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Abstract. It is a crucial step to derive the priority order of design re-
quirements (DRs) from customer requirements (CRs) in quality func-
tion deployment (QFD). However, it is not straightforward to priori-
tize DRs due to two types of uncertainties: human subjective perception
and user variability. This paper proposes an OWA based group decision-
making approach to uncertain QFD with an application to a flexible
manufacturing system design. The proposed model performs computa-
tions solely based on the order-based semantics of linguistic labels so
as to eliminate the burden of quantifying qualitative concepts in QFD.
Moreover, it incorporates the importance weights of users and the con-
cept of fuzzy majority into aggregations of fuzzy preference relations
of different DRs in order to model the group behaviors in QFD. Finally,
based on a quantifier-guided net flow score procedure, the proposed mod-
el derives a priority ranking with a classification of DRs into important
and unimportant ones so as to provide a better decision-support to the
decision-maker.

1 Introduction

As an effective customer-driven quality management system, quality function de-
ployment (QFD) incorporates the “voice of the customer” into appropriate com-
pany requirements at various product development stages, ranging from product
planning and process design to manufacturing and delivery, to create higher cus-
tomer satisfaction for the product. Among the four inter-linked stages of QFD [1],
the first stage of QFD, usually called house of quality (HOQ), is of fundamental
and strategic importance, since it is in this stage that the CRs for the product
are identified and converted into appropriate DRs to fulfil customer satisfaction.
In other words, HOQ links the “voice of the customer” to the “voice of the tech-
nician”, through which the process and production plans can be developed in
the other stages of the QFD system. The structures and analyzing methods of
the other three QFD stages are essentially the same as the first one [8].

⋆ Corresponding author.



Successful implementation of QFD often requires a significant number of
subjective judgments from both customers and QFD design team [1,12]. Tra-
ditional QFD assumes that most of the input variables are precise and treated
as crisp numerical data such as 1-3-9 or 1-5-9. However, the inherent subjective
vagueness or impreciseness in QFD presents a special challenge to effective pri-
oritization of DRs [3]. Therefore, numerical studies have been conducted on how
to prioritize DRs with fuzzy linguistic variables [16] semantically represented by
fuzzy sets [15], e.g. [3,9]. Another type of uncertainty in QFD is the involve-
ment of many customers and design team members in the evaluation of input
information of QFD. Input information may have an uncertainty associated with
user (customer or design team member) heterogeneity because each user may
have a different opinion. In this context, several studies have considered fuzzy
group decision-making approaches, e.g. [1,6,12].

In summary, existing studies perform calculations with the associated fuzzy
membership functions of linguistic labels based on fuzzy extension principle [15].
However, quantification in terms of fuzzy sets is in fact the process of transform-
ing an ordinal information into a cardinal scale that represents an “arbitrary pas-
sage”, which may sometimes be dangerous [4], since it is easy to generate different
results by choosing different scales from which to draw the ordinals. Moreover,
the fuzzy-set-based semantics of linguistic labels is often defined subjectively
and context-dependently, which may sensitively influence the final prioritization
results. Even if the quantification process used is rational, existing approaches
to prioritize DRs in QFD simultaneously has, as any fuzzy-computation-based
approach, an unavoidable limitation of information loss caused by the process of
linguistic approximation, which consequently implies a lack of precision in the
final result [5]. Regarding the second type of uncertainty, it is necessary to con-
sider the group behaviors of users (both customers and designer team members).
On one hand, the information provided from several users can be combined to
improve data reliability and accuracy and to include some features that are im-
possible to perceive with individual users [10]. The users can be treated unequally
considering their possible importance differences reflecting the reliability of each
information source. For example, product users can provide more valuable judg-
mental information than non-product users and potential product users [12]. On
the other hand, as a basic element underlying group decision-making, the con-
cept of fuzzy majority is accepted by most of its members in practice, since it is
quite difficult for the solution to be accepted by all users.

Due to the above observations, the main focus of this paper is to propose an
OWA based group decision-making approach to prioritize a number of DRs in
uncertain QFD with an application to a flexible manufacturing system design.
The proposed model, on one hand, performs computations solely based on the
order-based semantics of linguistic labels so as to eliminate the burden of quan-
tifying qualitative concepts. On the other hand, it performs group aggregations
of fuzzy preference relations based on the weighted ordered weighted average
method so as to incorporate the importance weights of users and the concept of
fuzzy majority. Moreover, based on a quantifier-guided net flow score procedure,



the proposed model derives a priority ranking with a classification of DRs into
important and unimportant ones so as to provide a better decision-support to
the decision-maker.

The rest of this paper is organized as follows. After presenting the basic no-
tations in Section 2, Section 3 presents a novel group decision making-approach
to prioritize DRs based on the order-based semantics of linguistic labels and
aggregation techniques of fuzzy preference relations. Section 4 examines a com-
parative numerical example to show the effectiveness of the proposed model. The
paper is concluded in Section 5.

2 Basic notations

Prioritizing DRs includes both “CR management” and “product development”
systems, which begins by sampling the desires and preferences of customers of
a product through marketing surveys or interviews, and organizes them as a set
of CRs [2]. Formally, let CR = {CR1, CR2, . . . , CRM} be a set of CRs. The
importance of CRs has then to be determined to continue the QFD process. In
order to obtain the importance of the CRs, a set of customers to be surveyed in a
target market is collected such that C = {C1, C2, . . . , CK} with a weighting vec-
tor (γ1, γ2, . . . , γK),

∑

k γk = 1. Each customer has to provide his/her judgment
of importance toward each CR with linguistic variable L1 =

{
L1
1, L

1
2, . . . , L

1
G1

}
.

Formally, the importance judgement for customer requirement CRm provided
by customer Ck is denoted by CRImk ∈ L1.

Moreover, a set of DRs is collected from the design team for a QFD problem
such that DR = {DR1, DR2, . . . , DRN}. The QFD is based on a process involv-
ing teams of multidisciplinary representatives from all stages of product devel-
opment and production. Translations from CRs to engineering DRs are carried
out by a QFD design team. A design team is collected as E = {E1, E2, . . . , EJ},

which is also assigned a weighting vector (β1, β2, . . . , βJ),
∑J

j=1 βj = 1. The
design team members are then asked to provide their judgments of the relation-
ships between CRs and DRs using linguistic variable L2 =

{
L2
1, L

2
2, . . . , L

2
G2

}
.

Formally, the linguistic judgement for the relationship between customer need
CRm and design requirement DRn given by design team member Ej is denoted
by Rmnj ∈ L2

3 Proposed method

3.1 Fuzzy preference relations from linguistic information

We have a set of M customer needs CR = {CR1, CR2, . . . , CRM} and a set of K
customers C = {C1, C2, . . . , CK}. The importance judgment for customer need
CRm provided by customer Ck is denoted by CRImk ∈ L1. Then, an customer
Ck’s individual fuzzy preference relation in CR×CR assigns a value in the unit
interval [0, 1] for the preference of one customer need over another such that

µD(Ck) : (CRm, CRl) ∈ CR× CR −→ Dml(Ck) ∈ [0, 1],m, l = 1, . . . ,M. (1)



The value Dml(Ck) reflects the degree of fuzzy preference relation of CRm over
CRl under a customer Ck’s subjective judgment, calculated by

Dml(Ck) =







1, if CRImk > CRIlk
0.5, if CRImk = CRIlk
0, if CRImk < CRIlk

. (2)

The matrix D(Ck) = [Dml(Ck)]M×M has the following properties.

– When Dml(Ck) = 1, it indicates that CRm is absolutely preferred to CRl,
i.e. indicates the maximum degree of preference of CRm over CRl.

– When 0.5 < Dml(Ck) < 1, it indicates that CRm is slightly preferred to
CRl.

– When Dml(Ck) = 0.5, there is no preference (i.e. indifference) between CRm

and CRl.
– When 0 < Dml(Ck) < 0.5, it indicates that CRl is slightly preferred to

CRm.
– When Dml(Ck) = 0, it indicates that CRl is absolutely preferred to CRm.

Such a value function is in fact based on the order-based semantics of linguistic
labels, and consequently we will obtain K matrices of fuzzy preference relations
of different customer needs CR under the K customers’ judgments.

Then, for each customer Ck, a weighting vector of the M customer require-
ments can be induced from the matrix of fuzzy preference relations D(Ck) as
WCR(Ck) =

(
WCR

1 (Ck),W
CR
2 (Ck), . . . ,W

CR
M (Ck)

)
, where WCR

m (Ck) is calcu-
lated as follows

WCR
m (Ck) =

1

M

∑M

l=1

Dml(Ck)
∑M

n=1 Dnl(Ck)
, k = 1, . . . ,K,m = 1, . . . ,M. (3)

Moreover, the linguistic judgment for the relationship between customer
need CRm and design requirement DRn given by design team member Ej

is denoted by Rmnj ∈ L2. Similarly, we can derive a matrix D(CRm, Ej) =
[Dnl(CRm, Ej)]N×N

of fuzzy preference relations in DR × DR for each cus-
tomer need under each designer team member, where Dnl(CRm, Ej) denotes
the fuzzy preference relation of DRn over DRl under a design term member’s
Ej subjective judgment with respect to customer need CRm, calculated by the
following equation

Dnl(CRm, Ej) =







1, if Rmnj > Rmlj

0.5, if Rmnj = Rmlj

0, if Rmnj < Rmlj

. (4)

Using the weighting vectorWCR(Ck) of the M customer requirements under
each customer Ck, k = 1, . . . ,K, we are able to derive a matrix D(Ck, Ej) =
[Dnl(Ck, Ej)]N×N

of fuzzy preference relations in DR× DR for a combination
of each customer and each design team member, where

Dnl(Ck, Ej) =
∑M

m=1
WCR

m (Ck) ·Dnl(CRm, Ej). (5)



Obviously, there will be K×J combinations of fuzzy preference relations in DR×
DR. The matrix D(Ck, Ej) represents the matrix of fuzzy preference relations
in DR × DR under the combination of customer Ck and design team member
Ej , where k = 1, 2, . . . ,K and j = 1, 2, . . . , J . Such a formulation is motivated
by [12]. By this way, our approach takes into account the group behaviors of
both customers and QFD design team members. In the next section, we will
consider how to synthesize individual matrices of fuzzy preference relations into
an overall one.

3.2 Group aggregations of individual fuzzy preference relations

The K × J combinations of different customers and different design team mem-
bers can be viewed as combined information sources in our QFD context. Each
combination produces an individual matrix of fuzzy preference relations for
the design requirements. Consequently, the uncertain QFD transforms to a
group decision-making problem, which needs to synthesize the individual ma-
trices D(Ck, Ej), k = 1, . . . ,K, j = 1, . . . , J into an overall representative matrix
D = [Dnl]N×N in DR×DR.

Note that the customers and the design team are assigned importance weight-
ing vectors as (γ1, γ2, . . . , γK) and (β1, β2, . . . , βJ), respectively. Therefore, each
preferential combination of a customer and a QFD design team member can
be associated with an importance weight P . For the sake of convenience, let
us re-denote the individual matrix D(Ck, Ej) of fuzzy preference relations of
each preferential combination in DR×DR as Di with its associated importance
weight as

Pi = γk · βj , (6)

where k = 1, 2, . . . ,K, j = 1, 2, . . . , J, i = 1, 2, . . . ,K × J. Since
∑K

k γk = 1 and
∑J

j βj = 1, it is obvious that
∑K×J

i Pi = 1. In order to synthesize the individual

matrix Di of fuzzy preference relations into an overall representative matrix in
DR × DR, one commonly used way is to apply the weighted average (WA)
method with the following value function

Dnl = FWA

(
D1

nl, D
2
nl, . . . , D

K×J
nl

)

=
∑K×J

i=1
Pi ·D

i
nl

(7)

where n, l = 1, 2, . . . , N. The importance weight Pi associated with each com-
bined information source in fact reflects its reliability, i.e., each combined infor-
mation source has an attached weight that measures its reliability.

We also want to measure the importance of a value Di
nl (in relation to other

values) with independence of each information source that has captured it. A
basic element underlying group decision-making is the concept of a majority,
that is a solution is accepted by most of its members since in practice it is quite
difficult for the solution to be accepted by all. A natural line of reasoning is to
somehow make that strict concept of majority closer to its real human percep-
tion by making it more vague, called fuzzy majority. A natural manifestation



of such a “soft” majority is the so-called linguistic quantifiers as, e.g., most,
almost all, much more than half, etc. [17] suggested a formal representation of
these linguistic quantifiers using fuzzy sets [15], i.e., any relative quantifier can
be expressed as a fuzzy subset Q of the unit interval [0, 1]. In this representation
for any proportion x ∈ [0, 1], Q(x) indicates the degree to which x satisfies the
concept conveyed by the term Q. [13] further defined a Regular Increasing Mono-
tone (RIM) quantifier to represent the linguistic quantifier, defined as follows.

Definition 1. A fuzzy subset Q of the real line is called a Regular Increasing
Monotone (RIM) quantifier if Q(0) = 0, Q(1) = 1, and Q(x) ≥ Q(y) for x ≥ y.

Examples of this kind of quantifier are all, most, many, at least α. A quantifier’s
membership function is often determined by intuition. For example, the following
membership function for RIM quantifier has been widely used [14].

Q(x) =







0, if x < a
x−a
b−a

, if a ≤ x ≤ b

1, if x > b

Using the RIM quantifiers, a linguistically quantified statement for our group
aggregations can be written as “Q information sources are convinced”, which
may be exemplified by “most (Q) of information sources are convinced”. For-
tunately, Yager [14] proposed a special class of aggregation operators, called
ordered weighted averaging (OWA for short) operators, which seem to provide
an even better and general aggregation in the sense of being able to simply and
uniformly model a large class of fuzzy linguistic quantifiers.

Definition 2. Let (D1, D2, . . . , DN) be a set of values, an OWA operator of
dimension N is a mapping FOWA : RN → R if associated with F is a weighting
vector W = (W1, . . . ,WN ) such that: Wn ∈ [0, 1],

∑N

n=1 Wn = 1, and

FOWA(D1, D2, . . . , DN ) =
∑N

n=1
Wn ·Dσ(n), (8)

where {Dσ(1), Dσ(2), . . . , Dσ(N)} is a permutation of D1, D2, . . . , DN such that
Dσ(n−1) ≥ Dσ(n) for all n = 2, . . . , N . (i.e., Dσ(n) is the nth largest element
in the collection (D1, D2, . . . , DN). The weighting vector W is derived from the
RIM quantifier Q.

Yager [13] proposed a method for obtaining the OWA weighting vector via lin-
guistic quantifiers, especially the RIM quantifiers, which can provide information
aggregation procedures guided by verbally expressed concepts and a dimension
independent description of the desired aggregation. By using the OWA opera-
tor and a RIM quantifier Q, the overall matrix of fuzzy preference relations of
different DRs is derived by

Dnl = FOWA

(
D1

nl, D
2
nl, . . . , D

K×J
nl

)

=
∑K×J

i=1
Wi ·D

σ(i)
nl

=
∑K×J

i=1

[

Q

(
i

K × J

)

−Q

(
i− 1

K × J

)]

·D
σ(i)
nl

(9)



where
{

D
σ(1)
nl , D

σ(2)
nl , . . . , D

σ(K×J)
nl

}

is a permutation ofD1
nl, D

2
nl, . . . , D

K×J
nl such

that D
σ(i−1)
nl ≥ D

σ(i)
nl for all i = 2, . . . ,K × J .

Essentially, we want to synthesize the individual matrices of fuzzy preference
relations of different design requirements into an overall representative matrix
by taking into account the importance weight of each information source in
Eq. (7) and the weight of each value based on the concept of fuzzy majority
in Eq. (9). In this case, a linguistically quantified statement may be general-
ly written as “Q important information sources are convinced”, which may be
exemplified by “most (Q) of the important information sources are convinced”.
Such linguistic quantifiers can be, fortunately enough, dealt with by the weighted
ordered weighted averaging (WOWA for short) operator [10], defined as follows.

Definition 3. Let (D1, D2, . . . , DN) be a set of values, P (importance weights)
and W (value weights) be weighting vectors of dimension N (P = (P1, P2, . . . , PN ),

W = (W1,W2, . . . ,WN )) such that: (1) Pn ∈ [0, 1] and
∑N

n Pn = 1; (2) Wn ∈

[0, 1] and
∑N

n Wn = 1. In this case, a mapping FWOWA : RN → R is a WOWA
operator of dimension N if

FWOWA(D1, D2, . . . , DN ;P1, P2, . . . , PN ) =
∑N

n=1
ωn ·Dσ(n) (10)

where {Dσ(1), Dσ(2), . . . , Dσ(N)} is a permutation of D1, D2, . . . , DN such that
Dσ(n−1) ≥ Dσ(n) for all n = 2, . . . , N , i.e., Dσ(n) is the nth largest element in
the collection (D1, D2, . . . , DN), and the weight ωn is defined as

ωn = W ∗
(∑

l≤n
Pσ(l)

)

−W ∗
(∑

l<n
Pσ(l)

)

(11)

with W ∗ a monotone increasing function that interpolates the points
(

i/n,
∑

l≤n Pσ(l)

)

together with the point (0, 0). The value Pσ(l) means the permutation according
to {Dσ(1), Dσ(2), . . . , Dσ(N)}.

When W ∗ is replaced with a RIM quantifier introduced in Definition 1, then

ωn = Q
(
∑

l≤n Pσ(l)

)

−Q
(∑

l<n Pσ(l)

)
, n = 1, . . . , N , which indicates that the

WOWA operator becomes the importance weighted quantifier guided aggrega-
tion method [13], i.e., the the importance weighted quantifier guided aggregation
method is a special case of the WOWA operator. Using the WOWA operator
and RIM quantifiers, the overall matrix of fuzzy preference relations of different
DRs is derived by

Dnl = FWOWA

(
D1

nl, D
2
nl, . . . , D

K×J
nl ;P1, P2, . . . , PK×J

)

=
∑K×J

i=1
ωi ·D

σ(i)
nl

=
∑K×J

i=1

[

Q
(∑

l≤i
Pσ(l)

)

−Q
(∑

l<i
Pσ(l)

)]

·D
σ(i)
nl

(12)

where Q is a RIM quantifier introduced in Definition 1.



3.3 Choice function

We will use two quantifier-guided choice degrees of design requirements: a dom-
inance degree and a non-dominance degree. In particular,

– let Φ+
n be the dominant degree which is a measure that design requirement

DRn is dominating the other design requirements, referred to as leaving flow
in the terminology of decision-making;

– let Φ−
n be the non-dominant degree which is a measure that design require-

ment DRn is dominated by the remaining design requirements, referred to
as entering flow in the terminology of decision-making.

Here, Φ+
m and Φ−

m can be defined by the following formulas, respectively:

Φ+
n = FOWA (Dnl, l = 1, . . . , N, n 6= l)

Φ−
n = FOWA (Dln, l = 1, . . . , N, n 6= l)

(13)

In addition, let Φn be the relative dominant degree which measures the differ-
ence between dominant degree and non-dominant degree of design requirement
DRn over the remaining design requirements such that Φn = Φ+

n − Φ−
n , n =

1, 2, . . . , N. Φn is referred to as net flow in the terminology of decision-making.
The greater Φn is, the higher priority design requirement DRn will be. When
Φn is a positive value, DRn is important; when Φn is a negative value, DRn

is unimportant. Therefore, according to net flows {Φ1, Φ2, . . . , ΦN}, we can not
only determine a priority order of all the design requirements, but also divide the
design requirements into important and unimportant classes, which is important
for the decision-makers.

4 A comparative application case study

In this section, we shall apply our model to prioritize the basic design require-
ments of a flexible manufacturing system.

4.1 Problem descriptions

The example discussing the basic design requirements of a flexible manufacturing
system (FMS) [3,12] is applied here to illustrate the idea proposed. In that
example, eight major CRs are identified to represent the biggest concerns of the
customers for the design of an FMS, as shown in Table 1 (indexed by CRs). Based
on the design team’s experience and expert knowledge, 10 DRs are identified
responding to the eight major CRs, as shown in Table 1 (indexed by DRs).

In the QFD planning process, the first step is to determine the weighting
vector of customer needs CR. The linguistic variable for representing the impor-
tance of CR is provided in Eq. (14), indexed by L1. The 10 surveyed customers,
C = {C1, C2, . . . , C10} were then asked to assess the 8 customer needs by mak-
ing use of linguistic variable L1. Similar to the CRs, the relationship measure



Table 1. Customer requirements and design engineering requirements

Customer requirements (CRs) Design requirements (DRs)

CR1 High production volume DR1 Automatic gauging

CR2 Short setup time DR2 Tool change system

CR3 Load-carrying capacity DR3 Tool monitoring system

CR4 User-friendliness DR4 Coordinate measuring machine

CR5 Associated functions DR5 Automated guided vehicle

CR6 Modularity DR6 Conveyor

CR7 Wide tool variety DR7 Programmable logic controller (PLC)

CR8 Wide product variety DR8 Storage and retrieval system (S&R system)

DR9 Modular fixture

DR10 Robots

between CRs and DRs was assessed by a QFD design team with three team
members, E = {E1, E2, E3}. The linguistic variable used for assessing the rela-
tionships between CRs and DRs by the design team is presented in Eq. (14),
indexed by L2.

LI = {LI
1, L

I
2, L

I
3, L

I
4, L

I
5, L

I
6, L

I
7}

= {Very unimportant, Quite unimportant, Unimportant, Slightly important,

Moderately important, Important, Very important}

LR = {LR
1 , L

R
2 , L

R
3 , L

R
4 }

= {Very weak, Weak, Moderate, Strong} (14)

The fuzzy linguistic importance of the 8 CRs assessed by the 10 surveyed
customers and the fuzzy linguistic relationship matrix between the 8 customer
needs and the 10 design requirements assessed by each of the 3 design team
members, are shown in [12], respectively.

4.2 Prioritizing engineering design requirements

First, we calculate a matrixD(Ck) of fuzzy preference relations in CR×CR under
each customer Ck’s linguistic judgment. A weighting vector W(Ck) can then be
derived under each customer Ck’s linguistic judgment according to Eq. (3). The
weighting vectors of the 8 customer needs under different customers’ judgments
are shown in Table 2.

Second, we can obtain a matrix D(CRm, Ej) of fuzzy preference relations
in DR × DR under each design team member’s Ej , j = 1, 2, 3 judgment with
respect to each customer need CRm,m = 1, . . . , 8. Thirdly, by incorporating
the importance weights of the 8 customer needs under different customers, we
can derive a matrix D(Ck, Ej) of the fuzzy preference relations in DR × DR
under each combination of a customer Ck and a design team member Ej , where



Table 2. Importance weights of the 8 CRs under each customer

Customers
Importance weights

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8

C1 0.203125 0.0625 0.203125 0.0625 0.203125 0.109375 0.140625 0.015625

C2 0.09375 0.09375 0.15625 0.21875 0.015625 0.046875 0.15625 0.21875

C3 0.046875 0.21875 0.109375 0.15625 0.046875 0.046875 0.15625 0.21875

C4 0.203125 0.109375 0.203125 0.015625 0.078125 0.140625 0.203125 0.046875

C5 0.125 0.0625 0.0625 0.1875 0.125 0.015625 0.234375 0.1875

C6 0.21875 0.140625 0.015625 0.171875 0.109375 0.0625 0.21875 0.0625

C7 0.234375 0.078125 0.1875 0.03125 0.109375 0.140625 0.03125 0.1875

C8 0.125 0.203125 0.078125 0.203125 0.203125 0.125 0.03125 0.03125

C9 0.1875 0.015625 0.109375 0.046875 0.1875 0.078125 0.1875 0.1875

C10 0.078125 0.140625 0.21875 0.078125 0.21875 0.015625 0.171875 0.078125

k = 1, . . . ,K, j = 1, . . . , J . It is obvious that the combinations generate 8×3 = 24
matrices of fuzzy preference relations of DRs. Taking customer C1 and design
team member E3 as an example, the derived matrix of fuzzy preference relations
in DR×DR is derived as

D(C1, E3) =

DR1 DR2 DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10

DR1 0.5 0.41 0.43 0.35 0.42 0.31 0.29 0.36 0.52 0.23

DR2 0.59 0.5 0.45 0.59 0.66 0.52 0.63 0.48 0.55 0.39

DR3 0.57 0.55 0.5 0.55 0.55 0.55 0.45 0.43 0.66 0.32

DR4 0.65 0.41 0.45 0.5 0.48 0.32 0.44 0.48 0.48 0.22

DR5 0.58 0.34 0.45 0.52 0.5 0.52 0.49 0.45 0.6 0.45

DR6 0.69 0.48 0.45 0.68 0.48 0.5 0.64 0.45 0.59 0.42

DR7 0.71 0.38 0.55 0.56 0.51 0.36 0.5 0.58 0.41 0.31

DR8 0.64 0.52 0.57 0.52 0.55 0.55 0.42 0.5 0.66 0.42

DR9 0.48 0.45 0.34 0.52 0.4 0.41 0.59 0.34 0.5 0.34

DR10 0.77 0.61 0.68 0.78 0.55 0.58 0.69 0.58 0.66 0.5

.

Fourthly, we have to aggregate the individual matrices of the fuzzy prefer-
ence relations in DR×DR generated by each combination of each customer and
each design team member into an overall one. As mentioned previously, each
customer and each design team member may have a different importance weight
in light of his/her design experience and domain knowledge, respectively. Similar
to Wang [12], the importance weights of customers and design team members
are assumed as γ1 = γ2 = 3

14 , γ3 = · · · = γ10 = 1
14 and β1 = 1

2 , β2 = 1
3 , β3 = 1

6 .
In order to incorporate the concept of fuzzy majority to model the group behav-
iors, the WOWA method is used to perform the group aggregations of individual
matrices of fuzzy preference relations into an overall one. The linguistic quan-
tifiers [17] will be used in our aggregation. According to Section 3.3, the choice
information with its ranking order is calculated, as shown in Table 3.



Table 3. Choice values of different design requirements under linguistic quantifiers

Q Index
Design requirements

DR1 DR2 DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10

there exists Φ 0.0 0.09 0.28 0.13 -0.16 -0.07 0.04 0.11 -0.04 -0.08

DR3 ≻ DR4 ≻ DR8 ≻ DR2 ≻ DR7 ≻ DR1 ≻ DR9 ≻ DR6 ≻ DR10 ≻ DR5

for all Φ 0.0 0.09 0.28 0.13 -0.16 -0.07 0.04 0.11 -0.04 -0.08

DR3 ≻ DR4 ≻ DR8 ≻ DR2 ≻ DR7 ≻ DR1 ≻ DR9 ≻ DR6 ≻ DR10 ≻ DR5

identity Φ 0.042 0.166 0.384 0.034 -0.365 -0.178 0.058 0.207 -0.185 -0.162

DR3 ≻ DR8 ≻ DR2 ≻ DR7 ≻ DR1 ≻ DR4 ≻ DR10 ≻ DR6 ≻ DR9 ≻ DR5

at least half Φ 0.109 0.155 0.423 0.073 -0.36 -0.172 0.111 0.168 -0.129 -0.184

DR3 ≻ DR8 ≻ DR2 ≻ DR7 ≻ DR1 ≻ DR4 ≻ DR9 ≻ DR6 ≻ DR10 ≻ DR5

as many Φ 0.109 0.155 0.423 0.073 -0.359 -0.172 0.111 0.167 -0.129 -0.183

as possible DR3 ≻ DR8 ≻ DR2 ≻ DR7 ≻ DR1 ≻ DR4 ≻ DR9 ≻ DR6 ≻ DR10 ≻ DR5

most Φ 0.087 0.187 0.415 0.035 -0.375 -0.18 0.095 0.199 -0.187 -0.223

DR3 ≻ DR8 ≻ DR2 ≻ DR7 ≻ DR1 ≻ DR4 ≻ DR6 ≻ DR9 ≻ DR10 ≻ DR5

It is clear that different priority rankings are obtained with different linguistic
quantifiers. There are some interesting observations.

– The priority ranking generated by “there exists” is consistent with the one
generated by “for all”.

– The design requirement DR3 is always the most important one with a pos-
itive priority value and the design requirement DR5 is always the most u-
nimportant one with a negative priority value.

– The six DRs {DR1, DR2, DR3, DR4, DR7, DR8} are always important ones
with positive priority values regardless of the priority rankings of them;
whereas, the four DRs {DR5, DR6, DR9, DR10} are always unimportant
ones with negative priority values, regardless of the rankings of them.

4.3 Comparative studies with two known approaches

Our uncertain QFD context has been widely investigated in the literature by
quantifying qualitative concepts with fuzzy sets. For example, the linguistic vari-
ables in Eq. (14) can be semantically represented by the following function [6,12].

L1 =
{
L1
1, L

1
2, L

1
3, L

1
4, L

1
5, L

1
6, L

1
7

}

= {(0, 0, 2), (0, 2, 4), (2, 3.5, 5), (3, 5, 7), (5, 6.5, 8), (6, 8, 10), (8, 10, 10)}

L2 =
{
L2
1, L

2
2, L

2
3, L

2
4

}

= {(0.1, 0.2, 0.3), (0.3, 0.4, 0.5), (0.5, 0.6, 0.7), (0.7, 0.8, 0.9)}

(15)

where (·, ·, ·) is used to represent a triangular fuzzy number. Two well-known
fuzzy approaches to uncertain QFD are proposed by Chen et al. [3] andWang [12],



both of which are based on the nonlinear programming based fuzzy weighted av-
erage (NLP-FWA for short) method, introduced as follows.

In their seminal work of fuzzy linguistic QFD, Chen et al. [3] proposed a
method by means of the NLP-FWAmethod and fuzzy expected value operator [7]
to prioritize DRs. In particular, their approach can be summarized as follows.

1. First, fuzzy importance weights of CRs and fuzzy relationships between CRs
and DRs provided by multiple customers and QFD team members are aver-
aged.

2. Second, the NLP-FWA method is used to determine the fuzzy weights of
DRs.

3. Finally, the fuzzy weights of DRs are defuzzified using the fuzzy expected
value operator for prioritizing DRs.

Wang [12] proposed a different fuzzy group decision-making procedure for pri-
oritizing DRs under uncertainty. The proposed approach does not aggregate the
individual judgments of customers and QFD design team members, but rather
aggregates the technical importance ratings of DRs, which can be summarized
as follows.

1. The NLP-FWA method is used to determine the fuzzy weights of DRs with
respect to each customer and design team member.

2. The NLP-FWA method is used to determine the overall fuzzy weights of
DRS involving different combinations of any customer and any design team
member.

3. The fuzzy weights of DRs are defuzzified using the centroid method [11] for
prioritizing DRs.

With the importance weights of customers and design team members, the
prioritization results by Chen et al.’s, and Wang’s approaches are shown as

– Chen et al.: DR3 ≻ DR8 ≻ DR2 ≻ DR1 ≻ DR7
︸ ︷︷ ︸

≻ DR4 ≻ DR10 ≻ DR6 ≻

DR9 ≻ DR5.
– Wang: DR3 ≻ DR8 ≻ DR2 ≻ DR7 ≻ DR1

︸ ︷︷ ︸
≻ DR4 ≻ DR10 ≻ DR6 ≻

DR9 ≻ DR5.

It is obvious that the priority ranking generated by Chen et al. is slightly different
from the one generated by Wang in terms of the ranking between DR1 and DR7,
the main reason comes from the group behaviors of QFD. Both our approach
and Wang have incorporated the group behavior of QFD; whereas, Chen et al.
have ignored such a phenomenon. With different linguistic quantifers, different
priority rankings may be obtained, which is missed in Wang’s work.

5 Conclusion

It is a crucial step to derive the priority order of DRs from CRs in QFD. However,
it is not straightforward to prioritize DRs due to two types of uncertainties: hu-
man subjective perception and user variability. To address the two uncertainties



simultaneously in prioritizing DRs, a novel group decision-making method was
proposed in this paper. First, the order-based semantics of linguistic informa-
tion was used to derive the individual matrix of fuzzy preference relations with
respect to each customer and each design team member. Second, the weighted
OWA method was used to synthesize the individual matrix of fuzzy preference
relations into an overall one. Thirdly, a quantifier-guided choice approach was
developed to prioritize the DRs with a classification. A sample FMS design was
used to illustrate the proposed approach.

In summary, our model can eliminate the burden of quantifying the quali-
tative concepts and capture the group behaviors of uncertain QFD. Moreover,
since the quantifier-guided net flow score procedure is used to prioritize DRs with
a classification of DRs into positive and negative ones, our model will provide a
better decision-support the decision-maker.
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