<table>
<thead>
<tr>
<th>Title</th>
<th>Nonstandard second-order arithmetic and Riemann's mapping theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Horihata, Yoshihiro; Yokoyama, Keita</td>
</tr>
<tr>
<td>Citation</td>
<td>Annals of Pure and Applied Logic, 165(2): 520-551</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-07-12</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text version</td>
<td>author</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/12071</td>
</tr>
<tr>
<td>Rights</td>
<td>NOTICE: This is the author's version of a work accepted for publication by Elsevier. Yoshihiro Horihata and Keita Yokoyama, Annals of Pure and Applied Logic, 165(2), 2013, 520-551, http://dx.doi.org/10.1016/j.apal.2013.06.022</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>
Nonstandard second-order arithmetic
and Riemann’s mapping theorem

Yoshihiro Horihata
and
Keita Yokoyama

Abstract

In this paper, we introduce systems of nonstandard second-order arithmetic which are conservative extensions of systems of second-order arithmetic. Within these systems, we do reverse mathematics for nonstandard analysis, and we can import techniques of nonstandard analysis into analysis in weak systems of second-order arithmetic. Then, we apply nonstandard techniques to a version of Riemann’s mapping theorem, and show several different versions of Riemann’s mapping theorem.

1 Introduction

In Tanaka [13], we can find a model theoretic method to do nonstandard analysis in WKL_0 by means of overspill and standard part principle. Using this method, some popular arguments of nonstandard analysis can be carried out in WKL_0 (cf. [6, 11, 12]). Similarly, we can use more techniques of nonstandard analysis in ACA_0 and prove some theorems in ACA_0 [16]. (For systems WKL_0 and ACA_0, see [9].)

On the other hand, Keisler [4, 5] introduced some systems of nonstandard arithmetic which are the counterparts of WKL_0, ACA_0 and other main systems for Reverse Mathematics. Inspired by the question ‘can we canonically reconstruct formal proofs within ACA_0 or WKL_0 from such nonstandard arguments?’ posed by Professor Sakae Fuchino, the second author introduced systems of nonstandard second-order arithmetic nS-ACA_0 and nS-WKL_0 corresponding to ACA_0 and WKL_0 [17]. Using these systems, one can conveniently carry out nonstandard arguments and can interpret nonstandard proofs into standard proofs in second-order arithmetic.

In this paper, we do nonstandard analysis in nonstandard second-order arithmetic using some nonstandard axioms such as the standard part principle or the

*Yonago National College of Technology, Hikona-cho 4448, Yonago-shi, Tottori 683-8502, JAPAN, E-mail: horihata@yonago-k.ac.jp

†School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, JAPAN, E-mail: y-keita@jaist.ac.jp
transfer principle within the basic system of nonstandard second-order arithmetic. Then, we can get some nonstandard proofs in ns-ACA$_0$ or ns-WKL$_0$ for some standard theorems. Our next aim is to do Reverse Mathematics for nonstandard analysis. Although standard theorems never imply nonstandard axioms, we can find nonstandard counterparts of standard theorems. These nonstandard counterparts often require nonstandard axioms. Therefore, we can do Reverse Mathematics for some nonstandard counterparts of standard theorems.

We also apply these nonstandard arguments to reverse mathematics for analysis in second-order arithmetic. It is known that Riemann’s mapping theorem is equivalent to ACA$_0$ (see [16]). In this Reverse Mathematics phenomenon, ACA$_0$ is exactly required if we consider Riemann’s theorem for general open sets. However, some weaker versions of Riemann’s mapping theorem for a restricted domain, e.g., a polygonal domain or a Jordan region (the interior of Jordan curve), are still important for complex analysis. (The referee of [16] pointed out that the importance of these versions of Riemann’s mapping theorem, and he/she also mentioned that they should be weaker than the general version.) In this paper, we show that Riemann’s mapping theorem for a polygonal domain is provable within RCA$_0$, and that for a Jordan region is equivalent to WKL$_0$. To prove the latter one, we will use nonstandard techniques which are available within ns-WKL$_0$.

2 Nonstandard second-order arithmetic and nonstandard analysis

2.1 Systems of nonstandard second-order arithmetic

We first introduce the language of nonstandard second-order arithmetic.

Definition 2.1. The language of nonstandard second-order arithmetic L^*_2 is defined by the following:

- standard number variables: x^s, y^s, \ldots,
- nonstandard number variables: x^*, y^*, \ldots,
- standard set variables: X^s, Y^s, \ldots,
- nonstandard set variables: X^*, Y^*, \ldots,
- function and relation symbols: $0^s, 1^s, =^s, +^s, \cdot^s, <^s, \in^s, 0^*, 1^*, =^*, +^*, \cdot^*, <^*$,

Here, $0^s, 1^s, =^s, +^s, \cdot^s, <^s, \in^s$ denote “the standard structure” of second-order arithmetic, $0^*, 1^*, =^*, +^*, \cdot^*, <^*, \in^*$ denote “the nonstandard structure” of second-order arithmetic and $\sqrt{\cdot}$ denote an embedding from the standard structure to the nonstandard structure.
The terms and formulas of the language of nonstandard second-order arithmetic are as follows. **Standard numerical terms** are built up from standard number variables and the constant symbols 0 and 1 by means of + and ·. **Nonstandard numerical terms** are built up from nonstandard number variables, the constant symbols 0 and 1 and \(\sqrt{t} \) by means of + and ·, where \(t \) is a numerical term. **Standard set terms** are standard set variables and **nonstandard set terms** are nonstandard set variables and \(\sqrt{X} \) whenever \(X \) is a standard set term. **Atomic formulas** are \(t_1 = t_2, t_1 < t_2, t_1 \in X, t_1 = t_2, t_1 < t_2 \) and \(t_1 \in X \) where \(t_1, t_2 \) are standard numerical terms, \(t_1, t_2 \) are nonstandard numerical terms, \(X \) is a standard set term and \(X \) is a nonstandard set term. **Formulas** are built up from atomic formulas by means of propositional connectives and quantifiers. A **sentence** is a formula without free variables.

Let \(\varphi \) be an \(L_2 \)-formula. We write \(\varphi^s \) for the \(L_2^s \)-formula constructed by adding \(^s \) to all occurrences of bound variables and relations of \(\varphi \). Similarly, we write \(\varphi^* \) for the \(L_2^* \)-formula constructed by adding \(^* \). Identifying \(L_2 \)-formula \(\varphi \) with \(L_2^s \)-formula \(\varphi^s \), we will consider that nonstandard second-order arithmetic is an expansion of second-order arithmetic. We sometimes omit \(^s \) and \(^* \) of relations. We write \(t^s \) for \(\sqrt{t} \) and \(X^s \) for \(\sqrt{X} \). We sometimes write \(\vec{x} \) (\(\vec{X} \)) for a finite sequences of variables \(x_1, \ldots, x_k \) (\(X_1, \ldots, X_k \)).

In this paper, we use \(M^s \) to indicate the range of standard number variables, \(M^* \) to indicate the range of nonstandard number variables, \(S^s \) to indicate the range of standard set variables and \(S^* \) to indicate the range of nonstandard set variables in the system of nonstandard second-order arithmetic. Moreover, we use \(V^s = (M^s, S^s) \) to indicate the range of standard variables and \(V^* = (M^*, S^*) \) to indicate the range of nonstandard variables, and we say that "\(\varphi \) holds in \(V^s \)" (abbreviated \(V^s \models \varphi \)) if \(\varphi^s \) holds and we say that "\(\varphi \) holds in \(V^* \)" (abbreviated \(V^* \models \varphi \)) if \(\varphi^* \) holds. We are not going to describe the semantics of the system by these \(V^s \) and \(V^* \) but these symbols are introduced just to make the argument more accessible.

We next introduce some typical axioms of nonstandard second-order arithmetic.

Definition 2.2.

- **Embeddingness (EMB):**
 \[
 \forall \vec{x}^s \forall \vec{X}^s (\varphi(\vec{x}^s, \vec{X}^s)^s \leftrightarrow \varphi(\vec{x}^s, \vec{X}^s))
 \]
 where \(\varphi(\vec{x}, \vec{X}) \) is any atomic formula in \(L_2 \) with exactly the displayed free variables.

- **End Extension (E):**
 \[
 \forall x^s \forall y^s (x^s < y^s \rightarrow \exists z^s (x^s = z^s))
 \]

- **Finite Standard Part Principle (FST):**
 \[
 \forall X^* (\text{card}(X^*) \in M^s \rightarrow \exists Y^s \forall x^s (x^s \in Y^s \leftrightarrow x^s \in X^s))
 \]
• standard part principle (ST):
 \[\forall X^* \exists Y^* \forall x^* (x^* \in Y^* \iff x^* \in X^*). \]

• \(\Sigma^j_1 \) transfer principle (\(\Sigma^j_1 \)-TP):
 \[\forall x^s \forall X^s (\varphi(x^s, X^s)^* \iff \varphi(x^s \uparrow, X^s \uparrow)^*) \]
 where \(\varphi(x, X) \) is any \(\Sigma^j_1 \)-formula in \(L_2 \) with exactly the displayed free variables.

Now, we define the basic system of nonstandard second-order arithmetic.

Definition 2.3 (the system \(\text{ns-BASIC} \)). The axioms of \(\text{ns-BASIC} \) are the following:

(standard and nonstandard structure) \((\text{RCA}_0)^* \land (\text{RCA}_0)^\ast \),

(nonstandard axioms) EMB, E, FST, \(\Sigma^0_0 \)-TP.

Trivially, \(\text{ns-BASIC} \) is an extension of \(\text{RCA}_0 \). Actually, they have the same standard consequences.

Theorem 2.1 (conservativity). \(\text{ns-BASIC} \) is a conservative extension of \(\text{RCA}_0 \), i.e., \(\text{ns-BASIC} \vdash \psi^* \) implies \(\text{RCA}_0 \vdash \psi \) for any sentence in \(L_2 \).

Proof. Straightforward direction from Tanaka’s self-embedding theorem [13] and Harrington’s theorem [9, Theorem IX.2.1]. □

Next, we consider a very weak version of saturation principle called overspill principle, which is a significant tool for nonstandard analysis.

Proposition 2.2. \(\text{ns-BASIC} \) proves the following \(\Sigma^0_1 \cup \Pi^0_1 \)-overspill principle.

• \(\Sigma^0_1 \cup \Pi^0_1 \)-overspill:
 \[\forall x^s \forall X^s (\exists y^*(z^s \geq y^* \land \varphi(z^s \uparrow, x^s, X^s)^*) \rightarrow \exists y^* (\forall w^* (y^* > w^* \land \varphi(y^*, x^s, X^s)^*)) \]
 where \(\varphi(y, x, X) \) is any \(\Sigma^0_1 \) or \(\Pi^0_1 \)-formula in \(L_2 \) with exactly the displayed free variables.

The contraposition of overspill is sometimes referred as underspill.

Proof. Since \(\text{ns-BASIC} \) contains \((\text{RCA}_0)^* \), \(V^* = (M^*, S^*) \) satisfies \(\Sigma^0_1 \cup \Pi^0_1 \)-induction. Thus, the cut \(M^* \) is not \(\Sigma^0_1 \) or \(\Pi^0_1 \)-definable with parameters from \(V^* \). Assume \(\forall y^* \exists z^s (z^s \geq y^* \land \varphi(z^s \uparrow, x^s, X^s)^*) \) and \(\neg \exists y^* (\forall w^* (y^* > w^* \land \varphi(y^*, x^s, X^s)^*) \) for some \(x^s, X^s \in V^* \) and for some \(\Sigma^0_1 \) or \(\Pi^0_1 \)-formula \(\varphi \). Then, \(a^* \in \sqrt{(M^*)} \) if and only if \(\varphi(a^*, x^s, X^s)^* \). Hence, a cut \(\sqrt{(M^*)} \) is \(\Sigma^0_1 \) or \(\Pi^0_1 \)-definable in \(V^* \), which is a contradiction. □
Within ns-BASIC, a standard set A^s is said to be a standard part of a non-standard set B^* (abbreviated $B^* \upharpoonright V^s = A^s$) if $\forall x^s (x^s \in A^s \iff x^s \in B^*)$. By Σ^0_0-TP, we can show $\forall X^s (X^s \upharpoonright V^s = X^s)$. Nonstandard sets A^* and B^* are said to be s-equivalent (abbreviated $A^* \equiv_s B^*$) if $\exists x^s (\forall y^s (y^s \in x^s \iff y^s \in z^s))$. We write $A^* \subseteq_s B^*$ if $\exists x^s (\forall y^s (y^s \in x^s \iff y^s \in z^s))$, i.e., $A^* = B^* \cap x^s$ for some nonstandard x^s. (We usually identify number a with a set $\{x \mid x < a\}$.)

We sometimes use these notations for definable (possibly external) subsets of M^*. Note that $A^* \equiv_s B^*$ is equivalent to $A^* \upharpoonright V^s = B^* \upharpoonright V^s$, i.e., $\forall x^s (x^s \in A^* \iff x^s \in B^*)$ by overspill, however, this may not true for external sets.

ns-BASIC is a base system to do nonstandard analysis. Within ns-BASIC, both the standard structure V^s and the nonstandard structure V^* satisfy RCA_0, thus, we can develop basic part of mathematics in both V^s and V^* as same as in RCA_0. For example, we can define real numbers, open sets, continuous functions, complete separable metric spaces, etc. in both V^s and V^* (see [9, II]). We write \mathbb{N}^s for natural number system in V^s, \mathbb{N}^* for natural number system in V^*, \mathbb{Q}^s for rational number system in V^s, \mathbb{Q}^* for rational number system in V^*, \mathbb{R}^s for real number system in V^s, \mathbb{R}^* for real number system in V^*, etc. We regard $\mathbb{N}^s \subseteq \mathbb{N}^*$, $\mathbb{Q}^s \subseteq \mathbb{Q}^*$, etc. by using the embedding \upharpoonright, and then we usually omit superscripts s and * for number variables. In addition, we often omit superscripts s and * for variables, and we write $\forall x \in \mathbb{N}^s$, $\exists x \in \mathbb{N}^s$, $\forall x \in \mathbb{N}^*$ or $\exists x \in \mathbb{N}^*$ instead of $\forall x^s$, $\exists x^s$, $\forall x^*$ or $\exists x^*$, respectively. Note that we cannot regard S^s as a subset of S^*, thus, \mathbb{R}^s cannot be regarded as a subset of \mathbb{R}^* either.

Next, we define ns-WKL_0 and ns-ACA_0.

Definition 2.4 (the system ns-WKL_0). The system ns-WKL_0 consists of ns-BASIC plus ST.

Proposition 2.3. ns-WKL_0 proves $(\text{WKL}_0)^s$, i.e., ns-WKL_0 is an extension of WKL_0.

Proof. We reason within ns-WKL_0. Let T^s be an infinite binary tree in V^s. Then, by $\Sigma^0_1 \cup \Pi^0_1$-overspill, there exist $K^* \subseteq \mathbb{N}^s \setminus \mathbb{N}^s$ and a function $f^* : K^* \rightarrow 2$ such that $\forall x \leq K^* f^* \upharpoonright x = (f^*(i) \mid i < x) \in T^s \upharpoonright V^s$. By ST, $f^* = f^* \upharpoonright V^s : \mathbb{N}^s \rightarrow 2$ exists and $f^*(a^*) = f^*(a^*)$ for any $a^* \in \mathbb{N}^s$. Thus, $\forall x \in \mathbb{N}^s f^* \upharpoonright x = (f^*(i) \mid i < x) \in T^s$ in V^s. This means that f^* is a path through T^s, hence $(\text{WKL}_0)^s$ holds. \square

Theorem 2.4 (conservativity). ns-WKL_0 is a conservative extension of WKL_0, i.e., $\text{ns-WKL}_0 \vdash \psi^s$ implies $\text{WKL}_0 \vdash \psi$ for any sentence in L_2. Moreover, we can transform a proof in ns-WKL_0 into a proof in WKL_0 effectively.

Proof. See [17]. \square
Lemma 2.5 (Σ^*_n-choice). The following are equivalent over ns-BASIC.

1. ns-WKL0.

2. Σ^*_n-choice:

$$\forall \bar{z} \forall \bar{Z}^* \ (\forall x^s \exists y^s \varphi(x^s \bar{y}, y^s \bar{z}, \bar{Z}^*) \rightarrow \exists f^s \forall x^s \varphi(x^s \bar{y}, f^s(x^s \bar{y}), z^s, \bar{Z}^*))$$

where $\varphi(x, y, z, Z)$ is any Σ^*_n-formula in L_2.

Proof. We reason within ns-WKL0. See [14].

Definition 2.5 (the system ns-ACA$_0$). The system ns-ACA$_0$ consists of ns-WKL0 plus Σ^*_1-TP.

Proposition 2.6. ns-WKL0 + Σ^*_n-TP, as well as ns-ACA$_0$, proves (ACA$_0$)*, i.e., ns-ACA$_0$ is an extension of ACA$_0$.

Proof. We reason within ns-ACA$_0$. By [9, Theorem III.1.3], we only need to show $\forall f : N \rightarrow N \exists A \forall x (x \in A \leftrightarrow \exists n (f(n) = x))$ in V*. Let f^* be a function from N^s to N^s in V*. Take $K^* \in N^s \setminus N^s$. By Σ^*_1 bounded comprehension in V*, there exists $A^* \in N^s$ such that $\forall x < \omega \exists y \in N^s \varphi(x, y, z, Z^*)$. Define sequence $a^* = \langle a(i) \mid i < \omega \rangle$ as $a(x) = \min\{y \mid \varphi(x, y, z, Z^*)\}$. By ST, define $f^* = a^* \upharpoonright V^s$, then we can easily check that this f^* is the desired choice function.

Theorem 2.7 (conservativity). ns-ACA$_0$ is a conservative extension of ACA$_0$, i.e., ns-ACA$_0 \vdash \psi^*$ implies ACA$_0 \vdash \psi$ for any sentence in L_2. Moreover, we can transform a proof in ns-ACA$_0$ into a proof in ACA$_0$ effectively.

Proof. See [17].

Since ns-ACA$_0$ and ns-WKL0 + Σ^*_n-TP have the same standard part ACA$_0$, we usually use ns-ACA$_0$ instead of ns-WKL0 + Σ^*_n-TP. Within ns-ACA$_0$, V* satisfies Σ^*_n-induction by (ACA$_0$)* and Σ^*_1-TP. Thus, Σ^*_n-overspill is available within ns-ACA$_0$ as same as Proposition 2.2. On the other hand, the standard part of ns-BASIC + Σ^*_n-TP is strictly weaker than ACA$_0$.

Proposition 2.8. ns-BASIC + Σ^*_n-TP is a conservative extension of RCA$_0$ + Σ^*_n-bounding. Here, Σ^*_n-bounding is the axiom scheme of the form $\forall u (\forall x < u \exists y \varphi(x, y) \rightarrow \exists y \forall x < u \exists y < v \varphi(x, y))$ for any Σ^*_n-formulas.

Proof. See [14].
Remark 2.9. In [4], Keisler adopted the finiteness principle, which is equivalent to FST in our formulation, as one of the base axiom. So, let us consider a slightly stronger base system $\text{ns-BASIC}^+ = \text{ns-BASIC} + \text{FST}$. Then, ns-BASIC^+ is again a conservative extension of RCA_0, and ns-WKL_0 preserves since ST implies FST. However, the standard part of $\text{ns-BASIC}^+ + \Sigma^0_n\text{-TP}$ turns to be $\text{RCA}_0 + \Sigma^0_n\text{-}1$-induction. (See [14].) We won’t use FST for nonstandard analysis in this paper, but Sanders showed that it is useful for nonstandard analysis in a different formulation in [7, 8]. (In [7], he introduce an axiom “ext”, which is again equivalent to FST or finiteness principle.)

2.2 Reverse Mathematics for nonstandard analysis

In this section, we do nonstandard analysis in systems of nonstandard second-order arithmetic and do some Reverse Mathematics for nonstandard analysis. Our aim is to give some nonstandard characterizations for several notions of analysis and find nonstandard counterparts of standard theorems. Then, we will apply nonstandard characterizations to standard analysis in second-order arithmetic using conservation results.

2.2.1 The standard part of a real

We define the standard part of a real number.

Definition 2.6 (standard part). The following definition is made in ns-BASIC. Let $\alpha^* = \langle a(i) \mid i \in \mathbb{N}^* \rangle \in \mathbb{R}^*$ in V^* and $\beta^* = \langle b(i) \mid i \in \mathbb{N}^* \rangle \in \mathbb{R}^*$ in V^*. Then, β^* is said to be the standard part of α^* (abbreviated $\text{st}(\alpha^*) = \beta^*$) if

$$\forall i \in \mathbb{N}^* V^* \models |a(i) - b(i)| \leq 2^{-i+1}.$$

We sometimes write $\text{st}(\alpha^*) \in \mathbb{R}^*$ if $\exists \gamma^* \in \mathbb{R}^* \text{st}(\alpha^*) = \gamma^*$, and say that α^* is near standard.

Similarly to the definition of standard parts, we write $\text{st}(\alpha^*) \leq \beta^*$ if

$$\forall i \in \mathbb{N}^* V^* \models a(i) \leq b(i) + 2^{-i+1}.$$

Note that we can define $\text{st}(\alpha^*) \leq \beta^*$ even if the standard part of α^* does not exist in \mathbb{R}^*. We write $\alpha^*_1 \approx \alpha^*_2$ if $\text{st}(\alpha^*_1 - \alpha^*_2) = 0$.

By $\Sigma^0_1 \cup \Pi^0_1$-overspill, we can easily show that

$$\forall \alpha^* \in \mathbb{R}^* \exists b^* \in \mathbb{Q}^* \text{st}(b^*) = \alpha^*.$$

The following theorem is the first example on Reverse Mathematics for nonstandard analysis.

Theorem 2.10. The following are equivalent over ns-BASIC.

1. ns-WKL_0.

2. For any $\alpha^* \in \mathbb{R}^*$,

$$\exists K \in \mathbb{N}^* \mid |\alpha^*| < K \rightarrow \exists \beta^* \in \mathbb{R}^* \mid \text{st}(\alpha^*) = \beta^*.$$

Proof. We first show $1 \rightarrow 2$. We reason within ns-WKL_0. Let $\alpha^* \in \mathbb{R}^*$ and let $K \in \mathbb{N}^*$ such that $|\alpha^*| < K$ in V^*. By $(\text{RCA}_0)^*$, we can find $\beta^* = \langle b(i) \mid i \in \mathbb{N}^* \rangle \in \mathbb{R}^*$ such that $\alpha^* = \beta^*$ and $\forall i \in \mathbb{N}^* \mid b(i) \in \{ j/2^k \mid j \in \mathbb{Z}^* \land -2^k K \leq j \leq 2^k K \}$ in V^*. Then, $\forall i \in \mathbb{N}^* \mid b(i) \in \mathbb{Q}^*$. Thus, by ST, $\gamma^* = \beta \upharpoonright V^* = \langle b(i) \mid i \in \mathbb{N}^* \rangle$ exists. By Σ^0_0-TP, we can show that $\gamma^* \in \mathbb{R}^*$ in V^* and $\text{st}(\alpha^*) = \gamma^*$.

For the converse, we only need to show 2 implies ST. We reason within ns-BASIC. Let A^* be a nonstandard set and let χ_{A^*} be a characteristic function of A^* in V^*. Define

$$\alpha^* = \sum_{i \in \mathbb{N}^*} \frac{\chi_{A^*}(i)}{4^i}.$$

Then, $|\alpha^*| \leq 1^*$. By 2, take $\beta^* = \text{st}(\alpha^*) \in \mathbb{R}^*$. Define $h^* : \mathbb{N}^* \rightarrow 2$ as

$$h^*(n + 1) = \begin{cases} 1 & \text{if } \beta^* > \sum_{i \leq n} \frac{h^*(i)}{4^i} + \frac{1}{2^n + 1} \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\beta^* \neq \sum_{i \leq n} (h^*(i)/4^i) + (1/(2 \cdot 4^{n+1}))$, thus this h^* can be constructed by $(\text{RCA}_0)^*$. Define $B^* = \{ i \mid h^*(i) = 1 \}$, then we can easily check that $B^* = A^* \upharpoonright V^*$. This completes the proof. \hfill \square

Note that Definition 2.6 and Theorem 2.10 can be easily generalized into the Euclidean space $(\mathbb{R}^*)^n$ and \mathbb{R}^n.

2.2.2 Complete separable metric space and Heine/Borel compactness

Next, we consider complete separable metric spaces. First, we review the definition of complete separable metric spaces in second order arithmetic. Within RCA_0, let $A \subseteq \mathbb{N}$. A pre-distance d on A is a function $d : A \times A \times \mathbb{N} \rightarrow \mathbb{Q}$ such that $d(a,b,i) \geq 0$, $d(a,b,i) = \langle d(a,b,i) \mid i \in \mathbb{N} \rangle \in \mathbb{R}$, $d(a,a) = 0$, $d(a,b) = d(b,a)$ and $d(a,c) \leq d(a,b) + d(b,c)$ for any $a,b,c \in A$. A pair (A,d) is said to be a (code for a) complete separable metric space if d is a pre-distance on A. A sequence $x = (x(i) \in A \mid i \in N)$ is said to be a point of (A,d) (abbreviated $x \in A$) if $\forall i \in \mathbb{N} \mid d(x(i),x(i+1)) \leq 2^{-i}$. For $x, y \in A$, we define $d(x,y) = \lim_{i \rightarrow \infty} d(x(i),y(i))$, and we write $x = \overset{A}{=} y$ if $d(x,y) = 0$ (we usually omit the superscript A). We identify $a \in A$ with $\langle a \mid i \in \mathbb{N} \rangle$, and consider $A \subseteq \overset{A}{\mathbb{N}}$. Note that \mathbb{R}^n is a complete separable metric space $\langle \mathbb{Q}^n, d_{\mathbb{Q}^n} \rangle$ where $d_{\mathbb{Q}^n}(a,b) = ||a - b||$.

A function $p : A \times A \rightarrow \mathbb{Q}$ is said to be an n-pre-distance on A if for any $a,b,c \in A$, $p(a,b) \geq 0$, $p(a,a) \leq 2^{-n+1}$, $|p(a,b) - p(b,a)| \leq 2^{-n+1}$ and $p(a,c) \leq p(a,b) + p(b,c) + 2^{-n+2}$. If d is a pre-distance on A, then $d_k = d(\cdot, i, k) : A \times A \rightarrow \mathbb{Q}$ is a k-pre-distance on A.

8
We say that a complete separable metric space \((A, d)\) is **totally bounded** if for any \(\varepsilon > 0\) there exists \(\{h(i) \in A \mid i < k\}\) such that \(\forall x \in \hat{A} \exists i < k \ d(h(i), x) < \varepsilon\). Moreover, \((A, d)\) is said to be **effectively totally bounded** if there exists an infinite sequence of finite sequences \(\{(h(i), j) \in A \mid i < p(j)\} \mid j \in \mathbb{N}\) such that \(\forall x \in \hat{A} \forall j \in \mathbb{N} \exists i < p(j) \ d(h(i), j, x) < 2^{-j}\). For example, \(n\)-cube \([0, 1]^n = ((\mathbb{Q} \cap [0, 1]), d_{\mathbb{Q}})\) is effectively totally bounded. We say that \((A, d)\) is **Heine/Borel compact** if every open cover of \(\hat{A}\) has a finite subcover, i.e., for any sequence \(\{(a(i), r(i)) \in A \times Q^+ \mid i \in \mathbb{N}\}\) such that \(\forall x \in \hat{A} \exists i \in \mathbb{N} \ d(a(i), x) < r(i)\), there exists \(k \in \mathbb{N}\) such that \(\forall x \in \hat{A} \exists i < k \ d(a(i), x) < r(i)\), and we say that \((A, d)\) is **sequentially Heine/Borel compact** if for any sequence of open covers \(\{(a(i), r(r(j))) \in A \times Q^+ \mid i, j \in \mathbb{N}\}\) there exists a function \(f : \mathbb{N} \to \mathbb{N}\) such that \(\{(a(i), r(r(j))) \mid i < f(j)\}\) is an open cover for any \(j \in \mathbb{N}\). For complete separable metric spaces in \(\text{RCA}_0\), see also [9, II.5].

From now on, we argue within \(\text{ns-BASIC}\). Let \((A^s, d^s)\) be a complete separable metric space in \(V^s\), and let \(\nu^s\) be an \(\omega\)-pre-distance on a set \(X^s\) for some \(\omega \in \mathbb{N}^* \setminus \mathbb{N}^s\) in \(V^s\). Then, \((X^s, \nu^s)\) is said to be a **nonstandard expansion** of \((A^s, d^s)\) if \(A^s = X^s \upharpoonright V^s\) and \(d^s(a, b) = \text{st}(\nu^s(a, b))\) for any \(a, b \in A^s\). Let \(x \in X^s\) and \(y^s = (y^s(i) \mid i \in \mathbb{N}^s) \in \hat{A}^s\). Then, \(y^s\) is said to be the **standard part** of \(x\) (abbreviated \(\text{st}(x) = y^s\)) if

\[
\forall i \in \mathbb{N}^s \ V^s \models \nu^s(x, y^s(i)) \leq 2^{-i+1}.
\]

Similarly, we write \(\nu^s(x, y^s) \leq \alpha^s\) for \(\alpha^s = (a(i) \mid i \in \mathbb{N}^s) \in \mathbb{R}^s\) if \(\forall i \in \mathbb{N}^s \ V^s \models \nu^s(x, y^s(i)) \leq a(i) + 2^{-i+2}\). We write \(x_1 \approx x_2\) if \(\text{st}(\nu^s(x_1, x_2)) = 0\). We say that \((X^s_1, \nu^s_1)\) and \((X^s_2, \nu^s_2)\) are **s-equivalent** (abbreviated \((X^s_1, \nu^s_1) \equiv_s (X^s_2, \nu^s_2)\) or just \(X^s_1 \equiv_s X^s_2\)) if there exists \((Y^s, \nu^s)\) where \(\nu^s\) is a \(\omega\)-pre-distance for some \(\omega \in \mathbb{N}^s \setminus \mathbb{N}^s\) such that \(Y^s \subseteq_s X^s_i\) and \(\forall x, y \in Y^s \ |\nu^s(x, y)| < 2^{-\omega+2}\). (Recall that \(A^s \subseteq_s B^s\) if \(A^s = B^s \upharpoonright \omega_0\) for some \(\omega_0 \in \mathbb{N}^s \setminus \mathbb{N}^s\).) Note that if \((X^s, \nu^s)\) is a nonstandard expansion of \((A^s, d^s)\) and \(Y^s \subseteq_s X^s\), then \((Y^s, \nu^s)\) is again a nonstandard expansion of \((A^s, d^s)\).

Proposition 2.11. The following are provable in \(\text{ns-BASIC}\).

1. Every complete separable metric space in \(V^s\) has a nonstandard expansion, and it is unique up to \(s\)-equivalence.

2. Let \((A^s, d^s)\) be a complete separable metric space in \(V^s\), and let \((X^s, \nu^s)\) be a nonstandard expansion of \((A^s, d^s)\). Then, for any \(y^s \in \hat{A}^s\), there exists \(x \in X^s\) such that \(\text{st}(x) = y^s\).

Proof. By \(\Sigma^0_1 \cup \Pi^0_2\)-overspill if \((A^s, d^s)\) is a complete separable metric space, \((A^s \upharpoonright \omega, (d^s)\upharpoonright \omega)\) is a nonstandard expansion for some \(\omega \in \mathbb{N}^s \setminus \mathbb{N}^s\). (Apply overspill to the assertion “\(d^s\) is an \(i\)-pre-distance on \(A^s \upharpoonright i\)”.) Thus, we have 1. We can prove the uniqueness similarly. Let \(y^s \in \hat{A}^s\). Applying \(\Sigma^0_1 \cup \Pi^0_2\)-overspill to the assertion “\(\exists x \in X^s\ \nu^s(y^s(i), x) < 2^{-i+1}\),” we have 2 easily. \(\Box\)

Next, we will give nonstandard characterizations of some notions of general topology. Let \((A^s, d^s)\) be a complete separable metric space in \(V^s\), and let
\(\langle X^*, \nu^* \rangle\) be a nonstandard expansion of \(\langle A^s, d^s \rangle\). We define the near standard set \(\text{Nst}(X^*)\), the approachable set \(\text{App}(X^*)\) and the limited set \(\text{Lim}(X^*)\) as follows:

\[
\begin{align*}
\text{Nst}(X^*) & := \{ x \in X^* \mid \exists y^s \in \hat{A}^s \ 	ext{st}(x) = y^s \}, \\
\text{App}(X^*) & := \{ x \in X^* \mid \forall n \in \mathbb{N}^s \exists a \in A^s \ \nu^*(x, a) < 2^{-n} \}, \\
\text{Lim}(X^*) & := \{ x \in X^* \mid \exists n \in \mathbb{N}^s \exists a \in A^s \ \nu_1^*(x, a) < n \}.
\end{align*}
\]

Note that any of \(\text{Nst}(X^*)\), \(\text{App}(X^*)\) or \(\text{Lim}(X^*)\) might not be a set in \(V^*\). We sometimes say that a set \(D^* \subseteq X^*\) is \(s\)-bounded if it is a subset of \(\text{Lim}(X^*)\). For the original idea of \(\text{App}(X^*)\), \(\text{Nst}(X^*)\) and \(\text{Lim}(X^*)\), see Goldblatt\cite{2}.

Proposition 2.12. Let \(\langle A^s, d^s \rangle\) be a complete separable metric space in \(V^s\), and \(\langle X^*, \nu^* \rangle\) be its nonstandard expansion. Then, the following are provable within \(\text{ns-BASIC}\).

1. If \(\langle A^s, d^s \rangle\) is effectively totally bounded, then, \(X^* \equiv_s \text{App}(X^*)\). Conversely, if \(X^* \equiv_s \text{App}(X^*)\), then, \(\langle A^s, d^s \rangle\) is totally bounded.

2. If \(X^* \equiv_s \text{Nst}(X^*)\), then, \(\langle A^s, d^s \rangle\) is Heine/Borel compact.

3. \(\langle A^s, d^s \rangle\) is bounded if and only if \(X^* \equiv_s \text{Lim}(X^*)\).

Moreover, the following is provable within \(\text{ns-BASIC} + \Sigma_1^0\text{-TP}\).

4. \(\langle A^s, d^s \rangle\) is totally bounded if and only if \(X^* \equiv_s \text{App}(X^*)\).

Proof. Both of 1, 2 and 3 are easy consequences of \(\Sigma_1^0 \cup \Pi_1^0\text{-overspill}\), and 4 is again easy consequences of \(\Sigma_1^0 \cup \Pi_1^0\text{-overspill} + \Sigma_1^0\text{-TP}\). \(\square\)

Note that \(X^* \equiv_s \text{App}(X^*)\) (resp. \(X^* \equiv_s \text{Nst}(X^*)\), \(X^* \equiv_s \text{Lim}(X^*)\)) means that \(X^* = \text{App}(X^*)\) (resp. \(X^* \equiv_s \text{Nst}(X^*)\), \(X^* \equiv_s \text{Lim}(X^*)\)) holds up to \(s\)-equivalence, i.e., there exists \(\hat{X}^* \equiv_s X^*\) such that \(X^* = \text{App}(\hat{X}^*)\) (resp. \(\hat{X}^* = \text{Nst}(\hat{X}^*)\), \(\hat{X}^* = \text{Lim}(\hat{X}^*)\)).

In the usual nonstandard analysis, \(\text{App}(X^*) = \text{Nst}(X^*)\) holds for any nonstandard expansion of a complete metric space (see, e.g., \cite{2}). To prove this, \(\text{ns-WKL}_0\) is required.

Theorem 2.13. The following are equivalent over \(\text{ns-BASIC}\).

1. \(\text{ns-WKL}_0\).

2. If \(\langle X^*, \nu^* \rangle\) is a nonstandard expansion of a complete separable metric space \(\langle A^s, d^s \rangle\), then, \(\text{App}(X^*) = \text{Nst}(X^*)\).

3. If \(\langle X^*, \nu^* \rangle\) is a nonstandard expansion of a complete separable metric space \(\langle A^s, d^s \rangle\), then, \(\text{App}(X^*) \equiv_s \text{Nst}(X^*)\).

4. If \(\langle A^s, d^s \rangle\) is an effectively totally bounded complete separable metric space and \(\langle X^*, \nu^* \rangle\) is its nonstandard expansion, then, \(X^* \equiv_s \text{Nst}(X^*)\).
5. If \((X^*, \nu^*)\) is a nonstandard expansion of the closed unit interval \([0, 1]\), then, \(X^* \equiv_s \text{Nst}(X^*)\), where, \([0, 1] = \langle A^*, d^s \rangle\) for \(A^* = \{q \in \mathbb{Q}^s \mid 0 \leq q \leq 1\}\) and \(d^s(p, q) = |q - p|\).

Proof. We first show 1 \(\rightarrow\) 2. We reason within \text{ns-WKL}_0. Let \((X^*, \nu^*)\) be a nonstandard expansion of a complete separable metric space \((A^*, d^s)\) in \(V^s\). \(\text{App}(X^*) \supseteq \text{Nst}(X^*)\) is trivial, so we will show that \(\text{App}(X^*) \subseteq \text{Nst}(X^*)\). Let \(x \in \text{App}(X^*)\). Then, by the definition of \(\text{App}(X^*)\), for any \(i \in \mathbb{N}^s\), there exists \(a \in A^s\) such that \(\nu^*(x, a) < 2^{-i-2}\). Thus, by \(\Sigma^0_2\)-choice (Lemma 2.5), we can take a sequence \(y^s = \langle a(i) \in A^s \mid i \in \mathbb{N}^s \rangle \in V^s\) such that \(\forall i \in \mathbb{N}^s \nu^*(x, a(i)) < 2^{-i-2}\). We can easily check that \(y^s\) is a point of \(\bar{A}^s\), and \(\text{st}(x) = y^s\). This completes the proof of 1 \(\rightarrow\) 2.

2 \(\rightarrow\) 3 and 4 \(\rightarrow\) 5 are trivial. 3 \(\rightarrow\) 4 is trivial from Proposition 2.12.1.

To prove 5 \(\rightarrow\) 1, we show 5 implies \(\text{ST}\). (This proof is essentially the same as the proof 2 \(\rightarrow\) 1 of Theorem 2.10.) We reason within \text{ns-BASIC}. Let \(Z^s\) be a nonstandard set and let \(\chi^s_Z\) be a characteristic function of \(Z^s\) in \(V^s\). Let \(A^s = \{q \in \mathbb{Q}^s \mid 0 \leq q \leq 1\}\) and \(d^s(p, q) = |q - p|\). Then, by 5, there exists a nonstandard expansion \((X^*, \nu^*)\) in \(V^s\) such that \(X^* = \text{Nst}(X^*)\). Since \(\forall m \in \mathbb{N}^s \{j \in m^s \mid 0 \leq j \leq 4^m\} \subseteq A^s \subseteq X^s\), there exists \(\omega \in \mathbb{N}^s \setminus \mathbb{N}^s\) such that \(\{j \in \omega \mid 0 \leq j \leq 4^\omega\} \subseteq X^s\) by \(\Sigma^0_1 \cup \Pi^0_1\)-overspill. Then, \(x_{Z^s} = \sum_{i \in \omega} \chi^s_Z(j)4^{-i} \in X^s\) and \(\text{st}(x_{Z^s}) \in A^s\). Hence we can show that \(Z^s \mid V^s\) exists as in the proof of Theorem 2.10. This completes the proof. \(\square\)

Corollary 2.14. Let \((A^s, d^s)\) be a complete separable metric space in \(V^s\) and \((X^*, \nu^*)\) be its nonstandard expansion. The following are equivalent over \text{ns-WKL}_0.

1. \((A^s, d^s)\) is effectively totally bounded.
2. \(X^* \equiv_s \text{App}(X^*)\).
3. \(X^* \equiv_s \text{Nst}(X^*)\).
4. \((A^s, d^s)\) is sequentially Heine/Borel compact.

Proof. We have already seen 1 \(\rightarrow\) 2 \(\rightarrow\) 3 in Proposition 2.12 and Theorem 2.13, and 4 \(\rightarrow\) 1 is trivial.

We show 3 \(\rightarrow\) 4. Let \(\langle(a(i, j), r(r, j)) \in A^s \times \mathbb{Q}^{s+} \mid i \in \mathbb{N}^s \rangle \mid j \in \mathbb{N}^s\) be a sequence of open covers of \(\bar{A}^s\), and let \((X^*, \nu^*)\) be a nonstandard expansion of \((A^s, d^s)\) such that \(X^* = \text{Nst}(X^*)\). Without loss of generality, we can assume that \(X^*\) is bounded, i.e., \(\max X^* = K \in \mathbb{N}^s\) exists. By Proposition 2.12.2, for any \(j \in \mathbb{N}^s\), there exists \(k_j \in \mathbb{N}^s\) such that \(\langle(a(i, j), r(r, j)) \mid i < k_j\rangle\) covers \(A^s\). Then, we can easily show that \(\forall x \leq K (x \in X^* \rightarrow \exists i < k_j \nu^*(x, a(i, j)) < r(i, j))\). Thus, by \(\Sigma^0_1\)-choice, there exists \(f^s \in V^s\) such that \(\forall j \in \mathbb{N}^s (\forall x \leq K (x \in X^* \rightarrow \exists i < f^s(j) \nu^*(x, a(i, j)) < r(i, j)))\). Hence, \(\langle(a(i, j), r(r, j)) \mid i < f^s(j)\rangle\) covers \(\bar{A}^s\) for any \(j \in \mathbb{N}^s\). \(\square\)

Remark 2.15. Total boundedness or Heine/Borel compactness does not imply effective total boundedness within \text{ns-WKL}_0 or \text{WKL}_0. In fact, it requires \text{ACA}_0.

(We can prove that \text{ACA}_0 is necessary as follows: for given 1-1 function \(f : \mathbb{N} \rightarrow \mathbb{N}\),...
\[N, \text{ consider } \langle N, d_f \rangle \text{ where } d_f(i, j) = \left| \frac{1}{f(i - 1)} - \frac{1}{f(j - 1)} \right| \text{ for } i, j > 0 \text{ and } d_f(i, 0) = 1/f(i - 1) \text{ for } i > 0. \]

2.2.3 Continuous functions

First, we recall the definition of continuous functions within \(\text{RCA}_0 \). Let \(\langle A, d_A \rangle, \langle B, d_B \rangle \) be complete separable metric spaces. A \textit{code for a} \textit{continuous function} \(f \) from \(A \) to \(B \) is a set of quintuples \(\Phi \subseteq N \times A \times \mathbb{Q}^+ B \times \mathbb{Q}^+ \) which satisfies the following three conditions and the domain condition:

1. \((i) \) if \((a, r) \Phi (b, s) \) and \((a, r) \Phi (b', s') \), then \(d_B(b, b') \leq s + s' \);
2. \((ii) \) if \((a, r) \Phi (b, s) \) and \(d_A(a', a) + r' < r \), then \((a', r') \Phi (b, s) \);
3. \((\text{dom}) \) for any \(x \in A \) and for any \(\varepsilon > 0 \) there exists \((m, a, r, b, s) \in \Phi \) such that \(d_A(x, a) < r \) and \(s < \varepsilon \),

where \((a, r) \Phi (b, s) \) is an abbreviation for \(\exists m ((m, a, r, b, s) \in \Phi) \). We define the value \(f(x) \) to be the unique \(y \in B \) such that \(d_B(y, b) < s \) for all \((a, r) \Phi (b, s) \) with \(d_A(x, a) < r \). The existence of \(f(x) \) is provable in \(\text{RCA}_0 \). A continuous function \(f : A \to B \) is said to be \textit{uniformly continuous} if for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(\forall x, y \in A (d_A(x, y) < \delta \rightarrow d_B(f(x), f(y)) < \varepsilon) \), and \(f : A \to B \) is said to be \textit{effectively uniformly continuous} if there exists a function \(h : N \to N \) such that \(\forall n \in \mathbb{N} \exists x, y \in A (d_A(x, y) < 2^{-h(n)} \rightarrow d_B(f(x), f(y)) < 2^{-n}) \). (This \(h \) is said to be a \textit{modulus of uniform continuity for} \(f \).)

From now on, we argue within \(\text{ns-BASIC} \). We first define the nonstandard extension of continuous functions. In nonstandard analysis, a continuous function \(f^* \) from \(\mathbb{R}^* \) to \(\mathbb{R}^* \) can be approximated by a (partial) function \(F^* \) from \(\mathbb{Q}^* \) to \(\mathbb{Q}^* \). Note that \(F^* \) does not need to be a continuous function (within the nonstandard universe). In the following definition, we will generalize this idea.

Definition 2.7. Let \(\langle A^s, d_A^s \rangle, \langle B^s, d_B^s \rangle \) be complete separable metric spaces, and let \(\langle X^*, \nu_X^* \rangle, \langle Y^*, \nu_Y^* \rangle \) be their nonstandard expansions. Then, the following definitions are made in \(\text{ns-BASIC} \).

1. A partial function \(F^* : \subseteq X^* \to Y^* \) is said to be a \textit{pre-extension} of a continuous function \(f^* : A^s \to B^s \), or \(f^* \) is said to be a \textit{pre-standard part} of \(F^* \) if \(\text{dom}(F^*) \subseteq X^* \) and for any \(x \in \text{Nst}(X^*) \cap \text{dom}(F^*) \), \(F^*(x) \in \text{Nst}(Y^*) \) and \(\text{st}(F^*(x)) = f^*(\text{st}(x)) \).
2. A partial function \(F^* : \subseteq X^* \to Y^* \) is said to be an \textit{extension} of a continuous function \(f^* : A^s \to B^s \), or \(f^* \) is said to be the \textit{standard part} of \(F^* \) if \(\text{dom}(F^*) \subseteq X^* \) and for any \(x \in \text{App}(X^*) \cap \text{dom}(F^*) \) and for any \(n \in N^s \), there exist \(m \in N^s \) such that for any \(a^s \in A^s \), \(\nu_X^*(a^s, x) < 2^{-m} \rightarrow \nu_Y^*(f^*(a^s), F^*(x)) < 2^{-n} \).
3. A partial function \(F^* : \subseteq X^* \to Y^* \) is said to be \textit{s-continuous} if for any \(x, y \in \text{App}(X^*) \), \(x \approx y \to F^*(x) \approx F^*(y) \).
By the definition of (pre-)extension, a (pre-)extension $F^* : \subseteq X^* \to Y^*$ of a continuous function $f^* : A^* \to B^*$ is a total function on $(\text{dom}(F^*), \nu^*_X | \text{dom}(F^*))$ which is s-equivalent to X^*. Thus, we can consider that a (pre-)extension is a total function up to s-equivalence. Moreover, we can easily check that extension is unique up to infinitesimals on $\text{App}(X^*)$, i.e., if two partial functions F^* and G^* are extensions of the same continuous function, then, $F^*(x) \approx G^*(x)$ for any $x \in \text{dom}(F^*) \cap \text{dom}(G^*) \cap \text{App}(X^*)$.

Proposition 2.16. The following is provable within ns-BASIC. Let $\langle A^*, d^*_A \rangle$, $\langle B^*, d^*_B \rangle$ be complete separable metric spaces, and let $\langle X^*, \nu^*_X \rangle$, $\langle Y^*, \nu^*_Y \rangle$ be their nonstandard expansions. Let $f^* : A^* \to B^*$ be a continuous function. Then, a partial function $F^* : \subseteq X^* \to Y^*$ of f^* is an extension of f^* and if only if it is a pre-extension of f^* and s-continuous.

Proof. By overspill, a partial function $F^* : \subseteq X^* \to Y^*$ is s-continuous if and only if for any $x \in \text{App}(X^*)$ and for any $n \in \mathbb{N}^s$ there exists $m \in \mathbb{N}^s$ such that $\forall y \in X^*(\nu^*_X(x, y) < 2^{-m} \to \nu^*_Y(F^*(x), F^*(y)) < 2^{-n})$. Similarly, F^* is a pre-standard part of f^* if and only if for any $x \in \text{Nst}(X^*)$ and for any $n \in \mathbb{N}^s$ there exists $m \in \mathbb{N}^s$ such that $\forall y \in X^*(\nu^*_X(x, y) < 2^{-m} \to \nu^*_Y(f^*(st(x)), F^*(y)) < 2^{-n})$. We can easily prove the desired equivalence from these. \qed

Now we show the existence of extensions of continuous functions. The existence of pre-extensions is provable within ns-BASIC, however, to show the uniqueness of pre-extension, ns-WKL_0 is required.

Proposition 2.17 (existence of pre-extensions of continuous functions). The following is provable within ns-BASIC. Let $\langle A^*, d^*_A \rangle$, $\langle B^*, d^*_B \rangle$ be complete separable metric spaces, and let $\langle X^*, \nu^*_X \rangle$, $\langle Y^*, \nu^*_Y \rangle$ be their nonstandard expansions. Let $f^* : A^* \to B^*$ be a continuous function. Then, there exists a pre-extension $F^* : \subseteq X^* \to Y^*$ of f^*.

Proof. We reason within ns-BASIC. Let Φ^* be a code for $f^* : A^* \to B^*$. By conditions (i) and (ii) for a code for a continuous function, $\forall (n, a, r, b, s), (n', a', r', b', s') \in \Phi^*(d^*_A(a, a') + r' < r \to d^*_B(b, b') \leq s + s')$. Thus, for any $i \in \mathbb{N}^s$,

$$\forall (n, a, r, b, s), (n', a', r', b', s') \in \Phi^* \cap i \quad \nu^*_X(a, a') + r' + 2^{-i} < r \rightarrow \nu^*_Y(b, b') \leq s + s' + 2^{-i}$$

$$\land \Phi^* \cap i \subseteq \mathbb{N}^s \times X^* \times \mathbb{Q}^+ \times Y^* \times \mathbb{Q}^+.$$

Applying $\Sigma^0_1 \cup \Pi^0_1$-overspill, we can find $\omega_0 \in \mathbb{N}^s \setminus \mathbb{N}^s$ which satisfies $\forall \omega \omega$. Let $\Psi^* = \Phi^* \cap \omega_0(\subseteq \Phi^* \cap i)$. Then, by conditions (dom) and (ii), for any $i \in \mathbb{N}^s$,

$$\forall x \in X^* \cap i \exists (n, a, r, b, s) \in \Psi^*(\nu^*_X(x, a) < r + 2^{-i-1} < 2^{-i} \land s < 2^{-i}).$$

Again by $\Sigma^0_1 \cup \Pi^0_1$-overspill, we can find $\omega \in \mathbb{N}^s \setminus \mathbb{N}^s$ which enjoys $\omega \omega$. Define a partial function $F^* : \subseteq X^* \to Y^*$ of f^* such that $\text{dom}(F^*) = X^* \cap \omega$ as
Let Pre-extension be unique up to infinitesimals, i.e., if two partial functions F^* and G^* from X^* to Y^* are pre-extensions of the same continuous function f^*, then, $F^*(x) = G^*(x)$ for any $x \in \text{dom}(F^*) \cap \text{dom}(G^*) \cap \text{App}(X^*)$.

We will check that this F^* is a pre-extension of f^*. Let $x \in \text{dom}(F^*) \cap \text{Nst}(X^*)$, $\text{st}(x) = c^s \in \hat{A}^s$ and $F_0^*(x) = (n, a, r, y, s) \in \Psi^s$. Let $m \in \mathbb{N}$. Then, there exists $(n_0, a_0, r_0, b_0, s_0) \in \Phi^s$ such that $d^s_{\lambda}(c^s, a_0) < r_0$ and $d^s_{\lambda}(f^*(c^s), b_0) < s_0 < 2^{-m-1}$. Then, $\nu^s_{\lambda}(a_0, a) + r + 2^{-w_0} < r_0$ since $\text{st}(\nu^s_{\lambda}(x, c^s) + \nu^s_{\lambda}(x, a) + r + 2^{-w_0}) = 0$. Thus, by (1, w_0), $\nu^s_{\lambda}(f^*(c^s), y) < 2^{-m}$. This means that $\text{st}(y) = f^*(c^s)$.

Theorem 2.18 (extensions of continuous functions). Let $(\hat{A}^s, d^s_{\lambda})$, (\hat{B}^s, d^s_{β}) be complete separable metric spaces, and let (X^*, ν^s_{λ}), (Y^*, ν^s_{λ}) be their nonstandard expansions. Then, the following are equivalent over ns-BASIC.

1. ns-WKL$_0$.

2. Every pre-extension $F^* : X^* \rightarrow Y^*$ of a continuous function $f^* : \hat{A}^s \rightarrow \hat{B}^s$ is s-continuous, thus it is an extension of f^*.

3. Pre-extension is unique up to infinitesimals, i.e., if two partial functions $F^* : X^* \rightarrow Y^*$ and $G^* : X^* \rightarrow Y^*$ are pre-extensions of the same continuous function, then, $F^*(x) \approx G^*(x)$ for any $x \in \text{dom}(F^*) \cap \text{dom}(G^*) \cap \text{App}(X^*)$.

4. If a partial function $F^* : X^* \rightarrow Y^*$ is s-continuous and $F^*(\text{dom}(F^*) \cap \text{App}(X^*)) \subseteq \text{App}(Y^*)$, then, F^* has a standard part.

Proof. 1 \rightarrow 2 is a straightforward direction of Theorem 2.13, and 2 \rightarrow 3 is trivial. We first show 1 \rightarrow 4. Let $F^* : X^* \rightarrow Y^*$ is s-continuous and $F^*(\text{dom}(F^*) \cap \text{App}(X^*)) \subseteq \text{App}(Y^*)$. Define $\Phi^* \subseteq \mathbb{N}^* \times X^* \times \mathbb{Q}^+ \times Y^* \times \mathbb{Q}^+$ as $(n, a, r, b, s) \in \Phi^* \iff \forall x \in X^*(\nu^s_{\lambda}(a, x) < r \rightarrow \nu^s_{\lambda}(F^*(x), b) < s)$. Then, we can easily check that $\Phi^* \upharpoonright V^s$ is a code for a continuous function in V^s and a continuous function $f^* : \hat{A}^s \rightarrow \hat{B}^s$ coded by $\Phi^* \upharpoonright V^s$ is the standard part of F^*. Take $x_0 \in X^* = Y^*$ such that $x_0 \approx \alpha^s$. Then, $x_0 \in \text{App}(X^*) \setminus \text{Nst}(X^*) = \text{App}(Y^*) \setminus \text{Nst}(Y^*)$.

Finally, we show $\neg 1 \rightarrow \neg 3$, $\neg 4$. We assume $\neg 1$. Then, by Theorem 2.10, there exist $\alpha^s \in \mathbb{R}^+$ and $K \in \mathbb{N}^*$ such that $|\alpha^s| < K$ and $\text{st}(\alpha^s) \notin \mathbb{R}$. Without loss of generality, we may assume that $0 \leq \alpha^s < 1$. Let $(\hat{A}^s, d^s_{\alpha}) = (\hat{B}^s, d^s_{\beta}) = [0, 1]^s$, and let $(X^*, \nu^s_{\lambda}) = (Y^*, \nu^s_{\lambda}) = ([i/2^s] \mid 0 \leq i \leq 2^s, | \cdot |)$ for some $\omega \in \mathbb{N} \setminus \mathbb{N}^*$. Then, X^* and Y^* are nonstandard expansions of $[0, 1]^s$. Define F^*, G^*, H^* from X^* to Y^* as $F^*(x) = 0$, $G^* = \begin{cases} 1 & \text{if } x = x_0 \\ 0 & \text{if } x \neq x_0 \end{cases}$, $H^*(x) = x_0$.

Both of F^* and G^* are pre-extensions of zero function, but $F^*(x_0) \neq G^*(x_0)$, thus, $\neg 3$. H^* is s-continuous and $H^*(X^*) \subseteq \text{App}(Y^*)$, but H^* does not have a standard part, thus, $\neg 4$.

\[\square \]
Next, we will give a nonstandard characterization of the uniform continuity.

Proposition 2.19 (characterization of uniform continuity). Let (A^*, d_A^*), (B^*, d_B^*) be complete separable metric spaces, and let (X^*, ν_X^*), (Y^*, ν_Y^*) be their nonstandard expansions. Let $F^* : X^* \to Y^*$ be a pre-extension of a continuous function $f^* : A^* \to B^*$. Then, the following are provable within ns-BASIC.

1. If f^* is effectively uniformly continuous, then there exists $Z^* \subseteq_s \text{dom}(F^*)$ such that $\forall x, y \in Z^*(x \approx y \to F^*(x) \approx F^*(y))$. Particularly, every effectively uniformly continuous function has an extension.

2. Conversely, if there exists $Z^* \subseteq_s \text{dom}(F^*)$ such that $\forall x, y \in Z^*(x \approx y \to F^*(x) \approx F^*(y))$, then, f^* effectively uniformly continuous.

Moreover, the following is provable within ns-WKL\(_0\)

3. f^* is effectively uniformly continuous if and only if there exists $Z^* \subseteq_s \text{dom}(F^*)$ such that $\forall x, y \in Z^*(x \approx y \to F^*(x) \approx F^*(y))$.

Proof. 1 and 2 are easily proved by overspill. We can prove 3 by Σ^0_0-choice as in the proof of Corollary 2.14. \(\Box\)

Remark 2.20. Uniform continuity does not imply effective uniform continuity within ns-WKL\(_0\) or WKL\(_0\). In fact, it requires ACA\(_0\). (We can prove that ACA\(_0\) is necessary as follows: for given 1-1 function $f : \mathbb{N} \to \mathbb{N}$, consider a continuous function g from $\{0\} \cup \{1/n \mid n \in \mathbb{N}\}$ to $\{0\} \cup \{1/f(n) \mid n \in \mathbb{N}\}$ defined as $g(0) = 0$ and $g(1/n) = 1/f(n)$.)

Next, we consider continuous functions on \mathbb{R}^n. A (partial) continuous function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **piecewise linear** if for any bounded closed subset $D \subseteq \mathbb{R}^n$, there exists a finite (closed) cover $\{D_i\}_{i \leq k}$ of D such that $f \restriction D_i$ is a linear function for any $i \leq k$. Let $Q^n[k] := \{a/2^k \in \mathbb{Q}^n \mid a \in \mathbb{Z}^n\}$.

Now, we argue within ns-BASIC. Our aim is to give an infinitesimal approximation of a continuous function by a hyperfinite piecewise linear function. Here, we only consider this on $[0,1]^n$, but generalization is not difficult.

Definition 2.8. The following definitions are made in ns-BASIC.

1. A continuous function $F^* : ([0,1]^*)^n \to (\mathbb{R}^*)^m$ is said to be a pre-extension of a continuous function $f^* : ([0,1]^*)^n \to (\mathbb{R}^*)^m$, or f^* is said to be a pre-standard part of F^* if $\text{st}(F^*(x^*)) = f^*(\text{st}(x^*))$ for any near standard $x^* \in ([0,1]^*)^n$.

2. A continuous function $F^* : ([0,1]^*)^n \to (\mathbb{R}^*)^m$ is said to be an extension of a continuous function $f^* : [0,1]^n \to (\mathbb{R}^*)^m$, or f^* is said to be the standard part of F^* if for any $x^* \in ([0,1]^*)^n$ and for any $i \in \mathbb{N}^*$, there exist $j \in \mathbb{N}$ such that for any $y^* \in [0,1]^n$, $d_{\mathbb{R}^n}(F^*(x^*), f^*(y^*)) < 2^{-j} \Rightarrow d_{\mathbb{R}^n}(F^*(x^*), f^*(y^*)) < 2^{-i}$.

15
3. A continuous function $F^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$ is said to be s-continuous if for any $x, y \in ([0, 1]^*)^n$, $x \approx y \Rightarrow F^*(x) \approx F^*(y)$.

We can prove the following proposition as in the nonstandard extension of a continuous function on a complete separable metric space.

Proposition 2.21. The following is provable within ns-BASIC. Let $f^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$ be a continuous function. Then, a continuous function $F^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$ is an extension of f^* if and only if it is a pre-extension of f^* and s-continuous.

Now we give an infinitesimal approximation for a continuous function by a hyperfinite piecewise-linear function.

Proposition 2.22. The following is provable within ns-BASIC. Let $f^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$ be a continuous function. Then, there exists a pre-extension $F^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$ of f^* which is a linear function in V^*. Moreover, parameters for F^* can be taken from Q^*.

Proof. By Proposition 2.17, there exists a pre-extension $F_0^* : (Q^*)^n[\omega_1] \cap ([0, 1]^*)^n \to (Q^*)^m[\omega_2]$ of f^* for some $\omega_1, \omega_2 \in \mathbb{N}^* \setminus \mathbb{N}^s$. Then, we can extend F_0^* into a piecewise linear function $F^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$.

Theorem 2.23 (Approximation by a hyperfinite piecewise linear function). The following are equivalent over ns-BASIC.

1. ns-WKL$_0$.

2. Every continuous function $f^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$ has an extension $F^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$ which is a piecewise-linear function. Moreover, parameters for F^* can be taken from Q^*.

3. If a continuous function $F^* : ([0, 1]^*)^n \to (\mathbb{R}^*)^m$ is s-continuous and s-bounded, i.e. there exists $K \in \mathbb{N}^s$ such that $\|F^*(x^*)\| < K$ for any $x^* \in ([0, 1]^*)^n$, then F^* has a standard part.

Proof. Similar to the proof of Theorem 2.18. "

Moreover, we can prove the nonstandard Weierstraß approximation theorem, i.e., a continuous function $f^* : [0, 1]^s \to \mathbb{R}^s$ can be infinitesimally approximated by a nonstandard polynomial $F^* : [0, 1]^s \to \mathbb{R}^s$ such that every coefficient is taken from Q^*. This is a consequence of the Weierstraß approximation theorem in WKL$_0$ plus overspill.

2.2.4 Riemann integral

In this subsection, we will approximate the Riemann integral by a hyperfinite Riemann sum. Let $I^n[i] = Q^s[i] \cap [0, 1]^n$. For a function $F : I^n[i] \to Q$, define $S[i][F] := \sum_{x \in I^n[i]} F(x)/2^{2n}$. Within ns-BASIC, $I^n[\omega]$ is a nonstandard expansion of $([0, 1]^*)^n$ if $\omega \in \mathbb{N}^s \setminus \mathbb{N}^s$.

16
Proposition 2.24. The following is provable within ns-BASIC. Let \(f^* : ([0,1]^n) \rightarrow \mathbb{R} \) be a continuous function, and let \(\omega \in \mathbb{N}^* \setminus \mathbb{N}^* \). If a function \(F^* : I^n_\omega \rightarrow \mathbb{Q}^* \) is an extension of \(f^* \), then, \(f^* \) is Riemann integrable and
\[
\int_{([0,1]^n)} f \, dx = \text{st}(S_\omega[F^*]).
\]

Proof. Easy imitation of the usual proof of nonstandard analysis. \(\square \)

Theorem 2.25. The following are equivalent over ns-BASIC.

1. ns-WKL\(_0\).

2. Let \(f^* : ([0,1]^n) \rightarrow \mathbb{R} \) be a continuous function, and let \(\omega \in \mathbb{N}^* \setminus \mathbb{N}^* \). If a function \(F^* : I^n_\omega \rightarrow \mathbb{Q}^* \) is a pre-extension of \(f^* \), then, \(f^* \) is Riemann integrable and
\[
\int_{([0,1]^n)} f \, dx = \text{st}(S_\omega[F^*]).
\]

Proof. 1 \(\rightarrow \) 2 is a straightforward direction from Theorem 2.18 and Proposition 2.24. We show \(\neg 1 \rightarrow \neg 2 \). Assuming \(\neg 1 \), there exist \(\omega \in \mathbb{N}^* \setminus \mathbb{N}^* \) and \(x_0 \in I^n_\omega \) such that \(x_0 \) is not near standard as in the proof of Theorem 2.18. Define \(F^* : I^n_\omega \rightarrow \mathbb{Q}^* \) as \(F^*(x_0) = 2^{-m} \) and \(F^*(x) = 0 \) if \(x \neq x_0 \). Then, \(F^* \) is a pre-extension of the zero function on \(([0,1]^n) \), but
\[
\int_{([0,1]^n)} 0 \, dx \neq \text{st}(S_\omega[F^*]) = 1.
\]

\(\square \)

Remark 2.26. In the Theorem 2.25, the item 2 is equivalent to a weaker system ns-WWKL\(_0\) if \(f^* \) is bounded. See [10].

2.2.5 Open and closed sets

In this part, we will show how to deal with open and closed sets within non-standard second-order arithmetic.

We will argue within ns-BASIC. Let \(\langle A^*, d^* \rangle \) be a complete separable metric space, and let \(\langle X^*, \nu^* \rangle \) be its nonstandard expansion. For a subset \(D^* \subseteq X^* \), we define subsets of \(A^* \) as follows:
\[
\text{st}(D^*) := \{ y^* \in A^* \mid \exists x^* \in D^* \text{ st}(x) = y^* \},
\]
\[
\text{st}'(D^*) := \{ y^* \in A^* \mid \exists n \in \mathbb{N}^* \forall x^* \in X^* (\nu^*(x, y^*) < 2^{-n} \rightarrow x \in D^*) \}.
\]

Proposition 2.27. The following is provable within ns-BASIC. Let \(\langle A^*, d^* \rangle \) be a complete separable metric space, and let \(\langle X^*, \nu^* \rangle \) be its nonstandard expansion. Let \(D^* \subseteq X^* \). Then, \(y^* \in \text{st}(D^*) \) if and only if \(y^* \notin \text{st}'(X^* \setminus D^*) \).
Proof. If $y^* \in st'(X^* \setminus D^*)$ and $st(x) = y^*$, then $x \in X^* \setminus D^*$. Thus, $y^* \in st(D^*)$ implies $y^* \notin st'(X^* \setminus D^*)$. We will show that $y^* \notin st'(X^* \setminus D^*)$ implies $y^* \in st(D^*)$. Let $y^* \notin st'(X^* \setminus D^*)$. Take $z \in X^*$ such that $st(z) = y^*$. Then, for any $n \in \mathbb{N}^*$, there exists $x \in D^*$ such that $\nu^*(x, z) < 2^{-n}$. Thus, by overspill, there exists $x_0 \in D^*$ such that $x_0 \approx z$. Then, $st(x_0) = st(z) = y^*$, which means that $y^* \in st(D^*)$. \qed

Theorem 2.28. The following are equivalent over ns-BASIC.

1. ns-WKL₀.

2. Let $\langle A^*, d^* \rangle$ be a complete separable metric space, and let $\langle X^*, \nu^* \rangle$ be its nonstandard expansion. Let $D^* \subseteq X^*$. Then, for any $D^* \subseteq X^*$, $st'(D^*)$ is an open subset of \mathcal{A}^*, i.e., there exists an open code $U^* \subseteq \mathbb{N}^* \times A^* \times \mathbb{Q}^+$ such that $y^* \in st(D^*)$ implies $y^* \in U^*$.

3. Let $\langle A^*, d^* \rangle$ be a complete separable metric space, and let $\langle X^*, \nu^* \rangle$ be its nonstandard expansion. Let $D^* \subseteq X^*$. Then, for any $D^* \subseteq X^*$, $st(D^*)$ is a closed subset of \mathcal{A}^*, i.e., there exists an open code $U^* \subseteq \mathbb{N}^* \times A^* \times \mathbb{Q}^+$ such that $y^* \in st(D^*)$ implies $y^* \notin U^*$.

Proof. 2 \leftrightarrow 3 is trivial from Proposition 2.27. We first show 1 \rightarrow 2. We argue within ns-WKL₀. Let $\langle A^*, d^* \rangle$ be a complete separable metric space, and let $\langle X^*, \nu^* \rangle$ be its nonstandard expansion. Let $D^* \subseteq X^*$. Take $\omega \in \mathbb{N}^* \setminus \mathbb{N}^*$ Define $U^*_0 \subseteq \mathbb{N}^* \times X^* \times \mathbb{Q}^+$ as $(n, a, r) \in U^*_0 \leftrightarrow n = 1 \land \forall x \in X^* \exists \omega(\nu^*(a, x) < r \to x \in D^*)$. Then, $U^* = U^*_0 \upharpoonright V^*$ is (a code for) an open subset of \mathcal{A}^*. We can easily check that $x^* \in U^* \leftrightarrow x^* \in st'(D^*)$.

To show $\neg 1 \rightarrow \neg 2$, let $A^* = [0, 1]^*$ and $X^* = I[\omega] = \mathbb{Q}^* \cap [0, 1]^*$. By $\neg 1$, there exists $x_0 \in X^*$ such that x_0 is not near standard as in the proof of Theorem 2.18. Then, clearly $0 < st(x_0) < 1$ in V^*. Define D^*_0 and D^*_1 as $D^*_0 = \{x \in X^* \mid x < x_0\}$ and $D^*_1 = X^* \setminus D^*_0$. If both of $st'(D^*_0)$ and $st'(D^*_1)$ are open sets, $[0, 1]^*$ is divided into two non-empty open sets, which contradicts the fact that $[0, 1]^*$ is connected (in V^*). (Note that RCA₀ proves that the unit interval is connected.) This completes the proof. \qed

For nonstandard approximation for an open or closed set, we need ns-ACA₀.

Proposition 2.29. Let $\langle A^*, d^* \rangle$ be a complete separable metric space, and let $\langle X^*, \nu^* \rangle$ be its nonstandard expansion. Then, the following are provable within ns-ACA₀.

1. For any open subset $U^* \subseteq \mathcal{A}^*$, there exists $D^* \subseteq X^*$ such that $U^* = st(D^*)$.

2. For any closed subset $C^* \subseteq \mathcal{A}^*$, there exists $D^* \subseteq X^*$ such that $C^* = st(D^*)$.

Proof. We only need to prove 2 by Proposition 2.27. We argue within ns-ACA₀. Let $\langle A^*, d^* \rangle$ be a complete separable metric spaces, and let $\langle X^*, \nu^* \rangle$ be its...
nonstandard expansion. Let U^* be (a code for) an open subset of \hat{A}^*. By Σ^0_1-TP, $\langle A^*, d^\nu \rangle$ is a complete separable metric space and U^* is its open subset in V^*. Then, by $\Sigma^0_1 \cup \Pi^0_1$-overspill, there exists $\omega \in \mathbb{N}^* \setminus \mathbb{N}^*$ such that $A^* \cap \omega = X^* \cap \omega$ and $d^\nu(x^*, a) = r \in X^* \cap \omega$. Define D^* as $x \in D^*$ if and only if $x \in X^* \cap \omega$ and $x \notin U^*\cap \omega$ as an element of $A^*\setminus \omega$. We show $st(D^*) = \hat{A}^* \setminus U^*$. Note that $\nu^*(x^*, a) < r \iff d^\nu(x^*, a) < r$ for any $a \in X^* \cap \omega$ and $r \in \hat{Q}^*$. If $x^* \in st(D^*)$, then $x^* \notin U^*$ by the transfer principle. If $x^* \notin U^*$, there exists $y \in X^* \cap \omega$ such that $\nu^*(x^*, y) < 2^{-\omega'}$ for some $\omega' \in \mathbb{N}^* \setminus \mathbb{N}^*$ by overspill, thus $x^* \in st(D^*)$. This completes the proof. \hfill \Box

Next, we consider totally boundedness and compactness for closed sets. We can define the notion effectively totally bounded, totally bounded, Heine/Borel compact and sequentially Heine/Borel compact for a closed set similar to the definition for \hat{A} within RCA_0. Then, similarly to a complete separable metric space $\langle A^*, d^* \rangle$, we can prove the following.

Proposition 2.30. Let $\langle A^*, d^* \rangle$ be a complete separable metric space in V^*, and $\langle X^*, \nu^* \rangle$ be its nonstandard expansion. Let $C^* \subseteq \hat{A}^*$ be a closed set. Then, the following are provable within ns-BASIC.

1. If C^* is effectively totally bounded, then, there exists a (V^*_{-})finite set $D^* \subseteq \text{App}(X^*)$ such that $C^* \subseteq st(D^*)$. Conversely, if there exists a (V^*_{-})finite set $D^* \subseteq \text{App}(X^*)$ such that $C^* \subseteq st(D^*)$, then, C^* is totally bounded.

2. If there exists a (V^*_{-})finite set $D^* \subseteq \text{Nst}(X^*)$ such that $C^* \subseteq st(D^*)$, then, C^* is Heine/Borel compact.

The following is provable within ns-WKL_0.

3. The following are equivalent:
 - C^* is effectively totally bounded,
 - C^* is sequentially Heine/Borel compact,
 - there exists a (V^*_{-})finite set $D^* \subseteq \text{App}(X^*)$ such that $C^* \subseteq st(D^*)$,
 - there exists a (V^*_{-})finite set $D^* \subseteq \text{Nst}(X^*)$ such that $C^* \subseteq st(D^*)$.

The following is provable within $\text{ns-BASIC} + \Sigma^0_1$-TP.

4. C^* is totally bounded if and only if there exists a (V^*_{-})finite set $D^* \subseteq \text{App}(X^*)$ such that $C^* \subseteq st(D^*)$.

Here, we can see that $st(D^*)$ for a V^*-finite set $D^* \subseteq \text{App}(X^*)$ plays an important role. Actually, it defines a “strongly compact-like” set. Within RCA_0, let $\langle A, d \rangle$ be a complete separable metric space. Then, a sequence of finite sequences $S = \langle \langle h(i, j) \in A \mid j < p(i) \rangle \mid i \in \mathbb{N} \rangle$ is said to be a (code for) a strongly totally bounded closed set (stbc-set, in short) if $p(i) \leq p(i + k)$ and $d(h(i, l), h(i + k, l)) \leq 2^{-i}$ for any $i, k \in \mathbb{N}$ and $l < p(i)$. For $x \in A$, define
The following are provable within RCA_0. The following are equivalent over RCA_0.

Let e be easily construct a sequence $\langle x_0, x_1, \ldots \rangle
\in S$. Then, by overspill, there exists $n \in \mathbb{N}$ such that $x_n \in S$.

We can easily check that this sequence codes a stbc-set $\langle x_n \rangle$.

Closed, RCA_0 effectively totally bounded sets are said to be RCA_0 closed.

Proof. Let $S^* = \langle (h^*(i,j) \in A^* \mid j < p^*(i)) \mid i \in \mathbb{N}^* \rangle$ be a stbc-set of \hat{A}^*. Then, by overspill, there exists $\omega \in \mathbb{N}^* \setminus \mathbb{N}^*$ such that $p^*(\omega) \leq 2^{-i}$ for any $i < j \leq \omega$ and $l < p^*(i)$. Let $D^* = \langle h^*(\omega, l) \mid l < p^*(\omega) \rangle$. Then, clearly, $D^* \subseteq \mathsf{App}(X^*)$ and $\mathsf{st}(D^*) \subseteq S^*$. Let $x^* = \langle x^*(i) \mid i \in \mathbb{N}^* \rangle \in S^*$. Then, there exists $\omega' \in \mathbb{N}^* \setminus \mathbb{N}^*$ and $l < p^*(\omega')$ such that $\omega' < \omega$ and $\nu^*(x^*(\omega'), h^*(\omega', l)) \leq 2^{-\omega'+2}$. Thus, $x^* \approx h^*(\omega', l) \approx h^*(\omega, l)$. This means $\mathsf{st}(D^*) \subseteq S^*$, and this completes the proof.

For the converse, we need $\mathsf{ns-WKL}_0$ again.

Theorem 2.32. The following are equivalent over $\mathsf{ns-BASIC}$.

1. $\mathsf{ns-WKL}_0$.

2. Let $\langle A^*, d^* \rangle$ be a complete separable metric space in V^*, and $\langle X^*, \nu^* \rangle$ be its nonstandard expansion. Let $D^* \subseteq \mathsf{App}(X^*)$ be a (V^*)-finite set.

Then, there exists a stbc-set $S^* \subseteq A^*$ such that $S^* = \mathsf{st}(D^*)$.

Proof. We can prove $2 \to 1$ exactly same as the proof of $2 \to 1$ of Theorem 2.28. We show $1 \to 2$. Let $D^* \subseteq \mathsf{App}(X^*)$ be a (V^*)-finite set. Then, for any $i \in \mathbb{N}^*$, $\forall x \in D^* \exists a \in A^* \nu^*(x, a) < 2^{-i}$. Thus, by underspill, $\forall x \in D^* \exists a \in A^* \cap M \nu^*(x, a) < 2^{-i}$ for some $M_i \in \mathbb{N}^*$. Now, by using Σ^0_1-choice, we can easily construct a sequence $\langle \sigma_i \in A^* \mid i \in \mathbb{N}^* \rangle$ which satisfies the following:

- $\forall x \in D^* \exists l < \ln(\sigma_i) \nu^*(x, \sigma_i(l)) < 2^{-i+1}$ for any $i \in \mathbb{N}^*$,
- $\forall l < \ln(\sigma_i) \exists x \in D^* \nu^*(x, \sigma_i(l)) < 2^{-i+1}$ for any $i \in \mathbb{N}^*$,
- $\nu^*(\sigma_i(l), \sigma_j(l)) < 2^{-i}$ for any $i < j \in \mathbb{N}^*$ and $l < \ln(\sigma_i)$.

We can easily check that this sequence codes a stbc-set $S^* = \mathsf{st}(D^*)$.

We can also give some nonstandard characterization for some other properties of open or closed sets. In section 4, we will consider Jordan regions and simply connected open sets in \mathbb{C} to prove several versions of Riemann’s mapping theorem.
2.2.6 Transfer principle and sequential compactness

In this part, we consider sequential compactness using the transfer principle. We argue within ns-$\textsf{BASIC} + \Sigma^1_1\text{-TP}$. Let $\langle A^*, d^* \rangle$ be a complete separable metric space in V^*. Then, by the transfer principle, $\langle A^*\nu^*, d^*\nu^* \rangle$ is a complete separable metric space in V^*. Let $X^* = A^*\nu^*$ and $\nu^* = d^*\nu^*$, then $\langle X^*, \nu^*_p \rangle$ is a nonstandard expansion of $\langle A^*, d^* \rangle$ for any $\omega \in \mathbb{N}^* \setminus \mathbb{N}^d$. Moreover, $A^*\nu^* = X^*$ itself can be considered as a nonstandard expansion of A^* since for any $x^* \in X^*$ there exists $y \in X^*$ such that $\nu^*(x^*, y) \approx 0$. We can also define Lim, App and Nst for $A^*\nu^*$ similarly to X^*. Let $h^*: \mathbb{N}^* \rightarrow \hat{A}^*$ be a sequence on \hat{A}^*. Then, $h^*\nu^*$ is a nonstandard sequence on $\hat{A}^*\nu^*$, i.e., $h^*\nu^*: \mathbb{N}^* \rightarrow \hat{A}^*\nu^*$. Note that $(\sqrt{h^*})(i) = \sqrt{h^*(i)}$ for any $i \in \mathbb{N}^*$, so we just write $h^*\nu^*(i)$ for $\sqrt{h^*(i)}$.

Proposition 2.33 (Nonstandard characterization for some properties of sequences). Let $\langle A^*, d^* \rangle$ be a complete separable metric space. Then, the following are provable within $\text{ns-}\Sigma^1_1\text{-TP}$.

1. A sequence $h^*: \mathbb{N}^* \rightarrow \hat{A}^*$ is a Cauchy sequence if and only if for any $i, j \in \mathbb{N}^* \setminus \mathbb{N}^*$, $h^*(i) \approx h^*(j) \in \text{App}(\hat{A}^*\nu^*)$.

2. A sequence $h^*: \mathbb{N}^* \rightarrow \hat{A}^*$ is convergent if and only if for any $i, j \in \mathbb{N}^* \setminus \mathbb{N}^*$, $h^*(i) \approx h^*(j) \in \text{Nst}(\hat{A}^*\nu^*)$.

3. A sequence $h^*: \mathbb{N}^* \rightarrow \hat{A}^*$ has a convergent subsequence if and only if there exists $i \in \mathbb{N}^* \setminus \mathbb{N}^*$ such that $h^*(i) \in \text{Nst}(\hat{A}^*\nu^*)$.

4. For any sequence $h^*: \mathbb{N}^* \rightarrow \hat{A}^*$, a (possibly external) subset $\text{st} (\{h^*(i) | i \in \mathbb{N}^*\}) \subseteq \hat{A}^*$ is a closure of $\{h^*(i) | i \in \mathbb{N}^*\}$.

More generally, for any (nonstandard) finite sequence $\sigma: \omega_0 \rightarrow X^*$ on some nonstandard expansion $\langle X^*, \nu^* \rangle$, a subset $\text{st} (\sigma(i) | i < \omega)$ is a closure of $\{\text{st}(\sigma(i)) | i \in \mathbb{N}^*\}$ for some $\omega \in \mathbb{N}^* \setminus \mathbb{N}^d$.

Proof. Easy imitation of the usual proof of nonstandard analysis.

Corollary 2.34. Let $\langle A^*, d^* \rangle$ be a complete separable metric space. Then, the following are provable within ns-ACA_0.

1. A sequence $h^*: \mathbb{N}^* \rightarrow \hat{A}^*$ is convergent if and only if it is a Cauchy sequence.

2. \hat{A}^* is totally bounded if and only if it is sequentially compact, i.e., every sequence on \hat{A}^* has a convergent subsequence.

3. Every separably closed set $S \subseteq \hat{A}^*$ (the closure of a sequence on \hat{A}^*) is a closed set, i.e., $\hat{A}^* \setminus S$ has an open code.

Proof. Straightforward directions from Theorem 2.13 plus Proposition 2.33.
We finally consider some properties of a sequence of continuous functions within ns-BASIC + Σ_1^1-TP. Let $\langle A^*, d_A^* \rangle$ and $\langle B^*, d_B^* \rangle$ be complete separable metric spaces and $f^*: A^* \to B^*$ be a continuous function in V^*. Then, by the transfer principle, $f^*: A^* \to B^*$ is a continuous function in V^*. For a continuous function $g^*: A^* \to B^*$, we can define s-continuity and the (pre-)standard part for g^* similarly to Definition 2.7.

Proposition 2.35. Let $\langle A^*, d_A^* \rangle$ and $\langle B^*, d_B^* \rangle$ be complete separable metric spaces. Then, the following are provable within ns-BASIC + Σ_1^1-TP.

1. A sequence of continuous functions $\langle f^*_n : A^* \to B^* \mid n \in \mathbb{N}^* \rangle$ is uniformly convergent on any stbc-set if and only if for any $i, j \in \mathbb{N}^* \setminus \mathbb{N}^*$, $\text{st}(f^*_i)$ and $\text{st}(f^*_j)$ exist and $\text{st}(f^*_i) = \text{st}(f^*_j)$.

2. A sequence of continuous functions $\langle f^*_n : A^* \to B^* \mid n \in \mathbb{N}^* \rangle$ is uniformly bounded at any $x \in A^*$, i.e., $\{f^*_n(x) \mid n \in \mathbb{N}^*\}$ is bounded in A^* for any $x \in A^*$, if and only if for any $i \in \mathbb{N}^* \setminus \mathbb{N}^*$ and $x \in A^*$, $f^*_i(x) \in \text{Lim}(A^*)$.

3. A sequence of continuous functions $\langle f^*_n : A^* \to B^* \mid n \in \mathbb{N}^* \rangle$ is uniformly totally bounded at any $x \in A^*$, i.e., $\{f^*_n(x) \mid n \in \mathbb{N}^*\}$ is totally bounded in A^* for any $x \in A^*$, if and only if for any $i \in \mathbb{N}^* \setminus \mathbb{N}^*$ and $x \in A^*$, $f^*_i(x) \in \text{App}(A^*)$.

4. A sequence of continuous functions $\langle f^*_n : A^* \to B^* \mid n \in \mathbb{N}^* \rangle$ is equicontinuous if and only if for any $i \in \mathbb{N}^* \setminus \mathbb{N}^*$ and $x, y \in \text{App}(A^*)$, $x \approx y$ implies $f^*_i(x) = f^*_i(y)$.

Proof. As in the usual nonstandard analysis.

These nonstandard characterizations straightforwardly imply (a generalized version of) the Arzelà/Ascoli theorem. Within RCA$_0$, a complete separable metric space $\langle A, d \rangle$ is said to be locally totally bounded if for any $x \in A$ there exists $r > 0$ such that an open ball $B(a; r)$ is totally bounded, and $\langle A, d \rangle$ is said to be effectively locally totally bounded if there exists a sequence $\langle (a_i, r_i) \rangle \in A \times \mathbb{Q}^+$ such that each of open ball $B(a_i; r_i)$ is totally bounded and $\bigcup_{i \in \mathbb{N}} B(a_i; r_i) = A$.

Corollary 2.36 (the Arzelà/Ascoli theorem). The following is provable within ns-ACA$_0$. Let $\langle A^*, d_A^* \rangle$ and $\langle B^*, d_B^* \rangle$ be complete separable metric spaces. Then, for any sequence of continuous functions $\langle f^*_n : A^* \to B^* \mid n \in \mathbb{N}^* \rangle$ which is equiuniformly totally bounded at any $x \in A^*$, there exists a continuous function $g^*: A^* \to B^*$ such that for any stbc-set $S^* \subseteq A^*$ there exists a subsequence $\langle f^*_n \mid i \in \mathbb{N}^* \rangle$ which uniformly converges to g^* on S^*. In particular, if A^* is effectively locally totally bounded, then there exists a subsequence which uniformly converges to g^* on any stbc-set, and if A^* is totally bounded, then there exists a subsequence which uniformly converges to g^* on A^*.
Proof. Straightforward direction from Proposition 2.35 and Theorem 2.18. □

Remark 2.37. It is still open whether the use of the transfer principles in Propositions 2.33 and 2.35 are exactly needed or not. Note that in [8, 7], Sanders showed that the transfer principle is equivalent to many nonstandard versions of mathematical theorems within a different formulation.

2.3 Some applications to analysis in weak second-order arithmetic

Combining nonstandard analysis within nonstandard second-order arithmetic with conservation results, we can easily apply nonstandard methods into reverse mathematics for analysis within second-order arithmetic. Actually, we can do analysis in second-order arithmetic by a “uniform approach”, which is a combination of “finite versions of theorems provable in RCA_0” plus “nonstandard approximations or characterizations”. The following theorems are just easy examples of this argument.

Proposition 2.38. The following are provable within RCA_0.

1. Every piecewise-linear continuous function on $[0, 1]^n$ has a maximal.
2. Every piecewise-linear continuous function from $[0, 1]^n$ to itself has a fixed point.
3. For any piecewise-linear continuous function on \mathbb{R}^n, $\int_{[0,1]^n} f \, dx$ exists.
4. The Jordan curve theorem for broken-line curve: for any piecewise-linear Jordan curve $J : [0, 1] \to \mathbb{R}^2$, the open set $\mathbb{R}^2 \setminus \text{Im}(J)$ is divided into a disjoint union of two open sets, the interior and the exterior of J.

Proof. Each of them is provable by a finite method within RCA_0 or just an almost trivial statement. □

Theorem 2.39. The following are provable within WKL_0.

1. Every continuous function on $[0, 1]^n$ has a maximal.
2. Every continuous function from $[0, 1]^n$ to itself has a fixed point.
3. For any continuous function on \mathbb{R}^n, $\int_{[0,1]^n} f \, dx$ exists.
4. The Jordan curve theorem: for any Jordan curve $J : [0, 1] \to \mathbb{R}^2$, the open set $\mathbb{R}^2 \setminus \text{Im}(J)$ is divided into a disjoint union of two open sets, the interior and the exterior of J.

Proof. Just the combination of basic results in RCA_0 (Proposition 2.38) plus nonstandard methods in the previous section plus conservation (Theorem 2.4). □

Theorem 2.40. The following are provable within ACA_0.

23
1. Every continuous function on a bounded closed set $D \subseteq \mathbb{R}^n$ has a maximal.

2. For any continuous function on \mathbb{R}^n and for any bounded closed set $D \subseteq \mathbb{R}^n$, $\int_D f \, dx$ exists.

3. The Arzelà-Ascoli theorem.

Proof. Just the combination of basic results in RCA_0 (Proposition 2.38) plus nonstandard methods in the previous section plus conservation (Theorem 2.7).

We can prove several versions of Riemann’s mapping theorem in this way, too. In the next section, we will prove an RCA_0 version of Riemann’s mapping theorem as the base case.

3 Riemann’s mapping theorem for polygonal domains

In this section, we will do complex analysis within RCA_0, and prove Riemann’s mapping theorem for polygonal domains within RCA_0.

3.1 Complex analysis in weak second-order arithmetic

In this section, we study some basic parts of complex analysis in weak second-order arithmetic.

We first define the complex number system and holomorphic functions.

Definition 3.1 (The complex number system). The following definitions are made in RCA_0. We identify a complex number, an element of \mathbb{C}, with an element of \mathbb{R}^2, and define $+_{\mathbb{C}}$, $\cdot_{\mathbb{C}}$ and $| \cdot |_{\mathbb{C}}$ by:

$$(x_1, y_1) +_{\mathbb{C}} (x_2, y_2) = (x_1 + x_2, y_1 + y_2);$$

$$(x_1, y_1) \cdot_{\mathbb{C}} (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1);$$

$$|(x, y)|_{\mathbb{C}} = \|(x, y)\|_{\mathbb{R}^2} = \sqrt{x^2 + y^2}.$$

We usually omit the subscript \mathbb{C}. We write $(0, 1) = i$ and $(x, y) = x + iy = z$, where $x, y \in \mathbb{R}$ and $z \in \mathbb{C}$. A *continuous (partial) function* from \mathbb{C} to \mathbb{C} is a continuous (partial) function from \mathbb{R}^2 to \mathbb{R}^2.

Definition 3.2 (Holomorphic functions). The following definition is made in RCA_0. Let D be an open subset of \mathbb{C}, and let f and f' be continuous functions from D to \mathbb{C}. Then a pair (f, f') is said to be *holomorphic* if

$$\forall z \in D \lim_{w \to z} \frac{f(w) - f(z)}{w - z} = f'(z).$$

Informally, we write f for a holomorphic function (f, f').

24
Next, we define line integrals. Let α, β, γ be elements of \mathbb{C} and let r be a positive real number. Then we define

$$[\alpha, \beta] := \{\alpha + (\beta - \alpha)x \in \mathbb{C} \mid 0 \leq x \leq 1\},$$

$$B(\alpha; r) := \{z \in \mathbb{C} \mid |z - \alpha| < r\},$$

$$\overline{B}(\alpha; r) := \{z \in \mathbb{C} \mid |z - \alpha| \leq r\},$$

$$\partial B(\alpha; r) := \{z \in \mathbb{C} \mid |z - \alpha| = r\},$$

$$\Delta(r) := B(0; r),$$

$$\Delta_{\alpha\beta\gamma} := \{\alpha x_1 + \beta x_2 + \gamma x_3 \in \mathbb{C} \mid x_1 + x_2 + x_3 = 1 \land 0 \leq x_1, x_2, x_3 \leq 1\},$$

$$\partial \Delta_{\alpha\beta\gamma} := [\alpha, \beta] \cup [\beta, \gamma] \cup [\gamma, \alpha].$$

Definition 3.3 (Arc and line). The following definitions are made in RCA$_0$. A continuous function $\gamma : [0, 1] \to \mathbb{C}$ is said to be an arc. A function $\gamma : [0, 1] \to \mathbb{C}$ is a line if

$$\forall t \in [0, 1] \gamma(t) = \gamma(0) + t(\gamma(1) - \gamma(0)).$$

A function $\gamma : [0, 1] \to \mathbb{C}$ is an arc of circle if

$$\forall t \in [0, 1] \gamma(t) = z + re^{i\alpha t}$$

for some $z \in \mathbb{C}$ and $r, a \in \mathbb{R}$.

Definition 3.4 (Line integral). Let D be an open or closed subset of \mathbb{C}, and let f be a continuous function from D to \mathbb{C}. The following definitions are made in RCA$_0$.

1. Let γ be a continuous function from $[0, 1]$ to D. Then, we define $\int_{\gamma} f(z) \, dz$, the line integral of f along γ, as

$$\int_{\gamma} f(z) \, dz = \lim_{|\Delta| \to 0} S_{\gamma}^{\Delta}(f)$$

if this limit exists. Here, Δ is a partition of $[0, 1]$, i.e. $\Delta = \{0 = x_0 \leq \xi_1 \leq x_1 \leq \cdots \leq \xi_n \leq x_n = 1\}$, $S_{\gamma}^{\Delta}(f) = \sum_{k=1}^{n} f(\gamma(\xi_k))(\gamma(x_k) - \gamma(x_{k-1}))$ and $|\Delta| = \max\{x_k - x_{k-1} \mid 1 \leq k \leq n\}$.

2. If $[a, b] \subseteq D$, we define $\gamma(t) = a + (b - a)t$ and define $\int_{[a,b]} f(z) \, dz$ as

$$\int_{[a,b]} f(z) \, dz = \int_{\gamma} f(z) \, dz.$$

3. If $\Delta \subseteq D$, we define $\int_{\partial \Delta} f(z) \, dz$ as

$$\int_{\partial \Delta} f(z) \, dz = \int_{[a,b]} f(z) \, dz + \int_{[b,c]} f(z) \, dz + \int_{[c,a]} f(z) \, dz.$$
Definition 3.5 (Effectively integrable). The following definitions are made in RCA$_0$. Let f be a continuous function from $D \subseteq \mathbb{C}$ to \mathbb{C}, and let $\gamma : [0, 1] \to D$ be an arc. A modulus of integrability along γ for f is a function h_γ from \mathbb{N} to \mathbb{N} such that for all $n \in \mathbb{N}$ and for all partitions Δ_1, Δ_2 of $[0, 1] \subseteq \mathbb{R}$, if $|\Delta_1|, |\Delta_2| < 2^{-h_\gamma(n)}$ then $|S_{\gamma, 1}^\Delta(f) - S_{\gamma, 2}^\Delta(f)| < 2^{-n+1}$. Here, $S_{\gamma, \Delta}^\Delta(f)$ is the Riemann sum of f for partition Δ of $[0, 1]$ along γ. We say that f is effectively integrable on D when for every $\gamma : [0, 1] \to D$ such that γ is a line or an arc of a circle, we can find a modulus of integrability along γ.

Theorem 3.1. The following assertions are equivalent over RCA$_0$.

1. WKL$_0$.

2. Every continuous function on an open set $D \subseteq \mathbb{C}$ is effectively integrable.

Next, we review basic theorems for holomorphic functions contained in [15].

Lemma 3.2. The following is provable in RCA$_0$. Let D be an open subset of \mathbb{C}, and let f be a holomorphic function from D to \mathbb{C}. If f is effectively integrable on D, then, for all $a, b, c \in D$ such that $\triangle abc \subseteq D$,

$$\int_{\partial \triangle abc} f(z) \, dz = 0.$$

Proof. We can imitate the usual proof of Cauchy’s integral theorem within RCA$_0$. For details, see [15].

By this lemma, we can apply Cauchy’s integral theorem to a holomorphic function ‘locally’, i.e., we can find a neighborhood of each point in the domain where Cauchy’s theorem holds. Thus, we can imitate the usual proof of Taylor’s theorem locally within RCA$_0$. However, Cauchy’s integral theorem as itself is not provable in RCA$_0$ (see Theorem 3.3).

Theorem 3.3 (Cauchy’s integral theorem). The following assertions are equivalent over RCA$_0$.

1. WKL$_0$.

2. Cauchy’s integral theorem for triangles: if f is a holomorphic function on an open subset $D \subseteq \mathbb{C}$, then for all $\triangle abc \subseteq D$, $\int_{\partial \triangle abc} f(z) \, dz$ exists and

$$\int_{\partial \triangle abc} f(z) \, dz = 0.$$

Proof. $1 \to 2$ is straightforward from Theorem 3.1 and Lemma 3.2. For $2 \to 1$, see [15].
Definition 3.6 (path, semi-polygon). The following definitions are made in \(\text{RCA}_0 \). A path is a finite sequence of functions \(\gamma = (\gamma_1, \cdots, \gamma_n) \) where \(\gamma_i : [(i-1)/n, i/n] \to \mathbb{C} \) for all \(1 \leq i \leq n \) is a line or an arc of a circle with \(\gamma(i/n) = \gamma_{i+1}(i/n) \) for all \(1 \leq i \leq n \). We write \(\gamma(t) := \gamma_i(t) \) if \(t \in [(i-1)/n, i/n] \). A semi-polygon is a path \(\gamma : [0, 1] \to \mathbb{C} \) such that \(\gamma(0) = \gamma_n(1) \). A semi-polygon \(\gamma \) is said to be simple if \(\gamma(t) \neq \gamma(s) \) for all \(0 \leq t < s < 1 \).

Lemma 3.4. The following is provable in \(\text{RCA}_0 \). Let \(\gamma \) be a semi-polygon in \(\mathbb{C} \). Thereby, there exist two open sets called exterior and interior of \(\gamma \) and a closed set called the image of \(\gamma \).

Proof. Let \(\varphi(z) \) (or \(\psi(z) \)) be a \(\Sigma^0_1 \)-formula which represents the following:

- \(z \notin \{ \gamma(t) \mid t \in [0, 1] \} \);
- there exists a \(0 < \theta < \pi/2, \theta \in \mathbb{Q} \) such that the half-line \(l(z, \theta) = \{ w \in \mathbb{C} \mid \arg(w-z) = \theta \} \) is not tangent to \(\gamma \) and the cardinality of \(l(z, \theta) \cap \{ \gamma(t) \mid t \in [0, 1] \} \) is even (or odd).

Then, we can find open sets \(U_1, U_2 \) such that \(z \in U_1 \iff \varphi(z) \) and \(z \in U_2 \iff \psi(z) \). \(U_1 \) is said to be the exterior of \(\gamma \) and \(U_2 \) is said to be the interior of \(\gamma \), denoted by \(\text{Int}(\gamma) \). The image of \(\gamma \) is a closed set \(\mathbb{C} \setminus (U_1 \cup U_2) \), denoted by \(\text{Im}(\gamma) \).

We next study some theorems within \(\text{RCA}_0 \) using effective integrability.

Lemma 3.5. The following assertions are provable in \(\text{RCA}_0 \).

1. If \(f : \Delta(r) \to \mathbb{C} \) is an effectively integrable holomorphic function, there exists a sequence \(\{ \alpha_k \}_{k \in \mathbb{N}} \) such that \(f(z) = \sum_{k \in \mathbb{N}} \alpha_k z^k \) for all \(z \in \Delta(r) \).

2. (Maximum value principle) Let \(f \) be an effectively integrable holomorphic function on an open subset \(D \subseteq \mathbb{C} \), and let \(\overline{B(a; r)} \subseteq D \). Then, \(\sup \{|f(z)| \mid z \in \overline{B(a; r)}\} = \sup \{|f(z)| \mid |z-a| = r\} \).

3. (Schwarz’ lemma) Let \(f : \Delta(1) \to \Delta(1) \) be an effectively integrable holomorphic function such that \(f(0) = 0 \). Then, \(|f(z)| \leq |z| \) and \(|f'(0)| \leq 1 \). Moreover, if \(|f(z)| = |z| \) for some \(z \in \Delta(1) \), then there exists \(\lambda \in \mathbb{C} \) such that \(|\lambda| = 1 \) and \(f(z) = \lambda z \) for all \(z \in \Delta(1) \).

Proof. By Lemma 3.2, we can use Cauchy’s integral formula in \(\text{RCA}_0 \) if \(f \) is an effectively integrable holomorphic function. Then, we can easily prove 1 and 2 by imitating the usual proofs (see e.g. [1]) within \(\text{RCA}_0 \).

Using line integrability in \(\text{WKL}_0 \), we can restate the above theorems.

Theorem 3.6. The following assertions are provable in \(\text{WKL}_0 \).

1. If \(f : \Delta(r) \to \mathbb{C} \) is a holomorphic function, there exists a sequence \(\{ \alpha_k \}_{k \in \mathbb{N}} \) such that \(f(z) = \sum_{k \in \mathbb{N}} \alpha_k z^k \) for all \(z \in \Delta(r) \).
2. (maximum value principle) Let \(f \) be a holomorphic function on an open subset \(D \subseteq \mathbb{C} \), and let \(B(a;r) \subseteq D \). Then, \(\sup\{ |f(z)| \mid z \in B(a;r) \} = \sup\{ |f(z)| \mid |z - a| = r \} \).

3. (Schwarz’ lemma) Let \(f : \Delta(1) \to \Delta(1) \) be a holomorphic function such that \(f(0) = 0 \). Then, \(|f(z)| \leq |z| \) and \(|f'(0)| \leq 1 \). Moreover, there exists \(\lambda \in \mathbb{C} \) such that \(|\lambda| = 1 \) and \(f(z) = \lambda z \) if \(|f(z)| = |z| \) for some \(z \in \Delta(1) \).

Proof. Straightforward from Lemma 3.5 and Theorem 3.1.

3.2 Weak Riemann’s mapping theorem

In this section, we prove a weak version of Riemann’s mapping theorem within \(\text{RCA}_0 \). Before this, we introduce a notion of weak version of effectively uniform continuity. Put \(\text{Int}(\gamma) = \text{Int}(\gamma) \cap \text{Im}(\gamma) \).

Definition 3.7 (effectively uniformly continuous function). The following definitions are made in \(\text{RCA}_0 \). Let \(f \) be a continuous function from \(D \subseteq \mathbb{C} \) to \(\mathbb{C} \), and let \(D_0 \subseteq D \). A modulus of uniform continuity on \(D_0 \) for \(f \) is a function \(h : \mathbb{N} \to \mathbb{N} \) such that for all \(n \in \mathbb{N} \), \(|f(z) - f(w)| < 2^{-n+1} \) if \(|z - w| < 2^{-h(D_0)(n)} \) for all \(z, w \in D_0 \). We say that \(f \) is semi-effectively uniformly continuous on \(D \) if for every semi-polygon \(\gamma : [0, 1] \to D \) such that \(\text{Int}(\gamma) \subseteq D \), we can find a modulus of uniform continuity on \(\text{Int}(\gamma) \) for \(f \).

Note that we can easily prove within \(\text{RCA}_0 \) that \(f \) is effectively integrable on \(D \) if \(f \) is semi-effectively uniformly continuous.

In the proof of weak Riemann’s mapping theorem, we construct an intended biholomorphic function approximately. In the construction, we focus attention on the differential coefficient of each function at 0 and we use the value as an indicator for the construction. Next lemma gives an upper bound for the differential coefficient.

Lemma 3.7. The following is provable in \(\text{RCA}_0 \). Let \(g : D \to D' \subseteq \Delta(1) \) be a semi-effectively uniformly continuous holomorphic function such that \(g(0) = 0 \). Let \(D \supseteq \Delta(r) \). Then, \(|g'(0)| \leq 1/r \).

Proof. Easy rescaling of Schwarz’ lemma (Lemma 3.5.3).

Next, we define linear transformation.

Definition 3.8 (linear transformation). The following definition is made in \(\text{RCA}_0 \). A linear transformation is a biholomorphic function on \(\mathbb{C} \) which can be represented as

\[
 f(z) = \frac{az + b}{cz + d}
\]

where \(a, b, c, d \in \mathbb{C} \) with \(ad - bc \neq 0 \). Note that if \(a = d = 1 \) and \(b = \bar{c} \in \Delta(1) \), then \(f \) is a biholomorphic function from \(\Delta(1) \) to \(\Delta(1) \).

The next lemma is an \(\text{RCA}_0 \) version of the square root principle.
Lemma 3.8. The following is provable in RCA$_0$. Let $D \subseteq \mathbb{C}$ be a simply connected open subset, and let f be a semi-effectively uniformly continuous function on D such that f is holomorphic on D. If $f(z) \neq 0$ for all $z \in D$, then there exists a continuous function g such that $g^2(z) = f(z)$, g is holomorphic on D and g is semi-effectively uniformly continuous on D.

Proof. Easy modification of the proof of the square root principle within WKL$_0$ [16, Lemma 4.16].

Let $0 \in D \subseteq \Delta(1)$ be a simply connected open set. By Lemma 3.8, for given $\alpha \in \Delta(1) \setminus D$, we can define $\eta^0_\alpha : D \rightarrow \Delta(1)$ and $\eta^1_\alpha : \Delta(1) \rightarrow \Delta(1)$ as follows:

\[
\eta^0_\alpha(z) = \sqrt{(z - \alpha)/(1 - \alpha z)}; \quad \eta^1_\alpha(z) = (z - \beta)/(1 - \beta z), \quad \text{where} \quad \beta = \eta^0_\alpha(0) = \sqrt{-\alpha}.
\]

The next lemma is another technical lemma for the weak Riemann’s mapping theorem. The lemma shows that the differential coefficient of the biholomorphic function f at 0 increase if one composes the functions, η^0_α and η^1_α, to f. It plays a key role for our constructions of biholomorphic functions.

Lemma 3.9. The following is provable in RCA$_0$. Let D be a simply connected open subset of \mathbb{C} and $g : D \rightarrow D' \subseteq \Delta(1)$ be a semi-effectively uniformly continuous biholomorphic function such that $g(0) = 0$, and let $\alpha \in \Delta(1) \setminus D'$. Define a biholomorphic function $h : D \rightarrow h(D) \subseteq \Delta(1)$ as

\[
h(z) := \eta^1_\alpha(\eta^0_\alpha(g(z))).
\]

Then, $h(0) = 0$ and $|h'(0)| > (1 + d^2/2)|g'(0)|$ where $d = 1 - |\beta| = 1 - \sqrt{\alpha}$.

Proof. We reason within RCA$_0$. By the definition of h,

\[
h'(0) = \frac{1}{1 - |\beta|^2} \frac{1 - |\alpha|^2}{2\beta} g'(0).
\]

Then,

\[
|h'(0)| = \frac{|\beta|^2 + 1}{2|\beta|} |g'(0)| = \frac{d^2 - 2d + 2}{2 - 2d} |g'(0)| = \left(1 + \frac{d^2}{2(1 - d)}\right) |g'(0)| > \left(1 + \frac{d^2}{2}\right) |g'(0)|.
\]

It is clear that $h(D) \subseteq \Delta(1)$, h is biholomorphic and $h(0) = 0$. This completes the proof.

Now, we show the following weak version of Riemann’s mapping theorem for semi-polygons.

Theorem 3.10 (weak Riemann’s mapping theorem). The following is provable in RCA$_0$. Let $\gamma = \langle \gamma_1, \cdots, \gamma_l \rangle$ be a simple semi-polygon on \mathbb{C}. Let D be the interior of γ and choose $c_0 \in D$. Then, D is conformally equivalent to the unit open ball $\Delta(1)$, i.e., there exists a biholomorphic uniformly continuous function $f : D \rightarrow \Delta(1)$ such that $f(c_0) = 0$. 28
Proof. By applying a linear transformation, we may assume that \(D \subseteq \Delta(1) \) and \(c_0 = 0 \). This theorem is proved by the following two steps:

(Step.1) Let \(r_k := 1 - 2^{-2k} \) for all \(k \in \mathbb{N} \) and let \(D_0 := D \). Then, we construct a sequence \(\{\tilde{f}_i \mid i \in \mathbb{N}\} \) of functions and a sequence \(\{D_i \mid i \in \mathbb{N}\} \) of open sets which satisfy the following condition:

- \(\tilde{f}_i : D_i \to \tilde{f}_i(D_i) \) is semi-effectively uniformly continuous biholomorphic, and \(D_{i+1} := \tilde{f}_i(D_i) \supseteq \Delta(r_{i+1}) \).

(Step.2) Define a sequence \(\{f_i : D_0 \to D_i \mid i \in \mathbb{N}\} \) as \(f_i := \tilde{f}_{i-1} \circ \cdots \circ \tilde{f}_0 \). Then we prove that \(\{f_i \mid i \in \mathbb{N}\} \) is a uniformly convergent sequence on any compact subsets of \(D_0(=D) \). Thus \(f := \lim_{i \to \infty} f_i \) exists and is the required biholomorphic function from \(D \) to \(\Delta(1) \).

In what follows, we prove these steps.

(Step.1)
For each \(\alpha \in \Delta(1) \), define \(\psi_\alpha \) as follows:

\[
\eta^\alpha_{j}(z) = \sqrt{(z - \alpha)/(1 - \alpha z)}; \\
\eta^\alpha_{0}(z) = (z - \beta)/(1 - \beta z) \text{ where } \beta := \sqrt{-\alpha}; \\
\psi_\alpha(z) = \eta^\alpha_{0} \circ \eta^\alpha_{1}(z).
\]

We will construct sequences \(\{m_i \in \mathbb{N} \mid i \in \mathbb{N}\} \) and \(\{\alpha_{ij} \in \mathbb{Q}^2 \cap \Delta(1) \mid j < m_i \} \mid i \in \mathbb{N}\} \) accompanying with \(\{D_i \mid i \in \mathbb{N}\} \) and \(\{f_{ij} \mid j < m_i, i \in \mathbb{N}\} \). Idea of the construction is (here, \(\varepsilon_i = 2^{-4i} \)):

For given \(\{m_i \mid i < I\} \) and \(\{\alpha_{ij} \in \Delta(1) \cap \mathbb{Q}^2 \mid j < m_i \mid i < I\} \), we define sequences \(\{D_i \mid i \leq I\}, \{f_i : D_i \to \Delta(1) \mid i < I\}, \{f_{ij} : D_i \to \Delta(1) \mid j \leq m_i \mid i < I\} \) and \(\{f_{ij} : D_j \to \Delta(1) \mid j \leq J\} \) as follows: for each \(i < I \),

\[
f_{00} := id_{D_0} \\
f_{ij} := \psi_{\alpha_{i-1}} \circ \cdots \circ \psi_{\alpha_{0}} \circ f_{00} \text{ if } m_i > 0 \land 0 < j \leq m_i \\
\tilde{f}_i := f_{i,m_i} | f'_{i,m_i}(0) | f'_{i,m_i}(0) \\
D_{i+1} := \tilde{f}_i(D_i) \\
f_{i+1,0} := id_{D_{i+1}} \\
f_{ij} := \psi_{\alpha_{i-1}} \circ \cdots \circ \psi_{\alpha_{0}} \circ f_{i+1,0} \text{ if } J > 0 \land 0 < j \leq J \\
F_{ij} := f_{ij} \circ \tilde{f}_{i-1} \circ \cdots \circ \tilde{f}_0 : D_0 \to \Delta(1) \text{ if } 0 \leq i \leq I \land j \leq m_i \\
F_{ij} := f_{ij} \circ \tilde{f}_{j-1} \circ \cdots \circ \tilde{f}_0 : D_0 \to \Delta(1) \text{ if } j \leq J.
\]

In general, if a function \(f \) has a modulus of uniform continuity, then the composition of \(f \) and a square root, and the composition of \(f \) and a linear transformation
Stage 1

$\Omega_0 : \text{ } f_{00}(D_0) \supseteq \Delta(r_1)$

or

$\Omega_1 : \exists \alpha \in \Delta(r_1 + \varepsilon_1) \setminus f_{00}(D_0)$

Take α_{00} from

$\Delta(r_1 + \varepsilon_1) \setminus f_{00}(D_0)$

$f_{00} := \psi_{a_{00}} \circ f_{00}$

$m_0 := 0$

$D_1 := f_{00 \rightarrow a}(D_0)$

$f_{1} := \text{id}_{D_1}$

Go to Stage 2

Stage 2

$\Omega_0 : \text{ } f_{01}(D_1) \supseteq \Delta(r_2)$

or

$\Omega_1 : \exists \alpha \in \Delta(r_2 + \varepsilon_2) \setminus f_{01}(D_1)$

Take α_{10} from

$\Delta(r_2 + \varepsilon_2) \setminus f_{01}(D_1)$

$m_1 := 0$

$D_1 := f_{01 \rightarrow a}(D_1)$

$f_{11} := \psi_{a_{10}} \circ f_{10}$

Go to Stage 3

Stage 3

$\Omega_0 : \text{ } f_{12}(D_2) \supseteq \Delta(r_3)$

or

$\Omega_1 : \exists \alpha \in \Delta(r_3 + \varepsilon_3) \setminus f_{12}(D_2)$

Take α_{11} from

$\Delta(r_3 + \varepsilon_3) \setminus f_{12}(D_2)$

$m_2 := 0$

$D_2 := f_{12 \rightarrow a}(D_2)$

$f_{12} := \psi_{a_{11}} \circ f_{11}$

Go to Stage 3

Figure 1: Sketch of the construction
also have a modulus of uniform continuity. In fact, we can find the modulus of uniform continuity for the compositions by modifying the modulus of uniform continuity for \(f \). Thus we can easily check that \(f_{ij} \) and \(\tilde{f}_i \) are semi-effectively uniformly continuous. Note that \(\tilde{f}_i'(0) \in \mathbb{R} \).

We require that these sequences; \(\langle D_{ij} \mid i \leq I \rangle, \langle \tilde{f}_i \mid i < I \rangle, \langle \langle f_{ij} \mid j \leq m_i \rangle \mid i < I \rangle, \langle f_{ij} \mid j \leq J \rangle \) and \(\langle \langle F_{ij} \mid j \leq m_i \rangle \mid 0 < i < I \rangle \) satisfy the following conditions:

1. \(\forall i < I \Omega_0(F_{i,m_i}, r_{i+1}) \);
2. \(\forall i < I \forall j < m_{i} \Omega_{1}(F_{ij}, r_{i+1}, \alpha_{ij}) \);
3. If \(J > 0 \) then \(\forall j < J \Omega_{1}(F_{ij}, r_{i+1}, \alpha_{ij}) \).

Here \(\Omega_0(F, r) \) and \(\Omega_1(F, r, \alpha) \) are the following formulas:

\[
\Omega_0(F, r) \equiv r > 0 \land F(D_0) \supseteq \Delta(r),
\]

\[
\Omega_1(F, r, \alpha) \equiv r > 0 \land \alpha \in \mathbb{Q}^2 \cap (\Delta(1) \setminus F(D_0)) \land |\alpha| < r + (1 - r)^2.
\]

For these formulas, we prove the following assertions:

(A) For each \(F = F_{ij} \) and \(r = r_k \) and \(\alpha \in \mathbb{Q}^2 \), \(\Omega_0 \) and \(\Omega_1 \) are \(\Sigma_1^0 \)-formula.

(B) For each \(i \geq 0 \) and \(j \), \(\Omega_0(F_{ij}, r_{i+1}) \) holds or we can effectively choose \(\alpha \in \mathbb{Q}^2 \) which satisfies \(\Omega_1(F_{ij}, r_{i+1}, \alpha) \).

Proof of (A).

First, we prove that \(\Omega_0 \in \Sigma_1^0 \). By the construction of \(F \), we can easily expand the domain of \(F \) as \(\text{dom}(F) \supseteq D_0 \cup \text{Im}(\gamma) (= D_0) \). By the formula \(\Psi(k, M) \), we represent

\[
(F \circ \gamma)([0, 1]) \subseteq \bigcup_{L \in \mathbb{N}, L < 2^M} B((F \circ \gamma)(L/2^M); 2^{-k+1}).
\]

Then, since \(F : D_0 \to F(D_0) \) is semi-effectively uniformly continuous on \(D_0 \),

\[
\forall k \exists M \Psi(k, M).
\]

Since \(\Psi(k, M) \) is \(\Sigma_1^0 \), \(\Psi(k, M) \equiv \exists q \Psi_0(k, M, q) \) for some \(\Sigma_1^0 \)-formula \(\Psi_0 \). Thus,

\[
\forall k \exists p \Psi_0(k, (p)_{0}, (p)_{1}).
\]

Thus we can define a sequence \(\langle M_k \in \mathbb{N} \mid k \in \mathbb{N} \rangle \) as

\[
M_k := (\mu p \Psi_0(k, (p)_{0}, (p)_{1})_0).
\]

Then the following relation holds:

\[
\Omega_0(F, r) \leftrightarrow r > 0 \land \exists k \forall l < 2^{M_k} |(F \circ \varphi \circ \gamma)(l/2^{M_k})| > 2^{-k+1} + r.
\]
If we find \(f \) such that
\[
\Omega_1 \in D_0 \quad \text{and} \quad \Omega_1 = \Omega_0 \quad \text{on} \quad \Delta(1) \setminus F(D_0).
\]

Since the right side of this relation is expressed by \(\Sigma^0_1 \)-formula, \(\Omega_0(F, r) \) is a \(\Sigma^0_n \)-formula. Next, we prove that \(\Omega_1 \in \Sigma^0_1 \). Since \(F : D_0 \to F(D_0) \) is biholomorphic on \(D_0 \), \(F \) is a closed mapping. Hence \(F(D_0) \) is closed set. Thus \(\bar{F}(D_0) = F(D_0) \) holds and \(\Delta(1) \setminus F(D_0) \) is an open set. Therefore \(\Omega_1(F, r, \alpha) \) is a \(\Sigma^0_0 \)-formula.

Note that the formulas \(\Omega_0 \) and \(\Omega_1 \) represent the following:
\[
\begin{align*}
\Omega_0(F_{ij}, r_{i+1}) &\iff f_{ij}(D_i) \supseteq \Delta(r_{i+1}), \\
\Omega_1(F_{ij}, r_{i+1}, \alpha) &\iff \alpha \in \mathbb{Q}^2 \cap (\Delta(1) \setminus \bar{f}_{ij}(D_i)) \land |\alpha| < r_{i+1} + 2^{-4i-4}.
\end{align*}
\]

Proof of (B).

We can prove that for each \(i \) and \(j \), either \(\Omega_0(F_{ij}, r_{i+1}) \) or \(\exists \alpha \Omega_1(F_{ij}, r_{i+1}, \alpha) \).

By (A), write \(\Omega_0(F_{ij}, r_{i+1}) \equiv \exists p \Theta_0(F_{ij}, r_{i+1}, p) \) and \(\Omega_1(F_{ij}, r_{i+1}, \alpha) \equiv \exists q \Theta_1(F_{ij}, r_{i+1}, \alpha, q) \) where \(\Theta_0 \) and \(\Theta_1 \) are \(\Sigma^0_n \)-formulas. Then we can effectively choose \(p \in \mathbb{N} \) such that \(\Theta_0(F_{ij}, r_{i+1}, p) \) holds or effectively choose \((q, \alpha) \in \mathbb{N} \times \mathbb{Q}^2 \) such that \(\Theta_1(F_{ij}, r_{i+1}, \alpha, q) \) holds. Therefore, (B) holds.

Then we continue the construction of the sequences as follows: Checking \(\Omega_0(F_{I,J}, r_{I+1}) \forall \exists \alpha \in \Delta(1) \cap \mathbb{Q}^2 \Omega_1(F_{I,J}, r_{I+1}, \alpha) \), then, by (B) one of the following happen.

- If \(\Omega_0(F_{I,J}, r_{I+1}) \) holds, then let \(m_I := J \).
- If we find \(\alpha \in \Delta(1) \cap \mathbb{Q}^2 \) such that \(\Omega_1(F_{I,J}, r_{I+1}, \alpha) \), then let \(\alpha_{I,J} := \alpha \) and \(f_{I,J+1} := \psi_{\alpha_{I,J}} \circ f_{I,J} \).

To complete this construction, we have to prove that for each \(i \in \mathbb{N} \), there exists \(j \in \mathbb{N} \) which satisfies \(\exists \alpha \Omega_1(F_{ij}, r_{i+1}, \alpha) \). Let \(i \in \mathbb{N} \) and assume that \(f_{ik} \) is defined for some \(k \in \mathbb{N} \). By the definition of \(D_i \), \(D_i \supseteq \Delta(r_{i+1}) \) holds. This fact implies \(|f_{ik}(0)| \leq 1/r_{i+1} \) by Lemma 3.7. By Lemma 3.9, \(|f_{ik}(0)| > (1 + 2^{-4})^k \) holds. Hence there exists \(k_0 \in \mathbb{N} \) such that \(1/r_{i+1} < (1 + 2^{-4})^{k_0} \) holds. Thus there exists \(j \leq k_0 \) such that \(\exists \alpha \Omega_1(F_{ij}, r_{i+1}, \alpha) \) holds. Therefore \(\forall i \exists j \exists \alpha \Omega_1(F_{ij}, r_{i+1}, \alpha) \) holds. Hence this construction is well-defined.

(Step 2)

In this step, we construct a semi-effectively uniformly continuous biholomorphic function \(f : D \to \Delta(1) \) by using the sequence \(\{f_i \mid i \in \mathbb{N}\} \), which is constructed in the Step 1.

Let \(f_i = f_{i-1} \circ \ldots \circ f_0 \). Then, each \(f_i \) is a biholomorphic function from \(D_0 \) to \(D_i(\supseteq \Delta(r_{i+1})) \).

We will prove that
\[
(\dagger) \quad \forall N \forall m \geq N \forall n > n |f_m(z) - f_n(z)| \leq 2^{-n+4} \quad \text{on} \quad f_N^{-1}(\Delta(r_N^3 \delta_N)) \subseteq D_0,
\]
where \(\delta_N := 1 - 2^{-N} \). This statement implies that the sequence \(\{f_i \mid i \in \mathbb{N}\} \) uniformly converges on compact subsets of \(D_0 \). To prove (\(\dagger \)), it suffices to show that
Proof of (1). Choose \(z \in f^{-1}_N(\Delta(r_N^2 \delta_N)) \). It suffices to prove that \(f_n(z) \in \Delta(r_n r_m \delta_N) \).

In fact, if this statement holds, then \(|h_{m,n}(f_n(z)) - f_n(z)| \leq 2^{-n+4} \) holds by (1). Thus \(|f_n(z) - f_n(z)| \leq 2^{-n+4} \) holds, which implies (1).

We now prove that \(f_n(z) \in \Delta(r_n r_m \delta_N) \) holds. By Schwarz’ lemma (Lemma 3.5.3) for \(h_{m,N} \), \(|f_n(z)| = |h_{m,N}(f_N(z))| \leq |f_N(z)|r_N^{-1} \).

Since \(z \in f^{-1}_N(\Delta(r_N^2 \delta_N)) \) implies \(f_N(z) \in \Delta(r_N^2 \delta_N) \), \(|f_N(z)|r_N^{-1} \leq r_N^2 \delta_N \leq r_n r_m \delta_N \). Thus \(f_n(z) \in \Delta(r_n r_m \delta_N) \) holds and this completes the proof of (1) → (1).

Proof of (1).

Let \(N, n \) and \(m \) be such that \(N \in \mathbb{N}, n \geq N \) and \(m > n \). We first analyze behavior of the function \(h_{m,n}/z \). Note that \(f_t \) and \(h_{m,n} \) are semi-effectively uniformly continuous and, by the definition of \(f_t \), each \(f'_t(0) \) is a real number, and hence \(h'_{m,n}(0) \in \mathbb{R} \).

By Schwarz’ lemma for \(h_{m,n} \), \(|h_{m,n}(z)/z| \leq r_n^{-1} \) on \(\Delta(r_n) \). Hence \(h_{m,n}(z) \in \Delta(r_m) \) if \(z \in \Delta(r_n r_m) \). Again by Schwarz’ lemma for \(h_{m,n}^{-1} : D_m(\subseteq \Delta(r_m)) \to \Delta(r_n r_m) \), \(|h_{m,n}^{-1}(w)/w| \leq r_m^{-1} \) on \(\Delta(r_m) \). Thus, \(r_m \leq |h_{m,n}(z)/z| \leq r_n^{-1} \) for all \(z \in \Delta(r_n r_m) \).

Define a function \(g \) from \(\Delta(r_n r_m) \) to \(\{ z \in \Delta(1) \mid r_m \leq |z| \leq r_n^{-1} \} \) as \(g(z) := h_{m,n}(z)/z \). Define a function \(\tilde{g} \) from \(\Delta(1) \) to \(\Delta(1) \setminus \Delta(r_n r_m) \) as \(\tilde{g}(z) := g(r_n r_m z)r_m \). Then \(\tilde{g} \) is a semi-effectively uniformly continuous biholomorphic function from \(\Delta(1) \) to \(\tilde{g}(\Delta(1)) \subseteq \Delta(1) \setminus \Delta(r_n r_m) \). Since \(h_{m,n} \) is holomorphic on \(D_n(\subseteq \Delta(r_n)) \), by Lemma 3.5.1, \(h_{m,n} \) has a Taylor expansion: \(h_{m,n} = \sum_{j=0}^\infty a_j z^j \) on \(\Delta(r_n) \) where \(a_j \in \mathbb{C} \) for each \(j \in \mathbb{N} \). Since \(h_{m,n}(0) = 0, a_0 = 0 \) and hence \(g(z) = h_{m,n}(z)/z = \sum_{j=1}^\infty a_j z^{j-1} \). Since \(h'_{m,n}(0) = a_1 \in \mathbb{R} \), \(g(0) = a_1 \in \mathbb{R} \) and also \(\tilde{g}(0) = g(0)r_m \in \mathbb{R} \). Put \(\psi(\tilde{z}) := (\tilde{g}(\tilde{z}) - \tilde{g}(0))/(1 - \tilde{g}(0)\tilde{g}(\tilde{z})) \).

Then \(\psi \) is a semi-effectively uniformly continuous biholomorphic function from \(\Delta(1) \) to \(\psi(\Delta(1)) \) with \(\psi(0) = 0 \). Then by Schwarz’ lemma for \(\psi, |\psi(\tilde{z})/\tilde{z}| \leq 1 \) holds.

Put \(G(\tilde{z}) := \tilde{g}(\tilde{z}) - \tilde{g}(0) \).

Then, \(|G(\tilde{z})| = |\psi(\tilde{z})| \cdot |1 - \tilde{g}(0)\tilde{g}(\tilde{z})| \leq |\tilde{z}| \cdot |1 - \tilde{g}(0)\tilde{g}(\tilde{z})| \leq \frac{1}{2} |\tilde{z}| \cdot |1 - \tilde{g}(0)|^2 \cdot |\tilde{g}(\tilde{z})| \leq 1 - |\tilde{g}(0)|^2 \cdot |\tilde{g}(\tilde{z})| \).

Hence \((1 - |\tilde{z}|)|G(\tilde{z})| \leq 1 - |\tilde{g}(0)|^2 \). If \(\tilde{z} \in \partial \Delta(\delta_N) \), \(|G(\tilde{z})| \leq (1 - |\tilde{g}(0)|^2)2^n \) holds. Thus by the maximum value principle (Lemma 3.5.2), \(|G(z)| \leq (1 - |\tilde{g}(0)|^2)2^n \) for all \(z \in \Delta(\delta_N) \).

In order to prove \(|h_{m,n}(z)| \leq 2^{-n+4} \) on \(\Delta(r_n r_m \delta_N) \), fix \(z \in \Delta(r_n r_m \delta_N) \). Then, \(z = \tilde{z}r_n r_m \) for some \(\tilde{z} \in \Delta(\delta_N) \). Then, \(|G(r_n^{-1}r_m^{-1}\tilde{z})| \leq 1 - |\tilde{g}(0)|^2 \cdot 2^n \).

Since \(\tilde{g}(0) = g(0)r_n \), \(|\tilde{g}(0)| \geq r_n r_m \). Thus

\[
G(r_n^{-1}r_m^{-1}z) \leq (1 - r_n^2 r_m^2)2^n.
\]
Moreover, we conjecture that we can prove in the following is provable in \(\Delta(1) \) and \(DB \)

\[G(r_n^{-1} r_m^{-1} z) = \hat{g}(r_n^{-1} r_m^{-1} z) - \hat{g}(0) = r_n(g(z) - g(0)), \]

\[|g(z) - g(0)| \leq 2^{-n+2} r_n^{-1} \leq 2^{-n+3}. \] (2)

Since \(g(0) = h'(0) \in \mathbb{R}, r_m - 1 \leq g(0) - 1 \leq r_n^{-1} - 1 \) holds. Therefore,
\(-2^{-2m} \leq g(0) - 1 \leq 2^{-2n}/(1 - 2^{-2n}) \). By \(-2^{-n+1} \leq -2^{-2m} \) and

\[2^{-2n}/(1 - 2^{-2n}) \leq 2^{-2n}/(2^{-n-1}) = 2^{-n+1}, \quad \|g(0) - 1\| \leq 2^{-n+1}. \] Then,

by (2), \(|g(z) - 1| \leq |g(z) - g(0)| + |g(0) - 1| \leq 2^{-n+3} + 2^{-n+1} \leq 2^{-n+4}. \)

Hence \(|h_{m,n}(z)|/z - 1| \leq 2^{-n+4} \) i.e. \(|h_{m,n}(z) - z| \leq 2^{-n+4}|z| \leq 2^{-n+4} \)
on \(z \in \Delta(r_n r_m \delta N) \). This completes the proof of (\(\dagger \)).

Therefore, by (\(\dagger \)), we have proved that \(\{f_i \mid i \in \mathbb{N}\} \) uniformly converges on compact subsets of \(D_0(=D) \). Hence, we have a semi-effectively uniformly continuous biholomorphic function \(f = \lim_{n \to \infty} f_i \) from \(D \) to \(\Delta(1) \).

This completes the proof of this theorem. \(\square \)

Remark 3.11. Moreover, we conjecture that we can prove in \(\text{RCA}_0 \) that the \(f \), which is in the above theorem, can be expanded into a homeomorphism \(f : D \to \Delta(1) \) and \(f \) has a modulus of uniform continuity on \(D \). But this remains an open question.

4 Nonstandard proofs for stronger versions of Riemann’s mapping theorem

In this section, we will show that Riemann’s mapping theorem for a Jordan region is equivalent to \(\text{WWKL}_0 \) by using nonstandard arithmetic introduced in Section 2.

We first consider the standard part of a holomorphic function. We will argue within nonstandard second-order arithmetic. Before this, we prepare the following lemma, whose proof is available in [3].

Lemma 4.1 (Cauchy’s estimate). The following is provable in \(\text{WWKL}_0 \). Let \(f \) be a holomorphic function on an open subset \(D \subseteq \mathbb{C} \). Then, for all \(\alpha \in D, r > 0 \) and \(M > 0 \), if \(B(\alpha, r) \subseteq D \) and \(|f| \leq M \) on \(B(\alpha, r) \), then for all \(k \in \mathbb{N} \),

\[|f^{(k)}(\alpha)| \leq \frac{Mk!}{r^k}. \]

The next lemma shows that the standard part of an \(s \)-bounded nonstandard holomorphic function is a holomorphic function.

Lemma 4.2. The following is provable within \(\text{ns-WKL}_0 \). Let \(U_0^s \) and \(U_1^s \) are \(s \)-bounded open sets in \(\mathbb{C}^* \), i.e., there exist \(M, K \in \mathbb{N}^s \) such that \(U_0^s \subseteq B(0; M) \) and \(U_1^s \subseteq B(0; K) \). Let \(F^s : U_0^s \to U_1^s \) be an effectively integrable holomorphic function, and let \(W^s = U_0^s \cap V^s \) be a non-empty open set in \(V^s \). Then, the standard part \(st(F^s) \) of \(F^s \) is a holomorphic function on \(W^s \).
Proof. Let U_0^* and U_1^* are s-bounded open sets in \mathbb{C}^*, and $F^* : U_0^* \to U_1^*$ be a holomorphic function in V^*, and let $W^* = U_0^* \cap V^*$ be non-empty. We will show that either of F^* and F''^* has a standard part on W^*. Let $(a, r) \in \mathbb{N}^* \times \mathbb{Q}^*$ such that $B(a; r) \subseteq W^*$. Since $|F^*| \leq K$ on $B(a; r/2)$, by Lemma 4.1, $F^*(z^*) \leq K \cdot k! \cdot (2/r)^k$ for all $z^* \in B(a; r/2)$ and for all $k \in \mathbb{N}^*$. Hence F^* is s-bounded on $B(a;r)$, and F^* is s-continuous on $B(a;r)$ since F''^* is s-bounded. Therefore, by Theorem 2.23, there exists a standard part of F^* on W^*, namely $f^* = st(F^*)$. Similarly, there exists a standard part of F''^* on W^*, and we can easily check that $f''^* = st(F''^*)$. This means that f^* is holomorphic on W^*, and this completes the proof. \[\square\]

A continuous function $J : [0, 1] \to \mathbb{C}$ is said to be a \textit{Jordan curve} if $J(x) = J(y) \iff |x - y| \in \{0, 1\}$. Recall that a Jordan curve is said to be a polygon if it is a piecewise linear function. Given a Jordan curve J, we define the interior $\text{Int}(J)$, the exterior $\text{Ext}(J)$ and the image $\text{Im}(J)$ of J as follows.

\begin{align*}
\text{Im}(J) &:= \{z \in \mathbb{C} \mid \exists t \in [0, 1] z = J(t)\}, \\
\text{Int}(J) &:= \{z \in \mathbb{C} \setminus \text{Im}(J) \mid \text{every continuous function } h : [0, \infty) \to \mathbb{C} \setminus \text{Im}(J) \text{ such that } h(0) = z \text{ is bounded}\}, \\
\text{Ext}(J) &:= \{z \in \mathbb{C} \setminus \text{Im}(J) \mid \text{there exists a continuous function } h : [0, \infty) \to \mathbb{C} \setminus \text{Im}(J) \text{ such that } h(0) = z \text{ and } \lim_{t \to \infty} \|h(t)\| = \infty\}.
\end{align*}

A \textit{Jordan region} is the interior $\text{Int}(J)$ of a Jordan curve. Note that these definitions coincide with those for polygons in Lemma 3.4.

Lemma 4.3. The following is provable within ns-WKL$^\omega$. Let $J^* : [0, 1]^* \to \mathbb{C}^*$ be a Jordan curve. Then, there exists a nonstandard polygon $P^* : [0, 1]^* \to \mathbb{C}^*$ and (a code for) an open set $U^* \subseteq \mathbb{C}^*$ which satisfy the following:

- $\text{st}(P^*) = J^*$,
- $U^* = \text{Int}(P^*)$,
- $\text{Int}(J^*) = \text{st}(\text{Int}(P^*) \cap \mathbb{Q}^2[\omega]) = U^* \cap V^*$ for some $\omega \in \mathbb{N}^* \setminus \mathbb{N}^8$.

Moreover, we can prove that $\text{Int}(J^*) \neq \emptyset$.

Proof. We will argue within ns-WKL$^\omega$. Let $J^* : [0, 1]^* \to \mathbb{C}^*$ be a Jordan curve in V^*. By Theorem 2.23, there exists a (hyperfinite) broken line $P^* : [0, 1]^* \to \mathbb{C}^*$ such that $\text{st}(P^*) = J^*$ and $P^*(0) = P^*(1)$. By Σ^0_3 in V^*, we can easily reduce P^* into an injective broken line (polygon) whose standard part is J^*. Define an open set U^* in V^* as $(a, r) \in U^* \iff a \in \text{Int}(P^*) \land d(a, P^*) > r$. Then, we can easily check that $U^* = \text{Int}(P^*)$ and $U^* \cap V^* = \text{Int}(J^*)$. We can also show that $\text{Int}(J^*) \neq \emptyset$ by modifying usual nonstandard argument for the Jordan curve theorem (see [6]). \[\square\]

Theorem 4.4. The following assertions are equivalent over RCA0.

36
1. WKL$_0$.

2. For any Jordan curve J, Int(J) is a non-empty bounded connected open set.

3. Every Jordan region is conformally equivalent to $B(0;1)$.

Proof. For the proof of 2 \rightarrow 1, see [6]. 3 \rightarrow 2 is trivial. We show 1 \rightarrow 3. We will argue within ns-WKL$_0$. Let $J^*: [0,1] \rightarrow \mathbb{C}^*$ be a Jordan curve in V^*. By Lemma 4.3, there exist a (hyperfinite) polygon $P^*: [0,1]^* \rightarrow \mathbb{C}^*$ and $U^* =$ Int(P^*) such that $st(P^*) = J^*$, $U^* =$ Int(P^*) and $U^* \upharpoonright V^* =$ Int(J^*). Then, applying Riemann’s mapping theorem for polygonal region (Theorem 3.10) for Int(P^*) in V^*, we can obtain holomorphic functions $H_0^* : U^* \rightarrow B(0;1)$ and $H_1^* : B(0;1) \rightarrow U^*$ in V^* such that $H_0^* \circ H_1^* =$ id$_{B(0;1)}$ and $H_1^* \circ H_0^* =$ id$_{U^*}$. By Lemma 4.2, both of $h_0^* =$ st$(H_0^*) :$ Int$(J^*) \rightarrow B(0;1)$ and $h_1^* =$ st$(H_1^*) :$ Int$(J^*) \rightarrow B(0;1)$ are holomorphic functions in V^*. We can easily check that $h_0^* \circ h_1^* =$ id$_{B(0;1)}$ and $h_1^* \circ h_0^* =$ id$_{Int(J^*)}$. This means that Int(J^*) is conformally equivalent to the open unit disk. By the conservation theorem (Theorem 2.4), this is provable within WKL$_0$. \square

Next, we prove the general version of Riemann’s mapping theorem within ACA$_0$ by using the polygonal version plus a nonstandard method.

Definition 4.1 (simply connected). The following definitions are made in RCA$_0$. Let D be an open subset of \mathbb{C}.

1. D is said to be path connected if for all $\alpha, \beta \in D$ there exists a path from α to β in D.

2. D is said to be simply connected if D is path connected and for all semi-polygon γ in D, the interior of γ is included in D.

Lemma 4.5. The following is provable within ns-ACA$_0$. Let $U^* \subseteq \mathbb{R}^2$ be a bounded simply connected open set. Then, there exists a nonstandard polygon $P^* : [0,1]^* \rightarrow \mathbb{R}^2$ and (a code for) an open set $W^* \subseteq \mathbb{R}^2$ which satisfy the following:

- $W^* =$ Int(P^*).
- $U^* =$ st$(\text{Int}(P^*) \cap \mathbb{Q}^2[\omega]) =$ $W^* \upharpoonright V^*$ for some $\omega \in \mathbb{N}^* \setminus \mathbb{N}^4$.

Proof. We will first show a sublemma within WKL$_0$. Let $L(n,\mathbb{R}^2) =$ \{\((k2^{-n},(k+1)2^{-n}) \times [(l2^{-n},(l+1)2^{-n}) \mid k,l \in \mathbb{Z}]\), and let $L_{n,\mathbb{R}^2} =$ \{A$_0 \cup \cdots \cup$ A$_{k-1} \mid k \in \mathbb{N}, A_i \in L(n,\mathbb{R}^2)\}$. For a bounded open set $U \subseteq \mathbb{R}^2$, define $U \upharpoonright L(n,\mathbb{R}^2) \in L_{n,\mathbb{R}^2}$. As $U \upharpoonright L(n,\mathbb{R}^2) = \bigcup\{A \in L(n,\mathbb{R}^2) \mid A \subseteq U\}$.

Sublemma. The following is provable within WKL$_0$. Let $U \subseteq \mathbb{R}^2$ be a bounded simply connected open set. Then, for any $n \in \mathbb{N}$ there exists $A \in L_{n,\mathbb{R}^2}$ for some $m \geq n$ such that $U \upharpoonright L(n,\mathbb{R}^2) \subseteq A \subseteq U$ and A is simply connected.
Proof of Sublemma. We will prove this by the number of connected components of \(U \upharpoonright L(n, \mathbb{R}^2) \). Let \(U \upharpoonright L(n, \mathbb{R}^2) = A_0 \sqcup \cdots \sqcup A_{k-1} \) where each of \(A_i \) is a connected component of \(U \upharpoonright L(n, \mathbb{R}^2) \). Note that each of \(A_i \) is simply connected since \(U \) is simply connected. If \(k = 1 \), then \(A_0 \) is desired. Otherwise, take a broken-line \(\gamma \) which connects \(A_0 \) and \(A_1 \), and find a simply connected set \(B \in L_m, \mathbb{R}^2 \) for some \(m \geq n \) such that \(A_0 \cup A_1 \cup \gamma \subseteq B \subseteq U \) and \(B \cap A_i = \emptyset \) for any \(i \geq 2 \). Then, we have \(U \upharpoonright L(n, \mathbb{R}^2) \subseteq B \sqcup A_2 \sqcup \cdots \sqcup A_{k-1} \subseteq U \) and each of connected components is simply connected. We can repeat this process as long as the number of connected components is one.

Now, we argue within ns-ACA_0. Let \(U^s \subseteq \mathbb{R}^2 \). Then, by \(\Sigma^1_1\)-TP, \(U^{s^\nu} \) is an open set in \(\mathbb{R}^2 \) and \(B(a; r) \subseteq U^s \) if and only if \(B(a; r) \subseteq U^{s^\nu} \) in \(V^* \) for any \(a \in \mathbb{Q}^2 \) and \(r \in \mathbb{Q}^+ \). By the sublemma and overspill, there exist \(\omega, \omega' \in \mathbb{N}^* \setminus \mathbb{N}^s \) and \(A \in L_{\omega', \mathbb{R}^2} \) such that \(U^{s^\nu} \upharpoonright L(\omega, \mathbb{R}^2) \subseteq A \subseteq U^{s^\nu} \) and \(A \) is simply connected. Then, \(\partial A \subseteq U^{s^\nu} \) is a polygonal domain. Take a polygon \(P^*: [0, 1] \to \mathbb{R}^2 \) such that \(\text{Int}(P^*) = \partial A \), and take (a code for) an open set \(W^* = \text{Int}(P^*) \) as in the proof of Lemma 4.3. Then, we can easily prove that \(P^* \) and \(W^* \) satisfy the desired conditions.

Now we can give a simpler proof of the full version of Riemann’s mapping theorem.

Theorem 4.6 (Theorem 4.13 of [16]). The following assertions are equivalent over WKL_0.

1. ACA_0.

2. Every simply connected open subset \(U \subseteq \mathbb{C} \) is conformally equivalent to \(B(0; 1) \).

Proof. We will prove 1 \(\to \) 2. See [16] for 2 \(\to \) 1. We argue within ns-ACA_0. Let \(U^s \subseteq \mathbb{C}^s \) be a simply connected open set. Within WKL_0, we can prove that a simply connected open set is conformally equivalent to a bounded open set as usual (see [16]), so we can assume that \(U^s \) is bounded without loss of generality. Then, by Lemma 4.5, there exists a (hyperfinite) polygon \(P^* \) such that \(\text{Int}(P^*) \upharpoonright V^* = U^s \). Applying Riemann’s mapping theorem for polygonal region (Theorem 3.10) for \(\text{Int}(P^*) \) in \(V^* \) and taking the standard part, we can obtain a conformal map \(h^*: U^s \to B(0; 1) \) as in the proof of Theorem 4.4. By the conservation theorem (Theorem 2.7), this is provable within ACA_0.

Within RCA_0, we can easily prove that an (effectively integrable) conformal mapping for Riemann’s mapping theorem is unique up to rotation if a base point is fixed (see [16]). Thus, in conclusion, we have proved the three versions of Riemann’s mapping theorem.

- RCA_0 proves for any polygonal region \(U \subseteq \mathbb{C} \) with a base point \(x \in U \), there exists a unique (up to rotation) conformal mapping \(h: U \to B(0; 1) \) such that \(h(x) = 0 \).
• \(\text{WKL}_0 \) proves for any Jordan region \(U \subseteq \mathbb{C} \) with a base point \(x \in U \), there exists a unique (up to rotation) conformal mapping \(h : U \rightarrow B(0; 1) \) such that \(h(x) = 0 \).

• \(\text{ACA}_0 \) proves for any simply connected open set \(U \subseteq \mathbb{C} \) with a base point \(x \in U \), there exists a unique (up to rotation) conformal mapping \(h : U \rightarrow B(0; 1) \) such that \(h(x) = 0 \).

This is an example of “uniform approach” to analysis explained in Section 2.3.

Questions

Question 1. Find a version of Riemann’s mapping theorem which corresponds to the subsystem \(\text{WWKL}_0 \) of second-order arithmetic.

For the system \(\text{WWKL}_0 \), see [18].

Question 2. Can \(\text{RCA}_0 \) prove the weak version of Caratheodory’s theorem ? Here, the weak version of Caratheodory’s theorem is for any given simple semi-polygon \(D \) and a biholomorphic \(f : D \rightarrow \Delta(1) \), one can expand \(f \) into a homeomorphism \(\tilde{f} : D \rightarrow \Delta(1) \).

This version of Caratheodory’s theorem can be used to prove Picard’s little theorem.

Acknowledgments

The authors would like to thank the referee of the paper [16] for the crucial question for Riemann’s mapping theorem. The second author would like to thank Professor H. Jerome Keisler, Professor Stephen G. Simpson and Professor Masataka Shibata for useful discussions and comments.

References

