identifiers
defined as F = {id(p) | id ∈ Id, p ∈ PD}, ΣD is a relation such that ΣD ⊆
F ×PSubst, and ID ⊆ {σ | σ : VD → DD} a set of value assignments from VD
to DD.

Environment models are defined as follows.

Definition 6. (Environment model). An environment model for a design model
D is a tuple E = 〈VE ,DE , ΣE , IE〉 where VE ⊆ V is a set of variables used in E,
DE = DD is the domain of E, ΣE is a set of invocations to D such that ΣE ⊆
{id(v) | id ∈ Id, v ∈ VE}, and IE is a set of value assignments from VE to DD. An
LTS derived from the environment model E is defined as ME = 〈QE , ΣE , δE , IE〉
where QE = {σ | σ : VE → DE}, δE ⊆ QE ×ΣE ×QE, and IE ⊆ QE.

A combination of a design and an environment describes the execution of
the design according to the environment. An expression in combination contains
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constants fromD, variables in V, and arithmetic operators. The set of expressions
in combinations is denoted as Exp′. A substitution for combinations is a mapping
from V to Exp′. The set of substitutions for combinations is denoted as SubstDE.
For a mapping π from P to V and a parameterized expression pexp ∈ PExp,
pexpπ is the result of replacing each parameter p appearing in pexp by π(p).

Combination models are defined as LTS as follows.

Definition 7. (Combination model). Let D = 〈VD,DD,PD, F,ΣD, ID〉 be a de-
sign model and E = 〈VE ,DE , ΣE , IE〉 an environment model.

1. We denote σ
id(v)−→ σ′ for an invocation id(v) ∈ ΣE and states σ and σ′ if

there exist (id(p), a) ∈ ΣD and a mapping π : PD → VE such that π(p) = v
and σ′ = {v 7→ [a(v)π]σ | v ∈ VD ∪ VE}.

2. The combination model of D and E (denoted as D·E) is an LTS 〈QD·E , ΣD·E ,
δD·E , ID·E〉 where QD·E is the set of value assignments from VD ∪ VE to D
( states for the combination model), ΣD·E = ΣE, δD·E = {σ id(v)−→ σ′ | σ, σ′ ∈
QD·E , id(v) ∈ ΣE}, and ID·E = ID ∪ IE is the set of initial states of D and
E.

5 Verifying Simulation Relations by Model Checkers

In this section, we present an approach for checking designs against their formal
specifications based on simulation relations. We first present an overview, then,
we present formal definitions.

5.1 Overview

In our framework, the initial inputs are pairs of formal specifications and de-
signs of reactive systems. Suppose that M1 and M2 be two LTSs. We define M2
simulates M1 based on semantics of LTSs by extending the given relation on the
states. The states are value assignments which are mappings from the variables
to the values. Therefore, the relation on states of M1 and those of M2 are es-
tablished based on mappings R and C where R is the mapping from variables
of M1 to those in M2, C is the mapping from values in M1 to those in M2. The
left hand side of Figure 4 shows a relation between state p of M1 and state q of
M2. p relates to q based on R and C because u = sus in state p corresponds to
v = 1 in state q with mappings R(u) = v and C(sus) = 1. M2 simulates M1 if
for each transition in M1 from state p to state p′ and p relates to state q of M2,
there exists state q′ and a corresponding transition in M2 from q to q′ such that
p′ relates to q′. In the right hand side of Figure 4, a line arrow connecting p to
p′ represents a one-step transition from p to p′, and a dashed arrow connecting
q to q′ represents an n-step transition from q to q′. To check whether M2 sim-
ulate M1, we check if there exists a reachable state q′ from q such that v = 2
corresponding to u = rdy in p′ with mappings R(u) = v and C(rdy) = 2.

Figure 5 shows steps to verify the simulation between a specification and a
design using model checkers Spin: (step 1) Giving bounds for the verification



7

p p'

q q'

p

q

R(u)=v, 
C(sus)=1

[u=sus]

[v=1]

R(u)=v, 
C(sus)=1

[u=sus]

[v=1]

[u=rdy]

R(u)=v, 
C(rdy)=2

M1

M2

[v=2] ?

Fig. 4: Simulation Relation

and generate execution sequences from Event-B specification within the bounds,
(step 2) Generating environments of the target system and assertions from the
execution sequences and the given mappings between elements in the design and
those in the specification, and (step 3) Model checking simulation relation in
Spin.

Execution 
Sequence 
Generator

Design 
in PromelaSpecification 

in Event-B Execution 
Sequences

Bounds
Promela Code

Generator Environment

Assertions

Spin Model Checker

Mappings

Fig. 5: Checking simulation relation of the design and its formal specification (steps)

Giving Bounds In a specification, there may be infinitely many states and
transitions of target system because variables in Event-B obtain values in un-
bounded domains. Model checking does an exhaustive check of the system. It
needs a representation of the system as a finite set of all possible states. So,
abstract types in Event-B must be replaced by concrete types. Also, types have
infinite ranges of values like Int and Nat must be restricted as finite ranges.
By such restriction, the state space and the set of transitions explored from
Event-B specification become finite sets. This makes the LTS explored from the
specification finite. We define such restrictions as bounds of the verification.

Generating execution sequences from specification In order to generate
execution sequences, or LTS, from the specification and bounds, the generator
computes all possible transitions and reachable states. Every computed state
must satisfy the invariant. Started at the initialization, the generator enumer-
ates all possible values for the constants and variables of the specification that
satisfy the initialization and the invariant to compute the set of initial states.
To compute all possible transitions from a state, the generator finds all possible
values for event parameters of an individual event to evaluate the guard of that
event. If the guard holds in the given state, the generator computes the effect of
the event based on substitution of that event. When new states are generated,
we repeat this process to these states until no new states are generated.

Generating Evironment In order to verify that designs simulate their formal
specifications, environments of the target systems are constructed and combined
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with designs. As the result of such combination, we obtain combination models
which become the inputs of model checkers. Since environments trigger specific
behavior of designs by calling functions to the design, we construct environments
by representing possible behavior described in their specifications. For this, we
generate execution sequences as an LTS from the specification and generate the
environment by translating the LTS into Promela. The LTS represents possible
execution sequences of the specification within the input bounds as illustrated
in Figure 6(a)).

typedef Taskinfor {   }
Taskinfor tsk1, task2, task3;
_DeclareTask(task1.id, task1.pr1);
_DeclareTask(task2.id, task2.pr2);
_DeclareTask(task3.id, task3.pr3);
s0: 
if 
:: _ActivateTask(task1.tid) -> goto s1;
:: _ActivateTask(task2.tid) -> goto s2;
:: _ActivateTask(task2.tid) -> goto s3;
fi;
s1:
if 
:: _ActivateTask(task2.tid) -> goto s4;
:: _ActivateTask(task3.tid) -> goto s5;
:: _TerminateTask(task1.tid) -> goto s0;
:: _ChainTask(task1.tid, task2.tid)-> goto s2;
:: _ChainTask(task1.tid, task3.tid)-> goto s3;
fi;
...

s0:(sus,sus,sus)

s1:(run,sus,sus) s2:(sus,run,sus)

s5:(sus,sus,run)

s3:(run,rdy,sus) s4:(sus,rdy,run)

s6:(sus,run,sus)

AT(t1)

TT(t3)

AT(t2)

AT(t3)AT(t2)

CT(t1,t3)

CT(t2,t3)TT(t3)

(b)(a)

AT: _ActivateTask, CT: _ChainTask, TT: _TerminateTask
t1: task1.tid, t2: task2.tid, t3: task3.tid

Translation 
into 

Promela 
code

Fig. 6: Generation of environment from LTS

In Figure 6(a), the rectangles represent the states and the labeled arrows
represent the events that are enabled in each states. For example, three events
AT(t1), AT(t2), and AT(t3) are enabled in state s0, and five events TT(t1),
AT(t2), AT(t3), CT(t1,t2), and CT(t1,t3) are enabled in state s1. In our
framework, the states are defined as the value assignments; however, we show
them here as values, e.g. (sus, sus, sus), for readability.

The LTS is translated into the environment (e.g. from (a) to (b) of Figure
6). For this translation, we define a mapping from the events in the LTS to
the function calls in the environment. In general, it is one-to-many mapping;
however, in the case of reactive systems like OSEK OS, it is one-to-one mapping.
For example, in the sample case, we map the event ActivateTask(t1) in the
LTS to a function call _ActivateTask(task1.tid) in the environment. The
states and transitions in the LTS are represented by labels and if-statements
in the environment. The combination between the design and the environment
becomes a direct input to the model checker in step 3 of the framework.

Generating Assertions The desirable behaviors of the target system obtained
from the Event-B specification are encoded in imperative assertion statements
which will be added into appropriate locations in the environment and justified
by Spin model checker. Assertions are generated using the mapping R from the
variables in the specification to those in the design, and the mapping C from
the values in the specification to those in the design.
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Assertions represent the constraints on the simulation relation between the
specification and the design. In Figure 7, the above illustrates an execution
sequence explored from specification and the below illustrates that of the design.
Here, t, u are variables, and sus, rdy, run, wait are values, which are defined in
the specification. a, b are variables, and 1, 2, 3, 4 are values, which are defined
in the design.

Value of variables in states p0, p1, p2, · · · of the specification are evident
from the LTS. Value of variables in state q0 of the design is assigned evidently.
It is obvious that q0 relates to p0 because values of variables in these two states
preserve given R and C. However, the other states q1, q2, · · · reached from q0
are not evident. We use a model checker to explore these states of the design and
check whether q1, q2, · · · relate to p1, p2, · · · , respectively. In order to ensure
the simulation relation, for example for state q1, we expect that a = 2 and b = 1
to comply with R(t) = a, R(u) = b, and C(sus) = 1, C(rdy) = 2. Hence, in
order to check if q1 relates to p1, an assertion for state q1 is defined by a = 2
and b = 1. Such assertions are automatically generated from the interpretations
of states explored from the specification (step 2 of the framework), and they are
embedded in the corresponding states of the environment as an assert statement
of Promela.

p0
R(t)=a
R(u)=b
C(sus)=1
C(rdy)=2
C(run)=3
C(wait)=4

[t = sus]
p1

q0 q1

[u = sus]
[t = rdy]
[u = sus]

p2

[t = rdy]
[u = rdy]

[b = 1]
[a = 1]

[b = 1]
[a = 2]

[b = 2]
[a = 2]

q2

...

...

Mappings:

? ?

Fig. 7: Execution sequences of specification and design

Checking of simulation relation In the last step, we input the combination
model and the assertions to Spin to check the simulation relation of the speci-
fication and the design. If no counter example is found, then we say the design
conforms to the formal specification within the input bounds.

5.2 Formalization

We now give formal definitions of the relation between states, the bound, simu-
lation relation of two LTSs within the given bound, and steps in the framework.

Definition 8. (Relation between states). Let S = 〈VS ,DS , ΣS , InitS , Inv〉 be a
specification model, MS = 〈QS , ΣS , δS , IS〉 the LTS derived from by S, D =
〈VD,DD, PD, ID(PD), ΣD(PD), ID〉 a design model, E = 〈VE ,DE , ΣE , IE〉 an
environment model for D, and D·E = 〈QD·E , ΣD·E , δD·E , ID·E〉 the combination
model of D and E. We say a state σD·E ∈ QD·E relates to a state σS ∈ QS based
on mappings R : VS → VD and C : DS → DD (denoted σS �R,C σD·E), if for
any x ∈ VS and y ∈ VD, R(x) = y implies C(σS(x)) = σD·E(y).
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It is obvious that �R,C is a relation between the states. We omit R and C
from �R,C if they are clear from the context.

Definition 9. (Bounds). Bounds for LTS 〈Q,Σ, δ, I〉 are defined as a pair B =
〈G,H〉 of mappings G and H where G : 2Q → 2Q, G(Q) ⊆ Q, and Q′ ⊆ Q′′

implies G(Q′) ⊆ G(Q′′) and H : Q × Σ → {tt, ff} and for any state p ∈ Q,
there exist finitely many actions a ∈ Σ such that H(p, a) = tt.

For specifications in Event-B, we set bounds for range of values that variables
can obtain to finite sets. By this restriction, the state space and the set of events
applicable in each state become finite. We give mapping X for implementing
such bounds to generate LTSs. X is mapping from variables to finite sets of
values. We use ESX(σ) to denote the set of all events which are applicable to σ
and satisfy restrictions defined by X.

Suppose S = 〈VS ,DS , ΣS , InitS , Inv〉 be a specification model and 〈QS , ΣS ,
δS , IS〉 a LTS derived from S. With the mapping X, we define mappings G and
H as follows: G(QS) = {σ ∈ QS | ∀v ∈ VS .σ(v) ∈ X(v))}, G(IS) ⊂ G(QS),
and H(σ, e) = tt iff e ∈ ESX(σ).

Definition 10. (Bounded LTS). An LTS obtained by restricting an LTS M =

〈Q,Σ, δ, I〉 by bounds B = 〈G,H〉 is defined as M↓B = 〈Q̂, Σ̂, δ̂, Î〉, where Q̂ =

G(Q), Σ̂ = {a | ∀p ∈ Q, a ∈ Σ,H(p, a) = tt}, δ̂ = {p a−→ p′ ∈ δ | H(p, a) = tt},
and Î = G(I).

Definition 11. (Simulation relation of two LTSs within bounds). Let M1 and
M2 be two LTSs, and B be bounds. The simulation relation of M1 and M2 within
bounds B is defined as M1 �B M2 if M1↓B � M2. If M1 �B M2 holds, we say
M2 satisfies M1 within B.

Generating execution sequences from specification The algorithm to
compute execution sequences from a specification model is presented in (Algo-
rithm 1). Inputs of the algorithm are a specification model S, and bounds B =
〈G,H〉 which is implemented by X. Output is a bounded LTS. The algorithm
uses two data structures: QUEUE storing reachable states, and V ISITED stor-
ing visited states. It uses two routines to access QUEUE: Push(QUEUE,〈σ〉)
adds state σ as an element into QUEUE, Pop(QUEUE) returns the head of
QUEUE. In each step of while loop, one state is removed from QUEUE, and
reachable states from the state are computed. The algorithm terminates when
QUEUE becomes an empty set.

Generating Environments An environment is generated from the LTS of a
specification model. First, we define correspondence of states between the speci-
fication and the environment. Let S = 〈VS ,DS , ΣS , InitS , Inv〉 be a specification
model, MS = 〈QS , ΣS , δS , IS〉 the LTS derived from S, E = 〈VE ,DE , ΣE , IE〉
an environment model, and ME = 〈QE , ΣE , δE , IE〉 the LTS derived from E.
We say a state σE ∈ QE corresponds to a state σS ∈ QS based on mappings
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Algorithm 1 Generating S↓B = 〈Ŝ, Σ̂, δ̂, Î〉 from S and X where B = 〈G,H〉,
G(QS) = {σ ∈ QS | ∀v ∈ VS .σ(v) ∈ X(v))}, G(IS) ⊂ G(QS), and H(σ, e) = tt
iff e ∈ ESX(σ))

1: QUEUE = empty
2: V ISITED = empty
3: Ŝ = empty
4: Σ̂ = empty
5: δ̂ = empty
6: Î = empty
7: for each σ0 ∈ G(IS) do
8: Push(QUEUE, 〈σ0〉)
9: Ŝ = Ŝ ∪ {σ0}

10: Î = Î ∪ {σ0}
11: end for
12: while QUEUE 6= empty do
13: 〈σ〉 = Pop(QUEUE)
14: V ISITED = V ISITED ∪ {σ}
15: Ê = {e | H(σ, e) = tt}
16: if Ê 6= empty then
17: for each event e = (g, a) ∈ Ê do
18: σ′ = {v 7→ [(act(e))(v)]σ|v ∈ VS}
19: if σ′ 6∈ V ISITED then
20: Push(QUEUE,〈σ′〉)
21: Ŝ = Ŝ ∪ {σ′}
22: end if
23: Σ̂ = Σ̂ ∪ {e}
24: δ̂ = δ̂ ∪ {σ e→ σ′}
25: end for
26: end if
27: end while
28: return S↓B

R′ : VS → VE and C : DS → DD (denoted σS �R′,C σE), if for any x ∈ VS and
y ∈ VE , R′(x) = y implies C(σS(x)) = σE(y).

Then, we define correspondence between events in the specification and func-
tions in the design. For the target is a reactive system, this is defined by a map-
ping f : ΣS → ΣD·E . This means that an event in the specification corresponds
to a function call in environment.

Finally, we define an LTS for the environment model E based on the specifi-
cation S as ME = 〈QE , ΣE , δE , IE〉 where QE = {σE | ∃σS ∈ QS , σS �R′,C σE}
, ΣE = {a | a ∈ F,∃e ∈ ΣS , f(e) = a}, δE = {σE

a−→ σ′E | σE , σ′E ∈
QE , a ∈ ΣE ,∃σS , σ′S ∈ QS , σS �R′,C σE , σ

′
S �R′,C σ′E}, and IE = {σE |

∃σS ∈ IS , σS �R′,C σE}.
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Generating Assertions The relation on states between the LTS of speci-
fication model and the combination model is given based on the mappings
R : VS → VD and C : DS → DD. Verification conditions are generated as
follows:

1. For initialization of the combination, the assertion is:∧
x∈VS

(σ0
DE(y) = C(σ0

S(x))) (y = R(x)),

2. For all (reachable) states σS , σ
′
S ∈ QS and σD·E , σ

′
D·E ∈ QD·E such that

σS
ei−→ σ′S ∈ δS↓B , σD·E

f(ei)−→ σ′D·E ∈ δ
+
D·E , and σS �R,C σD·E , the assertion

is
∧

x∈VS
(C(σ′S(x)) = σ′D·E(y)) (y = R(x)).

After this step, these conditional expressions are defined as inputs of model
checkers. During the execution of the combination, the model checker will verify
the reachable states of the combination against these conditions. At the end of
the verification, one therefore can conclude that for any reachable state σS of the
specification within the given bounds, there exists a reachable state σD·E of the
combination such that σS �R,C σDE . As a result, the verification of simulation
between the design and the specification has completed within the bounds.

6 Case study

We implemented our framework as a generator that produces (i) the LTS of the
bounded specification, (ii) the environment in Promela, and (iii) the assertions.
As an application of our framework to a practical system, we conducted an
experiment to verify that a design of OSEK OS in Promela conforms to its
formal specification in Event-B. We have illustrated these two models partially
in Figure 3 and Figure 2.

Firstly, bounds are set for the verification by restricting range of values for
every variables in Event-B specification. As shown in Figure 2, variables tasks,
res, evt, and inr define entities managed by OSEK OS such as tasks, resources,
events, and interrupt routines; variable pri defines the priority assigned to tasks,
resources, and interrupt routines; and variable t state defines the task state.
Table 1 illustrates examples of the bounds in which each row shows values of
the bounds that can be used in separate experiment. Here, because of the space
limitation, we show restricted ranges of values for tasks, pri, res, evt, and inr,
respectively.

According to our framework, we can set ranges so that they contain different
entities such as tasks, resources, events, and interrupt routines as example No.3
of Table 1. In our experiments, we perform separate experiments in which some
cases deal with distinct groups of system services of the target system; the other
cases check the relation between different groups. This helps us to avoid the
state explosion but preserve important behavior of the target system.

All experiments are conducted on an Intel(R) Core(TM) i7 Processor at
2.67GHz running Linux. Verification results outputted by Spin are shown in
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Table 1: Examples of the bounds

No. Restricted Ranges for tasks, pri., res., evt., inr.

1 {t1, t2}, {1, 2}, {}, {}, {}
2 {t1, t2}, {1}, {}, {evt1}, {}, {}
3 {t1, t2, t3}, {1, 2, 3, 6, 4, 7}, {res1}, {evt1}, {inr1, inr2}
4 {t1, t2}, {1}, {res1}, {}, {}
5 {t1, t2}, {1}, {evt1}, {}, {}
6 {t1, · · · , t9}, {1}, {}, {}, {}
7 {t1, · · · , t10}, {1}, {}, {}, {}
8 {t1}, {1}, {}, {}, {}

Table 2. Here, the first column (“No.”) represents experiment number. The next
column presents size of ranges for variables task, pri, res, evt, and inr. Values
in this column express bounds of the verification. Column “LTS Generation”
shows statistic of the execution sequence generator. Here, columns “#State”,
and “#Trans” present the number of distinct states and that of transitions
appearing in the execution sequences; column “Time” present the time taken
(s) for the generation. Column “Model Checking” presents statistic of the model
checker including total actual memory usage for distinct verification, the time
taken (s), and the verification result in which

√
indicates the successful result -

neither error returned. As mentioned in Section 3, groups of system services of
OSEK OS are task management, resource management, event mechanism, and
interruption management. In the table, experiments No.1-No.15 are performed
to check the task management of OSEK OS. In these cases, we set ranges for
tasks and pri. Experiments No.16-No.20 are performed to check relation between
task management, resource management, event mechanism, and interruption
management; therefore, we set ranges for task, pri, res, evt, and inr. Since
OSEK OS schedules the tasks based on task priorities, it behaves differently
with different patterns of assignment of task priorities. The best scenario to
ensure that every possible behavior is checked is to use all patterns to assign the
task priorities in such a way that each pattern is used in a distinct verification.
For each value for pri, except for the case where pri includes only one element
(e.g pri = {1}), there are several patterns to assign the priority for the tasks. For
example, if there are two tasks with identifiers a and b; and the value domain for
the task priorities is defined as [1..2], it is obvious that there are 4 patterns to
assign the priority for the tasks. They are (1,1), (1,2), (2,1), and (2,2). Generally,
let n be size of the value domain for task priorities, there are nm patterns to
assign priorities for m tasks. When the value bounds increase, the number of
patterns becomes significantly larger. For preliminary verification, we categorize
the patterns into groups where OSEK OS with one pattern behaves almost the
same as other patterns in the group. Then we select typical patterns in groups
to use in our experiments. In sample case above, patterns (1,1) and (2,2) are
categorized in the same group; and both patterns (2,1) and (1,2) belong to



14

another group. We choose patterns (1,1) and (1,2) as typical patterns to use in
experiments. This is reflexed in cases No.1-No.15 of the table.

Table 2: Experiment Outputs

No. Size of Ranges LTS Generation Model Checking
tasks pri res evt inr #State #Trans Time(s) Memory(Mb) Time(s) Result

1 1 1 0 0 0 2 2 1 128 3
√

2 2 1 0 0 0 4 10 1 128 3
√

3 2 2 0 0 0 4 10 1 128 3
√

4 3 1 0 0 0 8 36 1 128 3
√

5 3 3 0 0 0 8 36 1 128 3
√

6 4 1 0 0 0 16 112 1 129 4
√

7 4 3 0 0 0 16 112 1 129 4
√

8 5 1 0 0 0 32 320 1 133 5
√

9 5 3 0 0 0 32 320 1 130 4
√

10 6 1 0 0 0 64 864 1 164 10
√

11 6 3 0 0 0 64 864 1 132 10
√

12 7 1 0 0 0 128 2240 1 380 26
√

13 7 3 0 0 0 128 2240 1 324 26
√

14 8 3 0 0 0 256 5632 2 382 99
√

15 9 3 0 0 0 512 13824 3 430 362
√

16 5 7 0 0 2 128 1536 2 133 17
√

17 2 1 1 0 0 8 22 1 130 7
√

18 2 1 0 1 0 10 27 1 129 4
√

19 3 6 1 0 2 80 520 1 129 8
√

20 3 6 1 1 2 152 1036 2 132 14
√

From the experiment results, we can see that the time taken and the total
actual memory usage for the generation of the execution sequences from Event-B
specification and the verification of the simulation relation are reasonable. For
the model checking result, no errors were returned in all cases of experiments.
This is because the design of OSEK OS has already been reviewed carefully
by a lot of people including researchers and engineers. Still, this result offers
a confidence on the conformance of the OSEK OS design with respect to its
specification within input bounds.

7 Discussion

OSEK OS is the operating system which is widely used in the automotive sys-
tems. Our approach is applied to verify a design of a practical system, that is,
OSEK OS design model. The approach directly checks the design against the
formal specification. Although we show the experiments, when our approach is
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applied to the operating system, it is not limited to this application. In the ap-
proach, the simulation relation is defined based on the given relation between
states of the formal specification and those of the combination (of the design and
the environment). In models, the states are all interpreted as value assignments.
The design is described as a collection of functions which update the value as-
signments. The environment is described as a collection of invocations. This style
of the models will be adopted not only for the operating systems but also other
reactive systems. In our case study, Promela is used as a specification language
to describe the design and the environment; however, our framework can be ap-
plied for designs described in not only Promela but also other languages as long
as they can deal with a collection of functions for the design and sequences of
invocations for the environment.

We introduce a formalization of the bounds for verifying the simulation re-
lation of the design and the formal specification with Event-B. The bounds are
used to limit set of states and possible transitions of LTS associated to Event-
B model. This bound can be applied generally to any design and its formal
specification as long as the formal models of the inputs are defined as LTSs. In
Section 5, we present the interpretation of the bound in a concrete model, that
is, Event-B model. In the first step of interpreting the bounds in the specifica-
tion, we restrict the range of values for every variable, constant, and parameter
defined in the specification. Next, we regard the typical bugs that can be found
in the verification with large value domain. For finding such bugs of the tar-
get system, in addition to restrict the range of values, one can restrict system
services of target system. Intention of such additional restriction is to exclude
transitions not relevant to the bugs but to reduce size of model for which model
checking is feasible.

In order to apply our framework to practical systems, we need to define initial
states of the system by assigning initial values for every variable. Even though
ranges of values for every variable have been restricted to finite sets, there are a
lot of variations for initial states. In our case study, we assign initial states for
distinct cases by manually. It is necessary to find a mechanism to assign initial
states systematically.

8 Related Works

Verification of systems using model checking There are a number of works
on verification of systems using model checking. Commonly, in model checking,
a system is modeled with a finite automaton and various desired properties
with temporal logic formulae. In [7], the authors translate Trampoline OS into
Promela and define the safety properties in temporal logic formulae. Spin is
used to check the OS model against these formulae. In [20], the authors model
OSEK/VDX applications and the kernel in timed automata. Time properties are
focused and verified by model-checker UPPAAL in these works. Separately, our
input models are an OS model and its formal specification which are described
in different specification language. We ensure that the design conforms to its
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specification by utilizing Spin model checker to check the simulation relation of
the design and its formal specification. In context of bounded model checking
which is applied in [16][8], bounds are defined as the depth of the execution paths
of the target model. In our work, bounds are defined as restrictions of ranges
of values in Event-B specification so that every type has infinite range of values
must be restricted as small range.

Verification of systems based on simulation relation FDR [6] is a refine-
ment checker for the process algebra CSP. Inputs of FDR are the specifications
and the implementations written in the same language. Our framework accepts
the inputs written in different languages.

Theorem proving has been applied as a technique to verify systems based
on simulation relation. [18] verifies the simulation relation between run-time en-
vironments layers including application layer, operating system, and FlexRay.
[10] proves the simulation relation between abstract specification, executable
specification, and C program for the seL4 micro-kernel. In these two existing
works, Isabelle/HOL is used as a theorem prover for verification. Theorem prov-
ing ensures the correctness of system in universal scope; however, it generally
requires many interactive proofs with human-machine collaboration. Separately,
we use model checking as a technique of our verification. Range for types in
the system model is bounded due to limitation of model checking; however,
we get completely automatic verification and confidence on verification results.
Additionally, our approach utilize Spin model checker to accept input models
described in various specification languages.

The simulation of two LTSs was introduced in [13] in which the key point is
to find a relation between state spaces of two LTSs such that the simulation rule
holds. In our approach, the relation between state spaces of two LTSs is given.
Then, we need to check whether the simulation rule holds.

Generation of LTS from Event-B model [11] presents the ProB tool which
support interactively animating B models. Using ProB, users can see the current
state and set an upper limit on the number of ways that the same operation can
be executed. In our works, we firstly set finite ranges for types in Event-B spec-
ification, then, explore all possible execution sequences within defined ranges.
[4] and [5] define the semantic of Event-B model as labeled transition systems
to reason about behavioral aspects of specifications in Event-B. For a further
objective, that is to check if all behaviors which are possible in Event-B speci-
fication, are also possible in the design, we generate all possible behaviors from
Event-B specification within defined ranges. We precisely define the restriction
of ranges of values in Event-B specification as bounds of our verification; then
generate the environment and the verification conditions based on the explored
execution sequences of Event-B specification within the input bound.

Construction of the environment of the operating system In previous
works, we verified the OSEK OS by constructing a general model of the envi-
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ronment from scratch. The environment model is firstly described using UML
[21] then translated into Promela. In the current work, we construct the environ-
ment based on the information obtained from the specification in Event-B and
we propose a flexible framework to check the design with respect to its formal
specification so that it can accept different specification languages of the input
models.

Combination of Event-B model and model checking The currently avail-
able tools such as ProB and Eboc [12] aim at the integration of model-checking
and Event-B to benefit from both approaches in the same development pro-
cess. In this context, ProB and Eboc are both model checkers for Event-B. For
combination of model-checking using the Spin model checker and Event-B, [14]
translate Event-B model into Promela model. We have not directly translated
Event-B code into Promela but generated the environment and assertions from
the execution sequences of Event-B specification, then, use Spin to check the
design in combination with the environment against assertions.

9 Conclusion

In this paper, we proposed an approach to verify the design against its formal
specification. Our framework includes (1) formalization of the simulation rela-
tion between two models of the same system; (2) formalization of the bound for
the verification of the simulation relation using model checking; (3) the formal
models of the specification, the design model, the environment, and the com-
bination; (4) generation of the LTS associated with the Event-B specification
within the given bound; and (5) verification of the designs against their formal
specifications within input bounds using model checking. Based on our experi-
ments, we discussed advantages and the applicability of the proposed approach
in the engineering. The coverage of this verification is evaluated as how much of
the specification satisfied by the design. In the future work, we aim at enlarg-
ing the verification coverage to make our framework effective for the practical
verifications.
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20. Waszniowski, L., Hanzálek, Z.: Formal verification of multitasking applications
based on timed automata model. Real-Time Syst. 38(1), 39–65 (2008)

21. Yatake, K., Aoki, T.: Model checking of OSEK/VDX os design model based on
environment modeling. In: Proceedings of the 9th International Colloquium on
Theoretical Aspects of Computing (ICTAC ’12). pp. 183–197 (2012)


