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We develop a method that combines data mining and first principles calculation to guide the
designing of distorted cubane Mn4+Mn3+

3 single molecule magnets. The essential idea of the method
is a process consisting of sparse regressions and cross-validation for analyzing calculated data of the
materials. The method allows us to demonstrate that the exchange coupling between Mn4+ and
Mn3+ ions can be predicted from the electronegativities of constituent ligands and the structural
features of the molecule by a linear regression model with high accuracy. The relations between
the structural features and magnetic properties of the materials are quantitatively and consistently
evaluated and presented by a graph. We also discuss the properties of the materials and guide the
material design basing on the obtained resutls.

PACS numbers: 31.15.E-, 75.50.Xx, 02.70.-c

I. INTRODUCTION

Quantum calculation plays a very important role in
the process of materials design nowadays. For a mate-
rial with a given hypothesized structural model, the elec-
tronic structure, as well as many other physical proper-
ties can be predicted by solving the Schrödinger equation.
Conventionally, the ground state’s potential energy of a
material is calculated using atomic positions in the hy-
pothesized structure model. By optimizing the ground
state’s potential energy, the optimal structure can be de-
rived. The features of an optimal structure model of ma-
terials, as well as its derived physical properties, results
in a series of optimizing processes, and in addition has
strong multivariate correlations. The task of materials
design is to make these correlations clear and to deter-
mine a strategy to modify the materials to obtain desired
properties. However, such correlations are usually hid-
den and difficult to uncover or predict by experiments
or experience. As a consequence, the design process is
currently performed through time-consuming and repet-
itive experimentation and characterization loops, and to
shorten the design process is clearly a big target in ma-
terials science. In an effort to improve on existing tech-
niques, we propose a first principle calculation-based data
mining method and demonstrate its potential for a set of
computationally designed single molecular magnets with
distorted cubane Mn4+Mn3+

3 core (Mn4 SMMs).

Data mining is a broad discipline that aims to develop
and use methods for extracting meaningful information
and knowledge from large data sets. To the field of com-
putational materials science, data mining methods have
recently been used with successes, for example, in solving
Fokker-Planck stochastic differential equations [1], in pre-
dicting crystal structure and discovering new materials

[2, 3], in parametrizing interatomic force fields for fixed
chemical composition [4, 5], and in predicting molecular
atomization energies [6, 7] by merging data mining with
quantum calculations. Motivated by using data mining
to solve data-intensive problems in materials science, we
develop a method to quantitatively model a family of
materials by graph, using their quantum calculated data.
The key idea of our method is to use advanced statisti-
cal mining algorithms, in particular multiple linear re-
gression with LASSO regularized least-squares [8, 9] to
solve the sparse approximation problem on the space of
structural and physical properties of materials. We use
cross-validation [10] to consistently and quantitatively
evaluate the conditional relations of each feature on to
all the other features in terms of prediction. Based on
the obtained relations, a graph representing relations be-
tween all properties of materials can be constructed. Fur-
thermore, we propose a graph optimization method to
have better visual representation and easier inferences on
the controlling features of the materials. The obtained
graph is not only significant for the comprehension of the
physics relating to the materials, but also valuable for the
guidance of effective material design.

The main contribution of this work includes: (1) a
quantitative and rational solution to the modeling of the
structural and physical properties of the distorted cubane
Mn4+Mn3+

3 SMMs; (2) a first principles calculation-
based data mining approach that can be applied to ac-
celerate the understanding and designing of materials.

II. MATERIAL SYSTEM

In this paper, we focus on single-molecule magnets
(SMMs) which are recently being extensively studied due
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FIG. 1: Schematic geometric structure of [Mn4+Mn3+
3 (µ3-

L)2−3 (µ3-X)−Z−
3 (CH(CHO)2)−3 ] molecules, with L = L1L2, Z

= (CH3COZ1)3Z2, Z13-Z2 = O3 or N3-(CCH2)3CCH3. Color
code: Mn4+ (violet), Mn3+ (purple), L1 (blue), X (light
green), Z1 (light blue), C (grey). H atoms and Z2 group
are removed for clarity.

to their potential technological applications in molecu-
lar spintronics [11–16]. SMMs can function as magnets
and display slow magnetic relaxation below their block-
ing temperature (TB). The magnetic behavior of SMMs
results from a high ground-state spin combined with a
large and negative Ising type of magnetoanisotropy, as
measured by the axial zero-field splitting parameter [17–
19].

SMM consists of magnetic atoms connected and sur-
rounded by ligands, and the challenge of researching
SMM consists in tailoring magnetic properties by specific
modifications of the molecular units. The current record
of the TB of SMMs is only several degrees Kelvin, which
can be attributed to weak intra-molecular exchange cou-
plings between magnetics metal ions [16]. The design
and synthesis of SMMs with higher TB that are large
enough for practical use, are big challenges for chemists
and physicists. In the framework of computational mate-
rials design, the SMM with distorted cubane Mn4+Mn3+

3

core is one of the most attractive SMM systems because
their interesting geometric structure and important mag-
netic quantities can be well estimated by first-principles
calculations [14, 15].

In this paper, we construct and calculate a database of
structural and physical properties of 114 distorted cubane
Mn4+Mn3+

3 SMMs with full structural optimization by
first-principles calculations (Fig. 1). A data mining
method is applied to the calculated data to explore the
relation between structural and physical properties of the
SMMs. We quantitatively model the structural and phys-
ical properties of the SMM by a graph that allows us to
infer and to guide the molecular design process (Fig. 2).

1. Construct molecular structural models of SMMs and
carry out first principles calculation to optimize the
molecular structures.

2. Calculate structural, chemical, and physical property
features using the optimized molecular structures. Use
these features to represent all the constructed molecules
in a feature space.

3. Take each feature as a response feature and predict it
by a regression analysis using the other features.

4. Evaluate quantitatively the impact of each feature on
the prediction accuracy of the regression analysis of the
other features.

5. Build a directed graph with features as nodes and their
impacts on other features as edges to represent the
whole picture of the relation between features.

6. Simplify the obtained graph by removing unnecessary
features for specific materials design purposes.

FIG. 2: Framework of first principle calculation based-data
mining to model the physical properties of SMMs.

III. METHODOLOGY

A. Data generation

1. Molecular structure construction

New distorted cubane Mn4+Mn3+
3 SMMs have been

designed by rational variations in the µ3-O, µ3-
Cl, and O2CMe of the synthesized distorted cubane
Mn4+Mn3+

3 (µ3-O2−)3(µ3-Cl−)(O2CMe)−3 (dbm)−3 (here
after Mn4-dbm) molecules [20–24].

In Mn4-dbm molecules, the µ3-O atoms form Mn4+-
(µ3-O2−)-Mn3+ exchange pathways between the Mn4+

and Mn3+ ions. Therefore, substituting µ3-O with other
ligands will be an effective way to tailor the geometric
structure of exchange pathways between the Mn4+ and
Mn3+ ions, as well as the exchange coupling between
them.

To preserve the distorted cubane geometry of the core
of Mn4+Mn3+

3 molecules and the formal charges of Mn
ions, ligands substituted for the core µ3-O ligand should
satisfy the following conditions: (i) To have the valence
of 2; (ii) The ionic radius of these ligands must be not
so different from that of O2− ion. From these remarks,
nitrogen-based ligands, NR (R = a radical), must be the
best candidates. Moreover, through variation in the R
group, the local electronic structure as well as electroneg-
ativity at the N site can be controlled. As a consequence,
the Mn-N bond lengths and the Mn4+-N-Mn3+ angles
(α), as well as delocalization of dz2 electrons from the
Mn3+ sites to the Mn4+ site and the exchange coupling
between them (JAB) are expected to be tailored. In ad-
dition, through variations in the core µ3-Cl ligand and
the O2CMe ligands, the local electronic structures at Mn
sites are also changed. Therefore, combining variations
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in µ3-O, µ3-Cl, and O2CMe ligands is expected to be
an effective way to seek new superior Mn4+Mn3+

3 SMMs
with strong JAB , as well as to reveal magneto-structural
correlations of Mn4+Mn3+

3 SMMs. By combining vari-
ations in µ3-O, µ3-Cl, and O2CMe ligands, 114 new
Mn4+Mn3+

3 molecules have been designed. For a bet-
ter computational cost, the dbm groups are substituted
with CH(CHO)2 groups, which shows no structural and
magnetic properties change after the subtitution [25, 26].
The designed molecules have a general chemical formula
[Mn4+Mn3+

3 (µ3-L2−)3(µ3-X−)Z−3 (CH(CHO)2)−3 ] (here-
after Mn4L3XZ) with L = O, NH, NCH3, NCH2-
CH3, NCH=CH2, NC≡CH, NC6H5, NSiH3, NSiH=CH2,
NGeH2-GeH3, NCH=SiH2, NSiH=SiH2, NSiH2-CH3,
NCH2-SiH3, NGeH2-CH3, NCH2-GeH3, NSiH2-GeCH3,
NGeH2-SiH3, or NSiH2-SiH3; X = F, Cl, or Br; and Z3 =
(O2-CMe)3 or MeC(CH2-NOCMe)3. Details of the con-
structed SMMs can be found elsewhere [12–15, 25, 26].

2. Molecular structure optimization

The constructed molecular structures were optimized
by using the same computational method as in our previ-
ous paper[25, 26]. All calculations have been performed
at the density-functional theory (DFT) level [27] by us-
ing DMol3 code with the double numerical basis sets plus
polarization functional (DNP) [28, 29]. For the exchange
correlation terms, the revised generalized gradient ap-
proximation (GGA) RPBE functional was used [30]. All
electron relativistic was used to describe the interaction
between the core and valence electrons [31]. The real
space global cutoff radius was set to be 4.7 Å for all
atoms. The spin unrestricted DFT was used to obtain
all results presented in this study. Since the experimen-
tal results reported so far indicate the colinearity of the
magnetic properties of the materials, all the DFT calcu-
lations are carried out within a collinear magnetic frame-
work [22, 32, 33]. The atomic charge and magnetic mo-
ment were obtained by using the Mulliken population
analysis [34]. For better accuracy, the octupole expan-
sion scheme is adopted for resolving the charge density
and Coulombic potential, and a fine grid is chosen for
numerical integration. The charge density is converged
to 1×10−6 a.u. in the self-consistent calculation. In the
optimization process, the energy, energy gradient, and
atomic displacement are converged to 1×10−5, 1×10−4,
and 1×10−3 a.u., respectively. In order to determine the
ground-state atomic structure of each Mn4+Mn3+

3 SMM,
we carried out total energy calculations with full geome-
try optimization, allowing the relaxation of all atoms in
molecules.

3. Data representation

One of the most important ingredients for data min-
ing is the choice of an appropriate data representation

that reflects prior knowledge of the application domain,
i.e., a model of the underlying physics. For represent-
ing structural and physical properties of each distorted
cubane Mn4+Mn3+

3 SMMs, we use a combination of 17
features. We divide all the features into four groups. The
first group pertains to the features for describing the elec-
tronic properties of the constituent ligands, including (1)
electron negativity of X (χX), (2) electron negativity of
L1 (χL1), (3) electron negativity of Z1 (χZ1) [35, 36], (4)
electron affinity of L (EEA

L ) [37]. The selection of these
features comes from the physical consideration that the
local electronic structures, as well as electron negativ-
ities at ligand sites, will determine the d orbital split-
ting at Mn ion sites. Furthermore, since we intentionally
vary ligand groups, these electronic features are just con-
sidered as explanatory features in the following analysis
process.

To have a good approximation of the physical proper-
ties of SMMs, it is natural to introduce intermediate fea-
tures. From the domain knowledge, we know that infor-
mation on molecular structure, such as bond length, bond
angle, and structure of octahedral sites, is very valuable
in relation to understanding the physics of molecular ma-
terials with transition metal. Therefore, we design the
second group with structural features which represent
the core structure and the structures of the octahedral
fields at A and B sites. The features for the core struc-
tures are: (5) the distance between the A site and B site
(dAB), (6) the distance between B sites (dBB), (7) the
distance between the A site and L1 site (dAL1), (8) the
distance between the B site and L1 site (dBL1), (9) the
angle ∠AL1B (α), and (10) the angle ∠BL1B (β). The
features for the structures of octahedral fields at A and
B sites are (11) the distance between the A site and Z1
(dAZ1), (12) the distance between the B site and Oxy

(dBOxy
), and (13) the distance between the B site and

Oz (dBOz
). These features are calculated from the op-

timized molecular structure and considered as structural
intermediate features.

The third group of features includes (14) the magnetic
moment of Mn4+ ion at site A (mA) and (15) the mag-
netic moment of Mn3+ ions at site B (mB). These two
features are magnetic intermediate features. The last
group includes targeting magnetic properties, which are
(16) exchange coupling between Mn4+ and Mn3+ ions at
sites A and B (JAB/kB), and (17) exchange coupling
between Mn3+ ions at sites B (JBB/kB). The mag-
netic moments of the Mn ions are calculated by the Mul-
liken method. The exchange coupling parameters of the
molecules are calculated by using the total energy dif-
ference method. Details of the calculation method are
described elsewhere [25, 26, 38]. It should be noted that
the features in the first group are the only features that
can be obtained at a very low cost, without first princi-
ples calculations.
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B. Data analysis

1. Parallel Regression

We perform a parallel regression process on the calcu-
lated data. With each feature, we perform a regression
in which the feature we are focusing on is considered as
a response variable, and the other features are consid-
ered as explanatory variables. The response variable is
expressed as a linear combination of selected explanatory
variables (from all availables) that have the lowest pre-
diction risk. The main purpose of this regression is to
extract a set of features that are sensitive in predicting
the value of the feature we are focusing on. Commonly,
regression methods use the least-squares approach. How-
ever, for the sparse data with ill condition, it is often the
case that a bias-variance tradeoff must be considered to
minimize the prediction risk. For this purpose, in the
regression process, the LASSO regularized least-squares
has been applied [8, 9].

In a standard regression analysis, we solve a least-
squares problem, that minimizes

1

m

m∑
i=1

(ypredicti − yobsi )2,

where m is the total number of samples in the data set;

ypredicti and yobsi are the predicted and the measured val-

ues, respectively. The predicted values ypredicti are calcu-
lated from the linear regression function:

ypredicti =

n∑
j=1

βjxji + β0,

where n is the total number of variables considered in the
regression model; xji represents the value of the explana-
tory variable j for the sample i, and βj are the sought co-
efficients corresponding to explanatory variable j, which
determines how the explanatory variables are (optimally)
combined to yield the result ypredict. In LASSO regular-
ized least-squares regression [8], we minimize the penal-
ized training error with `1-norm of regression coefficients:

1

m

∑
i

(ypredicti − yobsi )2 + λ

n∑
j=1

∣∣βj
∣∣ .

To estimate the prediction risk, we do not use the train-

ing error 1
m

∑
i∈training(ypredicti −yobsi )2, since it is biased.

Instead we use leave-one-out cross-validation. In this val-
idation, one sample (ith sample) is removed and the re-
maining m−1 samples are used for training the regression
model. The removed sample (ith sample) is used to test

and calculate the test error (ypredicti−left −yobsi−left)
2. The pro-

cess is repeated m times for every sample, so that every
sample has a chance to be the removed once. Finally we
take the average of the test errors:

R̂(λ) =
1

m

∑
i

(ypredicti−left − y
obs
i−left)

2,

where the sum is taken over all the mfolds in the cross-
validation. We use it as a measure for the prediction
risk, and the value of λ will be tuned to minimize this
prediction risk. The explanatory variables of which the
corresponding coefficients βj are non-zero, are considered
as sensitive explanatory variables to the response variable
in the regression. By using the LASSO, we can assess
the relation between the features we used for the data
representation.

To evaluate quantitatively the relation between a spe-
cific sensitive explanatory variable xj and the response
variable, we carry out again the procedure of regression
and prediction risk estimation by a leave-one-out cross-
validation, using all but one (xj) sensitive explanatory

variables. The prediction risk R̂j obtained from this pro-
cedure reflects quantitatively how the prediction of the
response variable is impaired by removing the concern-
ing variable xj . In the case of weak correlation between
explanatory variable xj and the response variable, the

prediction risk must not change much and R̂j ' R̂opt.
On the other hand, if the explanatory variable xj has a
strong relation with the response variable, the removal
of xj from the set of sensitive explanatory variables for
the regression will impair the model for prediction, and
therefore, dramatically increase the prediction risk and
R̂j � R̂opt. Another consideration is that if the score
stotal [39] of a regression for all samples using all the sen-
sitive explanatory variables is low, the linear relation be-
tween every explanatory variable and the response vari-
able must be poor. Therefore, we normalize the predic-
tion risk R̂j with considering the total score stotal by:

Ij = stotal ×
R̂j∑
i R̂i

,

and use these values to quantitatively evaluate the rela-
tive impact of a sensitive explanatory variable to the re-
sponse variable. The Ij can take a value between 0 and 1,
and the sum of all Ij is stotal. The Ij with a larger value
indicates the higher impact of the explanatory variable j
to the response variable. The impacts of the other non-
sensitive variables to the response variable are set to 0.
This procedure is repeated for every feature and we can
obtain the relations (in terms of sensitivity for predic-
tion) between every pair of features. It should be noted
that the difference in prediction risk is estimated in the
context that all the other sensitive explanatory variables
are used in the regression model. Therefore, the obtained
relative impact of a sensitive explanatory variable on the
response variable should be different from simple correla-
tions between two variables. In other words, the relation
between each pair of features is evaluated with the con-
sideration of all the other relations.
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FIG. 3: Calculated (by DFT) and predicted (by data min-
ing) exchange couplings JAB/kB for 114 distorted cubane
Mn4+Mn3+

3 single molecular magnets. The green crosses rep-
resent the results of a linear regression using electronic fea-
tures. The red circles represent the results of a linear regres-
sion using structural features α, dAB , and dBB . The blue
solid circles represent the results of a linear regression using
electronic features and structural features together. The red
line represents the ideal correlation between calculated and
predicted results.

2. Modeling relations between features by graph

From the obtained relations we can build a directed
graph in which nodes are features and edges are the rela-
tions between features, thus representing the whole pic-
ture of the relations between the features. Directions of
edges are from response variables to explanatory vari-
ables in the regression. For the purpose of materials
design, we added weights to the edges with the values
of the obtained relative impacts of the sensitive explana-
tory variable on the response variable. Further, the edges
are assigned with colors (red and blue) to differentiate
the respective positive and negative correlations between
variables which can be extracted from the corresponding
coefficients in the linear regression models.

The relation between features can be asymmetric,
therefore there may be two edges with vice versa direction
and different weights (the relative impact Ij) between two
nodes. It should be noted that Bayesian network is an-
other choice for modeling the relations between features
by a graphical model. However, automatical learning of
a graph structure from data for a Bayesian network is an
extremely heavy task. In contrasts, with this method a
structure together with parameters of the network can be
automatically derived from data at the same time with a
parallelism [40].

We repeat the following steps to simplify the obtained
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FIG. 4: Calculated (by DFT) and predicted (by data mining)
magnet moments of Mn4+ ion at site A and Mn3+ ion at
sites B (mA and mB) for 114 distorted cubane Mn4+Mn3+

3

single molecular magnets. The red line represents the ideal
correlation between calculated and predicted results.

graph: (1) remove all independent features that are not
sensitive to any other features; (2) remove all intermedi-
ate features that are not sensitive to any other features;
(3) remove an intermediate feature that can be predicted
perfectly (regression score ' 1) by using the other fea-
tures that are not sensitive to targeting magnetic prop-
erties features; (4) then recreate the graph using the re-
maining features. Steps (1) and (2), remove features that
do not make sense in the prediction of the targeting mag-
netic properties. Step (3) removes unnecessary interme-
diate features. Features are removed one by one, and
step (4) preserves the consistency of the outcome graph.

IV. RESULTS AND DISCUSSIONS

A. Magnetic property prediction

We first examine whether the exchange coupling
JAB/kB can be directly predicted from electronic prop-
erties (features (1) - (4)) of the constituent ligands. Only
a rough linear regression with an average relative error
of more than 25% (R < 0.6) is obtained for the exchange
coupling JAB/kB by using χX , χL1, χZ1, and EEA

L as
explanatory variables. This result indicates that it is
hard to observe a simple linear correlation between the
magnetic properties and the electronic properties of the
constituent ligands for the SMMs. However, it should be
noted that this result does not mean that the exchange
coupling JAB/kB of the SMMs has no correlation with
the electronic properties of the constituent ligands. It
will be a great interest if these correlations appear when
we take the other features into account.

Next, the relation between the exchange coupling
JAB/kB and the geometrical structures of SMMs are
studied. A linear regression using structural features
(features (5) - (13)) is performed. It is found that the
exchange coupling JAB/kB can be predicted quite well
by a linear model using α, dAB , and dBB with an aver-
age relative error of 11% (R = 0.9). This result implies
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that the geometrical structure of the distorted cubane
Mn4+Mn3+

3 core is the determinant factor for the mag-
netic properties of the SMMs. The prediction accuracy of
the regression is dramatically improved when we take to-
gether the electronic properties of ligands into account.
With a linear model using α, dAB , dAZ1, dBOxy , χX ,

and EEA
L , the exchange coupling JAB/kB of SMMs can

be predicted accurately with an average relative error of
less than 5% (R = 0.98) (Fig. 3).

From this result, it is obvious that the electronic prop-
erties of the constituent ligands strongly correlate with
the geometrical structure factors, and all of these fea-
tures cooperatively contribute to the determination of
the exchange coupling JAB/kB . Furthermore, it is in-
teresting that the features representing the structures of
octahedral fields at the A and B sites (dAZ1 and dBOxy

)
become strongly sensitive in the prediction of JAB/kB
when the electronic features are considered. This result
implicitly shows the relations between dAZ1, dBOxy

, and
the electronegativities of constituent ligands which are

well known in the ligand field theory with the effect of d
orbital splitting [41].

Similar analyses are done for the other magnetic prop-
erties. The obtained results show that exchange cou-
pling JBB/kB can not be predicted by a linear regression
model using the features. This result can be explained
by the facts that the exchange coupling JBB/kB is de-
rived from a complicated formula of the total energies
of three magnetic states of SMMs including the antifer-
romagnetic state, the ferromagnetic state, and the mix
state (in which the Mn ion at the A site is ferromagnet-
ically coupled to a Mn ion at the B site, and both of
them are antiferromagnetically coupled to the other two
Mn ions at the B site)[38]. The constituent ligands (espe-
cially ligand L) involved in both the magnetic interaction
between Mn ions at the A and B sites, and the magnetic
interaction between Mn ions at the the B sites. Further,
the value of the exchange coupling JBB/kB is one or-
der smaller than that of the exchange coupling JAB/kB .
The design for new features that are more informative



7

0.31

0.27 0.25

0.25

0.25

0.15

0.15

0.21

0.16 0.14

0.14

0.13

0.34

0.12

0.11

0.10 0.10

0.10

0.10

0.170.17

0.16 0.12

0.12

0.25

Jab/kB

dAZ1

χ
X

dBOxy

EAEL

α

χ
L1

χ
Z1

dAB

dAL1

FIG. 6: The simplified graph represents the relations between
selected features. Brown nodes and white nodes indicate inde-
pendent and dependent features, respectively. Red edges and
blue edges indicate positive and negative correlation, respec-
tively. The arrows are from response variables to explanatory
variables. The edges are plotted with pen-widths in propor-
tion to the values of the corresponding relations.

to estimate the two magnetic interactions is promising
to improve the predictive power of the method on the
exchange coupling JBB/kB .

The magnetic moment mA of the Mn4+ ion at the A
site can be fairly predicted by a linear regression model
using four features: β, dAB , dAZ1, and dBOxy

with an
average relative error of 1.3% (R = 0.91) (Fig. 4a). On
the other hand, the magnetic moment mB of Mn3+ ions
at sites B can be accurately predicted by a linear regres-
sion model using dAB , dAZ1, dBL1, dBOxy

, and all the
four electronic features with an average relative error of
0.33% (R = 0.96) as shown in figure 4b.

B. Correlations between features of the SMMs and
a molecular design strategy

Figure 5 shows the graph built from the obtained re-
lations between all the features. It is clearly seen that
the obtained graph appears with two groups of struc-
tural features, in which features are strongly correlated
to each other: the group of features α, dAB , dAL1, and
dBL1, and the group of features dBB and β. The values
of dAB positively correlate with the values of all the three
features α, dAL1, and dBL1. The values of dBB positively
correlate with the values of β in the same manner. These
correlations can be qualitatively estimated from the rigid
geometrical structure of the distorted cubane Mn4+Mn3+

3

cores of the SMMs.
We carry out the above mentioned graph simplifica-

tion process. The features dBB , dBL1, and β are removed
since they can be predicted well by using the other fea-
tures. The features mA, mB , and dBOz

are also removed

FIG. 7: The correlation between α and dAB of Mn4+Mn3+
3

SMMs.

since they are not sensitive to targeting magnetic prop-
erties features. The relations between the remaining fea-
tures are recalculated and summarized in the simplified
graph as shown in Figure 6.

Interestingly, it is clearly seen that the distance dBOxy

is sensitive to the exchange coupling JAB/kB , but can
not be predicted by a linear regression model using the
electron negativities of the constituent ligands. Further
investigation for seeking the features that are sensitive to
dBOxy

is promising.

To have a better understanding about the correlations
between features, we plot all the constructed SMMs in
a 2D plane using the distance dAB and angle α as axes
(Fig. 7). The structures of SMMs with L1 = O have
larger angle α within a range of 94◦ to 95.5◦. For the
SMMs with L1 = N, the angle α is within a broad range
of 89◦ to 93.5◦. For the SMMs with the same L, the α
linearly varies with the distance dAB , and this correlation
can be understood by considering the magnetic interac-
tion between Mn ions at A and B sites via the ligand
L1. This observation confirms the reasonability of the
relations summarized in the graph between features of
the SMMs. It is worth noting that the obtained graph
shows a high impact α and dAB in the determination of
the exchange coupling JAB/kB . This result hints us to
use α and dAB as intermediate indicators for designing
SMMs. However, these structural features are compu-
tationally expensive and it is hard to predict accurately
the values of α and dAB from the features such as the
electron negativities and ionization energies of the con-
stituent ligands in which include no information about
the coordinating properties of the ligands with metal
ions. Therefore, computationally cheap and ligand co-
ordinating properties inclusive features should be added
to improve the representability of the feature set and the
predictive power of the regression model.

We design a series of artificial molecules which consist
of three MnCl2 groups connected by a ligand L (Fig. 8a).



8

FIG. 8: (a) Schematic geometric structure of the de-
signed artificial molecules with general chemical formula
[(Mn2+Cl2)3L1L2]. Color code: Mn (violet), Mn3+ (purple),
L1 (blue), Cl (light green). (b) Predicted (by data mining
using electronic features and substitutional structural fea-
tures of ligands) and calculated (by DFT) exchange couplings
JAB/kB for the 114 (blue solid circles) and the newly designed
four (open green squares) distorted cubane Mn4+Mn3+

3 single
molecular magnets. The red line represents the ideal correla-
tion between predicted and calculated results.

The designed artificial molecules have a general chemi-
cal formula [(Mn2+Cl2)3L] with the same L(= L1L2)
as we used for designing the SMMs. The constructed
molecular structures were optimized by using the same
computational method. We use the distance between Mn
ion sites datf and the angle γ formed between two links
between Mn ion sites and L1 as two additional features
(feature (18), (19)) for describing the coordinating prop-
erties of ligand L. Due to the simplicity in the structure
of the artificial molecules, these features are computa-
tionally much cheaper than the α and dAB of the SMMs.

We then examine whether the additional features can
improve the accuracy of the prediction of the exchange
coupling JAB/kB from properties (features (1) - (4), (18),
(19)) of the constituent ligands. It is found that the ex-
change coupling JAB/kB can be predicted quite well by
a linear model using χX , χZ1, χL1, EEA

L , and datf as ex-
planatory variables with an average relative error of less
than 8% (R = 0.95) as shown in figure 8. This result
implies that the additional features extracted from the
geometrical structure of the designed artificial molecules
can be used instead of the computationally expensive ge-
ometrical structure features to predict the exchange cou-
pling JAB/kB of SMMs.

From the obtained linear regression model, we can pro-
pose a strategy for selecting ligands among those that
preserve the core structure to design the SMMs with high
JAB/kB as follows:

- Ligand at X site with a high electron negativity
- Ligand at Z1 site with a low electron negativity
- Ligand L site with a stable sp3 electron system and

form a short datf distance
Further, variations of the constituent of the ligand

at the Z site may modify slightly the structure of
the Mn4 core. By using this strategy, we designed
newly and calculate the JAB/kB for 4 molecules:
Mn4+Mn3+

3 (µ3-(NCH2-SiH3)2−)3(µ3-F−)(MeC(CH2-
NOCMe)3)−3 (CH(CHO)2)−3 and Mn4+Mn3+

3 (µ3-
L2−)3(µ3-F−)(N(CH2-NOCMe)3)−3 (CH(CHO)2)−3
with L = NCH2-SiH3, NCH2-Si3H7, NCH2-Si4H9.
The exchange couplingJAB/kB of the newly designed
molecules can be accurately predicted by the regression
model with an average relative error of 6% as shown
in figure 8b. The DFT calculation shows that all the
four newly designed SMMs are in the group of the
SMMs that have the highest values of JAB/kB . Further,
the newly designed molecule Mn4+Mn3+

3 (µ3-(NCH2-
Si3H7)2−)3(µ3-F−)(N(CH2-NOCMe)3)−3 (CH(CHO)2)−3
has a JAB/kB higher than all the designed SMMs. We
also carried out DFT calculations for these new 4 struc-
tures within a non-collinear magnetic framework [42] and
confirmed the collinearity in their magnetic properties.
It is worth to note that the design strategy is derived by
mining the data calculated within a collinear magnetic
framework and applicable for the purpose of designing
SMMs with high JAB/kB since the SMMs with higher
JAB/kB are expected to have higher collinearity in mag-
netic properties. For a materials system in which the
non-collinear magnetic interactions are dominant, a data
representation method that include much of information
for estimating the spin-orbit coupling effect is required.
Further development of the data representation method
and applications of the designing method to materials
systems with non-collinear magnetic interactions are
promising.

V. CONCLUSION

A combination of data mining and first principles cal-
culation is used to study the structural properties and
magnetic properties of 114 distorted cubane Mn4+Mn3+

3

single molecule magnets. We demonstrate that the ex-
change couplings between Mn4+ ion and Mn3+ ions of
all the SMMs can be predicted with a median relative
error of 5%, just by using a simple form of sparse regres-
sion with their electronic features of constituent ligands
and structural features. By using a learning method that
consists of several sparse regression processes, all the re-
lations between the structural features and the magnetic
properties of the SMMs are quantitatively and consis-
tently summarized in a visual presentation. An effective
approach using calculated results for structural proper-
ties of simpler artificial molecules instead of computa-
tionally expensive properties is proposed to improve the
capability of the method. Inferences on the properties
of the materials and the suggestion for materials design
are discussed based on the obtained graph. A trial of
designing new SMMs was made to assess the capability
of the method. The accquired results indicate that a first
principle calculation-based data mining approach can be
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applied to accelerate the understanding and designing of
materials.
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