
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Formalization and Verification of Behavioral

Correctness of Dynamic Software Updates

Author(s) Zhang, Min; Ogata, Kazuhiro; Futatsugi, Kokichi

Citation
Electronic Notes in Theoretical Computer Science,

294: 12-23

Issue Date 2013-03-15

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/12218

Rights

© 2013 Elsevier B.V. Open access under CC BY-NC-

ND license

(http://creativecommons.org/licenses/by-nc-

nd/3.0/). Min Zhang, Kazuhiro Ogata, Kokichi

Futatsugi, Electronic Notes in Theoretical

Computer Science, 294, 2013, 12-23,

http://dx.doi.org/10.1016/j.entcs.2013.02.013

Description



Formalization and Verification of Behavioral
Correctness of Dynamic Software Updates

Min Zhang, Kazuhiro Ogata, Kokichi Futatsugi

Research Center for Software Verification
Japan Advanced Institute of Science and Technology (JAIST)

Asahidai 1-1, Nomi, Ishikawa, Japan

Abstract

Dynamic Software Updating (DSU) is a technique of updating running software systems on-the-fly. Whereas
there are some studies on the correctness of dynamic updating, they focus on how to deploy updates correctly
at the code level, e.g., if procedures refer to the data of correct types. However, little attention has been
paid to the correctness of the dynamic updating at the behavior level, e.g., if systems after being updated
behave as expected, and if unexpected behaviors can never occur. We present an algebraic methodology of
specifying dynamic updates and verifying their behavioral correctness by using off-the-shelf theorem proving
and model checking tools. By theorem proving we can show that systems after being updated indeed satisfy
their desired properties, and by model checking we can detect potential errors. Our methodology is general
in that: (1) it can be applied to three updating models that are mainly used in current DSU systems; and
(2) it is not restricted to dynamic updates for certain programming models.

Keywords: dynamic software updating, algebraic specification, verification, behavioral property

1 Introduction

Dynamic software updating (DSU) is a promising software maintenance technique

for updating running software systems on the fly without incurring downtime. Like

repairing a machine that is operating at full speed, dynamic updates must be highly

reliable to guarantee the systems after being updated must behave as expected.

That is because target systems that need dynamic updating are usually mission-

critical. They need to provide 24x7 services, such as traffic control systems and

financial transaction systems. Therefore, it is important to guarantee a dynamic

update is correct and it can be correctly performed to the target system.

Though several studies have been conducted on the correctness of dynamic soft-

ware updating, most of them consider the correctness at the code level [9,22,16],

1 Email: {zhangmin, ogata, futatsugi}@jaist.ac.jp

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 294 (2013) 12–23

1571-0661 © 2013 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2013.02.013
Open access under CC BY-NC-ND license.

mailto:zhangmin@jaist.ac.jp
mailto:ogata@jaist.ac.jp
mailto:futatsugi@jaist.ac.jp
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2013.02.013
http://dx.doi.org/10.1016/j.entcs.2013.02.013
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


that is, how to correctly deploy dynamic updates, e.g., whether the updated pro-

grams remain type safe [9,22] or version consistent [22,16]. Type safety of dynamic

updates means that procedures will never refer to those data which have different

types from their signatures. For instance, suppose that a data type A is updated

to A’ and there is a procedure f(A a) in the old version. After update f should

refer to those data of the new type A’ rather than those of A. Version consistency

means no bad calls between procedures of old and new versions. There may be such

a call between procedures that it happens neither in old version nor in the new one.

For instance, suppose that there are procedures f(){g();h();}, g(){...}, and

h(){...} in an old program. f and g are updated to f(){g();} and g(){h();}.

Suppose that the update takes place in old f before g is called. After update, new

g is called. New g calls h. After g returns, h is called by old f. Such a call should

be avoided during updating.

Though code-level correctness is necessary to dynamic updating, we believe that

the correctness on systems’ behaviors level is equally important. Even if an update

is correctly implemented at code level, such as type safe and version consistent,

it may not make a system behave as expected after the update is performed. A

dynamic update in Section 2 is such an example, where a system running a flawed

mutual exclusion protocol is dynamically updated to a correct one. After being up-

dated, the system is supposed to satisfy two desired properties, i.e., mutual exclusion

and freedom of deadlock. However, the updated system satisfies mutual exclusion

property, but may cause deadlock. Such an update is not considered behaviorally

correct.

We propose an algebraic methodology of specifying dynamic updates and ver-

ifying their behavioral properties. Dynamic updates are modeled as observational

transition systems (OTSs), a kind of abstract state machines that are used to specify

computer systems in algebraic ways [19]. OTSs can be specified as equational the-

ories and rewrite theories which are used for theorem proving and model checking

[8,7], respectively. By theorem proving, we can show desired behavioral properties

are indeed satisfied by updated systems, and by model checking we find counterex-

amples for those properties that do not hold. Counterexamples can help us better

understand the behavior of updated systems, detect the errors of dynamic updates,

and finally design correct ones.

Our method is general from the following two perspectives. Firstly, it can be

used to formalize three main dynamic updating models, i.e., interrupt model, in-

voke model, and relaxed consistency model (see Section 2.1 for details), which are

widely used in current dynamic software updating systems. We can formalize in

the methodology the dynamic updates that conform to one of the three models.

Secondly, we formalize the design of dynamic updates instead of the codes, which is

different from other existing approaches e.g., the formalizations of dynamic updates

in C-like programs in [12] and [13]. Hence, our formalism is not restricted to the

dynamic updates that are developed in certain program models.

The rest of this paper is organized as follows. Section 2 introduces dynamic soft-

ware updating. Section 3 describes the approach to formalizing dynamic updates.

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–23 13



Section 4 describes the verification of behavioral correctness. Section 5 discusses

some related work, and Section 6 concludes the paper.

2 Dynamic Software Updating

2.1 Dynamic updating models

Dynamic software updating is different from static updating. The latter is a tra-

ditional approach to evolving software into newer versions by stopping running

systems, applying updates and then restarting systems again. However, dynamic

updating supports on-the-fly updates to the running systems without shutting them

down.

A number of systems have been designed and implemented to support dynami-

cally updating software systems, such as Podus [10], OPUS [1], Ginseng [17], POLUS

[6]. They are specific to dynamic updates to certain class of software systems. For

instance, Ginseng supports dynamic updates to single-threaded systems, and PO-

LUS supports those to multi-threaded ones. Both only support dynamic updates

to the systems developed in the C language.

time

Interrupt model

Invoke model

relink and transform state

relink and transform state

interrupt

notify call update

update
conditions met resumeold system

old system

new system

new systemreturn

update

update

Relaxed consistency model

interrupt
update
conditions met resume

old system
new system

update
old system

. . .

relink and transform state

thread

Fig. 1. Three dynamic updating models

Behind dynamic updating systems are the updating models that determine

which kinds of dynamic updates they can support. Hicks et al. has grouped dy-

namic updating models into two groups according to the time when the updates

should be applied [14]. One is called interrupt model and the other is invoke model,

as visualized by the first and second portions of Fig. 1. In interrupt model, an

update to a system could be started at any moment during the system’s execution.

The system is first interrupted at some point. Then update is performed atomically,

and finally the system is resumed. The atomicity of performing the update means

that the update cannot be performed in parallel with program execution. Updates

are not necessarily performed at the moment of interruption. They may be delayed

until certain conditions are satisfied. For instance, some dynamic updating sys-

tems forbid updates to active code (code on the stack) [5]. Some systems delay the

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–2314



updates to active code until they are inactive [21]. However, the evolution to the

new system always occurs immediately upon the resumption of systems. A number

of dynamic updating systems are based on interrupt model, such as Podus [10],

Ginseng [17], and those in [5,21,20].

Unlike the interrupt model, the invoke model requires update points to be stat-

ically specified in systems. At update points, a special update procedure can be

invoked to perform updates. The running system is first notified that it should per-

form an update. It invokes the update procedure when reaching an update point,

and the corresponding update is then performed. After the update procedure re-

turns, the system continues from where it left off. Invoke model well suits the

updates to multi-threaded systems. A typical example is Erlang, which supports

dynamic updating based on the invoke model [3].

Relaxed consistency model is an extension of interrupt model, as visualized by

the third portion in Fig. 1. It supports dynamic updates to multi-threaded systems.

The difference is that relaxed consistency model allows the concurrent activity of

both old and new systems and the co-existence of both old and new system states.

After update is performed and the running multi-threaded system is resumed, each

thread may not execute new codes immediately. Instead, it may continue to execute

old code and evolve to the new code at some specific point. Update is completed

when all threads evolve to the new code. Relaxed consistency model has been

implemented in POLUS [6].

2.2 Behavioral correctness of DSU

Behavioral correctness means that the behavior of the systems after being updated

must be correct. Formally, a dynamic update is behaviorally correct if the system

after being updated by it satisfies its desired properties. Such properties depend

on concrete systems, and usually describe the differences between the old and new

systems. For instance, version 1.1.2 of the vsftpd FTP server introduced a feature

that limits the number of connections from a single host. If we update a running

vsftpd server of an earlier version to version 1.1.2, one of the desired properties of

the server after being updated is that the number of connections from a single host

will never exceed the maximal connection number.

Behavior-level correctness is equally important, compared with code-level cor-

rectness. Behavior-level correctness focuses on how the behavior of systems to be

updated is affected by updating, while code-level correctness focuses on the imple-

mentation of updates. Obviously, behavior-level correctness depends on the code-

level correctness, while code-level correctness is not enough to guarantee behavior-

level correctness. That is, even if an update is correctly applied to a running system

(no code-level errors), the system after being updated may not behave as expected.

In the rest of this section, we give an example to show the behavior-level cor-

rectness of dynamic updates. We consider a dynamic update to a system running a

flawed mutual exclusion protocol (called protocol A for convenience) with a correct

one (protocol B). After being updated the system executes the correct protocol. We

design an update approachS, and perform it in relaxed consistency model.

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–23 15



The basic idea of protocol A and B is that there is a shared Boolean variable

locked indicating whether critical section is available. Each process waits at the

pre-critical section (ps) to enter the critical section (cs) until locked becomes false.

It sets locked true, and enters the critical section. It sets locked false when it is

leaving the critical section. The difference is that in protocol A checking the value

of locked and setting locked true are two separate operations, while in protocol B

they are treated as an atomic one. It is well-known that protocol A does not satisfy

the mutual exclusion property.

We consider a dynamic update to force a system that is running protocol A

to evolve to executing protocol B. The update is performed in relaxed consistency

model, as depicted in Fig. 2. There are multiple processes in the old system

executing protocol A. At some moment the system is interrupted, and update is

performed. The value of locked in protocol B (denoted by lockedB) is assigned

with the value of locked in protocol A (denoted by lockedA) in the state where

interruption takes place. Then, the system is resumed. If a process is at the

remainder section rsA in protocol A, it stops executing protocol A and instead

evolves to executing protocol B from the beginning rsB. Otherwise, the process

will continue to execute protocol A until it returns back to the remainder section.

After all processes evolve, the update is completed. All processes run protocol B

thereafter. From that moment, the system is supposed to satisfy mutual exclusion

property. In Section 4, we will prove that the property indeed holds. However, we

also find a counterexample showing that the system after being updated may cause

deadlock. In that sense, the update cannot be considered as behaviorally correct.

3 Formalizations of dynamic updates

In formal methods, software systems are typically formalized as transition systems,

consisting of a set S of states and a binary relation →⊆ S × S of transitions.

Observational transition system (OTS) is a variant of transition systems represented

in algebraic form. An OTS S is a triple 〈O, I, T 〉, consisting of a set O of observers,

I initial states, and T transitions. Each state is identified by the values returned

by each observer in O. Two states υ1, υ2 are equal if each observer returns the same

value from them. States in an OTS are inductively defined. Suppose that υ is a

time
interrupt resume

psA

csA

rsA

csA csA

psApsA

rsA rsA

rsA

rsB

csA

evolve

exitA

enterA exitA

csB
enterB

evolve
rsB

rsA
evolve

exitB

processes
old

set lockedB
update

. . .

no update
condition

with lockedA

enterB
processes
new

Fig. 2. A dynamic update from protocol A to B

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–2316



state. For each t ∈ T , t(υ, . . .) is also a state, where . . . denotes other arguments.

More details about the definition and applications of OTS can be referred to [19].

We view a dynamic updating to a running system as a process of evolving from

an old running system to the new target system. The evolution can be divided

into three steps. In interrupt model and relaxed consistency model, the three steps

are: interrupting old system, updating when conditions are met, and resuming

the system. In invoke model, they are notifying to invoke update, calling update

procedure, and returning from the call. Generally, we consider them as preparing,

updating, and finishing. The three steps divide the whole evolution from old system

to new one into four phases, i.e., pre-updating, waiting for updating, updated, and

post-updating, as depicted by Fig. 3. During pre-updating phase, the old system is

executing. In invoke model, it continues running during waiting phase, but stops

in other two models. Update is performed when certain conditions are satisfied in

the waiting phase. After being updated, the evolution proceeds to updated phase,

where the system waits to be resumed (in interrupt and relaxed consistency model),

or for the return from update procedure (in invoke model). The system then goes

into post-updating phase, where some delayed updates may be performed. Finally

the system evolves to the new one.

We declare an observer to represent the four phases, and formalize the

three steps by three transitions. Let U be a set of four phase names, i.e.,

{pre-updating, waiting, updated, post-updating}. We declare an observer phase,

which returns the phase of the evolution in given state. The three steps are de-

fined by three transitions prepare, update, and finish. We take the definition of

prepare for example. One condition that prepare happens in a state υ is that υ

is in pre-updating phase, i.e., phase(υ) = pre-updating. After prepare happens,

the evolution goes into waiting phase. Namely, the value of phase in prepare(υ) is

waiting.

A dynamic update can be formalized by the union of two OTSs that represent

the old and new systems with the three transitions and the observer. Suppose

that the old and new systems are formalized by two OTSs So and Sn such that

So = 〈Oo, Io, To〉 and Sn = 〈On, In, Tn〉. An update from So to Sn can be formalized

by Su = 〈Ou, Iu, Tu〉, where:
• Ou � Oo ∪ On ∪ {phase}
• Iu � {υ0|υ0 ∈ Io ∧ phase(υ0) = pre-updating}
• Tu � To ∪ Tn ∪ {prepare, update, finish}

time
prepare update finish

pre-updating waiting updated post-updating

old system new (with old) system

phase

action

is running interrupted otherwise

running in invoke mode

is running

Fig. 3. Four-phase system evolution by dynamic updating

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–23 17



We assume that Oo ∩On = ∅ and To ∩ Tn = ∅. The assumption can be achieved by

renaming the observers and transitions if their intersections are not empty. Transi-

tions in To can take place in pre-updating and post-updating phase, while those in

Tn only take place in post-updating phase. Transitions in Tn begin from the state

where the old system evolves.

We consider the formalization of the dynamic update from protocol A to B

as an example. A part of the OTS is graphically shown in Fig. 4. Each circle

denotes a state. The values in each state that are affected by transitions are given

beside circles. For instance, (pcA[p] : rs) denotes that in the state process p is at the

remainder section in protocol A. Each arrow denotes a transition with the transition

name and appropriate arguments. For instance, (enterA, p) denotes process p enters

the critical section. The OTS is a union of the two OTSs that formalize the protocol

A and B respectively. It includes the three transitions formalizing the updating

process and a transition evolve formalizing the evolution of each process in the

post-updating phase.

4 Specification and Verification

We can specify OTSs and verify their desired properties by existing algebraic lan-

guages and verification systems. CafeOBJ is such a language in which OTSs are

tailored to be specified [19]. CafeOBJ is also a powerful rewrite system which is

often used as a proof assistant [8]. We can also translate CafeOBJ specifications

of OTSs into Maude [23], a sibling algebraic language of CafeOBJ but supporting

model checking [7]. we can model check the desired properties of OTSs with the

generated Maude specifications.

pcA[p] : rs
waitA, p

pcA[p] : ps
enterA, p pcA[p] : cs

exitA, p

prepare

phase : waiting

phase : updated

update

lockedB : false

phase : post-updating

lockedA : false

evolve pcB [p] : rs

enterB
pcB [p] : cs

exitB

prepare

phase : waiting
lockedA : true

phase : updated
lockedB : true

finish

phase : post-updating

exitA, p

pcA[p] : rs

pcA[p] : cs

phase : waiting
lockedA : false

prepare

update update

phase : updated
lockedB : false

finish

phase : post-updating
pcA[p] : ps

finish
enterA, p

Fig. 4. A graphical OTS of the dynamic update from protocol A to B

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–2318



4.1 Verification by theorem proving

In CafeOBJ, objects are classified by sorts. A sort denotes a kind of objects. For

instance, sort Bool denotes a class of Boolean values true and false, which are

represented by two constants true and false of Bool. In this paper, we use sorts

Sys, Pid and Label to denote the classes of system states, processes, and program

counters such as rs, ps, and cs (which are represented by constants rs, ps, and cs

respectively).

Observers and transitions are represented by operators. For instance, transition

waitA is declared by op wait-A : Sys Pid -> Sys, where op is a keyword to

declare operators. The meaning of operators is defined by equations. We take the

equation defined for wait-A and pc-A for example.

ceq pc-A(wait-A(S,I),J) = (if I = J then ps else pc-A(S,J) fi)
if c-wait-A(S,I) .

S is a variable of Sys; I and J are variables of Pid. Keyword ceq is used to declare

a conditional equation.

The CafeOBJ specifications of OTSs are used to prove invariant properties by

proof scores [11]. We first specify the property to be proved and then compose the

proof score by using CafeOBJ interactively as a proof assistant.

We prove that the system after being updated by the approach in Section 2.2

satisfies the mutual exclusion property, i.e., for any two processes p1, p2 in P and

each state υ in Υ, pcB(υ, p1) = cs and pcB(υ, p2) = cs imply that p1 = p2. That is,

in any state where there are two evolved processes at the critical section, they must

be the same one. The mutual exclusion property can be represented by a predicate

mu, which is declared and defined as follows:
op mu : Sys Pid Pid -> Bool
eq mu(S,I,J) = (pc-B(S,I) = cs and pc-B(S,J) = cs) implies I = J .

We successfully proved by CafeOBJ that the system after being updated indeed

satisfies the mutual exclusion property. The proof is based on structural induction.

Three lemmas are needed in the proof. We omit the details of the proof due to the

limit of space.

4.2 Verification by model checking

However, some properties may fail to be satisfied by an updated system. In that

situation, counterexamples of the properties are desired to refute the properties

being verified. We can specify OTSs in Maude as rewrite theories and model check

them with desired properties.

In Maude, states of OTSs are specified by sets of values. Each value is

represented as a component and a set of components is called a configura-

tion. For instance, each state in SI consists of Boolean values of lockedA
and lockedB, a value that denotes the phase of update, the values of pcA
and pcB for each process, and Boolean values denoting if corresponding pro-

cesses have evolved. We consider an instance of the system with two pro-

cesses p1 and p2. p1 and p2 are represented by two constants p1 and p2

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–23 19



of Pid. A state is represented by a configuration which is of the pattern

(locked-A:�)(locked-B:�)(phase:�)(pc-A[p1]:�)(pc-A[p2]:�)(pc-B

[p1]:�)(pc-B[p2]:�)(evolved[p1]:�)(evolved[p2]:�), where each � holds

a corresponding value in a specific state, and components are concatenated by an

empty associative and commutative operator.

Transitions are represented by rewrite rules. For instance, transition update can

be specified by the following rewrite rule:

rl [update] (locked-A : B) (locked-B : B’) (phase : waiting) =>
(locked-A : B) (locked-B : B) (phase : updated) .

Keyword rl is used to declare a rule. Following rl is the name of the rule. B

and B’ are variables of Bool. The left-hand side is a pattern. Any configuration or

a segment (a subset of components in a configuration) that matches the pattern can

be rewritten by the rule. The right-hand side is the result into which the pattern is

rewritten. Other transitions can be specified as rewrite rules likewise.

As an example, we use the Maude LTL (Linear Temporal Logic) model checker

[7] to verify the deadlock freedom property of the system when it is updated from

protocol (A) to (B). Because model checking requires the system’s state space to

be finite, we make it finite by fixing the number of processes in the system. We

consider the case when there are only two processes in the system, which is specified

in above section.

We first specify the deadlock freedom property as an LTL formula. Deadlock

in the system with two processes means that both the two processes are at the re-

mainder section when they are executing protocol (B) but the value of lockB is true.

Neither of them can enter the critical section. We declare two proposition construc-

tors @rs? and locked?. Given a process I and a configuration, @rs?(I) is true if

the configuration contains (pc-B[I]: rs), and false otherwise. locked? is true if a

configuration contains (locked-B : true), and false otherwise. The deadlock free-

dom property is defined by the formula []~ @rs?(p1) /\ @rs?(p2) /\ locked?,

where [] corresponds to the global operator G in LTL, ~ to ¬, and /\ to ∧.
Maude returns a counterexample which violates the formula. The counterexam-

ple is shown in Fig. 5. Each circle represents a configuration, and an arrow denotes

the name of the rule applied. We only show those components in each configuration

changed by the rule. There is a path from the initial state denoted by c0 to the

state denoted by c8, where deadlock occurs.

c0

c1

c2

c3

c4

c5

c6

c7

c8

waitA

enterA

prepare

update exitA

evolve

evolve

resume
p1p1

p1 p2

pc-A[p1]:rs

pc-A[p1]:ps

pc-A[p1]:rs
pc-B[p1]:rs

pc-B[p1]:rs

pc-A[p1]:cs

p1

phase:waiting

phase:updated

phase:post-updating
pc-A[p1]:cs

locked-A:false

locked-A:false
locked-B:true

locked-A:false

pc-A[p2]:rs

pc-B[p2]:rs
locked-A:true

locked-A:true

Fig. 5. A counterexample of the deadlock freedom property of the dynamic update

From counterexamples we can learn why the desired properties fail and find

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–2320



possible solutions to redesign the updates. For instance, the above counterexample

shows the reason why deadlock occurs is that the value of lockedB is set true when

update takes place. There are two possible solutions. One is to set an update point

where lockedA is false and perform the update in the invoke model. The other

choice is to force lockB to be false, regardless of the value of lockA when the update

takes place in the interrupt model.

5 Related Work

In an earlier study, Gupta et al. introduced the notion of validity to dynamic

updates [12]. Informally, an update is called valid if a reachable state in a new

system can be eventually reached from the state where the update takes place in

the old system. However, the definition of validity, as being observed by Hayden

et al., is both too restrictive and too permissive [13]. They proposed to define

the correctness of dynamic updates by the properties that are specific to concrete

dynamic updates [13]. In our work, we explicitly call the properties behavioral

properties, to differentiate them from the code-level properties.

There are multiple approaches to the formalization of dynamic updates. In [13],

dynamic updates are formalized by merging old and new versions of C programs

with a merging transformation. In [12], programs are viewed as state machines.

However, their approach is restricted to concrete program models, like the one in

[13]. Bierman et al. proposed an update calculus to formalize dynamic software up-

dating [4]. The calculus is flexible and independent from program models. However,

they do not provide any verification support based on their formalization. Stoyle et

al. proposed Proteus, a core calculus to model dynamic software updating [22]. But

they use it to check code-level correctness. Most of the above formalisms except

[4] are only applicable to the updates of single-threaded systems, but not to the

updates of distributed systems. Anderson has provided a definition of safe dynamic

updates for behavioral properties of concurrent programs [2]. However, only type

safety property is considered in the definition. In our approach, we focus on the

design of the old and new systems and updates, which makes our formalization

approach more general but not restricted to certain programming models.

6 Conclusion and Future Work

We have introduced a notion of behavioral correctness of dynamic updates, and

motivated the need of it with a concrete example. A dynamic update is called

behaviorally correct if expected behavior must happen after it is performed. We

proposed an algebraic methodology of specifying dynamic updates and verifying

their behavioral properties. The methodology can be applied to the formaliza-

tions of three dynamic updating models, which are widely implemented in dynamic

software updating systems. Unlike most of the existing formalizations of dynamic

updates, our methodology is not restricted to the dynamic updates developed in

certain program models. With our formalization methodology, we can verify the

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–23 21



behavioral properties of dynamic updates using off-the-shelf theorem proving and

model checking tools. By verification, we can prove the desired properties indeed

hold, or detect potential errors of dynamic updates and find possible solutions to

them.

In ongoing work, we plan to apply our approach to the verification of more com-

plicated dynamic updates. One candidate is the update from a flawed authentica-

tion protocol NSPK (Needham-Schroeder Public Key Protocol) [18] to its modified

version NSLPK [15] (which has been verified to satisfy the mutual authentication

property). The property of interest is that after being updated, the system should

satisfy the mutual authentication property.

References

[1] Altekar, G., I. Bagrak, P. Burstein and A. Schultz, Opus: Online patches and updates for security, in:
14th USENIX Security, 2005, pp. 287–302.

[2] Anderson, G. A., Dynamic Software Update for Behavioural Properties of Concurrent Programs, in:
Grace Hopper Celebration of Women in Computing, 2011.

[3] Armstrong, J., R. Virding, C. Wikstr, M. Williams et al., “Concurrent programming in ERLANG,”
Prentice Hall, 1996.

[4] Bierman, G., M. Hicks, P. Sewell and G. Stoyle, Formalizing dynamic software updating, in: 2nd USE,
2003.

[5] Boyapati, C., B. Liskov, L. Shrira et al., Lazy modular upgrades in persistent object stores, , 38, ACM,
2003, pp. 403–417.

[6] Chen, H., J. Yu, C. Hang et al., Dynamic software updating using a relaxed consistency model, IEEE
Transactions on Software Engineering (2011), pp. 679–694.

[7] Clavel, M., F. Durán and et al., All about Maude, LNCS 4350, Springer (2007).

[8] Diaconescu, R. and K. Futatsugi, “CafeOBJ Report,” World Scientific, 1998.

[9] Duggan, D., Type-based hot swapping of running modules, , 36 (2001), pp. 62–73.

[10] Frieder, O. and M. Segal, On dynamically updating a computer program: From concept to prototype,
Journal of Systems and Software 14 (1991), pp. 111–128.

[11] Futatsugi, K., Verifying specifications with proof scores in cafeobj, in: 21st ASE, IEEE, 2006, pp. 3–10.

[12] Gupta, D., P. Jalote and G. Barua, A formal framework for on-line software version change, IEEE
Transactions on Software Engineering 22 (1996), pp. 120–131.

[13] Hayden, C., S. Magill, M. Hicks et al., Specifying and verifying the correctness of dynamic software
updates, in: 4th VSTTE, LNCS 7151, 2012, pp. 278–293.

[14] Hicks, M. and S. Nettles, Dynamic software updating, ACM TOPLAS 27 (2005), pp. 1049–1096.

[15] Lowe, G., An attack on the needham-schroeder public-key authentication protocol, Information
processing letters 56 (1995), pp. 131–133.

[16] Neamtiu, I., M. Hicks, J. Foster et al., Contextual effects for version-consistent dynamic software
updating and safe concurrent programming, , 43, ACM, 2008, pp. 37–49.

[17] Neamtiu, I., M. W. Hicks, G. Stoyle et al., Practical dynamic software updating for c, in: PLDI (2006),
pp. 72–83.

[18] Needham, R. and M. Schroeder, Using encryption for authentication in large networks of computers,
CACM 21 (1978), pp. 993–999.

[19] Ogata, K. and K. Futatsugi, Proof Scores in the OTS/CafeOBJ Method, in: FMOODS’03, LNCS 2884
(2003), pp. 170–184.

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–2322



[20] Segal, M. and O. Frieder, On-the-fly program modification: Systems for dynamic updating, Software,
IEEE 10 (1993), pp. 53–65.

[21] Soules, C., J. Appavoo, K. Hui et al., System support for online reconfiguration, in: Proceedings of the
2003 USENIX Technical Conference, 2003, pp. 141–154.

[22] Stoyle, G., M. Hicks, G. Bierman et al., Mutatis mutandis: safe and predictable dynamic software
updating, ACM TOPLAS 40 (2005), pp. 183–194.

[23] Zhang, M., K. Ogata and M. Nakamura, Translation of State Machines from Equational Theories into
Rewrite Theories with Tool Support, IEICE Transactions on Information and Systems 94-D (2011),
pp. 976–988.

M. Zhang et al. / Electronic Notes in Theoretical Computer Science 294 (2013) 12–23 23


	Introduction
	Dynamic Software Updating
	Dynamic updating models
	Behavioral correctness of DSU

	Formalizations of dynamic updates
	Specification and Verification
	Verification by theorem proving
	Verification by model checking

	Related Work
	Conclusion and Future Work
	References

