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Symmetric electron-hole bilayer systems have been studied at zero temperature using the diffusion

quantum Monte Carlo method. A flexible trial wave function is used that can describe fluid, excitonic, and

biexcitonic phases. We calculate condensate fractions and pair correlation functions for a large number of

densities rs and layer separations d. At small d we find a one-component fluid phase, an excitonic fluid

phase, and a biexcitonic fluid phase, and the transitions among them appear to be continuous. At d ¼ 0,

excitons appear to survive down to about rs ¼ 0:5 a:u:, and biexcitons form at rs > 2:5 a:u:

DOI: 10.1103/PhysRevLett.110.216407 PACS numbers: 71.35.�y, 02.70.Ss, 71.10.�w

Electron-hole bilayer systems in which electrons and

holes are generated via doping and confined to separate

layers by the application of an electric field have been

developed in, for example, GaAs=AlGaAs heterostructures
[1]. Other systems have been investigated, such as

electron-hole bilayers with very small electron-hole sepa-

rations at oxide interfaces [2,3] and bilayer graphene sys-

tems with approximately equal electron and hole masses

[4]. These systems are expected to exhibit rich phase

diagramswith Fermi fluid, excitonic superfluid, biexcitonic,

and charge density wave phases [5–7]. We have studied the

simplest possible such model system, with equal electron

and hole populations and equal masses, and parallel infi-

nitely thin two-dimensional layers of variable separation and

carrier density. It is important to establish the behavior of

this simple system before more complicated cases such as

those of unequal electron andholemasses [8] and/or unequal

electron and hole densities [9] can be tackled with confi-

dence. Further work will be required to study more realistic

systems with anisotropic masses, finite well widths and

depths, interface roughness, etc. Theoretical studies of cor-

relation effects in electron-hole bilayers have used methods

such as dielectric formulations [10–12], Bardeen-Cooper-

Schrieffer theory [8], and diffusion [5,6] and path integral

[7] quantum Monte Carlo methods.
We consider paramagnetic, symmetric, electron-hole

bilayers consisting of N up- and down-spin electrons and
holes of equal masses, me ¼ mh, where the distance
between the two parallel layers is d. Hartree atomic units
are used throughout (@ ¼ jej ¼ me ¼ 4��0 ¼ 1). The
Hamiltonian of the infinite system is

Ĥ ¼ � 1

2

�X
i

r2
ei þ

X
i

r2
hi

�
þX

i<j

1

jei � ejj

þX
i<j

1

jhi � hjj �
X
i;j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ jei � hjj2

q ; (1)

where ei and hj are the in-plane position vectors of the

ith electron and the jth hole. We use finite simulation
cells subject to periodic boundary conditions, and the
Coulomb sums are evaluated using two-dimensional
Ewald sums [13].
Our results have been obtained with N ¼ 29 particles of

each type, giving a total of 116 particles, although we have
also simulated the system with N ¼ 57, corresponding to
228 particles, to investigate finite size effects, which we
find to be small. The parameters that define the system are

d and the in-layer density parameter rs ¼ a=
ffiffiffiffiffiffiffiffiffiffi
2�N

p
, where

a is the side of the square simulation cell. The d parameter
controls the interaction between layers, while rs controls
the interaction within the layers. In this Letter we focus
on the density range rs < 10 a:u:, and we have not consid-
ered the very low density regime within which Wigner
crystallization is favorable [5,6]. At large d the electron
and hole layers become decoupled and the results for each
layer tend towards those for the two-dimensional electron
gas [14–16], and when interlayer and intralayer interac-
tions become comparable, i.e., at d & rs, a paired phase is
expected. It has been shown that biexciton formation is
energetically favorable at low densities when d < 0:38 a:u:
[17,18]. Biexciton formation is expected to be suppressed
at high densities, and this has been estimated to occur for
rs & 10 a:u: [19].
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We have used the variational and diffusion quantum
Monte Carlo (VMC and DMC) methods as implemented
in the CASINO code [20]. Expectation values are obtained
with the VMC method by importance sampled
Monte Carlo integration using an importance distribution
j�Tj2, where �T is a suitable trial wave function. �T

contains a number of optimizable parameters whose values
are fixed by optimization at each d and rs. The DMC
method is a projector method in which expectation values
are computed by approximate solution of the imaginary-
time-dependent Schrödinger equation [21,22]. We use the
standard ‘‘fixed-node’’ approximation to maintain the fer-
mionic symmetry of the system [23,24]. DMC expectation
values are typically more accurate than those from VMC
calculations, and in particular the accuracy of DMC ener-
gies only depends on the quality of the nodal surface of�T.
We use the standard mixed estimator to evaluate the DMC
expectation values reported in this work [22].

In the DMC study of electron-hole bilayers by De Palo
et al. [5,6], each phase of the system was described by a
different wave function, and the relative stability of the
phases was determined using the total energy. In our study
we use a single flexible wave function form which is
capable of describing the Fermi liquid, excitonic super-
fluid, and biexcitonic phases, and the character of the
system at each rs and d is investigated by computing the
expectation values of the electron-hole condensate fraction
and the pair-correlation functions (PCFs).

We have used a Slater-Jastrow (SJ) trial wave function,

�T ¼ exp½JðRÞ� det½�ðe"i � h#
jÞ� det½�ðe#i � h"

jÞ�; (2)

where exp½JðRÞ� is a Jastrow correlation factor that
depends on all of the particle positions R, and the pairing
orbitals are

�ðrÞ ¼ Xnp
l¼1

pl cosðkl � rÞ þ fðr;LÞ X
nc

m¼0

cmr
m; (3)

where np is the plane-wave expansion order, kl is the lth

shortest reciprocal-space vector, nc is the polynomial ex-
pansion order, fðr;LÞ is a cutoff function given by
fðr;LÞ ¼ ð1� r=LÞ3�ðr� LÞ, � is the Heaviside step
function, and fplg, fcmg, and L are optimizable parameters.
We constrain pl ¼ pl0 whenever jklj and jkl0 j are in the
same star. This form describes a pure fluid phase when
np ¼ N, pl � 0 for all l, and cm ¼ 0 for all m, and an

excitonic phase when pl ¼ 0 for all l. This wave function
cannot describe biexcitons since it only binds antiparallel-
spin electron-hole pairs, and biexciton correlations are
introduced by the Jastrow factor.

We have used a Drummond-Towler-Needs Jastrow fac-
tor [25] consisting of a two-body polynomial u term, to
which the electron-electron, hole-hole, and electron-hole
Kato cusp conditions are applied [26]. The electron-hole
cusp condition is only applicable when d ¼ 0, which

makes it difficult to obtain results of the same degree of
accuracy for d ¼ 0 and d > 0. To solve this problem we
have introduced a ‘‘quasicusp’’ Jastrow factor term, Q,
which smoothly introduces the electron-hole cusp condi-
tion as d ! 0, but we do not use it when d ¼ 0 since the u
term enforces the exact cusp [27]. The Q term contains a
single optimizable cutoff length.
We have used expansion orders of np ¼ 81 (14 stars of k

vectors) and nc ¼ 8. Our wave function contains a total of
47 optimizable parameters at d ¼ 0, and 48 at d > 0. We
have optimized these parameters within VMC calculations
using linear least-squares energy minimization [28,29].
The translational-rotational average of the two-body

density matrix for electron-hole pairs is

�ð2Þ
eh ðrÞ¼

N2
R j�ðRÞj2 �ðe1þr0;h1þr0Þ

�ðe1;h1Þ �ðjr0j� rÞdRdr0

�22�r
R j�ðRÞj2dR ; (4)

where � is the area of the simulation cell. The condensate

fraction c is defined as the large-r limit of �ð2Þ
eh ðrÞ normal-

ized so that c ¼ 1 when all electrons and holes are bound
into excitons [30]. We have evaluated c using the improved
estimator of Ref. [31], which we call cðrÞ, see Fig. 1. The
condensate fraction is zero for pure one-component and
biexcitonic fluid phases.
We also compute the translational-rotational average of

the PCF,

g��ðrÞ ¼
�

R j�ðRÞj2�ðr� � r� � r0Þ�ðjr0j � rÞdRdr0

2�r
R j�ðRÞj2dR ;

(5)

where � and � are indices that distinguish the four particle
types in the system (up- and down-spin electrons and
holes). The PCFs allow us to detect biexciton formation,
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FIG. 1 (color online). VMC and DMC expectation values of
cðrÞ for rs ¼ 5 a:u: and (from top to bottom) d ¼ 0:3, 1, and
4 a.u. The systems with d ¼ 0:3 and 1 a.u. are in the excitonic
phase, and that with d ¼ 4 a:u: is in the fluid phase.
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distinguishing the biexcitonic phase from the one-
component fluid, for both of which c ¼ 0.

We used a target walker population of 1280 configura-
tions and a time step of 0.01 a.u. for the DMC calculations.
We verified that the energy, condensate fraction, and PCF
do not change significantly when the time step was reduced
from this value. The accuracy of a trial wave function can
be measured by the differences between expectation values
calculated with the VMC and DMC methods. We find that
these differences are small. To investigate the convergence
of our results with respect to the quality of the wave
function, we have also performed calculations using the
more sophisticated Slater-Jastrow-backflow wave func-
tions for selected cases. These wave functions incorporate
a backflow transformation in which the particle coordi-
nates are replaced by ‘‘quasiparticle’’ coordinates [32,33],
which adds 27 optimizable parameters to the wave func-
tion. The introduction of backflow results in significant
changes in the computed expectation values at small values
of d but, as d increases, the difference declines. This
indicates that the description of in-layer correlations
afforded by the SJ wave function is very good, while the
description of correlations between the motion in the elec-
tron and hole layers is not as good.

We have computed cðrÞ within VMC and DMC calcu-
lations, and have evaluated the condensate fractions as the
average of cðrÞ over the region of the plateau at large r [27].
Three examples of cðrÞ functions are shown in Fig. 1. The
VMC and DMC values of the condensate fraction differ by
less than 3% in each case. In the fluid phase cðrÞ is close to
zero for small values of r, but it rises invalue as r reaches the
edge of the simulation cell.We interpret this as an effect due
to the finite size of the simulation cell, and take c to be zero
when this feature is present.

Our results for the condensate fraction agree with those
of Ref. [5] for large d, but we tend to obtain larger
condensate fractions for small d. Our main results for the
condensate fractions are shown in Figs. 2 and 3. Figure 2(a)
shows that for small values of d and rs � 3 a:u: the con-
densate fraction curves fall to zero with increasing rs,
which can be attributed to the formation of biexcitons.
Biexciton formation is favorable only at small d, because
at large d the in-plane repulsion between like charges
dominates the weak e-h attraction. Figure 3 shows the
condensate fraction as a function of rs and d, including
smoothed phase boundaries and other contour lines, and a
line that locates the maximum c for each rs. Since biexci-
ton formation is the only likely mechanism by which c can
be reduced as d decreases, this line delimits the region
where biexciton formation takes place. The maximum
condensate fraction for large values of rs occurs at
d ¼ 0:4 a:u:, and c increases with rs reaching, for instance,
c ¼ 0:95 at rs ¼ 15 a:u:

Studies of the bilayer system with two anti-parallel-spin
electrons and holes have shown that biexciton formation is

energetically favorable for d < 0:38 a:u: [17,18]. We have
found that biexciton formation is favorable in extended
systems at large rs for values of d similar to those for the
isolated biexciton [17,18], but that biexcitons do not form
below rs ’ 2:5 a:u:, see Fig. 2.
Condensate fractions calculated using a bosonic dipole

model have been reported in the literature [34–36]. The
behavior of this bosonic system with a repulsive interaction
differs qualitatively from that of the electron-hole bilayer
model at small d, since the repulsive interaction is not
capable of describing biexciton formation. At large d there
is a quantitative difference between the models since the
repulsive dipole-dipole interaction differs from the in-layer
Coulomb interaction. We find that the bosonic dipole
model gives condensate fractions which are in good quan-
titative agreement with our results within the excitonic
phase for rs ¼ 7–8 a:u: and d > 0:4 a:u:
The PCFs within the e-h bilayer at rs ¼ 4 a:u: for

d ¼ 0, 0.4, and 3 a.u. are shown in Fig. 4 [27]. For
d ¼ 3 a:u: the coupling between the layers is weak and
the system is in the fluid state. The Fermi hole for same-
spin e-e=h-h pairs is wider than the correlation hole for
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FIG. 2 (color online). DMC condensate fraction as a function
of rs at (a) d < 0:4 a:u: and (b) d � 0:4 a:u:
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opposite-spin e-e=h-h pairs. The PCFs for same and oppo-
site spin e-e=h-h correlations in Fig. 4(a) are indistinguish-
able from those calculated for the two-dimensional
electron gas (d ! 1) [27]. The enhancement of the same
and opposite spin e-h PCFs at small r is very weak because
of the large layer separation.

The PCF for antiparallel-spin e-h pairs at d ¼ 0:4 a:u:,
see Fig. 4(b), is strongly peaked at zero in-plane separa-
tion, while the parallel-spin e-h PCF shows a shallow
trough with a PCF of 0.97 at about r ¼ 3 a:u: and a small
peak at r ¼ 0 a:u: The difference between these two PCFs
is due to the fact that our wave function explicitly binds
antiparallel-spin electron-hole pairs. The PCF for parallel-
spin e-e=h-h pairs is strongly suppressed at small separa-
tions, and is nearly identical to the parallel-spin e-h=h-h
PCF at d ¼ 4 a:u: The PCF for antiparallel-spin e-e=h-h

pairs shows a small peak with a PCF of 1.15 at r ’ 2:4 a:u:,
significantly closer to the origin than the peak in the
corresponding PCF at d ¼ 4 a:u: There is almost no cor-
relation hole in this PCF, reflecting the fact that opposite-
spin excitons are allowed to be close to each other. The
PCF is very close to unity for r > 10 a:u: The PCFs
demonstrate the existence of an excitonic phase at
d ¼ 0:4 a:u:
The PCFs for rs ¼ 4 a:u: and d ¼ 0 in the biexcitonic

phase, depicted in Fig. 4(c), show very different features.
The PCFs show substantial long range oscillations which
are not present in the excitonic or one-component fluid
phases. The PCFs are strongly peaked at the origin for both
parallel- and antiparallel-spin e-h pairs, while the PCF for
antiparallel-spin e-e=h-h pairs shows a fairly strong peak
and the PCF for parallel-spin e-e=h-h pairs is close to zero
for r < 0:4 a:u: Clearly the particles are aggregating into
an object larger than an exciton as the PCF for antiparallel-
spin e-e=h-h pairs is substantial at small r. The fact that the
parallel spin e-e=h-h PCF is essentially zero at small r tells
us that the object in question contains, at most, one particle
of each type. Direct integration of the PCFs confirms that
the object contains one particle of each of the four types,
and that it is therefore a biexciton. The formation of objects
larger than a biexciton is impeded by Pauli exclusion.
Noting also the oscillations in the d ¼ 0 PCFs which decay
with distance, we can identify this phase as a biexcitonic
fluid. The diameter of the biexciton, measured as the
median distance between the anti-parallel-spin electrons,
is about 1.46 a.u. At rs ¼ 6 and d ¼ 0 we estimate the
biexciton diameter to be 1.48 a.u. [27].
In summary, we use a wave function form of sufficient

flexibility to describe the fluid, excitonic, and biexcitonic
phases. As the excitonic phase lies between the fluid and
biexcitonic phases, we identify the phase transitions by the
existence of a nonzero excitonic condensate fraction, and
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FIG. 4 (color online). DMC PCFs as a function of the interparticle distance r at a density of rs ¼ 4 a:u: and interlayer separations of
(a) d ¼ 3 a:u: in the fluid phase, (b) d ¼ 0:4 a:u: in the excitonic phase, and (c) d ¼ 0 a:u: in the biexcitonic phase. Note the strong
enhancement of the opposite-spin e-h PCF at small r in the excitonic phase, and the strong enhancement of both the opposite-spin and
same spin e-h PCFs at small r in the biexcitonic phase.

FIG. 3 (color online). The estimated DMC condensate fraction
as a function of rs and d. Phase boundaries are represented by
solid lines, and contours of the condensate fraction are shown as
long-dashed, short-dashed, and dotted lines. The dot-dashed line
indicates the location of the maximum c for each rs, below
which some degree of biexciton formation takes place.
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the fluid and biexcitonic phases can be distinguished by
their characteristic PCFs. The good agreement of our VMC
and DMC expectation values suggests that our results are
of good quality, as does the agreement between the results
obtained using the SJ and Slater-Jastrow-backflow wave
functions. Excitons are unstable to biexciton formation at
low densities and d < 0:38 a:u: in the bilayer system con-
sidered here [17,18]. For small values of d, we have found
that biexcitons can survive down to about rs ¼ 2:5 a:u:,
which is a considerably higher density than suggested
previously [19].
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