
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Scan Matching Online Cell Decomposition for

Coverage Path Planning in an Unknown Environment

Author(s)
Dugarjav, Batsaikhan; Lee, Soon-Geul; Kim,

Donghan; Kim, Jong Hyeong; Chong, Nak Young

Citation
International Journal of Precision Engineering

and Manufacturing, 14(9): 1551-1558

Issue Date 2013-09-01

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/12207

Rights

This is the author-created version of Springer,

Batsaikhan Dugarjav, Soon-Geul Lee, Donghan Kim,

Jong Hyeong Kim, Nak Young Chong, International

Journal of Precision Engineering and

Manufacturing, 14(9), 2013, 1551-1558. The

original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/s12541-013-0209-5

Description



INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. X, No. X, pp. X-XX XXXX 201X  /  1 

DOI: XXX-XXX-XXXX 

 

1. Introduction  
 

 The task of covering a bound region of space is common to 

numerous applications. For example, cleaning robots are designed to 

automatically clean indoor workspaces. Cell decomposition is often 

employed in solving coverage problems. In this method, a target 

position must be reached without colliding with obstacles while the 

robot is moving. The main idea of cell decomposition is to 

decompose a given bound workspace into a set of non-overlapping 

regions. Each region is termed cell. The combination of these regions 

covers or approximates a subset of interest from the workspace, 

namely, the regions not occupied by obstacles.  

 In the early research of cellular decomposition, a popular 

technique that yields a complete coverage path solution is the 

trapezoidal decomposition.
1 In this technique, the robot’s free space is 

decomposed into trapezoidal cells. The coverage for each cell can be 

easily achieved with simple back-and-forth motions because each cell 

is a trapezoid. Unfortunately, the trapezoidal approach has too much 

redundancy to guarantee complete coverage. To overcome this 

problem, there was introduced the boustrophedon decomposition, 

which was an enhancement of the trapezoidal decomposition.
2 This 

method was designed to minimize the number of excess lengthwise 

motions by merging narrow cells into one cell. Another development 

of the cell decomposition technique is the Morse decomposition 

algorithm presented by Acar,3 where the location of cell boundaries is 

indicated by using Morse functions. Instead of analyzing the vertices 

of the given workspace, Acar’s algorithm looks for connectivity 

changes of the slice in the free space to locate the cell boundaries. 

These decomposition methods are formed by sweeping a line over the 

known workspace. A new cell boundary is created whenever the 

sweep line encounters a vertex. The performance analysis of the 

coverage path planning based on cell decomposition is investigated,4 

where the algorithm converts the coverage path planning problem 

into a flow network problem by exact cellular decomposition. The 
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key point of this algorithm was to determine the minimum cost path 

from the start node to the final node by visiting every node exactly 

once in the given flow network for cell decomposition. 

The robot can decompose the cells in an initially unknown 

workspace by using incoming sensor data to plans its path and 

executes coverage. This task is called sensor-based coverage. It 

directs a robot operating in such workspaces to explore every point of 

the workspace. The method that presented by Choset incrementally 

generates an explicit representation of the workspace in a graph as it 

performs coverage, and uses the graph to direct coverage and to 

decide when a task is completed.
5 This method creates a set of cells 

that collectively covers the environment while simultaneously 

exploring each cell. Additional aspects on the general idea of 

incremental cell decomposition can be found in other publications.6-8 

These algorithms were based on terms of critical point of Morse 

function. To achieve coverage in an unknown workspace, the robot 

simultaneously covered the workspace and incrementally constructed 

the Reeb graph representation that represents the critical points as 

nodes and cells as edges. Another algorithm, the hierarchical 

decomposition for coverage with an extended range detector, was 

introduced.
8,9 It combines Morse decompositions and the Voronoi 

diagram. Also, the critical-point sensing method was developed.  

To guarantee coverage in grid map representation, approximate 

cellular decomposition methods, including spiral-STC,10 backtracking 

spiral algorithm11 and linked spiral path,12 are all based on low-

resolution grid map representation, where the cell size is set to the 

size of the sweeping tool. Also, high-resolution grid map 

representation based approach is presented,13 where the cell size is 

smaller than the tool size. Other article is proposed sector-based 

online coverage algorithm.14 In this method, Target workspace is 

decomposed by sector that is a flexible region. Sectors are created 

incrementally as the robot systematically explores the unknown 

workspace, primarily by wall following. Hyun focused on extracting 

virtual door to achieve cell decomposition.15 In this paper, the virtual 

doors are extracted by combining a Generalized Voronoi Diagram 

(GVD) and a configuration space eroded by the half of the door size, 

and the region to region cleaning algorithm is also proposed based on 

the closing and opening operations of virtual doors. These approaches 

have considerable advantages, but also significant disadvantages, 

where sector is extracted after wall access then new sector is 

decomposed in to cells, and the secter can improve cleaning 

effieciency but it tends to increase redundancy for coverage path 

depending on overlapped areas of the sectors. 

In this paper, a sensor-based a robot coverage algorithm that 

combines scan matching and oriented rectilinear decomposition 

(ORD) is presented and is used to guarantee complete coverage. Scan 

matching is an efficient tool used to incrementally explore unknown 

workspace for problems of simultaneous localization and mapping 

(SLAM).
16-19 First, we assumed the major structures of the indoor 

workspace is sets of lines that are parallel or perpendicular to each 

other as in the literature.20 Second, the robot can create cell while it 

covering the workspace. To incrementally construct cell 

decomposition, scan matching and cell decomposition method are 

combined to create an online cell decomposition for the coverage task. 

When collecting data from the workspace, the robot merges the 

pervious map and current data by scan matching. Scan matching is 

done by Hough scan matching, and then the robot extracts the line 

feature from the updated map. The extracted line features are then 

align position and orientation and used to compose cells. After 

creating cells, the robot covers it by employing template based path 

planning. 

This paper is organized as follows: Section 2 introduces the map 

representation, feature extraction and incremental map building based 

on scan matching. Section 3 presents the complete coverage path 

planning based on scan matching and ORD. Section 4 and 5 

demonstrate the simulation and experimental implementation, and we 

conclude in Section 6. 

 

 

2. Closed map representation 
 

In the proposed method, the robot builds a feature map using a 

laser-range finder (LRF) sensor in real time. In the beginning of the 

mapping process, the current position of the robot is initialized with 

(x, y, rotation) = (0, 0, 0°). The robot localization in the cell is 

obtained by particle filter algorithm. A laser scanned data is gathered 

and used to build the map. To obtain feature map information iM , 

preprocessing such as filtering, feature extraction, scan matching, and 

map merging should be used. LRF’s scan is sampled twice in the cell 

as same as assumed in the previous work21 where the RUN1 event is 

defined as the longitudinal one while the RUN2 event is 

perpendicular to RUN1 for robot motion as depicted in Fig. 1. When 

the RUN1 or RUN2 event occurs, new slice information of the 

workspace is obtained as Fig. 2. The map representation of the 

workspace is updated between these two events and it can be 

expressed by Eq. (1). 

 ' '
1 , 1, 1 , 1,{ | :i i i j i k i i j i k thM M d m M d m d        � � , (1) 

 
Fig. 1. RUN1 and RUN2 events for the robot motion in the cell. 
 

 
Fig. 2. Map representation at the i-th scan sample: a) Initial state of 
the workspace, b) Unclosed map representation, c) Closed map 
representation, d) Sweep invariant decomposition. 
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where '
,i jd  is the new data points in the i- th collected data iD  and 

thd  is the threshold value for map merging. The scan matching 

technique effectively combines the current data iD  and the map 

1iM   to get new map representation. Scan matching procedure is 

consecutive correction of the scanned recording position, i.e. the 

current position of the robot. In this way, the current estimation of the 

scanned recording position is updated and an incremental map is built. 
 

2.1 Scan matching 
Scan matching technique is used in various robotic applications 

for localization and for SLAM. The scan matching is a popular way 

of recovering the mobile robot’s motion, and it can be defined as 

finding the translation T  and rotation R
 
between two 

consecutive scans. Hough scan matching (HSM) method whose 

main concept was introduced by Cenci22 is used to merge maps. 

This method is novel in many aspects, and has various advantages. 

It produces a set of ranked hypothesis rather than a single one and is 

capable of merging maps quite less time than iterative approaches. 

The Hough transform (HT) exploits the fact that lines can be 

represented through the polar equation: 

 cos sinp x y   , (2) 

where p is the distance of the line to the reference frame origin, and 

θ  is the angle between the x axis and normal from origin to the line. 

Generally, HSM is performed through the following steps:  

1. Discrete HT (DHT) and Hough spectrum (HS) are extracted 

from a reference scan and a current scan, respectively. 

2. Local maxima of the spectra cross correlation are used to 

generate hypotheses on  . 

3. For each hypothese  , linear constraints for T  are 

produced by correlating columns of the HT. 

For efficient implementation, line detection is performed using DHT, 

which can be expressed as: 

  , ( , ); cos sini iDHT x y x y            , (3) 

where ,    are discrete and finite. 

Once DHT is computed, the HS is defined as the vector with n  

elements obtained by summing column wise the squared values of 

DHT. If the DHT result is stored in a matrix H  with columns 

n and row pn , then HS is obtained by the relationship 

 2
1

( ) ( , )
n
i

HS k H i k
  , nk 1 . (4) 

We can estimate  by correlation of HS of the current scan and 

reference scan. The correlation can be computed as follows: 

 ( ) ( ) * ( )C Rk
CC HS HS     , (5) 

where 1 360 , 1 360        . The corresponding rotating 

angle φ0 for the translation is computed by taking the angle that 

shows the maximum cross correlation between the HS of the 

reference scan and the current scan as Eq. (6). 

 0 arg max ( )CC


  , (6) 

To find the magnitude of the translation T , the cross correlation 

between the distance spectra of the reference scan and the current 

scan should be considered as given by Eq. (7): 

 ( ) ( ) * ( )C R
k

DC k DS d DS d k  , (7) 

where 0 , 0d D k D    , and ,C RDS DS  are the distance 

spectra of the reference scan and the current scan, respectively. 

Finally, translation T  is derived as follows: 

 arg max ( )
k

DC kT . (8) 

Then, the translations in the x and y axes are calculated as relationship 

Eq. (9): 

 
0

0

*cos

*sin

x

y









T T

T T
. (9) 

Finally, the scanned recording position is updated by following 

relationships: 
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         

T T

T T . (10) 

Fig. 3 shows that HSM result where LRF scanned twice at different 

positions and current scan matched to the reference scan.  

The comparison among scan matching techniques, which are 

iterative closest points (ICP), HSM, and Histogram, was performed 

with datasets of scan pairs obtained from real environments using a 

laser scan sensor. The computation time of the comparison for each 

dataset are shown in Table 1. Obviously, Histogram method is much 

faster than ICP and HSM. Fig. 4 shows the error components of each 

scan matching in x, y direction and in rotation angle. Histogram 

method shows the smallest error for x-direction and angle. Similarly, 

HSM shows almost same errors for x and y direction. ICP shows the 

largest errors for x-direction and angle. 

Table 1. Comparison of the computational time. 

Type Computation time (sec) 

ICP 0.56 

HSM 1.2 

Histogram method 0.02 

 

Fig. 3. Hough scan matching: Reference scan and current scan are 

matched. 
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2.2 Feature extraction 
Feature extraction involves simplifying the amount of resources 

required to accurately describe a large set of data. By definition, 

features are the recognizable structures of the geometric primitives in 

a given workspace. They can usually be extracted from sensor 

measurement. Line extraction is used to explore a closed map that 

contains a set of horizontal and vertical lines. In this step, an initial 

estimate of the line parameters in Eq. (12) is calculated for each data 

segment from the segmentation process. This step aims to identify 

and separate sets of segments related to interesting targets such as 

walls, a desk, or a person. Line extraction can be performed after 

segmentation, and the split and merge algorithm is used to obtain 

critical edges because it is probably the most popular and the fastest 

among other algorithms.23 The main idea of the split and merge 

algorithm is shown in Fig. 5 and the flowchart is described in Fig. 6. 

Segments can be expressed by the following representation: 

  ( , ), : , 1i i iS x y i k n k n N     , (11) 

where ( , )i ix y  is 2-D Cartesian coordinate, k  and n  denote the 

start index and the end index of the segment, respectively. The least 

square line fitting is given by Eq. (12) and Eq. (13). The general form 

of the line is: 

 0ax by c   . (12) 

The best estimated line coefficients are calculated by follows: 
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. (13) 

 

 

3. Online cell decomposition for coverage path planning 
 

3.1 Overview of the previous work 
This section introduces an online cell decomposition method 

that combines a scan matching and the cell decomposition based on 

the two directions ORD to generalize the online algorithm. This 

online cell decomposition was introduced in our previous work.21 

This method can be summarized as follows: if a robot is equipped 

with an LRF, it can sense the contours of walls and/or objects in the 

workspace, which are termed critical edges in Fig. 7. These edges 

are composed of points measured by the LRF and are represented as 

lines. To create new cell boundaries, a line extraction is used to 

identify the critical edges. After defining the critical edges and each 

intersection point of two adjacent critical edges the virtual line iL  

corresponding to the critical edge of an obstacle is extracted to 

determine cell boundary as shown in Fig. 7. By using alternatives to 

create cell boundaries, the proposed algorithm then decomposes the 

workspace into cells. 
 

3.2 Two-direction oriented rectilinear decomposition based on 
scan matching 
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Fig. 4. Error comparison among scan matching methods. 

 
Fig. 5. Split and merge algorithm. 
 

 
Fig. 6. Flowchart of the split and merge algorithm.  

 
Fig. 7. Sensor-based incremental cell decomposition algorithm. 
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In this paper, another method is used to completely decompose 

the workspace of the robot. One technique used to uniquely 

decompose a known rectilinear workspace is the sweep invariant 

decomposition (SID).24, 25 The general idea of the SID is that the 

workspace or the boundary (critical edge as termed21) is extended 

until a perpendicular wall is reached. Therefore, cell boundaries can 

be defined by extended critical edges. As an example, cell 

decomposition that uses SID is illustrated in Fig. 8 where a 

rectilinear workspace is separated into number of cells 

1 2, ,..., iC C C . Although the SID is successfully achieved, the next 

process, such as coverage path planning, cannot be processed 

automatically because a boundary of the two adjacent cells can be 

inefficiently revisited by the robot. This means that time required to 

complete the coverage task would be taken more than expected. To 

improve the coverage efficiency, a smaller cell should be merged 

into an adjacent cell. 

In order to employ SID in real time applications, our algorithm 

consolidates SID with scan matching and it allows the robot to 

perform coverage and celling decomposition simultaneously. Exact 

cell decomposition algorithm used in this research generates the cell 

directly after several pre-processes while the robot is covering 

because pre-processes are needed to reduce the noise and 

uncertainty of map observation. As shown in Fig. 1, scanning, that 

is the process of getting workspace information, is carried out when 

RUN1 and RUN2 events occur once in the cell. Thus, sensor 

measurement is only sampled twice in each cell. The scan matching 

is conducted to merge map information between RUN1 and RUN2 

events. On the other hand, the closed map representation is updated 

twice in each cell by Eq. (1). After the first scan is taken at the 

starting point, the parts of the critical edge of the workspace are 

determined by line extraction. Each intersection point of two 

adjacent critical edges is obtained to generate a closed map 

representation iM . Then, the robot can have a map of the 

workspace from the closed map representation and cell 

decomposition is easily to be done. 

The SID is modified by a two-direction ORD which is achieved 

by extending both horizontal and vertical edges to indicate the cell 

boundaries. Two-direction ORD will also yield the same results as 

SID for the cell decompose and ORD has advantage that cell 

merging process is not necessary to ORD. Fig. 9 shows process of 

the SID and the ORD. After all the vertical critical edges and all the 

horizontal critical edges are extended, the robot chooses an efficient 

direction for the extending critical edge to compose the current cell. 

For instance, the robot is assumed to start from any corner of the 

workspace. The laser scanner senses the critical edges of the 

workspace. The robot explores the closed map with cells 

1 2 3, ,C C C  using two-direction ORD as shown in Fig. 10(a, b). To 

determine the first cell to be covered, the robot compares the 

lengths and widths of the candidate cells in each direction. The 

robot is assumed to be aware of the information for all cells in order 

to compare the dimensions. The longer and wider cell is chosen first 

to be covered as shown in Fig. 10(b) and, in this case, the 

longitudinal direction is the horizontal axis. The robot plans a 

coverage path for the current cell 1C  with back-and-forth motions 

that cause the ending point of the cell. The cell 2C  at horizontal 

direction is going to be the next possible cell.  
After the robot travels along the longer boundary of the cell and 

reaches one of its corners, or until the RUN2 event occurs, the robot 

can gather information about the next possible cells. The robot 

plans a coverage path again and that path eventually comes to the 

ending point. Then, the robot decides the path which includes few 

or no redundant coverage depending on an ending point. The next 

target cell 2C  is chosen from possible candidates by the ending 

point of the current cell as shown in Fig. 10(c). When the robot 

finishes covering the current cell, it goes to the next target cell.  

Then, the RUN1 event occurs and the laser scanner gathers 

information about the workspace. The closed map representation is 

updated by scan matching as depicted in Fig. 10(e). The algorithm 

maintains three lists: D  (discovered cells), C  (the current cell) 

 
Fig. 8. Example of the sweep invariant cell decomposition. 

Fig. 9. SID versus vertical-direction ORD and horizontal-direction 

ORD. 

a) SID algorithm, where cells 1 2 3, ,C C C  or 1 4,C C  should be 

merged into one cell referred to as the current cell.  

b) Vertical direction ORD, where the current cell is selected by 

1C . The longitudinal direction is the vertical axis. 
c) Horizontal direction ORD, where the current cell is chosen by 1C  
with a horizontal longitudinal direction. 

 
Fig. 10. An abstract of a two-direction ORD: a) Vertical-direction 

ORD. b) Horizontal-direction ORD. c), d), e), f) Closed map was 

updated during RUN1 and RUN2 events.  
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and Cpi (next candidate cells). The list D  stores all discovered 

cells that were visited and the list C  contains the cell that the 

robot is currently covering. Once the robot finishes covering the 

current cell, the current cell is removed from list C  and added to 

the list D , and the list Cpi stores the next candidate cells for the 

one-scan sample. The robot needs to memorize which cell is 

currently covering and which ones have already covered. The 

algorithm is shown in Fig. 11. 

 

 

4. Simulation and Experiment 
 

4.1 Simulation 
The proposed algorithm for coverage path planning is verified by 

simulation with two different configurations whose workspace area is 

5m × 5m and has two rectangular obstacles. Fig. 12 shows each step 

of complete coverage path planning simulation after Fig. 7, while the 

robot performs incremental cell decomposition. It shows that the next 

target cell is dynamically selected according to the ending point of the 

current cell, and the planned path should include few numbers of 

turns for each cell. Therefore, the longer side of the cell should be 

chosen as the main path of the robot as 2C  of Fig. 12(a). The 

number of turns required to cover the cell is the main factor to save 

time. For the coverage algorithm, time efficiency is one of the key 

factors which should be considered to improve the performance of the 

algorithm. Simultaneously, when RUN1 and RUN2 events occur, the 

robot scans around and repeats the same procedures; so incremental 

construction of the boustrophedon decomposition can be achieved. If 

there is a no remaining space, the algorithm will be terminated. This  

means that the algorithm can guarantee complete coverage so that the 

robot passes over all free space in the given unknown workspace. Fig. 

12(d) shows completed simulation result for the given unknown 

workspace. You can see sequence of the 

cells, 1 2 3 4 5 6 7C C C C C C C      , that have been 

covered by the robot. 

The intermediate results of the algorithm are shown in Fig. 13, the 

robot starts from the origin of the workspace’s reference frame that is 

denoted as a red solid circle and completely covers the whole 

workspace with apparently time efficient paths for both simulations. 

In the figure, the black solid rectangles represent obstacles, the red 

dotted rectangles denote decomposed cells and the black solid line is 

the path of the robot.  

 

4.2 Experiment 
To evaluate proposed online algorithm, we loaded the algorithm 

onto differential-driven mobile robot (X-bot from Yujin Robot in Fig. 

14) and conducted several experiments in real workspace of the robot. 

The robot equipped with the LRF sensor in order to recognizing 

indoor environmental components. Sensors and robot controllers are 

interfaced to the remote supervisory control computer with a wireless 

USB hub and the main control code is written in VI of LabView. 

Maximum speed of the robot is 30 cm/sec in the experiment. For the 

first experiment, one obstacle placed center of the workspace. And 

then the robot easily performed online cell decomposition and 

covered the each cell. 

Fig. 15 shows the result of first experiment. In the second 

experiment, we added some obstacles in the workspace. In Fig. 16, 

the red solid rectangles are representing obstacles, the blue solid lines 

are indicating boundaries of the decomposed cells, and the black 

 
Fig. 11. Complete coverage path planning algorithm based on online 
two-direction ORD 

 
Fig. 12. Implementation sketch of the algorithm. 

  

Fig. 13. Simulation results.
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dotted line is showing critical edge of the workspace those are from 

scan matching. The grey dotted line and the green solid circle are 

representing coverage path of the robot and robot, respectively. The 

robot covered about 99.7% of the its workspace within 3.5 min. 

Finding closed map representation was more difficult than in the first 

experiment because one more obstacles were placed.  

However, it apparently looks good in the Fig. 16. As we already 

mentioned about two-direction ORD based on scan matching in 

section 3.2, online cell decomposition was performed incrementally, 

covering order of the cell is dynamically selected according to the 

ending point of the current cell, and the planned path included few 

number of turns for each cell. You can see from Fig. 16. The 

experimental result of the proposed algorithm is compared in Table 2 

with the results of other algorithms used in each of [13], [14] and [24]. 

The sizes of the workspaces in [13], [14] and [24] are 49.2 m2, 21.5 

m2 and 21.5 m2, respectively. The dimension varies considerably that 

direct comparison of the workspaces provides no relevant result, but 

the coverage rates can be compared. The higher value of the coverage 

rate means that it is more efficient. The total time cannot be 

normalized because the maximum robot velocities in the previous 

studies are different from each other and the speed of the robot 

changes during the experiment. But we can say that the total time of 

the proposed algorithm is efficient than others based on assumption 

comparing workspace to be covered. For example, workspaces of 

[14] and [24] are approximately 3 times bigger than our experimental 

area. If our algorithm is applied to the same workspace area as [14] 

and [24], the equivalent total time will be 3 times bigger from the 

current one. However, it is still smaller than the total time of other 

algorithm. 

 
5. Conclusions 
 

This paper presented an online two-direction oriented rectilinear 

decomposition based on scan matching. Most of the previous studies 

on cell decomposition are conducted with the assumption that 

information about the workspace is initially given. Although few of 

those studies develop a cell decomposition algorithm for an unknown  

workspace, their algorithms are based on ultrasonic sensors or 

contact sensors. In those studies, the robot can directly recognize 

the critical points with the use of sensors while traveling without 

any information about the possible cell. That is, if the robot detects 

a critical point, new cells are created unconditionally. The proposed 

algorithm in this research incrementally (one by one) decomposes 

an unknown workspace into cells based on closed map 

representation. A new closed map representation is created after 

identifying the critical edges, and two-direction ORD is achieved to 

create new cell. Hence, this algorithm is applicable and efficient for 

the coverage path planning of a mobile robot. Specifically, it can 

reduce the number of times the robot revisits cells that were already 

covered. The robot also plans its path inside the cell with a fewer 

number of turns, which means that coverage time for a single cell is 

more efficient. Based on the assumptions above, the coverage time 

for the entire workspace can be optimized.  
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Table 2. Comparison of the performance of the algorithms. 

 Total 

time 

Coverag

e rate 

Ratio of the 

workspace 

Result of the proposed 

algorithm 

3.5 

min 

99.7% 6.05 m2 

Simulation result of [13] 

(Sweeping tool size is 5cm.) 

15.8 

min 

98% 49.2 m2 

Experimental result of [14] 16 min 99.5% 21.5 m2 

Experimental result of [24] 20 min 99% 21.5 m2 

 

Fig. 14. Mobile robot system for the experiment. 

 
Fig. 15. First experiment result. 

 
Fig. 16. Experiment result of the proposed online coverage 

algorithm. 
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