
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Modeling and Analyzing the Impact of Software

Fault Tolerance Techniques on the Reliability of

Component-based Systems

Author(s) Pham, Thanh-Trung; Defago, Xavier

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2013-003: 1-12

Issue Date 2013-01-25

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/12084

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Modeling and Analyzing the Impact of Software Fault Tolerance Techniques on the
Reliability of Component-based Systems

Thanh-Trung Pham and Xavier Défago

School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST),

Nomi, Ishikawa, Japan
Email: {thanhtrung.pham,defago}@jaist.ac.jp

Abstract—Reliability is one of the most important quality
attributes of a software system. One way to improve the reliability
of a software system is to use software fault tolerance tech-
niques. However, existing reliability prediction approaches for
component-based systems either do not allow modeling software
fault tolerance techniques or do not support defining explicitly
reliability-relevant behavioral aspects of software fault tolerance
techniques. This limits the ability to apply the approaches in
different application contexts. In this paper, we extend the
core model of a recent component-based reliability prediction
approach to take into consideration software fault tolerance
techniques and analyze their impact on the overall reliability
of component-based systems. We demonstrate the applicability
of our approach by modeling the reliability of the reporting
service of a document exchange server and conducting reliability
predictions.

Index Terms—component-based reliability prediction, software
fault tolerance techniques, error detection, execution models.

I. INTRODUCTION

Techniques for analyzing properties of a software design
and a software system are useful for both functional proper-
ties (e.g. correctness) and quality properties (e.g. reliability,
performance, security, etc.). Predicting quality properties of a
software system based on design models can help not only to
make the system more dependable but also to save costs, time
and efforts significantly by avoiding implementing software
architectures that do not meet the quality requirements.

Reliability1 is one of the most important quality attributes
of a software system. To improve the reliability of a software
system, software fault tolerance techniques are often used.
Software fault tolerance techniques provide the ability to
mask faults in software systems, prevent them from leading
to failures and can be applied on different abstraction levels
(e.g. source code level, design pattern level, architecture level)
[1]. However, existing component-based reliability prediction
approaches either do not allow modeling software fault tol-
erance techniques (e.g. [2]–[4]) or do not support defining
explicitly reliability-relevant behavioral aspects of software
fault tolerance techniques (e.g. [5], [6]). This limits the ability
to apply the approaches in different application contexts.

Furthermore, most existing reliability prediction approaches
[6]–[8] only use a failure/non-failure domain, regardless of

1The reliability can be defined as the complement of the probability of
failure on demand.

multiple failure types of a component service or different fail-
ure types of different component services and therefore cannot
model complicated reliability-related behaviors. Besides, these
approaches also accept an assumption of sequential component
executions and therefore cannot model concurrent executions.

We extend the core model of the approach of Pham et al.
[9], which incorporates error propagation analysis for different
execution models, to takes into consideration software fault
tolerance techniques and analyze their impact on the overall
reliability of component-based systems. Our approach allows
defining explicitly reliability-relevant behavioral aspects of
software fault tolerance techniques and therefore offers a flexi-
ble way to model different software fault tolerance techniques.
Moreover, our approach supports modeling with models simi-
lar to UML activity diagrams and UML component diagrams
that are transformed automatically into Markov chains for
reliability predictions.

We demonstrate the applicability of our approach by con-
sidering the reporting service of a document exchange server.
We make reliability predictions and sensitivity analyses of the
overall system reliability to model parameters.

Contribution: The main contribution of this paper is
twofold. First, we propose an extended model for the flexible
modeling of software fault tolerance techniques in component-
based systems. With two primitive fault tolerance structures,
we allow modeling several classical software fault tolerance
techniques including primary-backup, try-catch and try-retry.
Second, we illustrate our approach by studying the reliability
of the reporting service of a document exchange server. In
particular, we are not only able to predict the reliability of the
reporting service but also to identify the most sensitive com-
ponents, the most effective software fault tolerance techniques
for a given architecture of the reporting service.

Structure: The rest of this paper is organized as follows.
Section II surveys related work. Section III describes our
modeling foundation and the steps in our methodology. Section
IV describes in details about modeling the component reliabil-
ity specifications, modeling system reliability models and the
transformation to create Markov models in order to predict
reliability. Section V demonstrates our approach with a case
study. Section VI discusses the assumptions and limitations of
our approach and Section VII concludes the paper.

II. RELATED WORK

The field of architecture-based software reliability modeling
has been surveyed by several authors [7], [8], [10]. One of
the first approaches to architecture-based software reliability
modeling is Cheung’s approach [11] that uses Markov chains.
Recent work enhances such models to combine reliability
analysis with performance analysis [12], to support composi-
tionality [4], to take into consideration several factors related
to components’ reliability [13]. However, these approaches
do not consider software fault tolerance techniques, multiple
failure types and concurrent executions.

Other approaches in this field such as the approach of
Cheung et al. [14] focuses on the reliability of individual
components, the approach of Zheng et al. [15] aims at service-
oriented systems, the approach of Cortellessa et al. [2] and the
approach of Goseva et al. [3] apply UML modeling language,
but also do not consider software fault tolerance techniques
and multiple failure types. Moreover, these approaches, except
the approach of Zheng et al., do not consider concurrent
executions.

Some approaches consider explicitly error propagation such
as the approach of Mohamed et al. [16] and the approach of
Filieri et al. [17]. To model the possibilities of masking, trans-
forming and propagating different component failures, they
introduce several specific concepts such as multiple failure
types and error propagation probabilities. These possibilities
can be used to express a system’s fault tolerance capabilities
but software fault tolerance techniques cannot be modeled
explicitly by these approaches. Besides, these approaches do
not consider concurrent executions.

Some approaches take into consideration software fault
tolerance techniques in modeling reliability. The approach
of Sharma et al. [5] allows modeling component restarts
and component retries. This approach does not consider the
influences of both error detection and error handling in
software fault tolerance techniques on control and data flow
within components. Moreover, this approach also does not
consider multiple failure types and concurrent executions. The
approach of Wang et al. [6] supports different architectural
styles including fault tolerance architectural style and parallel
architectural style. However, similar to the approach of the
Sharma et al., the approach of Wang et al. does not consider
the influences of both error detection and error handling,
and multiple failure types. The same holds for the approach
of Pham et al. [9] which considers error propagation for
multiple execution models including concurrent and primary-
backup fault tolerance executions. The approach of Brosch
et al. [18] provides modeling elements to express software
fault tolerance techniques. Although the approach of Brosch
et al. considers multiple failure types and the influence of error
handling, it ignores the influence of error detection. Moreover,
the approach of Brosch et al. also does not consider concurrent
executions. Ignoring the influences of either error detection or
error handling can lead to incorrect results when the behaviors
of software fault tolerance techniques deviate from the specific

Modeling system

architecture.

Modeling usage

profile.

Creating a system reliability model

(by software architects)

2.22.1

2

System reliability

model

Component reliability

specifications

Discrete time

Markov chain

Modeling components,

services, service

implementations.

Modeling failure types for

internal activities in service

implementations.

Modeling fault tolerance

structures in service

implementations.

Creating component reliability specifications (by component developers)1

1.1 1.31.2

Result

OK?

Yes

Assembling

actual component

implementations

6

No

Revising components,

architecture, usage profile

5

Transforming

model

3

Analyzing

Markov chain

4

Fig. 1. Component-based reliability prediction.

cases mentioned by the authors.

III. COMPONENT-BASED RELIABILITY PREDICTION

In component-based software engineering (CBSE), there
exists a strict separation between component developers and
software architects. Component developers implement compo-
nents; provide functional specifications and quality specifica-
tions (i.e. models). Functional specifications are sufficient to
assemble components and check their interoperability. Quality
specifications are required to reason about quality attributes
such as reliability, performance, security of a component-
based software architecture. Software architects use these
specifications to reason about quality attributes of the pro-
posed architectures and then assemble the actual component
implementations.

Component developers create component quality specifica-
tions by describing how provided services of a component call
required services in terms of probabilities, frequencies and pa-
rameter values. Software architects create a model of flow and
data control throughout the entire architecture by incorporating
these specifications without referring to component internals.

Fig. 1 shows six main steps in our approach. In Step 1, com-
ponent developers create component reliability specifications.
First, component developers model components, services and
service implementations (Step 1.1). The results of Step 1.1
are enriched by different failure types with their occurrence
probabilities for internal activities in service implementations
(Step 1.2). Then, component developers can introduce different
fault tolerance structures (FTSs) in service implementations,
e.g. RetryStructures or MultiTryCatchStructures (Step 1.3).
FTSs allow different configurations, for example, the number
of times to retry for a RetryStructure or the number of
replicated instances for handling certain failure types in a
MultiTryCatchStructure. In Step 2, software architects create
a system reliability model. First, software architects model
the system architecture (Step 2.1) and then the usage profile
(Step 2.2). In Step 3, the system reliability model, combined
with the component reliability specifications, is transformed
automatically into a discrete time Markov chain (DTMC). In

Step 4, by analyzing the DTMC, a reliability prediction and
sensitivity analyses can be deduced. If the predicted reliability
does not meet the reliability requirement, Step 5 is performed.
Otherwise, Step 6 is performed. In Step 5, component de-
velopers can revise the components, for example, changing
the configurations of FTSs. Software architects can revise the
system architecture and the usage profile, for example, trying
different system architecture configurations, replacing some
key components with more reliable variants, or adjusting the
usage profile appropriately. In Step 6, the modeled system is
deemed to meet the reliability requirement; software architects
assemble the actual component implementations following the
system architecture model.

IV. RELIABILITY MODELING

A. Basic Concepts

According to Avizienis et al. [19], an error is defined as
the part of the system state that may lead to a failure. The
cause of the error is called a fault. A failure occurs when
the error causes the delivered service to deviate from correct
service. The deviation can be manifested in different ways,
corresponding to the system’s different failure types.

In the same paper, the authors also describe clearly fault
tolerance techniques. A fault tolerance technique is carried out
through error detection and system recovery. Error detection
is to determine the presence of an error. System recovery is
to transfer a system state containing one or more errors and
(possibly) faults to a state without detected errors and without
faults that can be activated again. Error handling and fault
handling together form system recovery. Error detection itself
also has two different failure types: 1) signaling the presence of
an error when no error has actually occurred, i.e. false alarm,
2) not signaling the presence of an error, i.e. an undetected
error.

From that, it is necessary to deal with multiple failure
types of a component service and different failure types
of different component services for modeling complicated
reliability-related behaviors. Moreover, it is important to take
into consideration both error detection and error handling in
modeling software fault tolerance techniques. However, to
the best of our knowledge, no architecture-based reliability
prediction approach takes into consideration error detection
and its influences on control and data flow when modeling
software fault tolerance techniques.

In the next section, we introduce our model for describing
reliability-relevant characteristics of component-based soft-
ware systems. Compared with MARTE-DAM profile [20], our
model uses only a small set of necessary concepts to achieve
our purposes such as reliability prediction, sensitivity analyses.

B. Component Reliability Specifications

1) Components, services and services implementations:
Fig. 2 shows the modeling elements for component reliability
specifications in our model (Step 1 in our approach). In Step
1.1, component developers model components, services and
service implementations via modeling elements: Component,

Service

ProvidedService

RequiredService

Component

0..*

0..*

ServiceImplementation

0..*

Activity

-calledService

CallingActivity

InternalActivity

FailureType
-probability

OccurringFailureType

0..*

ThrowedFailureType

0..*

Structure

SequentialStructure

-branchingConditions

BranchingStructure

-loopCount

LoopingStructure

ParallelStructure

-errorDetectionMatrix

-possiblyHandledFailureTypes

-retryCount

RetryStructure

-possibleFailureTypes

RetryPart

-errorDetectionMatrices

MultiTryCatchStructure

-possiblyHandledFailureTypes

-possibleFailureTypes

MultiTryCatchPart

2..*

[...][...]

[...]

[...]

[...]

[...]

Fig. 2. Modeling elements for component reliability specifications.

Service and ServiceImplementation , respectively. Components
are associated with services via RequiredService and Provid-
edService.

In order to analyze reliability, component developers are
required to describe the behavior of each service provided by
a component, i.e. describe the activities to be executed when
a service (Service) in the provided services of the component
is called. Therefore, a component can contain multiple ser-
vice implementations. A service implementation can include
activities (Activity) and structures (Structure). There are two
activity types: internal activities (InternalActivity) and calling
activities (CallingActivity). An internal activity represents a
component’s internal computation. A calling activity repre-
sents a synchronous call to other components, that is, the
caller blocks until receiving an answer. The called service
of a calling activity is a service in the required services of
the current component and this referenced required service
can only be substituted by the provided service of other
component when the composition of the current component to
other components is fixed. Some structure types are sequential
structures (SequentialStructure), branching structures (Branch-
ingStructure), looping structures (LoopingStructure) and par-
allel structures (ParallelStructure). For branching structures,
branching conditions are Boolean expressions. For looping
structures2, the number of loops is always bound, infinite loops
are not allowed. Looping structures may include other looping
structures but cannot have multiple entry points and cannot be
interconnected. For parallel structures, parallel branches are
supposed to be executed independently, i.e., their reliability
behaviors are independent.

2) Failure Types: In Step 1.2, component developers model
failure types for internal activities of service implementations
via an association between InternalActivity and FailureType.
This association models failure types occurring during a ser-
vice execution with a probability. Different techniques [10],
[14], such as growth reliability modeling, statistic testing or
fault injection, can be used to determine these probabilities.

3) Fault Tolerance Structures:
a) Error detection: In software fault tolerance tech-

niques, correct error detection is the prerequisite condition

2In our model, an execution cycle is also modeled by a looping structure
with its depth of recursion as loop count.

-possibleFailureTypes: F1, F2, F3

Activity i
ai

Success

(F0: FailureType)

F1: FailureType

F2: FailureType

F3: FailureType

Detected as F0

Detected as F1

Detected as F2

Detected as F3

Fig. 3. Error detection semantics for an activity example.

-possibleFailureTypes: F1, F2, F3

RetryPart

RetryPart

(retry 0)

Success (F0)F1 F2 F3

RetryPart

(retry 1)

Detected as F1

Detected as F2

RetryPart

(retry 2)

Detected as F1

Detected as F2

-retryCount: 2

-possiblyHandedFailureTypes: F1, F2

-errorDetectionMatrix:

RetryStructure

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

c c c c

c c c c

c c c c

c c c c

 
 
 
 
 
 

Fig. 4. Semantics for a RetryStructure example.

for a correct error handling. On the contrary, an undetected
error leads to no error handling and a false alarm leads to an
incorrect error handling.

Example 1: Fig. 3 shows an activity with three possible
failure types: F1, F2 and F3 (a new failure type, F0, is
introduced which corresponds to the correct service delivery).
To provide error handling for the failure types, it is necessary
to detect the failure types correctly. From that, for each failure
type Fi(i = 0, 1, 2, 3), fraction cij of being detected as failure
type Fj(j = 0, 1, 2, 3) needs to be provided. Therefore, the
error detection can be described by the following matrix:

c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33

∑
j

cij = 1

Rows (columns) 0, 1, 2 and 3 correspond to failure types
F0, F1, F2 and F3, respectively. The elements of row 0
(except the first element c00) correspond to false alarms. The
elements of column 0 (except the first element c00) correspond
to undetected errors. The elements outside the diagonal of the
matrix correspond to false signaling of failure type. In case of
perfect error detection, the error detection matrix is an identity
matrix.

b) RetryStructure: An effective technique to handle tran-
sient failures and therefore increase the service reliability is
service re-execution. A RetryStructure is taken ideas from this
technique. The structure contains a single RetryPart that can
contain within itself different activity types, different structure
types and even a nested RetryStructure. The first execution
of the RetryPart models normal service execution while the
following executions of the RetryPart model the service re-
executions.

-possiblyHandledFailureTypes: None

-possibleFailureTypes: F1, F2, F3, F4

MultiTryCatchPart 1

-errorDetectionMatrices

MultiTryCatchStructure

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

c c c c c

c c c c c

c c c c c

c c c c c

c c c c c

 
 
 
 
 
 
 
 

-possiblyHandledFailureTypes: F2, F3

-possibleFailureTypes: F2, F3

MultiTryCatchPart 2

00 02 03

20 22 23

30 32 33

' 0 ' ' 0

0 0 0 0 0

' 0 ' ' 0

' 0 ' ' 0

0 0 0 0 0

c c c

c c c

c c c

 
 
 
 
 
 
 
 

-possiblyHandledFailureTypes: F3, F4

-possibleFailureTypes: F2, F4

MultiTryCatchPart 3

TryCatchPart 1

Success (F0)F1 F2 F3

TryCatchPart 2
Detected as F2

Detected as F3
TryCatchPart 3

Detected as F3

F4

Detected as F4

None

Fig. 5. Semantics for a MultiTryCatchStructure example.

Example 2: Fig. 4 shows a RetryStructure with a single
RetryPart having three possible failure types: F1, F2 and
F3, an error detection matrix (as in Fig. 4), two possibly
handed failure types: F1 and F2 and retry count: 2. During
the execution of the RetryPart, all failure types F1, F2 and
F3 can occur. The field possiblyHandledFailureTypes of this
structure shows that only failure types that are detected as
failure types F1 and F2 lead to retry the RetryPart. This is
repeated with the number of times equal to the field retryCount
of the structure. Because RetryPart (retry 2) is the last retry,
it is not necessary to apply error detection modeling for it in
our reliability modeling.

c) MultiTryCatchStructure: A MultiTryCatchStructure is
taken ideas from the exception handling in object-oriented
programming. The structure consists of two or more Multi-
TryCatchParts. Each MultiTryCatchPart can contain different
activity types, different structure types and even a nested
MultiTryCatchStructure. Similar to try and catch blocks in
exception handling, the first MultiTryCatchPart models the
normal service execution while the following MultiTryCatch-
Parts handle certain failure types by launching alternative
activities.

Example 3: Fig. 5 shows a MultiTryCatchStructure with
three MultiTryCatchParts and four possible failure types F1,
F2, F3 and F4. During the execution of the first MultiT-
ryCatchPart, all failure types can occur. Because the possibly
handled failure types of MultiTryCatchPart 2 are F2, F3 and
of MultiTryCatchPart 3 are F3, F4, only failure types of
MultiTryCatchPart 1 that are detected as failure types F2, F3

and F4 lead to finding MultiTryCatchParts to handle detected
failure types. In particular, the failure types of MultiTryCatch-
Part 1 that are detected as failure types F2 and F3 lead to
MultiTryCatchPart 2, the failure types of MultiTryCatchPart 1
that are detected as failure type F4 lead to MultiTryCatchPart
3. During the execution of MultiTryCatchPart 2, possible
failure types are F2 and F3. Therefore, rows and columns
corresponding to failure types F1 and F4 of the error detec-
tion matrix for MultiTryCatchPart 2 contain all 0. The error
detection matrix for MultiTryCatchPart 2 can be simplified
by eliminating the rows and columns corresponding to the

Service

ProvidedService

RequiredService

Component

0..*

0..*

ComponentInstance ComponentConnector

SystemArchitecture

0..* 0..*

UserInterface
-probabilities

-averages

UsageProfile

Fig. 6. Modeling elements for system reliability models.

impossible failure types of MultiTryCatchPart 2 to be as
follows:  c′00 c′02 c′03

c′20 c′22 c′23
c′30 c′32 c′33


The former error detection matrix for MultiTryCatchPart

2 can be restored by using the possible failure types of
MultiTryCatchPart 2. Because the possibly handled failure
types of MultiTryCatchPart 3 are F3 and F4, only failure
types of MultiTryCatchPart 2 that are detected as failure
type F3 lead to MultiTryCatchPart 3. Because there is no
MultiTryCatchPart to handle failures of MultiTryCatchPart
3, an error detection matrix for it is not necessary in our
reliability modeling.

Because a MultiTryCatchPart can contain different activity
types (InternalActivity, CallingActivity) and different structure
types (SequentialStructure, BranchingStructure, LoopingStruc-
ture, ParallelStructure and even nested FTSs like RetryS-
tructure and MultiTryCatchStructure), it is quite flexible in
modeling the different fault tolerance techniques. For example,
if a MultiTryCatchPart contains within itself a CallingActivity,
errors from the provided service of the called component also
can be handled.

For FTSs, we don’t include state recovery error because the
design of recovery mechanism is sufficiently simple enough
that standard design practices can ensure that there are no
residual faults in its design [21].

C. System Reliability Models

1) System Architecture: Fig. 6 shows the modeling ele-
ments for system reliability models in our model (Step 2 in our
approach). In Step 2.1, software architects model system archi-
tecture via modeling element SystemArchitecture. The software
architects create component instances (ComponentInstance)
and assemble them through ComponentConnectors to realize
the required functionality. Users can access this functionality
through a user interface (UserInterface).

2) Usage Profile: After modeling system architecture, soft-
ware architects model a usage profile for the user interface
of the required functionality. A usage profile (UsageProfile)
includes probabilities and averages. The usage profile must
include sufficient information to determine the branching
probabilities of branching structures and the average number
of loops for each looping structure.

START

a1 ai

1.0

... an

SUCCESS

F1

Fj

Fm

fp1(ai)

fpj(ai)

fpm(ai)

...

1
1 ()

m

k ik
fp a




...

...
SequentialStructure

Activity 1 Activity i Activity n
... ...

Fig. 7. Sequential structure and its Markov model.

D. Transformation for Reliability Prediction

This transformation is to build a Markov model that reflects
all the possible execution paths throughout the entire system
architecture and their corresponding probabilities. After that,
the system reliability can be calculated from this Markov
model.

The transformation starts with a user interface that is actu-
ally a reference to a service implementation. Because a service
implementation can contain a structure of any structure types
or an activity of any activity types, a structure can contain
different structure types and different activity types, and a
calling activity can refer to another service implementation,
the transformation, in essence, is a recursive procedure of
transforming for the structure types and the activity types.

1) Internal Activity: The probabilities of different failure
types of an internal activity (abbreviated as ia) are provided as
a direct input to the model: fpj(ia). The success probability of
an internal activity can be calculated by sp(ia) = fp0(ia) =
1−

∑m
k=1 fpk(ia) where m is the number of failure types.

2) Sequential Structure: Fig. 7 shows a sequential structure
and its Markov model. The sequential structure includes n
activities numbered from 1 to n; each activity has m dif-
ferent failure types numbered from 1 to m. Its Markov has
n+m+2 states, n states corresponding to n activities, m states
corresponding to m failure types and 2 states: START and
SUCCESS. The transition probability between state ai and
state Fj is the probability of failure type j of activity i: fpj(ai).
The transition probability between state ai and ai+1 is the
non-failure probability of activity i: 1−

∑m
k=1 fpk(ai).

Therefore, the success probability of the structure is the
probability of reaching state SUCCESS from state START:

sp = fp0 =
∏n

i=1
(1−

∑m

k=1
fpk(ai)) (1)

The probability of failure type j (j 6= 0) of the structure is
the probability of reaching state Fj from state START:

fpj =

n∑
i=1

((
i−1∏
k=1

(
1−

m∑
l=1

fpl(ak)

))
fpj(ai)

)
(2)

Equation (2) can be obtained from the following disjoint
cases:
• When activity a1 fails with failure type j. This case has

probability fpj(a1).
• When activity a1 succeeds, activity a2 fails

with failure type j. This case has probability
(1−

∑m
k=1 fpk(a1)) fpj(a2).

• ...

branchingConditions:

[bc1]; … ; [bci]; … ; [bcn]

BranchingStructure

Activity 1 Activity i Activity n
... ...

[bc1]

[bci]
[bcn]

START

a1

ai
p[bci]

an

SUCCESS

F1 Fj Fm

fp1(ai)
fpj(ai) fpm(ai)

...

...

...

...

1
1 ()

m

k ik
fp a




Fig. 8. Branching structure and its Markov model.

loopCount: lc

LoopingStructure

Activity i

START

ai ai

1.0

... ai

SUCCESS

F1

Fj

Fm

fp1(ai)

fpj(ai)

fpm(ai)

...

1
1 ()

m

k ik
fp a




...

...

average(lc) times of ai

Fig. 9. Looping structure and its Markov model.

• When activities a1, a2, ..., an−1 succeed, activity an
fails with failure type j. This case has probability(∏n−1

i=1 (1−
∑m

k=1 fpk(ai))
)
fpj(an).

3) Branching Structure: Fig. 8 shows a branching structure
and its Markov model. The branching structure includes n
activities numbered from 1 to n in n branches; each activity
has m different failure types numbered from 1 to m. Its Markov
model has n+m+2 states, n states corresponding to n activities,
m states corresponding to m failure types and 2 states: START
and SUCCESS. The transition probability between state ai and
state Fj is the probability of failure type j of activity i: fpj(ai).
The transition probability between state START and state ai
is the probability of the branching condition i: p[bci]. The
transition probability between state ai and state SUCCESS is
the non-failure probability of activity i: 1−

∑m
k=1 fpk(ai).

Therefore, the success probability of the structure is the
probability of reaching state SUCCESS from state START:

sp = fp0 =
∑n

i=1
p(bci)

(
1−

∑m

j=1
fpj(ai)

)
(3)

The probability of failure type j of the structure is the
probability of reaching state Fj from state START:

fpj =

n∑
i=1

(p(bci)fpj(ai)) (4)

4) Looping Structure: Fig. 9 shows a looping structure and
its Markov model. The looping structure includes an activity
i which is looped lc times; this activity has m different failure
types numbered from 1 to m. Its Markov model has average(lc)
number of ai states, m state corresponding to m failure types
and 2 states: START and SUCCESS. The transition probability
between state ai and state Fj is the probability of failure type
j of activity i: fpj(ai). The transition probability between two
consecutive ai states is the non-failure probability of activity
i: 1−

∑m
k=1 fpk(ai).

Therefore, the success probability of the structure is the

ParallelStructure

Activity 1 Activity i Activity n
... ...

Fig. 10. Parallel structure.

probability of reaching state SUCCESS from state START:

sp = fp0 =
(
1−

∑m

k=1
fpk(ai)

)average(lc)
(5)

The probability of failure type j (j 6= 0) of the structure is
the probability of reaching state Fj from state START:

fpj =

average(lc)∑
i=1

((
i−1∏
k=1

(
1−

m∑
l=1

fpl(ai)

))
fpj(ai)

)
(6)

5) Parallel Structure: For a parallel structure, we assume
its parallel branches fail independently. Furthermore, in order
to avoid introducing additional failures types for the parallel
structure when its parallel branches fail in different failure
types, we assume that the failure types are sorted in a certain
order (for example, according to their severity). Therefore,
when its parallel branches fail in different failure types, the
failure type of the parallel structure is the highest failure
type of its parallel branches. Without loss of generality, we
assume that the failures types are sorted in the following order:
F1 ≤ F2 ≤ . . . ≤ Fm.

Considering a parallel structure including n activities num-
bered from 1 to n as in Fig. 10, the parallel structure succeeds
when all the parallel branches succeed:

sp = fp0 =

n∏
i=1

(
1−

∑m

k=1
fpk(ai)

)
(7)

The parallel structure fails with failure type j if at least one
branch fails with failure type j and no parallel branch fails
with failure type k > j:

fpj =

n∑
i=1


i−1∏
k=1

(
1−

m∑
l=j

fpl(ak)

)
× fpj(ai)

×
n∏

k=i+1

(
1−

m∑
l=j+1

fpl(ak)

)
 (8)

Equation (8) can be obtained from the following disjoint
cases:
• When activity a1 fails with failure type j, the re-

maining activities a2, a3, ..., an do not fail with
failure type k > j. This case has probability

fpj(a1)
n∏

i=2

(
1−

m∑
k=j+1

fpk(ai)

)
.

• When activity a1 fails with failure type k < j,
activity a2 fails with failure type j, the remain-
ing activities a3, a4, ..., an do not fail with
failure type k > j. This case has probability(
1−

m∑
k=j

fpj(a1)

)
fpj(a2)

n∏
i=3

(
1−

m∑
k=j+1

fpk(ai)

)
.

STARTi

RPretry i

1.0

SUCCESSi

(Fi0)

Fi1

Fij

Fim

fp1(RP)

fpj(RP)

fpm(RP)

...

1
1 ()

m

kk
fp RP




...

MM(RPi)

Fig. 11. Markov model for i-th retry.

• ...
• When activities a1, a2, ..., an−1 fail with failure type

k < j, activity an fails with failure type j. This case has

probability

(
n−1∏
i=1

(
1−

m∑
k=j

fpj (ai)

))
fpj(an).

6) RetryStructure: For a RetryStructure, let rc be the num-
ber of times to retry, FH be the set of possibly handed
failure types, C be the error detection matrix represented by
{crs} r, s = 0, 1, . . .m. The RetryPart (abbreviated as RP) has
m different failure types numbered from 1 to m, failure type
j has probability fpj (RP). Therefore, the i-th retry can be
represented by a Markov model MM (RPi) as in Fig. 11.

Markov model MM (RPi) has a start state STARTi, a
success state SUCCESSi (or Fi0) and a failure state Fij

for each failure type j. The probability of reaching Fi0 from
state RPretry i is fp0(RP) = 1−

∑m
k=1 fpk(RP). With the

number of times to retry rc, there are rc +1 Markov model
MM (RPi), i from 0 to rc. The problem is how to connect
these Markov models MM (RPi) (i = 0, 1, . . . rc) into one
Markov model representing the whole structure. To solve
the problem, we add m+2 states, namely one state START,
one state SUCCESS (or F0) and states Fj for failure types
(j = 1, 2, . . .m), and the following transition:

• The transition from state START to state START0 having
probability 1.0.

• For Markov model MM (RPrc) (i.e. the Markov model
of the last retry): transition from state Frcj to state Fj

having probability 1.0 (j = 0, 1, 2, . . .m)
• For the other Markov models, i.e. MM (RPi) with i from

0 to rc-1: transition from state Fij to state STARTi+1

having probability
∑

∀Fk∈FH

cjk (j = 0, 1, 2, . . .m); tran-

sition from state Fij to state Fj having probability
1−

∑
∀Fk∈FH

cjk (j = 0, 1, 2, . . .m)

As the resulting Markov model is an absorbing Markov
chain, the success probability of the whole structure, which is
the probability of reaching state SUCCESS from state START,
and the probability of failure type j of the structure, which is
the probability of reaching state Fj from state START, can be
calculated [22].

7) MultiTryCatchStructure: For a MultiTryCatchStructure,
let n be the number of MultiTryCatchParts, FHi be the
set of possibly handled failure types of MultiTryCatchPart
i (i = 1, 2, . . . n), C[i] be the error detection matrix for
MultiTryCatchPart i which is represented by

{
cirs

}
r, s =

STARTi

MTCPi

1.0

SUCCESSi

(Fi0)

Fi1

Fij

Fim

fp1(MTCPi)

fpj(MTCPi)

fpm(MTCPi)

...

1
1 ()

m

k ik
fp MTCP




...

MM(MTCPi)

...

STARTn

MTCPn

1.0

SUCCESSn

(Fn0)

Fn1

Fnj

Fnm

fp1(MTCPn)

fpj(MTCPn)

fpm(MTCPn)

...

1
1 ()

m

k nk
fp MTCP




...

MM(MTCPn)

START1

MTCP1

1.0

SUCCESS1

(F10)

F11

F1j

F1m

fp1(MTCP1)

fpj(MTCP1)

fpm(MTCP1)

...

11
1 ()

m

kk
fp MTCP




...

MM(MTCP1)

...

Fig. 12. Markov models for MultiTryCatchParts.

0, 1, . . .m. The MultiTryCatchPart i (abbreviated as MTCPi)
has m different failure types, numbered from 1 to m, failure
type j having probability fpj (MTCPi). Therefore, Multi-
TryCatchParts can be represented by Markov models as in
Fig. 12.

Markov model MM (MTCPi) has a start state STARTi,
a success state SUCCESSi (or Fi0) and failure states Fij

for failure types j (j = 1, 2, . . .m). The probability of
reaching state Fi0 from state MTCPi is fp0(MTCPi) =
1 −

∑m
k=1 fpk(MTCPi). The problem is how to connect

these Markov models MM (MTCPi) (i = 1, 2, . . . n) into
one Markov model representing the whole structure. To solve
the problem, we add m+2 state, namely one state START,
one state SUCCESS (or F0) and states Fj for failure types
(j = 1, 2, . . .m), and the following transition:
• The transition from state START to state START0 having

probability 1.0.
• For Markov model MM (MTCPn) (i.e. the Markov

model of the last MultiTryCatchPart): transition from
state Fnj to state Fj having probability 1.0 (j =
0, 1, 2, . . .m).

• For other Markov models, i.e. MM (MTCPi) with i
from 1 to n-1: transition from state Fij to state STARTx,
x ∈ {i+ 1, i+ 2, ...n} having probability

∑
∀Fk∈FHix

cijk

where FHix = FHx −
⋃

i<y<x

FHy (j = 0, 1, 2, . . .m);

Transition from state Fij to state Fj (j = 0, 1, 2, . . .m)
having probability 1−

∑
i<x≤n

∑
∀Fk∈FHix

cijk.

With the Markov model representing the whole structure,
the probability of reaching state SUCCESS from state START
is the success probability of the structure and the probability
of reaching state Fj from state START is the probability of
failure type j of the structure.

Finally, based on all the calculations described above, the
success probability of the service implementation correspond-
ing to the user interface can be calculated in a recursive way,
giving the reliability of the requested functionality with the
given usage profile.

TABLE I
DIFFERENT FAILURE TYPES AND THEIR SYMBOLS.

Failure Type Symbol
ProcessingRequestFailure F1

ViewingReportFailure F2

GeneratingReportFailure F3

AttachmentInfoFailure F4

FileInfoFailure F5

InfoFromLogFailure F6

InfoFromDBFailure F7

V. CASE STUDY

A. Description of the Case Study

The program chosen for the case study is the reporting ser-
vice of a document exchange server. The document exchange
server is an industrial system which was designed in a service-
oriented way. Its reporting service allows generating reports
about pending documents or released documents. This service
was written in Java and consists of about 2,500 lines of code.

By analyzing the code, it was possible to get the system
reliability model of the reporting service as in Fig. 13. At
the architecture level, the reporting service consists of four
components: ReportingMediator, ReportingEngine, SourceM-
anager and DestinationManager. The component SourceMan-
ager provides two services to get information about pending
documents: getAttachmentDocumentInfo to get information
about pending documents attached in emails and getFileDoc-
umentInfo to get information about pending documents stored
in file systems. The component DestinationManager provides
two services to get information about released documents:
getReleasedDocumentInfoFromLogs to get the information
from the logs, getReleasedDocumentInfoFromDB to get the
information from the database (DB). The component Reportin-
gEngine provides two services: generateReport to generate a
new report (either about pending documents (aboutPending-
Documents=true) or about released documents (aboutPending-
Documents=false)) and viewRecentReports to view recently
generated reports (with the number of reports specified by
numberOfRecentReports). The component ReportingMediator
provides the service processReportRequest for handling in-
coming report request from clients. An incoming report request
can be about generating a new report (requestType=generate)
or viewing recently generated reports (requestType=view).

There are different types of failures which may occur in
the component instances during the operation of the reporting
service. For example, a ProcessingRequestFailure may occur
during processing report requests of clients in the service
processReportRequest; bugs in the code of the service gen-
erateReport may lead to a GeneratingReportFailure. Table I
shows different failure types of the reporting service and their
symbols.

In the system reliability model of the reporting service,
there are two FTSs. The first is the RetryStructure in the
implementation of the service viewRecentReports. This struc-
ture has the ability to retry in case there is a ViewingRe-
portFailure. The number of times to retry of this structure is

TABLE II
NO. OF REINSERTED FAULTS INTO INTERNAL ACTIVITIES.

Symbol Provided service/Internal activity (ia) No. of
reinserted faults

a1 processReportRequest/ia 0
a2 viewRecentReports/ia 2
a3 generateReport/ia 1 0
a8 generateReport/ia 2 1
a4 getAttachmentDocumentInfo/ia 1
a5 getFileDocumentInfo/ia 1
a6 getReleasedDocumentInfoFromLogs/ia 2
a7 getReleasedDocumentInfoFromDB/ia 1

TABLE III
FAILURE PROBABILITIES OF INTERNAL ACTIVITIES

Symbol fpj (ai)
a1 fpj (a1) = 0∀j
a2 fp2 (a2) = 0.26087; fpj (a2) = 0∀j 6= 2
a3 fpj (a3) = 0∀j
a8 fp3 (a8) = 0.0549451; fpj (a8) = 0∀j 6= 3
a4 fp4 (a4) = 0.111111; fpj (a4) = 0∀j 6= 4
a5 fp5 (a5) = 0.0277778; fpj (a5) = 0∀j 6= 5
a6 fp6 (a6) = 0.339286; fpj (a6) = 0∀j 6= 6
a7 fp7 (a7) = 0.0909091; fpj (a7) = 0∀j 6= 7

1 (retryCount=1). The second is the MultiTryCatchStructure
in the implementation of the service generateReport. This
structure has the ability to handle a InfoFromLogFailure of
the service getReleasedDocumentInfoFromLogs by redirecting
calls to the service getReleasedDocumentInfoFromDB.

After the last fault removal, the reporting service has been
used without having new failures. We used this gold version of
the service as an oracle in our case study. We obtained a faulty
version of the service by reinserting faults discovered during
operational usage and integration testing (Table II shows the
number of reinserted faults).

B. Parameter Estimation and Validity of Predictions

To validate the accuracy of our prediction approach, we first
estimated the input parameters of the model, including failure
probabilities of internal activities, branching probabilities of
branching structures, the average number of loops for each
looping structure and error detection matrices of FTSs; used
the estimated input parameters to compute the predicted reli-
ability by following the method in the Section IV.D and then
compared the predicted reliability with the actual reliability of
the reporting service. Notice that the goal of our validation is
not to justify the input parameters of the model or to imply
any accuracy in their estimates but to show that if the system
reliability model is provided accurately, our method gives a
reasonably accurate reliability prediction.

The faulty version of the reporting service and the oracle
were executed on the same test cases for the reporting service.
By comparing their outputs and investigating the executions
of test cases, we were able to estimate the input parameters
of the model. Faults have not been removed and the number
of failures includes recurrences because of the same fault.

We estimate the failure probability of the failure type j
(Fj , j = 1, 2, ...7) of the internal activity ai (i = 1, 2, . . . 8) as:

<<Service>>

generateReport

<<Service>>

getAttachmentDocumentInfo

<<Service>>

getFileDocumentInfo

<<FailureType>>

AttachmentInfoFailure

<<InternalActivity>>

failure probability

<<ServiceImplementation>>

<<FailureType>>

FileInfoFailure

<<InternalActivity>>

failure probability

<<ServiceImplementation>>

<<InternalActivity>>

failure probability

<<ServiceImplementation>>

<<Service>>

getReleasedDocumentInfoFromDB

<<FailureType>>

InfoFromDBFailure

<<Service>>

processReportRequest

<<FailureType>>

ProcessingRequestFailure

<<SequentialStructure>>

failure probability

<<ServiceImplementation>>

<<InternalActivity>>

-branchingConditions:

[requestType=’generate’] [requestType=’view’]

<<BranchingStructure>>

-calledService:

generateReport

<<CallingActivity>>

-calledService:

viewRecentReports

<<CallingActivity>>

<<ComponentInstance>>

ReportingMediator

<<ComponentInstance>>

ReportingEngine

<<ComponentInstance>>

SourceManager

<<ComponentInstance>>

DestinationManager

<<SoftwareArchitecture>>

probability(requestType=’view’)

probability(aboutPendingDocuments=true)

average(numberOfRecentReports)

<<UsageProfile>>

<<InternalActivity>>

failure probability

<<ServiceImplementation>>

<<Service>>

getReleasedDocumentInfoFromLogs

<<FailureType>>

InfoFromLogFailure

<<FailureType>>

GeneratingReportFailure

<<SequentialStructure>>

failure probability

<<ServiceImplementation>>

<<InternalActivity>>

1

<<ParallelStructure>>

-branchingConditions:

[aboutPendingDocuments=true] [aboutPendingDocuments=false]

<<BranchingStructure>>

-possiblyHandledFailureTypes:

None

<<MultiTryCatchPart>> 1

-possiblyHandledFailureTypes:

InfoFromLogFailure

<<MultiTryCatchPart>> 2

-errorDetectionMatrices:

<<MultiTryCatchStructure>>

None

<<FailureType>>

GeneratingReportFailure

failure probability

<<InternalActivity>>

2

-calledService:

getAttachmentDocumentInfo

<<CallingActivity>>

-calledService:

getFileDocumentInfo

<<CallingActivity>>

-calledService:

getReleasedDocumentInfoFromDB

<<CallingActivity>>

-calledService:

getReleasedDocumentInfoFromLogs

<<CallingActivity>>

00 01

10 11

c c

c c

 
 
 

<<Service>>

viewRecentReports

<<FailureType>>

ViewingReportFailure

-loopCount:

numberOfRecentReports

<<LoopingStructure>>

failure probability

<<ServiceImplementation>>

<<InternalActivity>>

-retryCount: 1

-possiblyHandledFailureTypes:

ViewingReportFailure

-errorDetectionMatrix:

<<RetryStructure>>

<<RetryPart>>

00 01

10 11

c c

c c

 
 
 

Fig. 13. The system reliability model of the reporting service.

TABLE IV
ERROR DETECTION MATRICES.

Provided service/FTS Error detection matrix

viewRecentReports/RetryStructure
(

1.0 0.0
0.222222 0.777778

)
generateReport/MultiTryCatchStructure

(
1.0 0.0

0.421053 0.578947

)

fpj (ai) = fji/ni where fji is the number of failures of the
failure type j of the internal activity ai and ni is the number
of runs of the internal activity ai in the set of test cases for
the reporting service. Failure probabilities of different failure
types of internal activities are given in Table III. Because no
fault was injected into the two internal activities a1 and a3,
their failure probabilities are assumed to be 0.

The error detection matrix of a FTS was estimated as

(crs) = (dafrs/fr); r, s = 0, 1, ...7 where fr is the number of
failures of the failure type r (Fr) of the inner part of the FTS
(i.e., RetryPart for a RetryStructure or MultiTryCatchPart i for
a MultiTryCatchStructure) and dafrs is the number of failures
of the failure type r of the inner part detected as the failure
type s (Fs). The simplified error detection matrices for the two
FTSs are given in Table IV.

Branching probabilities of a branching structure was esti-
mated as p(bci) = ni/n where ni is the number of times
control was transferred along the branch with branching con-
dition bci and n is the total number of times control reached
the branching structure.

The average number of loops of a looping structure was
estimated as average (lc) = nir/n where nir is the number
of runs of the inner part of the looping structure, n is the
number of times control reached the looping structure.

TABLE V
USAGE PROFILE.

Usage profile element Value
p(requestType=view) 0.178571
p(aboutPendingDocuments=false) 0.608696
average(numberOfRecentReports) 2

TABLE VI
PREDICTED VS. ACTUAL RELIABILITY FOR THE FAULTY VERSION

Component Instance Predicted Actual Difference Error
/Provided service reliability reliability (%)

ReportingMediator/ 0.800261 0.794643 0.005618 0.707
processReportRequest

The usage profile including the branching probabilities of
the branching structures and the average number of loops of
the looping structure is given in Table V.

We estimate the actual reliability of the reporting service as
R = 1−F/N where F is the number of failures of the report-
ing service in N test cases for the reporting service. Table VI
shows the comparison between the predicted reliability and the
actual reliability for the faulty version. From this comparison,
we deem that for the system reliability model described in this
paper, our analytical method is sufficiently accurate.

C. Sensitivity Analyses and the Impact of FTSs

In this subsection, we first present the results of sensitivity
analyses of the reliability of the reporting service to changes
of probabilities in the usage profile, to changes of failure
probabilities of internal activities and to changes of error
detection probabilities of FTSs. Then, we present the analysis
of how the predicted reliability of the reporting service varies
for different fault tolerance variants.

First, we conducted a sensitivity analysis modifying the
usage probabilities (Fig. 14). The reliability of the reporting
service is more sensitive to the portion of request types
required by users (requestType=generate or requestType=view)
because its corresponding curve has the steepest slope.

Second, we conducted a sensitivity analysis modifying
failure probabilities of the internal activities (Fig. 15). The

à

à

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

0.0 0.2 0.4 0.6 0.8 1.0

0.790

0.795

0.800

0.805

0.810

Usage probability

Se
rv

ic
e

re
lia

bi
lit

y

Service reliability vs. Usage probabilities

à pHaboutPendingDocuments=falseL
ì pHrequestType=viewL

Fig. 14. Sensitivity to usage probabilities.

à

à

à

à

à

à

á
á

á
á

á
á

ì

ì

ì

ì

ì

ì

í

í

í

í

í

í

æ

æ

æ

æ

æ

æ

ç

ç

ç

ç

ç

ç

ò
ò

ò
ò

ò
ò

ó

ó

ó

ó

ó

ó

0.00 0.05 0.10 0.15 0.20

0.65

0.70

0.75

0.80

0.85

Failure probability

Se
rv

ic
e

re
lia

bi
lit

y

Service reliability vs. Failure probabilities

ó a8

ì a3

á a2

à a1

ò a7

ç a6

æ a5

í a4

Fig. 15. Sensitivity to failure probabilities.

à
à

à
à

à
à

à

à

à

à

à

á
á

á
á

á

á

á

á

á

á

á

ì
ì

ì
ì

ì
ì

ì
ì

ì
ì

ì

í

í

í

í

í

í

í

í

í

í

í

0.0 0.2 0.4 0.6 0.8 1.0

0.75

0.80

0.85

Error detection probability

Se
rv

ic
e

re
lia

bi
lit

y

Service reliability vs. Error detection probabilities

í C11 of MultiTryCatchStructure
ì C00 of MultiTryCatchStructure
á C11 of RetryStructure
à C00 of RetryStructure

Fig. 16. Sensitivity to error detection probabilities.

reliability of the reporting service is most sensitive to the
failure probability of ProcessingRequestFailure (F1) of the
internal activity (a1) of the service processReportRequest
provided by the component instance ReportingMediator be-
cause its corresponding curve has the steepest slope. The
reliability of the reporting service is most robust to the
failure probabilities of the internal activities (a2, a6, a7) of
the services related to the two FTSs, namely the service
viewRecentReports containing the RetryStructure; the service
getReleasedDocumentInfoFromLogs and the service getRe-
leasedDocumentInfoFromDB in the MultiTryCatchStructure.
Based on this information, the software architect can decide to
put more testing effort into the component ReportingMediator,
to exchange the component with another component from a
third party vendor, or run the component redundantly.

Third, we conducted a sensitivity analysis modifying error
detection probabilities of the two FTSs (Fig. 16). The reliabil-
ity of the reporting service is most sensitivity to the element
c11 of the error detection matrix of the MultiTryCatchStructure
(i.e., the probability to detect correctly failures of InfoFrom-
LogFailure (F6) from the service getReleasedDocumentIn-
foFromLogs) because its corresponding curve has the steepest
slope. This information may be valuable to the software

0.672277
0.715881

0.756657
0.800261

0.0

0.2

0.4

0.6

0.8

System configuration

Se
rv

ic
e

re
lia

bi
lit

y
Service reliability vs. System configurations

Use both RS and MTCS
Use only MTCS
Use only RS
No FTS

Fig. 17. Reliability comparison between different variants.

architect when considering putting more development effort
in order to improve the correct error detections of the FTSs
in the system.

Fourth, we conducted an analysis of how the predicted
reliability of the reporting service varies for different fault
tolerance variants. These variants include a configuration
without the FTSs (No FTS), a configuration using only the
RetryStructure (Use only RS), a configuration using only the
MultiTryCatchStructure (Use only MTCS) and a configuration
using both the FTSs (Use both RS and MTCS) (Fig. 17). The
variant Use both RS and MTCS is predicted as being the
most reliable. Comparing between the variant Use Only RS
and the variant Use Only MTCS shows that using the Multi-
TryCatchStructure brings higher reliability impact than using
the RetryStructure in this case. From the result of this type
of analysis, the software architect can assess the impact on
the system reliability of different fault tolerance variants and
hence can decide whether the additional costs for introducing
FTSs, increasing the number of retry times in a RetryStructure,
adding replicated instances in a MultiTryCatchStructure... are
justified.

With this type of analysis, it is also possible to see the
ability to reuse modeling parts of our approach for evaluating
the reliability impacts of fault tolerance variants or system
configurations. For the variant Use Only MTCS, only a single
modification to the RetryStructure is necessary (namely, setting
the retryCount of the structure to 0 to disable the structure).
For the variant Use Only RS, also only a single modification
to the MultiTryCatchStructure is necessary (namely, setting
the value 1 to all the elements of the column 0 and the
value 0 to all the elements of the other columns of the error
detection matrix for the MultiTryCatchPart 1 to disable the
structure). For the variant No FTS, the two above modifications
are included.

VI. ASSUMPTIONS AND LIMITATIONS

Similar to the approaches of Cheung, Reussner et al. and
Sharma et al. [4], [11], [12], we assume the components
fail independently and a component failure leads to a system

failure (i.e. a stopping failure model). This means that the
error propagation impact is neglected. For the analysis of
the influence of error propagation in reliability prediction of
component-based software systems with different execution
models (including sequential executions, parallel executions,
fault tolerance executions), we refer to the approach of Pham
et al. [9].

Our approach assumes that for sequential executions, con-
trol transitions between components have the Markov property.
This means that operational and failure behaviors of a compo-
nent are independent of its past. This Markovian assumption
limits the applicability of our approach. However, many real-
life applications have been proved to satisfy this Markovian
assumption [11]. Our approach can be adapted to any higher
order Markov chains to increase the applicability scope. We
confirm this because the problem of Markovian assumption
was treated deeply by Goseva et al. [7]. In their paper, the
authors point out that a higher order Markov chain (i.e. the
next execution step depends not only on the last step but also
on the previous n steps) can be mapped into a first order
Markov chain.

Another assumption lies in the estimation of failure prob-
abilities for internal activities and error detection matrices
for FTSs. No methodology is always valid to deal with the
problem. Most of the approaches are based on setting up tests
to achieve a statistically significant amount of measurement
which the estimation can be based on [23]. Besides, com-
ponent reuse may allow exploiting the historical data which
the estimation can be based on. In early design phases, the
estimation can be based on the available specification and
design documents of the system [14]. Similarly, the estima-
tion of usage profile can be based on historical data from
similar products or on high level information about software
architecture and usage obtained from specification and design
documents in early phases of software development. In the late
phases of the software development, when testing or field data
become available, the estimation can be based on the execution
traces obtained using profilers and test coverage tools.

VII. CONCLUSION

In this paper, we presented our extended model for the
flexible modeling of software fault tolerance techniques in
component-based systems. Our approach allows defining ex-
plicitly reliability-relevant behavioral aspects of software fault
tolerance techniques and analyzing their impact on the overall
reliability of component-based systems. In order to apply our
approach, component developers create component reliability
specifications, software architects create system reliability
models which are transformed automatically to discrete time
Markov chains to give reliability predictions and sensitivity
analyses. Via a case study, we demonstrated the applicability
of our approach, in particular, its ability to support design
decisions in early development stages. This can help to make
a system more reliable in a cost-effective way because poten-
tially high costs for late life-cycle fixings of a system can be
avoided.

We plan to completely integrate with the approach of Pham
et al. [9] and to extend with the more complex error propaga-
tion for concurrent executions, to include more software FTSs
and to validate further our approach.

ACKNOWLEDGMENTS

This research was supported 322 FIVE-JAIST program.

REFERENCES

[1] L. Pullum, Software fault tolerance techniques and implementation.
Artech House, 2001.

[2] V. Cortellessa, H. Singh, and B. Cukic, “Early reliability assessment of
uml based software models,” in Proceedings of the 3rd international
workshop on Software and performance. Rome, Italy: ACM, 2002, pp.
302–309.

[3] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez,
D. Nassar, H. Ammar, and A. Mili, “Architectural-level risk analysis
using uml,” Software Engineering, IEEE Transactions on, vol. 29, no. 10,
pp. 946 – 960, 2003.

[4] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo, “Reliability
prediction for component-based software architectures,” J. Syst. Softw.,
vol. 66, no. 3, pp. 241–252, 2003.

[5] V. S. Sharma and K. S. Trivedi, “Reliability and performance of compo-
nent based software systems with restarts, retries, reboots and repairs,” in
Proceedings of the 17th International Symposium on Software Reliability
Engineering. IEEE Computer Society, 2006, pp. 299–310.

[6] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based software
reliability modeling,” J. Syst. Softw., vol. 79, no. 1, pp. 132–146, 2006.

[7] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-based ap-
proaches to software reliability prediction,” Computers and Mathematics
with Applications, vol. 46, no. 7, pp. 1023–1036, 2003.

[8] A. Immonen and E. Niemel, “Survey of reliability and availability pre-
diction methods from the viewpoint of software architecture,” Software
and Systems Modeling, vol. 7, no. 1, pp. 49–65, 2008.

[9] T.-T. Pham and X. Défago, “Reliability prediction for component-based
systems: Incorporating error propagation analysis and different execution
models,” in Proceedings of 12th International Conference on Quality
Software (QSIC12). in Xian, China: IEEE Computer Society, 2012,
pp. 106–115.

[10] S. S. Gokhale, “Architecture-based software reliability analysis:
Overview and limitations,” IEEE Trans. Dependable Secur. Comput.,
vol. 4, no. 1, pp. 32–40, 2007.

[11] R. C. Cheung, “A user-oriented software reliability model,” IEEE Trans.
Softw. Eng., vol. 6, no. 2, pp. 118–125, 1980.

[12] V. S. Sharma and K. S. Trivedi, “Quantifying software performance,
reliability and security: An architecture-based approach,” J. Syst. Softw.,
vol. 80, no. 4, pp. 493–509, 2007.

[13] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Parameterized
reliability prediction for component-based software architectures,” in Re-
search into Practice Reality and Gaps, ser. Lecture Notes in Computer
Science, G. Heineman, J. Kofron, and F. Plasil, Eds. Springer Berlin
/ Heidelberg, 2010, vol. 6093, pp. 36–51.

[14] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early
prediction of software component reliability,” in Proceedings of the 30th
international conference on Software engineering. Leipzig, Germany:
ACM, 2008, pp. 111–120.

[15] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-
oriented systems,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1. Cape Town, South
Africa: ACM, 2010, pp. 35–44.

[16] A. Mohamed and M. Zulkernine, “On failure propagation in component-
based software systems,” in Proceedings of the 2008 The Eighth Inter-
national Conference on Quality Software. IEEE Computer Society,
2008, pp. 402–411.

[17] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, “Reliability analysis
of component-based systems with multiple failure modes component-
based software engineering,” ser. Lecture Notes in Computer Science,
L. Grunske, R. Reussner, and F. Plasil, Eds. Springer Berlin /
Heidelberg, 2010, vol. 6092, pp. 1–20.

[18] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner, “Reliability
prediction for fault-tolerant software architectures,” in Proceedings of the
joint ACM SIGSOFT conference – QoSA and ACM SIGSOFT symposium
– ISARCS on Quality of software architectures – QoSA and architecting
critical systems – ISARCS. Boulder, Colorado, USA: ACM, 2011, pp.
75–84.

[19] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, 2004.

[20] S. Bernardi, M. Jos, and D. C. Petriu, “A dependability profile within
marte,” Softw. Syst. Model., vol. 10, no. 3, pp. 313–336, 2011.

[21] S. Shrivastava and N. R. Project, Reliable computer systems: collected
papers of the Newcastle Reliability Project. Springer-Verlag, 1985.

[22] K. S. Trivedi, Probability and Statistics with Reliability, Queueing,
and Computer Science Applications, 2nd Edition, 2nd ed. Wiley-
Interscience, 2001.

[23] M. Lyu, Handbook of software reliability engineering. IEEE Computer
Society Press, 1996.

