
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
コンポーネントベースのソフトウェアシステムの信頼

性： モデリング、予測と改善

Author(s) Pham, Thanh Trung

Citation

Issue Date 2014-06

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/12225

Rights

Description Supervisor:DEFAGO Xavier, 情報科学研究科, 博士

Doctoral Dissertation

Reliability of Component-based Software Systems:

Modeling, Prediction, and Improvements

Thanh-Trung PHAM

Supervisor: Assoc. Prof. Xavier DÉFAGO

School of Information Science

Japan Advanced Institute of Science and Technology

June 2014

“With great power, comes great responsibility.”

Stan Lee

Abstract

Software systems become increasingly complex to meet the increasing requirements for

software support from many different areas. In this situation, it is a significant challenge

to assure the system reliability, i.e. its ability to deliver its intended service to users.

The reliability of a software system during its runtime is dependent not only on its

implementation but also on its usage.

Approaches in the field of component-based software reliability modeling and prediction

provide the ability to predict the reliability of software systems before their operations.

They build on architectural models, denoting components, transitions of control flow be-

tween them, and reliability-relevant aspects. They evaluate the models either by analysis

methods or simulations in order to obtain the predicted reliability of software systems.

Because of being based on the system models rather than the systems, approaches in

the field can be applied at early design stages when the systems are not yet available,

supporting design decisions and assisting in identifying reliability-critical parts of the

system architectures.

However, existing approaches in the field are limited in their applicability because they

either neglect or have only basic expressiveness for modeling several factors which influ-

ence the system reliability: (1) error propagation, (2) software fault tolerance mecha-

nisms, and (3) concurrently present errors. Neglecting these factors leads to inaccurate

prediction results. Basic expressiveness for modeling these factors likely reduces the

ability to reuse the models and the support when evaluating different design variants.

This dissertation proposes the RMPI (Reliability Modeling, Prediction, and Improve-

ments) approach, a reliability modeling and prediction approach for component-based

software system, which considers explicitly error propagation, software fault tolerance

mechanisms, and concurrently present errors, and supports design decisions for reliabil-

ity improvements. More concretely, the approach offers the following contributions:

• Consideration of error propagation: The approach allows modeling error prop-

agation for multiple execution models, including sequential, parallel, and fault

tolerance execution models. The approach considers how the error propagation

affects the system execution with different execution models, and it derives the

overall system reliability accounting for the error propagation impact.

• Consideration of software fault tolerance mechanisms: The approach offers en-

hanced fault tolerance expressiveness, explicitly and flexibly modeling how both

error detection and error handling of fault tolerance mechanisms influence the con-

trol and data flow within components. These capabilities enable modeling compre-

hensively different classes of existing fault tolerance mechanisms and evaluating

their impact on the system reliability.

• Consideration of Concurrently Present Errors: The approach is the first work to

support modeling concurrently present errors. With this capacity, it is possible

to cover system failures caused by the concurrent presence of errors, tending to

obtain accurate prediction results.

The approach provides a reliability modeling language that captures comprehensively

different reliability-influencing factors into a reliability model of the system under study.

The language, implemented in the RMPI schema, offers a developer-friendly model-

ing notation, including modeling elements for provided/required services, components,

component connectors, activities, structures, etc.

The approach offers an analysis method that evaluates the system reliability model to

obtain a prediction result. The method has been implemented in the RMPI tool, offering

an automated transformation of the system reliability model into discrete-time Markov

chains, and a space-effective evaluation of these chains.

The RMPI approach has been validated in three case studies, by modeling the reliabil-

ity, conducting reliability predictions and sensitivity analyses. Via these case studies,

the approach has demonstrated its ability in supporting design decisions for reliability

improvements and its reusability of modeling artifacts.

The approach and its contributions have been described in the Science of Computer

Programming journal [PDH14] (currently accepted for publication and available in an

online preprint version), the Journal of Wireless Mobile Networks, Ubiquitous Com-

puting, and Dependable Applications [PBD14], and further peer-reviewed publications

[PD12, PHD12, PD13].

Keywords Reliability modeling and prediction, error propagation, software fault tol-

erance mechanisms, concurrently present errors, component-based software systems.

Acknowledgements

I am deeply grateful to many people who have encouraged, guided, and supported me

throughout the dissertation project. The aid of these people is important and essential

to me during the last four and a half years.

First, I would like to thank my wife, Nguyen Thi Kieu Chinh, for her wonderful love and

support. She has always encouraged me to continue, kept me grounded, and tolerated

even the most stressful periods of my work. Very big thanks also go to my parents,

Pham Binh Minh and Phung Minh Hai, and my sister, Pham Minh Thu, who have

given me their full and unconditional love ever, and kept encouraging me throughout

the dissertation project.

In many respects, my supervisor Assoc. Prof. Xavier Défago of Japan Advanced Insti-

tute of Science and Technology (JAIST) has paved the way for my dissertation project.

He not only welcomed me to join his research lab but also taught me the standards

and principles of good research. Moreover, he gave directions to my dissertation with

valuable aid and advice. I also thank Assoc. Prof. Huynh Quyet Thang of Hanoi

University of Science and Technology (HUST), who - at the early dissertation stages -

guided my introduction to the foundation topics such as software reliability engineering

and component-based software engineering, and gave me additional supervision for my

minor research project.

Another thank goes to François Bonnet who provided me with valuable and insightful

feedback until the final dissertation stages. He was my most inspiring and dedicated

discussion partner and publication coauthor. Throughout the dissertation process, he

made an increasing impact on my work and my progress, and I really enjoyed all of our

discussions.

I am especially thankful to Prof. Tadashi Dohi of Hiroshima University, Assoc. Prof.

Toshiaki Aoki, Prof. Mizuhito Ogawa, Assoc. Prof. Kazuhiro Ogata, and Prof. Ho Tu

Bao of JAIST for reviewing parts of my dissertation and providing me with very helpful

feedback.

Finally, I would like to acknowledge Vietnamese Ministry of Education and Training

(MOET) for their financial support, HUST for their procedural aid, and JAIST for

providing a top-ranked study and research environment.

iv

Contents

Abstract ii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem . 2

1.3 Existing Solutions . 5

1.4 Contributions . 7

1.5 Validation . 8

1.6 Outline . 8

2 Software Components and Reliability: Basics and State-of-the-Art 9

2.1 Software Reliability . 9

2.1.1 Basic Concepts . 9

2.1.2 Software Reliability Analyses . 11

2.2 Software Reliability Estimation . 12

2.2.1 Software Reliability Growth Models 13

2.2.2 Software Defect Prediction Models 15

2.2.3 Further Approaches to Software Reliability Estimation 16

2.3 Markov Chains . 18

2.4 Component-based Software Reliability Modeling and Prediction 20

2.5 Software Fault Tolerance Mechanisms . 23

2.6 Related Work . 25

2.6.1 Error Propagation Modeling . 25

2.6.2 Software Fault Tolerance Mechanisms Modeling 27

2.6.3 Concurrently Present Errors Modeling 28

2.6.4 Further Modeling and Prediction Approaches 29

2.6.5 The RMPI Approach and the Field of Component-based Software
Reliability Modeling and Prediction 29

2.7 Summary . 31

v

Contents vi

3 Methodology and Reliability Modeling 32

3.1 RMPI Methodology . 32

3.2 Reliability Modeling . 35

3.2.1 Component Reliability Specifications 36

3.2.2 System Reliability Models . 50

3.3 Implementation . 52

3.4 Summary . 52

4 Reliability Prediction and Improvements 54

4.1 Reliability Prediction . 54

4.1.1 RMPI Prediction Process Overview 55

4.1.2 Transformation for Each Usage Profile Part 56

4.1.3 Aggregation of Results . 78

4.1.4 Complexity . 78

4.2 Implementation . 80

4.3 Reliability Improvements with RMPI . 81

4.4 Summary . 83

5 Case Study Evaluation 84

5.1 Goals and Settings . 84

5.2 Case Study I: Reporting Service of a Document Exchange Server 85

5.2.1 Description of the Case Study . 85

5.2.2 Validity of Predictions . 88

5.3 Case Study II: WebScan System . 91

5.4 Case Study III: DataCapture System . 96

5.5 Scalability Analyses . 102

5.6 Summary . 105

6 Conclusions 106

6.1 Summary . 106

6.2 Assumptions and Limitations . 107

6.2.1 Provision of Inputs . 108

6.2.2 Markovian Assumption . 108

6.2.3 Expressiveness of the Model . 109

6.3 Future Work . 109

6.3.1 Enhanced Methods for Input Estimations 109

6.3.2 Extensions of Modeling Capabilities 110

6.3.3 Extensions of Analysis Capabilities 111

6.3.4 Enhanced Evaluation of Prediction Results 111

Author’s Publications 112

Bibliography 114

List of Figures

2.1 The general schema of a software reliability growth model 14

2.2 Example of DTMC . 18

2.3 Example of a system architecture modeled by an absorbing DTMC. . . . 21

3.1 Reliability engineering process (modeling, prediction, and improvement). . 33

3.2 Modeling elements in the reliability modeling schema. 36

3.3 Example of components and services. 37

3.4 Supported control flow structures and their execution semantics 38

3.5 An example of service implementations. 39

3.6 An example of failure types. 41

3.7 An example of failure model for an internal activity. 42

3.8 Semantics for a RetryStructure example. 44

3.9 Semantics for a MultiTryCatchStructure example. 45

3.10 The operation of a MVPStructure. 46

3.11 Semantics for a MVPStructure example. 48

3.12 An example of system reliability model. 51

3.13 Reliability modeling environment. 52

4.1 RMPI prediction process overview. 55

4.2 Example of transformation for each usage profile part. 57

4.3 Using inputs and outputs in a sequential structure. 58

4.4 Markov skeleton for A12...k and Ak+1 in a sequential structure. 59

4.5 Using inputs and outputs in a branching structure. 61

4.6 Markov skeleton for A12...k and An in a branching structure. 61

4.7 Using inputs and outputs in a parallel structure. 63

4.8 Markov skeleton for A12...k and Ak+1 in a parallel structure. 65

4.9 Looping structures and their equivalent structures. 68

4.10 Using inputs and outputs in a RetryStructure. 69

4.11 Markov block for i-th retry. 70

4.12 An example of transformation for a RetryStructure. 71

4.13 Using inputs and outputs in a MultiTryCatchStructure. 72

4.14 Markov block for MultiTryCatchPart i. 72

4.15 An example of transformation for a MultiTryCatchStructure. 74

4.16 Using inputs and outputs in a MVPStructure. 75

4.17 Markov chain in a MVPStructure. 77

4.18 Reliability prediction tool support. 82

5.1 The system reliability model of the reporting service (overview). 85

vii

List of Figures viii

5.2 Reporting service: Failure model for internal activity ai. 87

5.3 Reporting service: Sensitivity analyses. 90

5.4 The system reliability model of the WebScan system (overview). 92

5.5 WebScan system: Failure model for internal activity ai. 93

5.6 WebScan system: Sensitivity analyses. 95

5.7 The system reliability model of the DataCapture system (overview). . . . 96

5.8 DataCapture system: Failure model for internal activity ai. 98

5.9 Feature model of variants of the DataCapture system 99

5.10 Variants of the DataCapture system. 101

5.11 DataCapture system: Sensitivity analyses. 102

5.12 Scalability analyses. 103

List of Tables

2.1 Most Related Approaches. 30

4.1 An Example of Transformation Results. 67

4.2 Running Times of the Transformation Algorithm for Different Structure
Types. 79

4.3 Reliability Improvements Collection. 82

5.1 Reporting Service: Different Propagating Failure Types and their Symbols. 86

5.2 Reporting Service: Different Stopping Failure Types and their Symbols. . 86

5.3 Reporting Service: Internal Activities, their Symbols, and Involved Fail-
ure Types. 87

5.4 Reporting Service: Predicted vs. Simulated Reliability 88

5.5 WebScan System: Propagating Failure Type and Its Symbol. 91

5.6 WebScan System: Different Stopping Failure Types and their Symbols. . . 92

5.7 WebScan System: Internal Activities, their Symbols, and Involved Failure
Types. 92

5.8 WebScan System: Internal Activities and the Probabilities in their Failure
Models. 93

5.9 WebScan System: Predicted vs. Simulated Reliability 94

5.10 DataCapture System: Propagating Failure Type and Its Symbol. 96

5.11 DataCapture System: Different Stopping Failure Types and their Symbols. 97

5.12 DataCapture System: Internal Activities, their Symbols, and Involved
Failure Types. 97

5.13 DataCapture System: Error Property Vectors. 97

5.14 DataCapture System: Internal Activities and the Probabilities in their
Failure Models. 99

5.15 DataCapture System: Predicted vs. Measured Reliability 99

5.16 Number of states of the Equivalent Underlying Markov Chains for Differ-
ent Structure Types. 105

ix

To those whom I love I know who you are

and those who love me. . .

x

Chapter 1

Introduction

1.1 Motivation

Software systems become increasingly complex to meet the increasing requirements for

software support from many different areas. The systems provide a potentially non-

homogeneous set of services for their users and their architectures are potentially com-

plex, with interconnected and hierarchically nested components. By providing processes,

methods, and tools, the software engineering discipline tries to deal with important chal-

lenges in the development and engineering of such system.

Reliability, one of the most important quality attributes, is defined as “the ability of

a system or component to perform its required functions under stated conditions for

a specified period of time” [1]. The users of a system service expect it to perform all

required processing steps, obtaining valid computation results, delivering all expected

outputs, and not producing any unwanted side effects. A failure occurs if the system

deviates from its intended service. Reliability becomes more important if the services

provided by a system are mission-critical. In such systems, failure occurrences can lead

to high financial loses, environment damage, or even loses of human lives. By numerous

historical software system failures, reliability has demonstrated its critical role. As an

example, during the Persian Gulf War, clock drift in the Patriot system caused it to

miss a scud missile targeting an American barracks in Dhahran. As consequences, there

were 29 people killed and 97 others injured. It was reported that the clock drift was

caused by using two different and unequal representations of a value in the software [2].

There are various efforts to assure the system reliability. This dissertation focuses on the

problems of the field of component-based software reliability modeling and prediction

[3–5]. The motivation of the field comes from the observation that in many software

1

Chapter 1. Introduction 2

systems, the essential design decisions at the architecture level determine the reliability

levels of the systems. This is true more than usual for systems with complex architectures

such as business information systems or device control systems. Approaches in the field

support design decisions by providing the answers for fundamental questions such as

follows:

• What are the expected reliability impacts of failure possibilities in the system

architecture?

• Which parts of the system architecture are most likely to cause failures, i.e. the

most critical?

• Given a set of possible changes to the system architecture, which one is expected

to bring the highest reliability improvement?

• Does a planed system architecture have a positive or negative effect on the expected

system reliability?

• Given a set of possible system architecture alternatives, which one is expected to

bring the highest system reliability?

To answer such questions, approaches in the field are based on a system model, i.e.

the model of the system under study with probabilistic annotations representing failure

possibilities in the system, to predict the system reliability. By conducting reliability

predictions for possible design alternatives, the approaches can evaluate and rank the

alternatives according their reliabilities. Because of being based on a system model

rather than the system, the approaches can be applied at early design stages when the

system is not yet available for an observation of its actual reliability.

However, approaches in the field also face important and unsolved challenges regarding

their practical applicability. To this end, this dissertation focuses on a set of specific

factors which are insufficiently captured by existing approaches in the field, namely error

propagation, software fault tolerance mechanisms, and concurrently present errors.

1.2 Problem

The main problem that this dissertation tries to deal with is component-based software

reliability modeling and prediction, taking into consideration comprehensively factors

which influence the system reliability, and supporting design decisions. To solve this

problem, an approach is developed that provides a modeling language for modeling the

Chapter 1. Introduction 3

reliability of component-based software systems and an analysis method for analyzing

the models based on the language to obtain prediction results.

The goal of reliability modeling and prediction includes the ability to express reliability-

influencing factors and evaluate their impacts on the system reliability. These factors

may relate to each of the error propagation, software fault tolerance mechanisms, or

concurrent present errors.

According to Avizienis et al. [6], a failure is defined as a deviation of the service delivered

by a system from the correct service. An error is the part of the system state that could

lead to the occurrence of a failure, and is caused by the activation of a fault. The

deviation from correct service can be manifested in different ways, corresponding to

different failure types of the system. In general, characterizing the failure types which

may occur in a system is highly dependent on the specific system. For example, two basic

failure types that can be identified are content and timing failures (where, respectively,

content of system’s output and delivery time deviate from the correct ones).

Errors can arise because of internal faults. For example, a bug in the code implementing

a component is an internal fault. This fault causes an error in the internal state of

the component if the code is executed. Errors can arise because of external faults. For

example, an erroneous input appears as an external fault to a component and propagates

the error into the component via its interface. Errors can also arise because of both

internal faults and external faults, e.g. an erroneous input (an external fault) is also the

application of an input (the activation pattern) to a component that causes the code

with a bug (an internal fault) of the component to be executed.

However, not all errors in a component lead to component failures. A component failure

occurs only when an error in a component propagates within the component up to its

interface. Similarly, not all component failures lead to system failures. A component

failure in a component-based software system is an error in the internal state of the

system. This error leads to a system failure only when it propagates through components

in the system up to the system interface.

During this propagation path, an error can be detected,1 and therefore stops from prop-

agating, e.g. an erroneous input is detected by error detection of components. An error

can be masked, e.g. an erroneous value is overwritten by the computations of compo-

nent services before being delivered to the interface. An error can be transformed, e.g.

a timing failure received from another component service may cause the current com-

ponent service to perform computations with outdated data, leading to the occurrence

of a content failure. An error can also be concurrently present with another error, e.g.

1Software fault tolerance mechanisms, if any, can then provide error handling for the detected error.

Chapter 1. Introduction 4

a content failure received from another component service is also the activation pattern

that causes the current component to perform unnecessary computations with corrupted

data, leading to the concurrent presence of a content failure and a timing failure.

It is possible to see that the reliability of a component-based software system, defined as

the probability that no system failure occurs, is strongly dependent on the error prop-

agation path. The challenge of analyzing the reliability of a component-based software

system becomes even more significant when the system embodies parallel and fault tol-

erance execution models. A parallel execution model has multiple components running

in parallel, resulting in many concurrent error propagation paths. A fault tolerance

execution model has a primary component and backup components, and the order of

their executions is highly dependent on their error detection and error handling. This

results in many different error propagation paths.

As an example, in a parallel execution model, an error in the input for the components

running in parallel may be masked by the computations of a certain number of com-

ponents while the computations of the other components may transform the error into

multiple errors of different failure types, leading to a set of multiple errors of different

failure types in the output of the execution model. As another example, in a fault tol-

erance execution model, an error of a certain failure type in the input for the primary

component and backup components may be transformed into an error of other failure

type by the primary component without being detected, leading to an error in the output

of the execution model without activating the backup components.

Software fault tolerance mechanisms are often included in a software system and consti-

tute an important means to improve the system reliability. Fault tolerance mechanisms

denote any capabilities of a software system to autonomously prevent the occurrence of

system failures in the presence of faults that have already activated and resulted in er-

rors within the system. Avizienis et al. have also outlined activities of a fault tolerance

mechanism, including error detection and system recovery as the two main activities

where the latter includes error handling and possibly fault handling. Fault tolerance

mechanisms can be applied on different abstraction levels (e.g. source code level with

exception handling, architecture level with replication) [7].

The reliability impact of a fault tolerance mechanism is not only dependent on its ac-

tivities but also on the whole system architecture and usage profile. For example, if a

fault tolerance mechanism is never executed under a certain usage profile, its reliabil-

ity impact is considered as nothing. Analyzing the reliability impact of fault tolerance

mechanisms becomes apparently a challenge when they are applied at architecture level,

in a component-based software system because: (1) Fault tolerance mechanisms can be

employed in different parts of a system architecture, (2) In a system architecture, there

Chapter 1. Introduction 5

are usually multiple changeable points to create architecture variants, e.g. substituting

components with more reliable variants, running components concurrently to improve

performance.

Situations involving multiple failures are frequently encountered. System failures are

often turned out on later examination to have been caused by different errors [6]. For

example, (1) failures of component services performing computations in parallel are

concurrently present errors in the system, (2) a content failure received from another

component service is also the application of an input (the activation pattern) that causes

the current component to perform unnecessary computations with corrupted data, lead-

ing to the concurrent presence of a content failure and a timing failure.

Therefore, the modeling language is expected to capture all the these aspects and the

analysis method should take them into account in order to obtain prediction results.

1.3 Existing Solutions

By comparing the state of the art of the existing approaches in the field of component-

based software reliability modeling and prediction with the problem given above, it is

possible to capture several drawbacks of existing approaches, which limit their appli-

cability and accuracy. In essence, these drawbacks are consequences of the assumption

that components fail independently and each component failure leads to a system fail-

ure, which is common to most existing reliability models for component-based software

systems [3].

Although error propagation is an important element in the chain that leads to a system

failure, many approaches (e.g. [4, 8–12]) do not consider it. They assume that any error

arising in a component immediately manifests itself as a system failure, or equivalently

that it always propagates (i.e. with probability 1.0 and with the same failure type)

up to the system interface [13]. On the other hand, approaches that do consider error

propagation (e.g. [13, 14]) typically only consider it for a single sequential execution

model. Since modern software systems often embody not just a single sequential execu-

tion model, but also parallel and fault tolerance execution models to achieve multiple

quality attributes (e.g. availability, performance, reliability) [15], ignoring the consider-

ation of error propagation for these two latter execution models makes these approaches

no more suitable for modeling complex software systems with different execution models.

Many approaches (e.g. [9, 16, 17]) do not support modeling fault tolerance mechanisms.

This forces modelers to implicitly model fault tolerance mechanisms of a software sys-

tem, if any, via decreasing software failure probabilities. Some approaches step forward

Chapter 1. Introduction 6

and offer basic fault tolerance expressiveness which are limited to specific fault tolerance

mechanisms and failure conditions (e.g. [15, 18]). They lack flexible and explicit expres-

siveness of how both error detection and error handling of fault tolerance mechanisms

influence the control and data flow within components. For example, an undetected

error from a component’s provided service leads to no error handling, which in turn in-

fluences the control and data flow within component services using this provided service.

As a consequence, they are limited in combining modeling fault tolerance mechanisms

with modeling the system architecture and usage profile.

Further approaches provide more detailed analysis of individual fault tolerance mech-

anisms (e.g. [19–21]). But these so-called non-architectural models do not reflect the

system architecture and usage profile (i.e. component services, control flow transitions

between them and sequences of component service calls). As a consequence, they are

not suitable when analyzing how individual fault tolerance mechanisms employed in dif-

ferent parts of a system architecture influence the overall system reliability, especially

when evaluating for architecture variants under varying usage profiles.

To the best of our knowledge, existing approaches do not support modeling concurrently

present errors. Neglecting concurrently present errors can lead to inaccurate prediction

results because there exist system failures that cannot be covered by existing approaches,

which is confirmed by Hamill et al. [22] with two large, real-world case studies (GNU

Compiler Collection (GCC) and NASA Flight Software).

Many approaches (e.g. [10, 15, 23]) use Markov models to conduct reliability predic-

tions. They require the models to be directly created in the Markov-model notation,

which is not aligned with the concepts and notations typically used in software engineer-

ing (e.g. UML or SysML). They map Markov states to software components (or their

internal behavioral states) but they do not explicitly deal with other concepts of the soft-

ware engineering domain (e.g. provided/required services, component connectors, etc.).

In these approaches, the system is represented through a set of states and transition

probabilities between them. Direct creation and interpretation of Markov models may

discourage software developers who are not familiar with the Markov-model notation,

especially when it is to be done repetitively during the development process.

Some approaches (e.g. [12, 14, 16, 17, 24, 25]) use UML or UML-like notation with

reliability properties, such as failure probabilities. Such models can be transformed

(manually or by tools) into Markov models. In these approaches, software developers can

utilize existing design specifications to conduct reliability predictions and the complexity

of the underlying analysis techniques is hidden from developers.

Chapter 1. Introduction 7

1.4 Contributions

The contribution of this dissertation is the RMPI (Reliability Modeling, Prediction, and

Improvements) approach for component-based software reliability modeling and predic-

tion that considers explicitly the discussed reliability-influencing factors, and supports

design decisions for reliability improvements. More concretely, it offers the following

contributions:

• Consideration of error propagation: The approach allows modeling error prop-

agation for multiple execution models, including sequential, parallel, and fault

tolerance execution models. The approach considers how the error propagation

affects the system execution with different execution models, and it derives the

overall system reliability accounting for the error propagation impact.

• Consideration of software fault tolerance mechanisms: The approach offers en-

hanced fault tolerance expressiveness, explicitly and flexibly modeling how both

error detection and error handling of fault tolerance mechanisms influence the con-

trol and data flow within components. These capabilities enable modeling compre-

hensively different classes of existing fault tolerance mechanisms and evaluating

their impact on the system reliability.

• Consideration of Concurrently Present Errors: The approach is the first work to

support modeling concurrently present errors. With this capacity, it is possible

to cover system failures caused by the concurrent presence of errors, tending to

obtain accurate prediction results.

The approach provides a reliability modeling language that captures comprehensively

different reliability-influencing factors into a reliability model of the system under study.

The language, implemented in the RMPI schema, offers a developer-friendly model-

ing notation, including modeling elements for provided/required services, components,

component connectors, activities, structures, etc.

The approach offers an analysis method that evaluates the system reliability model to

obtain a prediction result. The method has been implemented in the RMPI tool, offering

an automated transformation of the system reliability model into discrete-time Markov

chains, and a space-effective evaluation of these chains.

Chapter 1. Introduction 8

1.5 Validation

This dissertation includes three case studies, which serve to demonstrate the applica-

bility of the RMPI approach, including modeling the reliability, conducting reliability

predictions and sensitivity analyses, and supporting design decisions. They are based

on the reporting service of a document exchange server, the WebScan system, and the

DataCapture system, giving evidence of the applicability of the approach on different

kinds of software systems. The first two case studies (based on the reporting service and

the WebScan system) include comparisons between prediction results and simulations,

different sensitivity analyses and design decision supports, as well as introductions of

fault tolerance mechanisms at both the service implementation level and the architec-

ture level. The third case study features a prototype implementation of the DataCapture

system, compares prediction results with measurements, and illustrates the approach’s

effectiveness for a family of related software systems. All these studies support the claim

for the approach’s validity.

In short, the RMPI approach accomplishes the goal regarding the target problem. It

overcomes several important drawbacks of the existing approaches, and it offers a com-

prehensive and validated solution for supporting design decisions through reliability

modeling and prediction for component-based software systems.

1.6 Outline

This section gives an outline of the dissertation’s remaining chapters.

• Chapter 2 introduces the existing basics on which the RMPI approach builds.

• Chapter 3 presents the methodology and the reliability modeling capacities of the

approach.

• Chapter 4 describes the analysis method provided by the approach for reliability

predictions, and architectural changes supported by the approach for reliability

improvements.

• Chapter 5 validates the approach in three case studies, by modeling the reliability,

conducting reliability predictions and sensitivity analyses, and demonstrating its

capability in supporting design decisions.

• Chapter 6 concludes the dissertation with a brief summary, and a discussion of

limitations of the approach, and an examination of future research directions.

Chapter 2

Software Components and

Reliability: Basics and

State-of-the-Art

The RMPI approach introduced in the dissertation allows a comprehensive reliability

modeling for component-based software systems and aims at increasing the reliabil-

ity prediction accuracy for such systems and supporting design decisions for reliability

improvements. This chapter introduces the basics on which the approach builds. Sec-

tion 2.1 introduces the basic reliability concepts and existing approaches in the area

of software reliability analyses. Section 2.2 discusses the state-of-the-art in deriving

software reliability estimates, which are needed as the approach’s inputs. Section 2.3 in-

troduces Markov chains as the approach’s underlying formalism. Section 2.4 introduces

the field of component-based software reliability modeling and prediction, to which the

approach belongs. Section 2.5 gives an overview of software fault tolerance mechanisms.

Section 2.6 surveys most related work.

2.1 Software Reliability

2.1.1 Basic Concepts

A widely accepted basic concepts and taxonomy of dependable and secure computing has

been defined by Avizienis et al. [6]. This dissertation utilizes a part of their definitions

as a foundation of terminologies. In their work, the authors introduce a system as entity

that interacts with its environment (i.e. other systems, including users) and delivers

its services via a set of service interfaces. The system could be composed of a set of

9

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 10

components, where each component is a system itself. An error is defined as the part

of a system’s total state that may lead to a failure. The cause of the error is called

a fault. A failure occurs when the error causes the delivered service to deviate from

correct service. Reliability is related to the system’s ability to provide correct services.

It is one of the dependability attributes, along with availability, safety, integrity, and

maintainability. While the scope of these basic concepts and the taxonomy is very wide,

this dissertation focuses on software system composed of software components.

Moreover, Avizienis et al. also include a classification of service failures which illustrates

a wide range of different deviations of the delivered service from the intended service.

From the failure domain viewpoint, deviations are classified as content failures if the

service’s output is not intended, as timing failures if the delivery time of the service is

too early or too late. Halt failures are due to no service delivery and erratic failures

result from inconsistent service deliveries. From the detectability viewpoint, a service

failure is either signaled failure or unsignaled failures. By grading the consequences of

failures for the environment of the system, failure severities can be defined, ranging from

minor failures to catastrophic failures. Within its restricted scope, the RMPI approach

in this dissertation also allows defining custom failure types, comparable to the range of

the service failure types described above (see Section 3.2.1.2).

The authors further group the means to attain dependability into four major categories:

• Fault prevention aims to prevent the occurrence or introduction of faults by im-

proving the quality of the development and engineering process.

• Fault tolerance aims to avoid service failures in the presence of faults. It is carried

out via error detection (identifying the presence of errors) and system recovery

(including error handling for eliminating errors from the system state and possibly

fault handling for preventing faults from being activated again).

• Fault removal aims to reduce the number and severity of faults via detecting exist-

ing faults, using verification and validation methods, and eliminating the detected

faults.

• Fault forecasting aims to estimate the current or future dependability attributes

for the system under study, e.g. the present number, the future frequency, and the

likely consequences of faults. Available analysis methods can roughly be classified

as being qualitative (e.g. Failure Modes And Effects Analysis), quantitative (e.g.

Markov chains, stochastic Petri nets), or mixed (e.g. reliability block diagrams,

fault trees).

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 11

Each of these categories has its own importance, regardless of the dependability attribute

under consideration is reliability, availability, safety, integrity, or maintainability. While

fault prevention, fault tolerance, and fault removal aim to reduce the possibility of service

failures as much as possible, fault forecasting accepts the fact that a certain possibility

of failures remains in all cases and tries to estimate this possibility and its consequences.

The RMPI approach in this dissertation belongs to the fourth category as a reliability

modeling and prediction approach.

2.1.2 Software Reliability Analyses

The context of the RMPI approach is determined via the fraction of analysis methods

specially tailored to reliability, and under the term fault forecasting. There are various

methods which have been proposed and are widely accepted. However, they do not

necessarily focus on software systems. Target metrics may be qualitative, e.g. identifying

different failure types of a system, or quantitative, e.g. estimating failure probabilities

or failure rates of a system. Examples of analysis methods include the Failure Modes

and Effects Analysis, fault trees, reliability block diagrams, Markov-based analyses,

reliability growth analyses. Usually, there are a number of variations for each method

and multiple analyses can be applied on the system under study. The term reliability

engineering has been coined to represent the systematic consideration of the reliability

aspects throughout design and production processes (for a detailed overview, see [26]).

Even though the nature of software faults is different from that of hardware faults, there

have been efforts on extending the classical reliability analysis methods from hardware

to software, resulting in software-specific or combined software-hardware analyses (for

an example of the Failure Modes and Effects Analysis adapted for software system, see

[27] and for an overview, see [28]). The major drawbacks of such efforts are also obvious.

While failures of hardware components are usually caused by physical deterioration and

environmental influences, those of software components are usually due to the human

design faults whose activation patterns may be complex and unique for each software

component. Moreover, the reliability of a software component is highly dependent on

the usage of the component, which, in turn, is dependent on the usage of the system

in non-trivial ways. For example, a little change to the input parameter value of a

software service may lead to an entirely different control and flow data throughout the

system, activating different software faults. Therefore, such efforts are limited in their

applicability to software systems with basic functionalities and static control and data

flow. For more complex systems, the abstractions are either oversimplified or the analysis

effort gets out of control. Reliability growth analyses are the only methods that have gone

through a major evolution towards software systems. In their software-specific forms,

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 12

these methods focus on the process of testing software systems or software component,

and removing detected faults. Software reliability growth models (for a recent overview,

see [29]) allow for estimations of the reliability growth of a software system during

further testing activities. Traditionally, software reliability growth models have been

applied at the system level, without an attempt to consider software components and

their reliability impact. Authors, e.g. Musa [30], have focused on software reliability

growth models and have coined the term software reliability engineering to represent

the software-specific evaluation of reliability engineering with software reliability growth

models as a central constituent (for a more recent overview, see [31]).

However, when applied to modern component-based software systems, software relia-

bility growth models are limited in their applicability. Because in a software reliability

growth model analysis, the reliability impacts of software components with in the system

are unclear, its results cannot be reused in a family of similar software systems. Also,

in order to apply software reliability growth models, it is required to install and execute

the complete software system under study. Therefore, software reliability growth mod-

els cannot be used easily to make comparisons between design alternatives of a software

system, not at the early design stages, when the software system is not yet available. To

solve the problem, the field of component-based software reliability modeling and predic-

tion has emerged. Approaches in this field consider a software system as a composition

of software components. They model the control and data flow between components in

the system and provide a method to express the reliability of the system based on the

individual component reliabilities. The approaches still face the challenge of estimating

failure probabilities or failure rates of individual components. However, they can em-

ploy software reliability growth models at component level as well as other estimation

methods (see Section 2.2).

While approaches in the field of component-based software reliability modeling and pre-

diction establish a major advance in analyzing the reliability of component-based soft-

ware systems, their applicability is still limited because of lacking support for expressing

error propagation, software fault tolerance mechanisms, as well as concurrently present

errors. The RMPI approach in this dissertation overcomes these drawbacks and pro-

vides a comprehensive reliability modeling and prediction for component-based software

systems.

2.2 Software Reliability Estimation

This section discusses methods for software reliability estimation, mainly focusing on

methods for estimating failure probabilities and failure rates of software components.

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 13

This is because approaches in the field of component-based software reliability modeling

and prediction need such estimates as their inputs. Software reliability is modeled

stochastically because of the reasons as follows:

• The knowledge regarding faults in the software system and their activation patterns

is lacking.

• In order to reduce the modeling complexity, reliability models often include prob-

abilistic abstractions from the actual behavior of the software system.

• Because the exact way (i.e. the exact input parameter value, sequence, and timing)

users invoke the services of the system is unknown beforehand, the usage of the

system cannot be clearly described.

For these reasons, estimating the reliability of a software component is apparently a

significant challenge. A research field has emerged to address this problem. Here, the

discussion focuses on main families of software reliability estimation methods, including

software reliability growth models, software defect prediction models, and several other

methods.

2.2.1 Software Reliability Growth Models

One of the most successful families of analysis methods in the software reliability en-

gineering discipline are software reliability growth models [31]. Besides being applied

at the system level, they can be employed to determine failure probabilities and failure

rates of software components as inputs for approaches in the field of component-based

software reliability modeling and prediction [3].

The general schema of a software reliability growth model is depicted in Fig. 2.1. A

software reliability growth model observes a software system or a software component

under test and records the increasing number of detected faults during the test. For

terminating applications, the test time could be measured as the number of executed

test runs. For continuous applications, the test time could be measured in sense of

system or component execution time. From start of test tS to the present test time tP ,

a parameterized statistical mean value function m(t) is determined to fit the historical

numbers of detected faults. This function can be used to predict the progress of the

testing process, e.g. the total number of detected faults at the planned end of test

tE . Besides, many software reliability growth models include an estimation of the total

number of faults contained in the system or component under test at tS , showing the

remaining number of faults during the operational phase (after tE). Different mean value

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 14

Test time

Start

of test
Present

test time

Planned

end of test

Number of faults

Estimated total

number of faults

Estimated detected

number of faults

Presently detected

number of faults

m(t): mean value function

Testing phase Operational phase

Estimated remaining

number of faults

tS tP tE

Figure 2.1: The general schema of a software reliability growth model

functions m(t) has been proposed by several authors, corresponding to different types

of test progressions encountered in practice (for an overview, see [29]). The proposals

are generally based on the assumption that the rate of fault detection decreases over

time, leading to mean value functions with decreasing slopes. Moreover, most software

reliability growth models share the common assumptions as follows:

• The removal of a detected fault is instantaneous.

• The correction of a detected fault never introduces new faults into the system or

the component under test.

Moreover, software reliability growth models also reason about the failure rates of the

systems or components under test. Under the assumption that during the test, each

failure corresponds to one detected new fault, it is possible to derive a failure rate

function λ(t), representing the failure rate of the system or component at time t (i.e.

λ (t) = dm (t)/dt). Therefore, the expected failure rate of the system or component at

the planned end of test is λ(tE). As another possibility, in order to meet the given failure

rate requirement, tE can be selected in a dynamic way. Also, assuming that the usage

profile of the system or component in the operational phase can be determined, and if

test inputs are selected randomly according the usage profile, it is possible to predict

the failure rate of the system or component in the operational phase.

Several authors (e.g. [3, 32]) have shown that software reliability growth models can

be used to gather inputs for approaches in the field of component-based software relia-

bility modeling and prediction. For software components which already exist and have

undergone a certain amount of testing, their failure rates can be estimated by software

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 15

reliability growth models. Recently, Koziolek et al. [33] have illustrated this usage of

software reliability growth models on a large industrial control system. However, Apel

[34] points out several problems with regard to software reliability growth models, in-

cluding model selection problem, lack of metrics for analyzing long-term predictability,

and lack of empirical studies on prediction accuracy. Furthermore, when applying soft-

ware reliability growth models in practice, their underlying assumptions are likely to be

violated [35], e.g. the removal of a fault may be not instantaneous, the correction of a

fault may introduce new faults.

When software reliability growth models are used to determine failure rates of software

components, there are additional problems to consider. In case they are applied to each

component in isolation, it is necessary to test each component according to its own usage

profile within the whole system architecture. In case system-level test runs are used, it

is necessary to determine how many times each component are invoked in each test run

and when there is a failed test run, which component is to blame for.

There exists work to improve software reliability growth models and deal with their

problems (for a summary, see [31]). Yet, the use of software reliability growth models to

gather inputs for approaches in the field of component-based software reliability modeling

and prediction needs further investigation regarding the challenges mentioned above.

2.2.2 Software Defect Prediction Models

Efforts related to estimating the number of faults (or defects) contained in software

systems or component are known as software defect prediction models. Defect count (the

number of defects) and defect density (the number of defect in a connection with the

code size) are the target metrics. Software defect prediction models utilize different kinds

of artifacts from different stages of the software development as information sources. It

is assumed that the following factors have the most influence on the number of defects

in a software system or component:

• Size and complexity : It is expected that the number of defects in a software sys-

tem or component is proportional to its size and complexity. Code size can be

measured in the number of lines of code (LOC), code segments, or machine code

instructions. McCabe’s Cyclomatic Complexity [36] (related to the number of

decision statements in the code), Halstead’s Volume, Difficulty, and Effort [37]

(related to the number of operands and operators in the code), and Albrecht’s

Function Points [38] (related to the amount of functionality provided by a com-

ponent or system, usually obtained from specifications rather than the code) are

several examples of metrics for code complexity.

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 16

• Test-related factors: To estimate the total (or remaining) number of defects, it

is possible to utilize an existing test history. Examples of metrics include the

number of detected defects and the accomplished test coverage (can be statement

coverage, branch coverage, etc.) [39], and the testability (i.e. the possibility that

the test detects possible defects, usually determined via static code analyses) [40]

of a system or component.

• Process quality : A high-quality development process is expected to produce soft-

ware systems or components with less defects. The SEI Capability Maturity Model

(CMM) [41], a process quality model, has been used to estimate defect densities.

Based on the existing data sets from the software development, many software defect

prediction models attempt to obtain general formulas for the number of defects (e.g.

[42, 43]). Fenton et al. [44] have pointed out flaws in such works, including a tendency

towards oversimplification by focusing on a subset of the relevant factors, and incorrect

use of statistical analyses with misleading results. However, this research field is still very

active so far (for a recent review, see [45]). More advanced software defect prediction

models have been developed using different formalisms, e.g. Capture-Recapture model

[46], Bayesian networks [47]. From code metrics data, it is also possible to employ

machine learning and data mining to estimate the number of defects (e.g. [48, 49]).

Although there are many existing software defect prediction models, using them to derive

input information for approaches in the field of component-based software reliability

modeling and prediction is a challenge. There is no straightforward relation between the

number of faults in a software component and its failure rate. The component’s failure

rate is dependent on the possibility that existing faults are activated under a certain

usage profile of the component. Recently, Zeimmermann et al. [50] have pointed out that

it may be invalid to reuse results of software defect prediction models across multiple

software development projects, whether or not these projects employ the same software

development process model, or come from the same domain. However, in a software

development process, software defect prediction models can be used to guiding decisions

and further research efforts may fill the gap towards providing input information for

reliability prediction.

2.2.3 Further Approaches to Software Reliability Estimation

There have been further efforts to estimate failure rates or failure probabilities of a soft-

ware component or system. In order to assure required reliability levels, an operational

test or validation test can be conducted at late testing stages [51, 52]. The component

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 17

or system is tested as if it executed according to its usage profile of the operational

field. Then, it is possible to deduce the upper bounds for failure rates with certain levels

of confidence from a certain amount of failure-free execution by applying frequentist

inference [53]. It is also possible to apply methods and tools from model-based testing

to support and automate partially the testing process [54–56]. As an example, JUMBL

(J Usage Model Builder Library) [54] generates automatically test cases according to a

usage profile specified as a Markov model, and then determines reliability estimates and

confidence levels from the results of executed test cases. However, applying such meth-

ods on software systems or components with high reliability requirements is a major

challenge because of extremely high testing efforts required [3].

There have also been efforts specially targeting component-level reliability estimation,

known as component reliability models [11, 57]. Component states and transition proba-

bilities between them are expressed by Markov models. Usually, there are two categories

of states, namely normal operation and failure. Different information sources can be used

to build component reliability models, e.g. component specifications, domain knowledge,

use cases descriptions for components, simulations, as well as existing functionally sim-

ilar components [11]. Then, it is possible to determine the failure probability or failure

rate of the component by applying Markov theory. Component reliability models appear

to be promising. Because of being based on a component model rather the component

itself, they can be applied even if a component has not been implemented and executed

under test, and they are not restricted by the level of reliability requirements. However,

building such models is not straightforward and the problem of estimating reliability

characteristics of a component is decomposed into a set of problems of estimating a

component’s internal properties, i.e the original problem is not completely resolved.

When using component reliability models to gather input information for approaches

of the field of component-based software reliability modeling and prediction, it is nec-

essary to put each component reliability model in the component’s usage profile within

the whole system architecture. Further research efforts on component reliability models

could increase their applicability to a more spread use.

Palviainen et al. [58] have summed up further efforts, known as heuristic reliability

evaluation, to derive component reliability estimations, considering different reliability-

influencing factors, including component size, complexity metrics and maturity levels,

testing and operational data from existing similar components, level of experience of

component developers or component vendors, etc. However, the authors have also

pointed out that such efforts are not as strong as test-based approaches and compo-

nent reliability models because their results may become invalid when applied across

software development projects or companies.

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 18

Sunny

Rainy

0.9
0.1

0.5

0.5

0.9 0.1

0.5 0.5

Sunny Rainy

Sunny
P

Rainy

Figure 2.2: Example of DTMC

2.3 Markov Chains

Markov chains have been used as a fundamental modeling formalism of many approaches

in the field of component-based software reliability modeling and prediction, including

the RMPI approach in this dissertation. This section presents a brief introduction to

Markov chains, limited to aspects relevant to the dissertation’s context (see [59] for a

detailed consideration).

A Markov chain is a stochastic process (or random process, i.e. its operation is described

by probability distributions instead of being predetermined) which has a discrete (finite

or countable) set of states (called state space) and the property that given the present,

the future is conditionally independent of the past (called Markov property). A discrete-

time Markov chain (DTMC) has transitions between its states at certain points in time,

while a continuous-time Markov chain (CTMC) allows state transitions at any time.

Markov chains have many applications as stochastic models of real-world processes, and

different properties of a Markov chain can be examined by Markov theory.

Formally, a DTMC is described by a state space S = {s1, s2, ..., sn} and transitions T =

{t1, t2, ..., tm} where each entry tk = (source (tk) , target (tk) , probability (tk)) , k ∈ [1,m]

denotes the transition from source state source (tk) ∈ S to target state target (tk) ∈
S with transition probability value probability (tk) ∈ [0, 1]. The DTMC can also be

described by a n×n transition matrix P, with each entry pij ∈ [0, 1] ,∀i, j ∈ {1, 2, ..., n}
representing the transition probability from si to sj . The sum of entries in each row

equals to 1:
∑n

j=1 pij = 1,∀i ∈ {1, 2, ..., n}.

Example 2.1. Fig. 2.2 shows an example of DTMC (with its transition matrix) repre-

senting the weather conditions. The weather in each day is one of states S = {Sunny,Rainy}.
The weather may stay the same or change between days. The transition matrix shows

that a sunny day is 90% likely to be followed by another sunny days, and a rainy day

is 50% likely to be followed by another rainy day. The columns of the transition matrix

P can be labeled “Sunny” and “Rainy” and the rows of P can be labeled in the same

order. As a result of the Markov property, the weather of tomorrow is only dependent

on the weather of today, not on the weather history of days before today. Compared to

reality, this is an assumption to make the model less complicated and therefore easier to

analyze. Despite of its abstractions, as for certain purposes (e.g. predicting the weather,

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 19

or steady state of the weather), the model may still be a capable representation of the

corresponding real-world process.

In a DTMC, an absorbing state is a state that, once entered, cannot be left. If si ∈ S

is an absorbing state, then pii = 1, pij = 0 ∀i 6= j. A DTMC is an absorbing DTMC if

there is at least one absorbing state, and it is possible to go from any state to at least

one absorbing state in a finite number of steps. In an absorbing DTMC, a state that

is not absorbing is called transient. Let an absorbing DTMC with transition matrix P

have t transition states and r absorbing states, then

P =

(
Q R

0 Ir

)
,

where Q is a t× t matrix, R is a nonzero t×r matrix, 0 is an r× t zero matrix, and Ir is

the r× r identity matrix. Thus, Q describes the probability of transitioning from some

transient state to another while R describes the probability of transitioning from some

transient state to some absorbing state. A basic property about an absorbing DTMC is

the expected number of visits to a transient state sj starting from a transient state si

(before being absorbed), which is the (i, j)-entry of the fundamental matrix

N = (It −Q)−1,

where It is the t × t identity matrix. Another property is the probability of being

absorbed in the absorbing state sj when starting from transient state si, which is the

(i, j)-entry of matrix B = NR.

Similar to a DTMC, a CTMC is also described by a state space S = {s1, s2, ..., sn} and

transitions T = {t1, t2, ..., tm}. However, each transition tk = (source (tk) , target (tk) ,

rate (tk)), k ∈ [1,m] is associated with a transition rate value instead of a transition

probability value. The CTMC can also be described by a transition rate matrix A with

each entry aij ∈ R+
0 ,∀i, j ∈ {1, 2, ..., n} indicating that the transition rate from si to sj .

For each row, its diagonal entry is aii = −
∑n

j=1,j 6=i aij ,∀i ∈ {1, 2, ..., n}. A transition

rate aij > 0 indicates that transitions from si to sj take place with frequencies specified

by the exponential distribution with parameter 1/aij . A zero transition rate aij = 0

indicates that transitions from si to sj never take place. Different from DTMCs, each

state si of a CTMC has a variable T̃i of sojourn time (or the amount of time between

transition occurrences) according to a continuous time scale. The expected sojourn time

of si is determined based on its transition rates: E
(
T̃i

)
= 1/−aii.

DTMCs, CTMCs, and other related formalisms, e.g. semi-Markov process, constitute

a powerful means for approaches in the field of component-based software reliability

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 20

modeling and prediction to represent the control and data flow between components

throughout the whole system architectures. While other formalisms focus on the inputs,

outputs, and internal progressions of the system (e.g. state charts [60], finite state

machines [61]), Markov models capture various aspects of the system behavior (e.g. the

system usage and its influence on the service execution via probabilistic annotations),

resulting in a high-level representation of the system. Then, existing Markov theory can

be applied to evaluate the created Markov models for reliability predictions. The RMPI

approach in this dissertation exhibits novel methods to utilize absorbing DTMCs for a

comprehensive reliability modeling and prediction (see Chapter 4).

2.4 Component-based Software Reliability Modeling and

Prediction

As mentioned in Section 2.1.2, approaches in the field of component-based software

reliability modeling and prediction aim to overcome the drawback of traditional relia-

bility analysis methods with regard to component-based software systems. This section

briefly introduces the field (for surveys, see [3–5]). Similar to several related analysis

methods (e.g. fault trees, reliability block diagrams), approaches in the field assume that

the system’s overall failure possibilities can be determined from its components’ failure

possibilities. However, the ways to express the system structure and its components’

relationships in traditional methods (e.g. AND/OR relationships in fault trees) are

oversimplified to cover complex relations between components. From that, approaches

in the field choose a more expressive formalisms to represent the data and control flow

between components within the overall system architecture.

Cheung’s approach [8] is one of the first approaches that consider the system reliability

with respect to components utilization and their reliabilities. The approach has much in-

fluence on the development of the field of component-based software reliability modeling

and prediction and serves as a fundamental model for a lot of approaches in the field. He

introduces an absorbing DTMC to describe the control flow through the system archi-

tecture. In the DTMC, states represent software components and transitions represent

the transfer of control between components when executing a certain system service.

Each component is annotated with an independent failure probability, representing the

possibility that this component fails to perform its function during a service execution.

For reliability evaluation, two absorbing states are added, indicating successful service

execution and service failure. Without loss of generality, one more initial state can be

added such that service execution always starts in this state. By using Markov theory

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 21

1-fp(C3)

I

 C1 C2 C3 C4

p21(1-fp(C2))

p23(1-fp(C2))

(1-p21-p23)(1-fp(C2)

1.0

F

S

fp(C1) fp(C2) fp(C3) fp(C4)

1-fp(C4)p12(1-fp(C1))
1.0

1.0

(1-p12)(1-fp(C1))

Figure 2.3: Example of a system architecture modeled by an absorbing DTMC.

(see Section 2.3), the probability of successful service execution, i.e. the system relia-

bility, can be calculated as the probability of reaching the success state from the initial

state. The approach assumes that a service execution finishes in either the success state

or the failure state, i.e. an assumption of terminating applications. Because of being

based on the system model and component failure probabilities, the approach can be ap-

plied at early design states when the system is not yet available, predicting the expected

system reliability of the system implementation. However, applying the approach needs

the estimates of required inputs even though sensitivity analyses can be conducted to

assess the impact of uncertain input estimations.

Example 2.2. Fig. 2.3 shows an example of a system architecture modeled by an ab-

sorbing DTMC. In addition to states representing components C1, C2, C3, and C4, an

initial state I, a success state S, and a failure state F are added. In order to calculate

the system reliability, i.e. the probability of reaching state S from state I, it is neces-

sary to estimate component failure probabilities fp(C1), fp(C2), fp(C3), and fp(C4),

as well as transition probabilities p12, p21, and p23. This DTMC allows for expressing

all possible control flow paths and their probabilities, e.g. the execution path I-C1-C4-S

with probability 1.0×(1− p12) (1− fp (C1))×(1− fp (C4)). The model assumes that the

control transitions between components have the Markov property. This assumption can

lead to paths that are possible in the model but not in reality. For example, in reality, the

number of cycles between components C1 and C2 may be limited by a maximum number

max(n), while the model allows for an arbitrary number of cycles before finishing in

either success or failure states. However, if transition probabilities are chosen such that

the expected number of cycles between components C1 and C2 corresponds to the average

number of cycles in reality, the model can still provide sufficiently accurate results.

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 22

Beyond absorbing DTMCs, other related formalisms (e.g. DTMCs, CTMCs, semi-

Markov processes) have been used by many approaches in field of component-based

software reliability modeling and prediction (e.g. [9, 10, 13–15, 17, 18, 24, 25, 62–64])

to represent the control and data flow throughout the system architecture and its fail-

ure possibilities (for a comprehensive survey, see [3]). Further categories of approaches

include path-based and addictive approaches, using less related formalisms, but are still

be considered as in the field by the survey:

• Path-based approaches calculate the system reliability explicitly considering the

possible execution paths of the system. A sequence of components along differ-

ent paths is obtained either experimentally by testing or algorithmically. The

reliability of each path is calculated by multiplying the reliabilities of the com-

ponent along the path. Then, the system reliability is calculated by averaging

path reliabilities over all paths. These approaches are not affected by the Markov

assumption. However, a comprehensive consideration of all execution paths may

be impossible because of extremely high number of possible execution paths (e.g.

when the system model contains loops). Therefore, they often consider only the

most frequent paths.

• Addictive approaches assume that each component reliability can be modeled by

non-homogeneous Poisson process (NHPP). Then, system failure process is also

NHPP with cumulative number of failures and failure rate function that are the

sums of the corresponding functions for each component. These approaches assume

that each of the components is always visited during a service execution (i.e. not

explicitly considering the system architecture).

Throughout the years, approaches in the field of component-based software reliability

modeling and prediction offer several differences and extensions compared to Cheung’s

model, e.g. the consideration of execution environment (e.g. [14, 18, 24]), the inclusion

of uncertainty analyses (e.g. [65, 66]), or the provision of design-oriented input modeling

language (e.g. [9, 16, 17, 24, 25, 67]). Still, they suffer from several drawbacks in with

regard to the consideration of reliability-influencing factors, namely error propagation,

software fault tolerance mechanisms, and concurrently present errors (see Section 2.6),

therefore are limited in their applicability and accuracy. Thus, by overcoming these

drawbacks, the RMPI approach in this dissertation offers a comprehensive reliability

modeling and prediction and constitutes further progress in the field.

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 23

2.5 Software Fault Tolerance Mechanisms

This section introduces the most important concepts related to software fault tolerance

mechanisms, based on existing surveys and overviews [6, 7, 31, 68, 69]. Fault tolerance

mechanisms denote any capabilities of a software system to autonomously prevent the

occurrence of system failures in the presence of faults that have already activated and re-

sulted in error within the system. It is obvious that fault tolerance mechanisms influence

the probability of successful service execution. The RMPI approach in this dissertation

supports modeling fault tolerance mechanisms and takes them into consideration for

reliability prediction.

A key supporting concept for fault tolerance mechanisms is redundancy, that is, addi-

tional resources that would not be required if fault tolerance mechanisms were not being

employed. Redundancy can take several forms: function, information, and time [7, 69].

Functional redundancy includes additional software implementations (e.g. components,

objects) used in the system to support fault tolerance, introducing the concept of design

diversity. Information or data redundancy includes the use of additional information

with data and the use of additional forms of data to assist in fault tolerance, introduc-

ing the concept of data diversity. Temporal redundancy involves the use of additional

time to perform operations required to accomplish fault tolerance. Fault tolerance mech-

anisms can also be differentiate between single-version software mechanisms (denoting

the absence of functional redundancy), multiple version software mechanisms (employ-

ing functional redundancy), and multiple data representation mechanisms (employing

data redundancy) [31].

Avizienis et al. [6] have described in detail the principle of fault tolerance mechanisms.

A fault tolerance mechanism is carried out through error detection and system recovery.

Error detection is to determine the presence of an error. It can be performed on demand

(e.g. using an acceptance test to check the computation result) or in a preemptive

manner (e.g. testing the system health regularly). Error handling possibly followed

by fault handling together form system recovery. Error handling is to eliminate errors

from the system state, e.g. using rollback to bring the system back to a saved state the

existed prior to error occurrence, using rollforward to reach a new state without detected

errors, or using compensation in case the erroneous state contains enough redundancy

to enable error to be masked. Error handling can also performed on demand (e.g. after

the acceptance test has identified an erroneous computation result) or in a preemptive

manner (e.g. using software rejuvenation [70], aimed at removing the effects of software

aging before they lead to failure). Fault handling is to prevent faults from being activated

again and may include fault diagnosis, isolation, system or component reconfiguration,

and reinitialization. Fault handling may be followed by corrective maintenance, aimed

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 24

at removing faults the were isolated by fault handling. Corrective maintenance requires

the participation of an external agent and therefore is not included in fault tolerance

mechanisms.

Many fault tolerance mechanisms have been proposed throughout the years, either fo-

cusing the ability to tolerate activated faults in an on-demand manner or they are carried

out as periodic activities (i.e. in a preemptive manner). The former category includes,

among others, Recovery Blocks, Retry Blocks, N-Version Programming, and N-Copy

Programming. A Recovery Block consists of an acceptance test and primary and alter-

nate try blocks. It first attempts to ensure the acceptance test (i.e pass a test on the

acceptability of a result of an alternate) by using the primary alternate (or try block).

If the primary alternate’s result does not pass the acceptance test, then the remaining

alternates are attempted until an alternate’s result passes the acceptance test. If no alter-

nates are successful, an error occurs. A Recovery Block employs functional redundancy

(multiple alternates of the same functionality) and temporal redundancy (the overhead

of executing alternates). Retry Blocks are similar to Recovery Blocks but employ data

redundancy instead of functional redundancy. They execute multiple times the same

behavior with logically equivalent variants of the input data (obtained by using data

re-expression). Different from Recovery Blocks and Retry Blocks, N-Version Program-

ming and N-Copy Programming execute all functional or data alternatives (or variants)

concurrently. They do not conduct acceptance tests for explicitly detecting errors but

rely on voters (which compare the results of variants to determine the correct result).

Several variations of these fault tolerance mechanisms have been proposed, ranging from

simple uses of different voters to combinations of multiple fault tolerance mechanisms

(e.g. The Consensus Recovery Block mechanism which combines Recovery Block and

N-Version Programing implementation mechanisms). Additionally, new fault tolerance

mechanisms are often proposed to overcome the limitations associated with previous

mechanisms, to provide fault tolerance for specific problem domains, or to apply new

technologies to the needs of software fault tolerance, while attempting to maintain the

strengths of the foundational mechanisms [7].

In traditional form, fault tolerance mechanisms have been employed at implementation

levels of software systems. However, it is possible to apply fault tolerance mechanisms at

the architectural levels of software systems [71], e.g. introducing new components or as-

signing special responsibilities to components for purposes of fault tolerance . In the field

of component-based software reliability modeling and prediction, there are still very few

approaches that explicitly consider fault tolerance mechanisms (see Section 2.6.2). The

RMPI approach in this dissertation acknowledge that fault tolerance mechanisms can be

employed at the architectural levels of software systems and may influence significantly

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 25

their reliabilities. The approach allows modeling explicitly fault tolerance mechanisms

and evaluating their impact on the system reliability (see Section 3.2.1.3).

2.6 Related Work

The RMPI approach in this dissertation belongs to the field of component-based software

reliability modeling and prediction (for surveys, see [3–5]). The covered related work in

this section mainly belongs to the field but further reliability modeling approaches for

individual fault tolerance mechanisms are also mentioned.

2.6.1 Error Propagation Modeling

One of the factors that make the RMPI approach unique is the way how the approach

considers error propagation for multiple execution models, including sequential, parallel,

and fault tolerance execution models. Although error propagation is an important ele-

ment in the chain that leads to system failure, many approaches [8, 9, 11, 12, 16, 17, 23–

25, 64, 72, 73] do not consider it. They assume that any error arising in a component

immediately manifests itself as a system failure, or equivalently that it always propagates

(i.e. with probability 1.0 and with the same failure type) up to the system interface [13].

However, some approaches [13, 14, 63, 74] have made a steps towards a consideration

of error propagation. A closer investigation of those approaches reveals that they con-

sider it only for the sequential execution model, and therefore, they do not match the

consideration of error propagation for multiple execution models as done by the RMPI

approach (see Chapter 3). In the following, existing approaches are surveyed with regard

to the consideration of error propagation.

Cheung’s approach [8], one of the first approaches, expresses the control flow between

components in a software system using an absorbing DTMC. Some recent approaches

extend Cheung’s approach to support different architectural styles [15] and to combine

reliability analysis and performance analysis [10] but do not consider error propagation.

Further approaches building upon the Cheung’s model such as the approach of Lipton

et al. [73] which takes interface failures and network connection failures into account,

the approach of Sharma et al. [18] which supports modeling component restarts and

retries, also do not consider error propagation.

The approach of Reussner et al. [9] is based on Rich Architecture Definition Language

(RADL) but employs the same underlying theory as Cheung’s approach for reliability

prediction. The approach of Brosch et al. [12] extends the approach of Reussner et al.

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 26

to consider explicitly the influences of system usage profile and execution environment

on the system reliability. However, these approaches do not consider the influence of

error propagation on the system reliability.

The approach of Cheung et al. [11] uses hidden Markov models to determine component

failure probabilities and does not include calls to other components, thus ignores error

propagation. The approach of Sato et al. [23] combines a system model of interacting

system services with a resource availability model but does not consider application-level

software failures, thus also ignores error propagation. The approaches of Grassi [62] and

Zheng et al. [64] aim at reliability prediction for Service-Oriented Architectures (SOA).

The approach of Grassi considers recursively composed services, where each service may

invoke multiple external services in order to complete its own execution. The approach

of Zheng et al. employs a workflow description for composite services with sequential,

looping, and parallel structures. However, these approaches neglect the impact of error

propagation between services.

Grassi et al. [72] reuse a number of concepts of the approach of Grassi [62] and propose

the Kernal Language for Performance and Reliability Analysis (KLAPER). The aim

of KLAPER is to capture the relevant information for the analysis of non-functional

attributes (e.g. performance and reliability) of component-based systems. Then, an

analysis model (e.g. queuing networks, Petri nets, Markov models, or PRISM models

[75]) can be generated based on the information expressed in the language. However,

error propagation characteristics have not been considered in KLAPER.

Scenario-based approaches such as the approach of Yacoub et al. [24] which constructs

component dependency graphs from component sequence diagrams as a basic for re-

liability prediction, the approaches of Cortellessa et al. [16] and Goseva et al. [17]

which employ UML diagrams annotated with reliability properties, the approach of Ro-

drigues et al. [25] which is based on message sequence charts, also do not consider error

propagation.

The approaches [15, 18, 62, 72, 76] that support modeling software fault tolerance mech-

anisms (see also Section 2.6.2) also assume that any error arising in a component im-

mediately manifests itself as a system failure if there is no fault tolerance mechanism

in the system. Otherwise, they assume that any error arising in a component always

propagates (i.e. with probability 1.0 and with the same failure type) until fault tolerance

mechanisms get involved to provide error handling.

Some approaches have proposed taking error propagation between components into ac-

count. The approach of Popic et al. [14] assumes that each error arising within a

component always causes a system failure and at the same time, it can also propagate

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 27

to other components to affect their reliability. This assumption of immediate failure

seems to conflict with the reason of error propagation to other components [13]. The

approach of Cortellessa et al. [13] assumes that the internal failure probability and the

error propagation probability of each component are independent of each other. As a

consequence of this independence assumption, they argue that when a component fails,

it always transmits an error to the next component irrespective of whether it has re-

ceived or not an erroneous input from the previous component. This is not always valid

because the failed computations of a component can overwrite the error from its erro-

neous input and therefore can produce a correct output. The approaches of Filieri et

al. [63] and Mohamed et al. [74] support multiple failure types when considering error

propagation. However, all these approaches consider error propagation only for a single

sequential execution model, ignoring the consideration of error propagation for parallel

and fault tolerance execution models which are often used by modern software systems.

2.6.2 Software Fault Tolerance Mechanisms Modeling

Software fault tolerance mechanisms are commonly included in software systems (see

Section 2.5) and constitute an important means to improve reliability. Therefore, the

RMPI approach takes into consideration explicitly the capabilities of these mechanisms

(see Section 3.2.1.3). The approach offers enhanced fault tolerance expressiveness, explic-

itly and flexibly modeling how both error detection and error handling of fault tolerance

mechanisms influence the control and data flow within components. As a result, the ap-

proach allows modeling comprehensively different classes of fault tolerance mechanisms

and evaluating their impact on the system reliability in the dependence of the whole

system architecture and usage profile.

In contrast, many approaches [8, 9, 11, 12, 16, 17, 23–25, 64, 73] do not support model-

ing software fault tolerance mechanisms. The approaches [13, 14, 63, 74] that consider

explicitly error propagation introduce error propagation probabilities to model the pos-

sibility of propagating component failures. The complement of an error propagation

probability can be used to express the possibility of masking component failures. How-

ever, fault tolerance mechanisms with their error detection and error handling cannot

be considered explicitly by these approaches.

Some approaches step forward and take fault tolerance mechanisms into account. The

approach of Sharma et al. [18] supports modeling component restarts and component

retries. The approach of Wang et al. [15] supports different architectural styles includ-

ing fault tolerance architectural style. The approach of Grassi [62] introduces the OR

completion model denoting the possibility that a composed service requires only 1 out

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 28

of n invoked external services to be successful in order for its own execution to suc-

ceed. However, these approaches do not consider the influences of both error detection

and error handling of fault tolerance mechanisms on the control and data flow within

components. The approach of Brosch et al. [76] extends Recovery Blocks to flexibly

describe error handling of fault tolerance mechanisms but still does not consider the

influences of error detection of fault tolerance mechanisms on the control and data flow

within components. More concretely, these approaches assume that when there is an

error of a certain failure type caused by a component failure, a fault tolerance mecha-

nism can always handle the error if it aims to handle errors of that failure type. This

means that the fault tolerance mechanism perfectly detects errors of that failure type

(i.e. with error detection probability 1.0). However, in reality, error detection is not

perfect and therefore, a fault tolerance mechanism may let errors caused by component

failures propagate to its output without activating its error handling, which in turns

influences the control and data flow within the component service containing this fault

tolerance mechanism. Ignoring the influences of either error detection or error handling

of fault tolerance mechanisms on the control and data flow within components can lead

to incorrect prediction results when the behaviors of fault tolerance mechanisms deviate

from the specific cases mentioned by the authors.

A great deal of past research effort focuses on reliability modeling of individual fault

tolerance mechanisms. Dugan et al. [20] aim at a combined consideration of hardware

and software failures for Distributed Recovery Blocks, N-version Programming, and N

Self-checking Programming through fault tree techniques and Markov processes. Ka-

noun et al. [19] evaluate Recovery Blocks and N-version Programming using generalized

stochastic Petri nets. Gokhale et al. [21] use simulation instead of analysis to evaluate

Distributed Recovery Blocks, N-version Programming, and N Self-checking Program-

ming. Their so-called non-architectural models do not reflect the system architecture

and the usage profile. Therefore, although these approaches provide more detailed anal-

ysis of individual fault tolerance mechanisms, they are limited in their application scope

to system fragments rather than the whole system architecture (usually composed of dif-

ferent structures) and not suitable when evaluating architecture variants under varying

usage profiles.

2.6.3 Concurrently Present Errors Modeling

To the best of our knowledge, the RMPI approach is the first work to support model-

ing concurrently present errors (see Chapter 3), tending to obtain accurate prediction

results. All existing approaches in the field support only a single error at any time, even

though situations involving multiple failures are frequently encountered [6]. Neglecting

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 29

concurrently present errors can lead to inaccurate prediction results because there exist

system failures that cannot be covered by existing approaches [22].

2.6.4 Further Modeling and Prediction Approaches

Besides the approaches discussed so far, several other works aim at system reliability or

availability prediction but are different in their goals and scope from the RMPI approach

[67, 77, 78].

Bernardi et al. [67] present the MARTE-DAM profile offering a comprehensive depend-

ability modeling. The main focus of this work is on modeling rather than prediction.

The authors demonstrate a transformation from the design model of a case study to a

deterministic and stochastic Petri net and conduct availability prediction for the case

study. However, they do not propose a transformation and prediction method for the

general case.

Kharboutly et al. [78] has proposed an approach to analyze the reliability of concurrent

component-based software systems using Stochastic Reward Nets as a variation of the

stochastic-Petri-net formalism. They do not consider error propagation, software fault

tolerance mechanisms, and concurrently present errors. Moreover, the approach targeted

at reliability evaluation as a time-dependent probability that the considered software

system “survives” from a defined start t0 up to a point in time t without visiting any

failure states, which is different from the goal of the RMPI approach to predict the

probability of successful service execution at an arbitrary point in time.

The ABAS (Attribute Based Architecture Styles) approach [77] provides architecture

styles or parterns with the modeling supports for the analysis of particular quality at-

tributes (e.g. reliability, availability). However, currently, the only one style focusing on

software reliability is the Simplex ABAS. The Simplex ABAS addresses the problem of

how to take advantage of redundancy to increase reliability, and introduces the concepts

of redundant components, acceptance tests and a decision and switch unit. Hence, the

approach suffers from the same limitations as of the reliability modeling approaches for

individual fault tolerance mechanisms (see Section 2.6.2).

2.6.5 The RMPI Approach and the Field of Component-based Soft-

ware Reliability Modeling and Prediction

Table 2.1 summaries most related approaches with regard to the three gaps identified

above. A hyphen mark means that an approach does not support the feature and a

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 30

Table 2.1: Most Related Approaches.

A
u

th
o
rs

Y
e
a
r

E
rr

o
r

p
ro

p
a
g
a
ti

o
n

S
o
ft

w
a
re

fa
u

lt
to

le
ra

n
c
e

m
e
ch

a
n

is
m

s

C
o
n

c
u

rr
e
n
tl

y
p

re
se

n
t

e
rr

o
rs

Grassi [62] 2004 - X -

Popic et al. [14] 2005 X - -

Wang et al. [15] 2006 - X -

Sharma et al. [18] 2006 - X -

Grassi et al. [72] 2007 - X -

Cortellessa et al. [13] 2007 X - -

Mohamed et al. [74] 2008 X - -

Filieri et al. [63] 2010 X - -

Brosch et al. [76] 2011 - X -

Pham et al. [This dissertation] 2014 X X X

check mark means that an approach supports the feature. Error propagation are sup-

ported by some approaches but they introduce new assumptions which deserve further

investigation about their soundness, and/or consider error propagation only for a single

sequential execution model. None of these approaches supports a consideration of error

propagation for multiple execution models, including sequential, parallel, and fault tol-

erance execution models. Some approaches support modeling software fault tolerance

mechanisms but they lack flexible and explicit expressiveness of how error detection and

error handling of fault tolerance mechanisms influence the control and data flow within

components. Concurrently present errors are not supported by any approaches.

While the RMPI approach in this dissertation receives benefits from the experiences

gained in the field of component-based software reliability modeling and prediction by

these approaches, it also presents unique features that enhance the state of the art,

including (1) a consideration of error propagation multiple execution models, (2) a con-

sideration of software fault tolerance mechanisms with explicit and flexible expressiveness

of how both error detection and error handling of fault tolerance mechanisms influence

Chapter 2. Software Components and Reliability: Basics and State-of-the-Art 31

the control and data flow within components, and (3) a consideration of concurrently

present errors.

Remark Related approaches in the field have presented other kinds of contribu-

tions. To this end, some approaches investigate alternative modeling formalisms such

as Bayesian networks (e.g. [16]) or Markov reward models (e.g. [23]), focus on service-

oriented architectures (e.g. [62, 64]), conduct reliability optimization (e.g. [63, 73]),

offer combined predictions of multiple quality attributes (e.g. [10, 18], provide closed-

form-formula considerations of input uncertainties and the corresponding sensitivity of

analysis results (e.g. [66]), supply combined considerations of software and hardware

failures (e.g. [12, 18, 62, 72]), and propose parameterized reliability prediction (e.g.

[12, 62, 72]). In future work, the RMPI approach may receive benefits from adopting

these contributions and integrating them with its existing achievements.

2.7 Summary

This chapter has presented the basics on which the RMPI builds. The discussion covers

basic concepts related to software reliability, the overall context of reliability engineer-

ing and software reliability engineering, as well as the related field of component-based

software reliability modeling and prediction. Further areas of discussion include exist-

ing methods for estimating software failure possibilities, an overview of software fault

tolerance mechanisms, and a short introduction to Markov chains, on which the RMPI

approach and many approaches in the field of component-based software reliability mod-

eling and prediction build. Finally, this chapter reviewed existing approaches in the field

of component-based software reliability modeling and prediction, pointing out that they

provide limited support for modeling error propagation, fault tolerance mechanisms, and

concurrently present errors.

Chapter 3

Methodology and Reliability

Modeling

While the previous chapter has introduced the basics on which the RMPI approach

builds, the individually discussed aspects are not yet connected and cannot be used

directly for reliability modeling, prediction, and supporting design decisions for reliability

improvements. This chapter combines the discussed aspects and fills the remaining gaps

in order to explain the methodology of the RMPI approach and its reliability modeling

capacities. Section 3.1 introduces the steps of the approach and explains the involved

developer roles. Section 3.2 describes in detail modeling reliability of component-based

software architectures using the reliability modeling schema of the approach. Section 3.3

concludes the chapter with a brief description of the implementation of the schema.

3.1 RMPI Methodology

A component represents a modular part of a system that encapsulates its contents

and whose manifestation is replaceable within its environment [79]. A component has

its behavior defined in terms of provided and required interfaces. This information is

sufficient to assemble components and check their interoperability. However, in order to

predict the reliability of a component-based software architecture, additional information

about each component is required.

Since there exists a strict separation between component developers and software ar-

chitects in Component-Based Software Engineering (CBSE), it is necessary to consider

these two roles when creating specifications (or models) to capture the additional infor-

mation. Therefore, component developers implement components and provide not only

32

Chapter 3. Methodology and Reliability Modeling 33

Component

developers

Software

architects

A reliability

prediction tool

Modeling components,

services, service

implementations

Modeling failure models in

service implementations

Modeling fault

tolerance structures

Modeling system

architecture

Modeling usage

profile

System

reliability model
Transforming

model

Analyzing

Markov models

Reliability

Predictions

Sensitivity

analyses
Result OK?

Yes

Assembling actual

component implementations

6

NoRevising components,

architecture, usage profile

5

Creating/updating a

system reliability model

Creating/updating component

reliability specifications

1

2

3

4

Component reliability

specifications Markov

modelsA reliability modeling schema

Figure 3.1: Reliability engineering process (modeling, prediction, and improvement).

component functional specifications but also component reliability specifications. Soft-

ware architects use these component reliability specifications and provide additionally

usage profiles in order to predict the reliability of planned system architectures. Later,

they assemble the actual component implementations.

A component reliability specification needs to describe the behaviors of services provided

by the component, i.e. how provided services of the component are related to required

services and internal activities of the components in terms of frequencies and probabil-

ities. From that, by assembling these specifications and providing additionally usage

profiles, software architects create system reliability models reflecting the control and

data flow throughout the whole planed system architectures for reliability predictions

without referring to component internals. In Section 3.2, a reliability modeling schema

is introduced that supports component developers to create component reliability spec-

ifications and software architects to create system reliability models.

The RMPI approach in this dissertation follows repetitively six steps as depicted in

Fig. 3.1. In Step 1, component developers create component reliability specifications.

Chapter 3. Methodology and Reliability Modeling 34

A component reliability specification includes reliability-related properties (e.g. failure

probabilities) and call propagations to required services for each provided service of the

component. How to determine these probabilities (e.g. using methods described in

Section 2.2) is beyond the scope of this dissertation. For already implemented compo-

nents, call propagations can be derived from static code analysis (e.g. [80]) or dynamic

monitoring (e.g. [81]).

More concretely, component developers model components, services and service imple-

mentations, and then failure models (i.e. different failure types with their occurrence

probabilities) in service implementations. Component developers/software architects

can include different fault tolerance structures, e.g. RetryStructures, MultiTryCatch-

Structures, or MVPStructures (see Section 3.2.1.3), either directly into service imple-

mentations of already modeled components or as additional components. Fault toler-

ance structures support different configurations, e.g. the number of times to retry in

a RetryStructure, the number of replicated instances for handling certain failure types

in a MultiTryCatchStructure, or the number of versions executed in parallel in a MVP-

Structure.

In Step 2, software architects create a system reliability model by assembling component

reliability specifications following a planed system architecture and providing addition-

ally a usage profile for the complete system (i.e. interacting directly to users or other

systems).

In Step 3, from the system reliability model, it is possible to describe the control flow

throughout the whole system architecture by propagating requests at the system bound-

ary to individual components. Because each component reliability specification includes

call propagations to required services of the component, this method works recursively.

The resulting model can be transformed into Markov models.

In Step 4, by analyzing the Markov models, a reliability prediction for each provided

services at the system boundary can be derived, based on the failure probabilities of

the components inside the system architecture. To support Step 3 and Step 4, the

RMPI approach provides a reliability prediction tool whose transformation for reliability

prediction is described in detail in Chapter 4. With the tool support, sensitivity analyses

can also be derived, e.g. by varying reliability-related probabilities of components inside

the system architecture to obtain corresponding reliability predictions.

If the prediction results show that given reliability requirements cannot be meet, Step 5 is

performed. Otherwise, Step 6 is performed. In Step 5, there are several possible options:

component developers can revise the components, e.g. changing the configurations of

fault tolerance structures; software architects can revise the system architecture and the

Chapter 3. Methodology and Reliability Modeling 35

usage profile, e.g. trying different system architecture configurations, replacing some

key components with more reliable variants, or adjusting the usage profile appropriately.

Sensitivity analyses can be used as a guideline for these options, e.g. to identify the most

critical parts of the system architecture which should receive special attention during

revising. In Step 6, the modeled system is deemed to meet the reliability requirements,

and software architects assemble the actual component implementations following the

system architecture.

Remark In their taxonomy, Avizienis et al. [6] define a service failure of a system or

component service as the transition from correct service to incorrect service, i.e. to be

not in accordance with the expectation of the service users. They also state that an error

becomes a failure when reaching the external state of a component or a system, where

“external” means “perceivable at the service interface”. However, a user of the system

or component service does not necessarily perceive a failure from this definition. If

there is no invocation of the service, the failure may be entirely unrecognized. From the

other viewpoint, if the transition from correct service to incorrect service is permanent

and there are multiple invocations of the service, the failure may be perceived multiple

times. In his foundational approach in the field of component-based software reliability

modeling and prediction, Cheung [8] states that “A failure is said to occur if, given the

input values and specifications of the computations to be performed by the program, the

output values are either incorrect or indefinitely delayed.”. Here, Cheung focuses on the

user-perceived effects of a transition from correct service to incorrect service, instead of

the transition itself. Therefore, the RMPI approach, as well as many related approaches

(e.g. [12, 13, 16, 63]), distinguishes between a service failure and a failure on demand,

where the latter denotes user-perceived effects of the transition in terms of an undesired

service invocation result, including delivery of incorrect outputs, mistimed delivery of

outputs, or infinitely delayed processing.

3.2 Reliability Modeling

This section describes the reliability modeling schema of the RMPI approach which sup-

ports component developers to create component reliability specifications and software

architects to create system reliability models. It would have been possible for us to

build the RMPI approach upon UML. However, by introducing the reliability model-

ing schema, the approach avoids the complexity and the semantic ambiguities of UML

which make it hard to provide an automated transformation from UML to analysis

models. With regard to our specific purposes, the schema is more suitable than UML

Chapter 3. Methodology and Reliability Modeling 36

ComponentInstanceComponentConnector

SystemArchitecture

1..*0..*

UserInterface
1..*

-probabilities

-distributions

-averages

UsageProfilePart
Modeling elements for system reliability models

UsageProfile
1..*

Service

ProvidedService

RequiredService

(Abstract)

Component

1..*

0..*

ServiceImplementation

1..*

(Abstract)

Activity
-calledService

CallingActivity

InternalActivity

-probabilities

FailureModel

SignaledFailure

0..*

(Abstract)

Structure

SequentialStructure

BranchingStructure

-loopCount

-loopType

LoopingStructure

ParallelStructure

-handledFailures

-retryCount

RetryStructure

RetryPart

MultiTryCatchStructure

-handledFailures

MultiTryCatchPart

2..*

[...]
[...]

[...]

[...]

[...]

[...]

CompositeComponent

PrimitiveComponent

-maxToleratedIncompletion

-minMajoritySize

-erroneousOutput

-signaledFailure

-agreementOfErrorsVector

-errorPropertyVectors

MVPStructure

3..*

[...]

MVPPart

[...]

M
o

d
e

lin
g

 e
le

m
e

n
ts

 fo
r c

o
m

p
o

n
e

n
t re

lia
b

ility
 s

p
e

c
ific

a
tio

n
s [...]

(Abstract)

FailureType

(Abstract)PropagatingFailureType(Abstract)StoppingFailureType

[...] [...]

Figure 3.2: Modeling elements in the reliability modeling schema.

extended with MARTE-DAM profile1 [67] because the schema is reduced to concepts

needed for reliability prediction, and therefore the approach can support an automated

transformation for reliability prediction for the general case.

3.2.1 Component Reliability Specifications

3.2.1.1 Services, Components and Service Implementations

In the RMPI approach, component developers are required to provide component relia-

bility specifications. Fig. 3.2 shows an extract of the reliability modeling schema2 with

modeling elements which supports component developers to create component reliabil-

ity specifications. Component developers model components and services via modeling

elements: Component and Service, respectively. A component can be either a primitive

1This profile provides a very comprehensive reliability modeling but its authors do not target an
automated transformation for reliability prediction for the general case.

2For a full documentation, refer to our project website [82]

Chapter 3. Methodology and Reliability Modeling 37

<<Primitive

Component>>

Comp1

<<Primitive

Component>>

Comp2

<<Primitive

Component>>

Comp3

<<Primitive

Component>>

Comp4

Svc0

Svc6

Svc5

Svc1

Svc1

Svc5

Svc6

Svc4
Svc3Svc2

<<Composite

Component>>

Comp8

<<...>>

Comp5

<<...>>

Comp6

<<...>>

Comp7

Svc2

Svc3

Svc4

Svc4

Svc3

Svc2

Figure 3.3: Example of components and services.

component (PrimitiveComponent) or a composite component (CompositeComponent)

which is hierarchically structured with nested inner components. Components are asso-

ciated with services via RequiredService and ProvidedService.

Example 3.1. Fig. 3.3 shows an example of components and services, including seven

services (from Svc0 to Svc6), one composite component (Comp8) which contains three

nested primitive component (Comp5, Comp6, and Comp7), and four separated primitive

components (from Comp1 to Comp4).

A service implementation (ServiceImplementation) is used to describe the behavior of

each service provided by a component, i.e. describe the activities to be executed when

a service (Service) in the provided services of the component is called. Therefore, a

component can contain multiple service implementations. A service implementation can

include activities (Activity) and control flow structures (Structure).

There are two activity types, namely internal activities and calling activities.

• An internal activity (InternalActivity) represents a component’s internal compu-

tation.

• A calling activity (CallingActivity) represents a synchronous call to other compo-

nents, that is, the caller blocks until receiving an answer. The called service of

a calling activity is a service in the required services of the current component

and this referenced required service can only be substituted by the provided ser-

vice of other component when the composition of the current component to other

components is fixed.

Chapter 3. Methodology and Reliability Modeling 38

<<SequentialStructure>>

<<SequentialPart>>

A1

...
<<SequentialPart>>

A2

<<SequentialPart>>

An

A1 A2 An

START END

...

<<BranchingStructure>>

-branchingCondition:

bc1

<<IfPart>>

A1

...

-branchingCondition:

bcn-1

<<IfPart>>

An-1

<<ElsePart>>

An

A1

An-1

START END

...

An

-loopCount: lc

-loopType: sequential/parallel

<<LoopingStructure>>

<<LoopingPart>>

A1

A1

START END

<<ParallelStructure>>

<<ParallellPart>>

A1

...
<<ParallelPart>>

A2

<<ParallelPart>>

An

A1

A2

An

...

[bc1]

[bcn-1]

lc

START END

Figure 3.4: Supported control flow structures and their execution semantics: Sequen-
tial structure, branching structure, parallel structure, and looping structure.

There are four standard types of control flow structures supported by the reliability mod-

eling schema, including sequential structures, branching structures, parallel structures,

and looping structures (Fig. 3.4).

• In a sequential structure (SequentialStructure), sequential parts (SequentialPart)

are executed sequentially, i.e. only a single part is executed at any time. The

control is transferred to one (and only one) of its successors upon the completion

of a part. The selection of the succeeding part is always deterministic.

• A branching structure (BranchingStructure) inherits the characteristics of a se-

quential structure. The difference is that the selection of the succeeding part

(IfPart or ElsePart) depends on branching conditions (i.e. Boolean expressions).

• Parallel structures (ParallelStructure) are commonly used in concurrent execution

environments, in which a set of parallel parts (ParallelPart) is usually executed

simultaneously to improve performance. In Fig. 3.4, parallel parts ParallelPart

A1, ParallelPart A2, ..., ParallelPart An are running in parallel. These parts

cooperatively work on the structure’s input and synchronously release the control

to end the structure’s execution.

Chapter 3. Methodology and Reliability Modeling 39

<<ServiceImplementation>>

S1

<<CallingActivity>>

S3

<<CallingActivity>>

S4

[Y=true]

START END

[Y=false]

<<CallingActivity>>

S5

<<InternalActivity>>

2

<<InternalActivity>>

1

<<Primitive

Component>>

C2

S1

S2

S3

S4

S5

<<ServiceImplementation>>

S2

<<InternalActivity>>

START END

Z

Figure 3.5: An example of service implementations.

• In a looping structure3 (LoopingStructure), there is a single looping part (Looping-

Part) which is repeated the loop count times. Infinite loop count is not allowed.

Looping structures can include other looping structures but cannot have multiple

entry points and cannot be interconnected. Furthermore, two types of looping

structures are supported: sequential and parallel looping structures. In a sequen-

tial looping structure, the first iteration of LoopingPart works on the structure’s

input and the current iteration works on the output of the previous iteration. In

a parallel looping structure, the iterations work on the structure’s input.

Example 3.2. Fig. 3.5 shows an example of service implementations. The primitive

component C2 provides two services: S1 and S2 and requires three services: S3, S4, S5.

• Service implementation for provided service S1 is a sequential structure executing

an internal activity, a branching structure and another internal activity in se-

quence. The branching structure either leads to a parallel structure, if [Y = true],

or to a calling activity to call required service S5 otherwise. The parallel structure

executes two calling activities to call required services S3 and S4 in parallel.

3In our model, an execution cycle is also modeled by a looping structure with its depth of recursion
as loop count.

Chapter 3. Methodology and Reliability Modeling 40

• Service implementation for provided service S2 is a looping structure executing an

internal activity Z times.

Remark A service implementation in our model is an abstraction of the behavior of a

service provided by a component. Control flow structures are included only when they

influence calls to required services. An single internal activity modeled with a failure

model (see Section 3.2.1.2) may represent thousands of line of code. This abstraction

focuses on the necessary properties for a component-based software reliability prediction

(i.e. failure probabilities and call propagations).

3.2.1.2 Failure Models

In order to take into consideration explicitly the whole set of factors mentioned in Sec-

tion 1.2, component developers are required to model different failure types and failure

models for internal activities of service implementations. A failure model for an internal

activity captures the possibilities for errors after the internal activity’s execution, in-

cluding the possibility of being detected, the possibility of being masked, the possibility

of being transformed, or the possibility of being concurrently present.

Component developers model different failure types (FailureType) by using the hierar-

chical tree of failure types (cf. Fig. 3.2). Except failure type F0, a predefined failure

type corresponding to the correct service delivery, component developers model a failure

type by extending either StoppingFailureType or PropagatingFailureType. Failure types

extending StoppingFailureType are related to errors that can be detected and signaled

with a warning signal by the error detection of internal activities. When a failure type

extending StoppingFailureType manifests itself after an internal activity’s execution, this

immediately leads to a signaled failure of this failure type. On the other hand, failure

types extending PropagatingFailureType are related to errors that cannot be detected

and signaled by the error detection of internal activities. When a failure type extending

PropagatingFailureType manifests itself after an internal activity’s execution, this prop-

agates errors into another internal activity through an erroneous output of this failure

type. For the sake of simplicity, failure types extending StoppingFailureType are called

stopping failure types and failure types extending PropagatingFailureType are called

propagating failure types.

Example 3.3. Fig. 3.6 shows an examples of failure types: F0 is the predefined failure

type, FP1 and FP2 are propagating failure types, and FS1 and FS2 are stopping failure

types.

Chapter 3. Methodology and Reliability Modeling 41

(Abstract)FailureType

(Abstract)PropagatingFailureType (Abstract)StoppingFailureType

FS1 FS2FP1 FP2

F0

Figure 3.6: An example of failure types.

Component developers model a failure model (i.e. different failure types with their

occurrence probabilities) for an internal activity via a composition between InternalAc-

tivity and FailureModel. In the literature, techniques for determining these probabilities

(e.g. using methods discussed in Section 2.2) have been discussed extensively (also see

Section 6.2 for more details) and are beyond the scope of this dissertation.

Definition 3.1. Failure Model4

• Let F0 be a predefined failure type corresponding to the correct service delivery.

• Let FS be the set of all stopping failure types {FS1, FS2, ..., FSu}.

• Let FP be the set of all propagating failure types {FP1, FP2, ..., FPv}.

• Let AIOS be the Set of All sets of failure types for an internal activity’s Input or

Output {{F0}} ∪
(
2FP \ ∅

)
.

• Let AFS be the Set of All sets of failure types for an internal activity’s signaled

Failures {{FS1} , ..., {FSu}}.

• Then, a failure model (FailureModel) for an internal activity (IA, for short) is

defined by probabilities: PrIA(I, FO), I ∈ AIOS, FO ∈ (AFS ∪ AIOS), where

PrIA(I, FO) is the probability that the internal activity signals a signaled failure

of a failure type FO (when FO ∈ AFS) or produces an output of failure types

FO (when FO ∈ AIOS) given that the internal activity has received an input of

failure types I. It holds that
∑

FO∈(AFS∪AIOS)

PrIA (I, FO) = 1 for all I ∈ AIOS.

The failure model of an internal activity can be used as a basis to define interesting

reliability properties of the internal activity. Some examples of these properties are

proposed as follows:

• Reliability is the probability PrIA({F0}, {F0}).
4From here, the introduced symbols are utilized unless otherwise stated.

Chapter 3. Methodology and Reliability Modeling 42

Input

Possible signaled failures

(Stopping failure types)

{FS1} {FS2}

P
o

s
s

ib
le

 e
rr

o
n

e
o

u
s

 i
n

p
u

ts

(P
ro

p
a

g
a

ti
n

g
 f

a
il
u

re
 t

y
p

e
s

)
C

o
rr

e
c

t
in

p
u

t

Possible erroneous outputs

(Propagating failure types)
Correct output

{F0} {FP1} {FP1,FP2}{FP2}

{F0}

{FP1}

{FP1,FP2}

{FP2}

c34c30 c31 c33c32

c24c20 c21 c23c22

c14c10 c11 c13c12

c04c00 c01 c03c02

c35

c25

c15

c05

AIOS AFS

A
IO
S

IA

c01

{F0}

c02

c03

c00

c05

{F0}

c04{FS1}

{FS2}

{FP1}

{FP2}

{FP1,FP2}

Figure 3.7: An example of failure model for an internal activity.

• Internal failure probability with respect to failure type FO (with FO ∈
AFS ∪ AIOS \ {{F0}}) is the probability PrIA(F0, FO).

• Robustness with respect to failure type I (with I ∈ AIOS \ {{F0}}) is the

probability PrIA(I, F0).

Example 3.4. Fig. 3.7 shows an example of failure model for an internal activity

with FS = {FS1, FS2}, FP = {FP1, FP2}, AFS = {{FS1} , {FS2}}, and AIOS =

{{F0} , {FP1} , {FP2} , {FP1, FP2}}. It is possible to understand the internal activity’s

execution to follow its failure model as follows:

• The internal activity can receive a correct input: {F0}. In this case, errors can

arise because of the activity’s internal faults. When these errors are detected and

Chapter 3. Methodology and Reliability Modeling 43

signaled with a warning signal by the error detection of the activity, then a signaled

failure of a stopping failure type occurs: {FS1} with probability c04 or {FS2} with

probability c05. Otherwise, the activity produces an erroneous output of different

propagating failure types: {FP1} with probability c01, {FP2} with probability c02,

or {FP1, FP2} (the concurrent presence of FP1 and FP2) with probability c03. In

case there is no error during the activity’s execution, the activity produces a correct

output: {F0} with probability c00 = 1−
5∑

j=1
c0j.

• The internal activity can receive an erroneous input of different propagating failure

types: {FP1}, {FP2}, or {FP1, FP2}. In this case, beside the errors from the

erroneous input, errors can arise because of the activity’s internal faults. If the

error detection of the activity detects and signals these errors with a warning signal,

this leads to a signaled failure of a stopping failure type: {FS1} with probability

ci4 or {FS2} with probability ci5 (with i ∈ {1, 2, 3} when the erroneous input is

{FP1}, {FP2}, or {FP1, FP2}, respectively). Otherwise, an erroneous output of

different propagating failure types is produced by the activity: {FP1} with probability

ci1, {FP2} with probability ci2, or {FP1, FP2} with probability ci3. In case these

errors are masked by the activity’s execution, there is a correct output: {F0} with

probability ci0 = 1−
5∑

j=1
cij

In our model, it is assumed that an internal activity receives both data and control

transfer through its input and produces both data and control transfer through its output

[13, 63]. A correct or erroneous output (of any propagating failure types), when received

by an internal activity, becomes its correct or erroneous input (of the same propagating

failure types), respectively. A signaled failure (of any stopping failure type), without

any software fault tolerance mechanisms to handle it, immediately leads to a system

failure.

Remark The RMPI approach supports modeling concurrently present errors via the

concurrent presence of propagating failure types. It also allows the approach to support

modeling error propagation for parallel structures (see Section 4.1.2.3). Distinguishing

between stopping failure types and propagating failure types enables the approach to

support modeling error propagation for software fault tolerance mechanisms (see Sec-

tion 3.2.1.3). With the comprehensive failure model, the approach is able to model

explicitly and flexibly error detection via internal activities, including correct error de-

tection (e.g. with an erroneous input, the internal activity signals a signaled failure of

a proper stopping failure type), a false alarm (e.g. with a correct input, the internal

activity signals a signaled failure), as well as a false signaling of failure type (e.g. with an

Chapter 3. Methodology and Reliability Modeling 44

-possibleSignaledFailures:

{FS1}, {FS2}, {FS3}

-possibleErroneousOutputs:

{FP1}, {FP2},{FP1, FP2}

<<RetryPart>>

RetryPart

{F0}{FP1} {FP2} {FP1, FP2}

RetryPart

(retry 1)

{FS1}, {FS2} RetryPart

(retry 2)

{FS1}, {FS2}

-retryCount: 2

-handledFailures:

{FS1}, {FS2}

<<RetryStructure>>

{FS1} {FS2} {FS3}

Figure 3.8: Semantics for a RetryStructure example.

erroneous input, the internal activity signals a signaled failure of an improper stopping

failure type).

3.2.1.3 Fault Tolerance Structures

To support modeling fault tolerance mechanisms, the reliability modeling schema pro-

vides fault tolerance structures. Because in a fault tolerance mechanisms, error detection

is a prerequisite for error handling and not all detected errors can be handled. Therefore,

at most, a fault tolerance structure can provide error handling only for signaled failures,

which are consequences of errors that can be detected and signaled by error detection.

RetryStructure An effective technique to handle transient failures is service re-

execution. A RetryStructure is taking ideas from this technique. The structure contains

a single RetryPart which, in turn, can contain different activity types, structure types,

and even a nested RetryStructure. The first execution of the RetryPart models nor-

mal service execution while the following executions of the RetryPart model the service

re-executions.

Example 3.5. Fig. 3.8 shows a RetryStructure with a single RetryPart. After the

RetryPart’s execution, possible signaled failures of stopping failure types {FS1}, {FS2},
or {FS3} (the field possibleSignaledFailures), or possible erroneous outputs of propagat-

ing failure types {FP1}, {FP2}, or {FP1, FP2} (the field possibleErroneousOutputs) can

occur. The RetryStructure can handle only signaled failures of {FS1} or {FS2} (the

Chapter 3. Methodology and Reliability Modeling 45

-possibleSignaledFailures:

{FS1}, {FS2}, {FS3}, {FS4}

-possibleErroneousOutputs:

{FP1}, {FP2},{FP1, FP2}

<<MultiTryCatchPart>>

1

<<MultiTryCatchStructure>>

-handledFailures:

{FS2}, {FS3}

-possibleSignaledFailures:

{FS2}, {FS3}

-possibleErroneousOutputs:

{FP1}, {FP2},{FP1, FP2}

<<MultiTryCatchPart>>

2

-handledFailures:

{FS3}, {FS4}

-possibleSignaledFailures:

{FS4}

-possibleErroneousOutputs:

{FP1}, {FP2},{FP1, FP2}

<<MultiTryCatchPart>>

3

MultiTryCatchPart

1

MultiTryCatchPart

2
{FS2}, {FS3} MultiTryCatchPart

3
{FS3}

{F0}{FP1} {FP2} {FP1, FP2} {FS1} {FS2} {FS3} {FS4}

{FS4}

Figure 3.9: Semantics for a MultiTryCatchStructure example.

field handledFailures). This means that the structure handles signaled failures of these

stopping failure types and retries the RetryPart. Signaled failures of {FS3} cannot be

handled, and therefore lead to signaled failures of the whole structure. Erroneous outputs

of the RetryPart, which are consequences of errors that cannot be detected and signaled

by error detection, lead to erroneous outputs of the whole structure. This procedure is

repeated the number of times equal to the field retryCount (2 times in this example). For

the last retry, signaled failures of {FS1}, {FS2}, or {FS3} all lead to signaled failures of

the whole structure.

MultiTryCatchStructure A MultiTryCatchStructure is taking ideas from the ex-

ception handling in object-oriented programming. The structure consists of two or

more MultiTryCatchParts. Each MultiTryCatchPart can contain different activity types,

structure types, and even a nested MultiTryCatchStructure. Similar to try and catch

blocks in exception handling, the first MultiTryCatchPart models the normal service

execution while the following MultiTryCatchParts handle certain failures of stopping

failure types and launch alternative activities.

Example 3.6. Fig. 3.9 shows a MultiTryCatchStructure with three MultiTryCatch-

Parts. After the execution of MultiTryCatchPart 1, possible signaled failures of stopping

failure types {FS1}, {FS2}, {FS3}, or {FS4}, or possible erroneous outputs of propagat-

ing failure types {FP1}, {FP2}, or {FP1, FP2} can occur. Signaled failures of {FS1}

Chapter 3. Methodology and Reliability Modeling 46

Distribute

inputs

Execute

MVPParts

Collect

outputs

Majority
agrees?

Signaled failure

Consensus
correct?

Correct output

Erroneous output

(Undetected failure)

Yes

Yes

No

No

Majority voter

Figure 3.10: The operation of a MVPStructure.

cannot be handled by any following MultiTryCatchParts (MultiTryCatchPart 2, Multi-

TryCatchPart 3) and therefore lead to a signaled failures of the whole structure. Mul-

tiTryCatchPart 2 handles signaled failures of {FS2} or {FS3}. MultiTryCatchPart 3

handles signaled failures of {FS4}. Erroneous outputs of MultiTryCatchPart 1 lead to

erroneous outputs of the whole structure.

Similarly, for MultiTryCatchPart 2, signaled failures of {FS2} cannot be handled by

any following MultiTryCatchParts (MultiTryCatchPart 3) and therefore lead to sig-

naled failures of the whole structure. Erroneous outputs of MultiTryCatchPart 2 lead to

erroneous outputs of the whole structure. MultiTryCatchPart 3 handles signaled failures

of {FS3}.

For the last MultiTryCatchPart (MultiTryCatchPart 3), because there is no following

MultiTryCatchPart to handle its signaled failure, all of its signaled failures lead to sig-

naled failures of the whole structure. Erroneous outputs of MultiTryCatchPart 3 lead

to erroneous outputs of the whole structure.

MVPStructure Based on the concept of N-version Programing with majority voting

decision, a MVPStructure is built. A MVPStructure consists of three or more MVP-

Parts. Each MVPPart can contain different activity types, structure types, and even a

nested MVPStructure. Similar to variants (or versions) in N-version Programing, these

MVPParts are executed in parallel in the same environment: each of them receives iden-

tical inputs and each produces its version of the outputs. The outputs are then collected

by the structure’s majority voter and the result of the majority is assumed to be the

correct output used by the system.

The voter has to determine the decision output from a set of results. If there is no

agreement of the majority results, the voter signals a signaled failure. Otherwise, the

voter produces an output which is the result of the agreement (i.e. the consensus).

The output of the voter is correct if the agreement is of the majority correct results,

otherwise the output of the voter is erroneous. In analogy to N-version Programing, it

Chapter 3. Methodology and Reliability Modeling 47

is assumed that the MVPStructure is not used in the situations that can have multiple

distinct correct outputs. The operation of a MVPStructure is depicted in Fig. 3.10.

From the viewpoint of the majority voter, it distinguishes whether a MVPPart completes

its execution with an output in time or not (respectively, a complete or incomplete

execution, for the sake of simplicity). Therefore, when a MVPPart signals a signaled

failure of any stopping failure type, the voter considers the MVPPart ’s execution as an

incomplete execution. Given that a MVPPart has produced an erroneous output of any

propagating failure types, a fraction of the fact that it has not completed its execution

in time needs to be provided. With all the possible erroneous outputs of a MVPPart,

there is a vector of such fractions, called errorPropertyVector. For all MVPParts of a

MVPStructure, there is a list of errorPropertyVectors.

The operation of the MVPStructure can also be configured via the following properties:

• maxToleratedIncompletion: the maximum number of incomplete executions of

MVPParts the voter can tolerate.

• minMajoritySize: the minimum number of the results of the executions of MVP-

Parts required to agree for the voter to produce an output (correct or erroneous).

• signaledFailure: the stopping failure type of signaled failures for the voter to signal.

• erroneousOutput : the propagating failure types of erroneous outputs of the struc-

ture.

Let nMV ≥ 3 be the number of MVPParts of a MVPStructure, minMS be the value of

minMajoritySize, then it is required that minMS ≥ d(nMV + 1)/2e.

Moreover, when there are at least minMajoritySize erroneous results in the set of the

results of MVPParts’ executions, in order to distinguish whether the voter signals a

signaled failure or produces an erroneous output, a fraction of the fact that there is

an agreement of the majority erroneous results also needs to be provided. With all

the possible number of erroneous results, there is a vector of such fractions, called

agreementOfErrorsVector.

Example 3.7. Fig. 3.11 shows a MVPStructure with three MVPParts. After the execu-

tion of MVPPart 1, signaled failures of stopping failure type {FS1} or erroneous outputs

of propagating failure type {FP1} can occur. The error property vector for MVPPart 1

(the first elements of the field errorPropertyVectors) shows that given that MVPPart 1

has produced an erroneous output of propagating failure type FP1, MVPPart 1 has not

completed its execution in time with probability d{FP1}. In case erroneous outputs of

Chapter 3. Methodology and Reliability Modeling 48

{F0}

{FP1}

MVPPart 1

CorOut

IncExe

ErrOut

- maxToleratedIncompletion: 1 - minMajoritySize: 2

- erroneousOutput: {FP1} - signaledFailure: {FS3}

- agreementOfErrorsVector: (p2, p3)

- errorPropertyVectors:

<<MVPStructure>>

-possibleSignaledFailures:
 {FS1}
-possibleErroneousOutputs:
 {FP1}

<<MVPPart>> 1

-possibleSignaledFailures:
 {FS2}
-possibleErroneousOutputs:
 {FP1},{FP2},{FP1,FP2}

<<MVPPart>> 2

-possibleSignaledFailures:
 {FS1}
-possibleErroneousOutputs:
 {FP2}

<<MVPPart>> 3

1

2

1 2

'

'

1

2

1 2
,

',

P

P

P P

FP

P F

P P
F F

IncExe

F

F

dF

d

d

F

1
1

P
P F

IncExe

F d
2

"

2
P

P F
d

IncExe

F

(3,0,0)

(2,1,0)

(2,0,1)

(1,2,0)

(1,1,1)

(1,0,2)

(0,3,0)

(0,2,1)

(0,1,2)

(0,0,3)

{F0}

{FP2}
MVPPart 3

CorOut

IncExe

ErrOut

CorOut

ErrOut

(Undetected failure)

Signaled failure {FS3}

{FP1}

Collect

outputs

{F0}

Majority voterExecute MVPParts

Distribute

inputs

 1PF
d

p2

1-p2

Legend:

 (# CorOut,# ErrOut,#IncExe)

{FS1}

 1
1

PF
d

{FS1}

{F0}

{FP1}
MVPPart 2

CorOut

IncExe

ErrOut

{FS2}

{FP2}

{FP1,FP2}

Figure 3.11: Semantics for a MVPStructure example.

{FP1} are content failures (i.e. the content of a system service’s output deviates from

the correct one), d{FP1} = 0; in case erroneous outputs of FP1 are late timing failures

(i.e. the delivery time of a system service is too late from the correct one), d{FP1} = 1.

Similarly, there is an error property vector for each of the remaining MVPParts.

Based on the set of the results of the MVPParts’ executions, the majority voter of

the MVPStructure has to determine the decision output. Different possibilities for the

set of the results are represented by (#CorOut,#ErrOut,#IncExe) with #CorOut+

#ErrOut+ #IncExe = 3 where #CorOut is the number of correct outputs, #ErrOut

is the number of erroneous outputs, and #IncExe is the number of incomplete execu-

tions. The voter has been configured to tolerate at most one incomplete execution from

Chapter 3. Methodology and Reliability Modeling 49

MVPParts (the field maxToleratedIncompletion) and to require at least two results of the

executions of MVPParts to agree in order to produce an output (correct or erroneous)

(the field minMajoritySize). Therefore, the voter can determine the decision output for

the following possibilities:

• Possibilities with #IncExe > 1 cause the voter to signal a signaled failure of FS3

(the field signaledFailure).

• Possibilities with #IncExe ≤ 1 and #CorOut ≥ 2 make the voter to produce a

correct output ({F0}).

• Possibilities with #IncExe ≤ 1, #CorOut < 2, and #ErrOut < 2 also cause the

voter to signal a signaled failure of FS3.

For the remaining possibilities with #IncExe ≤ 1, #CorOut < 2, and #ErrOut ≥ 2,

the field agreementOfErrorsVector shows that when there are two erroneous outputs,

with probability p2 there is an agreement of the majority erroneous outputs, and when

there are three erroneous outputs, with probability p3 there is an agreement of the ma-

jority erroneous outputs. In case the executions of MVPParts always produce distinct

erroneous outputs when they fail, p2 = p3 = 0; in case the output domain of the execu-

tions of MVPParts is a boolean domain (i.e. true/false), p2 = p3 = 1. Therefore, the

voter can determine the decision output for the remaining possibilities:

• For possibilities with #IncExe ≤ 1, #CorOut < 2, and #ErrOut = 2, the voter

produces an erroneous output of FP1 (the field erroneousOutput) with probability

p2, or signal a signaled failure of FS3 with probability 1− p2.

• Similarly, for possibilities with #IncExe ≤ 1, #CorOut < 2, and #ErrOut = 3,

the voter produces an erroneous output of FP1 with probability p3, or signal a

signaled failure of FS3 with probability 1− p3.

Remark Fault tolerance structures can be employed in different parts of the system

architecture and are quite flexible to model fault tolerance mechanisms because their

inner parts (RetryPart, MultiTryCatchParts, MVPParts) are able to contain different

activity types, structure types, and even nested fault tolerance structures. They sup-

port enhanced fault tolerance expressiveness in several aspects, including different recov-

ery behaviors in response to occurrences of signaled failures, as well as multi-type and

multi-stage recovery behaviors. They allow modeling different classes of existing fault

tolerance mechanisms, including exception handling, restart-retry, primary-backup, re-

covery blocks, N-version programing, and consensus recovery blocks. If a RetryPart,

Chapter 3. Methodology and Reliability Modeling 50

MultiTryCatchPart, or MVPPart contains a CallingActivity, signaled failures from the

provided service of the called component (and any other component down the call stack)

can be handled. The case studies in Chapter 5 show different possible usages of fault

tolerance structures.

3.2.2 System Reliability Models

In RMPI approach, software architects obtain components and their reliability speci-

fications from public repositories, assemble them to realize the required functionality.

After that, they provide a usage profile for the complete system to form a system relia-

bility model. Fig. 3.2 shows an extract of the reliability modeling schema with modeling

elements for system reliability models.

3.2.2.1 System Architecture

Software architects model a system architecture via modeling element SystemArchitec-

ture. Software architects create component instances (ComponentInstance) and assem-

ble them through component connectors (ComponentConnector) to realize the required

functionality. Users can access this functionality through user interfaces (UserInterface).

3.2.2.2 Usage Profile

After modeling system architecture, software architects model a usage profile for the user

interfaces. A usage profile (UsageProfile) contains usage profile parts (UsageProfilePart)

with different probabilities, which model different usage scenarios of the system. A usage

profile part must include sufficient information to determine the branching probabilities

of branching structures and the discrete probability distributions (or the average values)

of the loop counts of looping structures.

Example 3.8. Continuing with Example 3.2, Fig. 3.12 shows an example of system

reliability model. The system architecture includes instances of components C1, C2, C3,

and C4. They are connected via component connectors. Provided service S0 of C1’s

component instance is exposed as a user interface for users.

The usage profile includes two usage profile parts with probabilities 0.7 and 0.3. This

means that with probability 0.7, users access with usage profile part 1 and with probability

0.3, users access with usage profile part 2. Each usage profile part contains probabilities

and a distribution (or an average) to determine the branching probabilities of branching

Chapter 3. Methodology and Reliability Modeling 51

<<SystemArchitecture>>

<<ComponentInstance>>

C2

S1

S2

S3

S4

S5

S0

<<UsageProfile>>

<<ServiceImplementation>>

S0

<<CallingActivity>>

S1

[X=0]

START END

[X!=0]

<<CallingActivity>>

S2

<<InternalActivity>>

p(X=0)=0.2

p(Y=true)=0.4

average(Z)=6

<<UsageProfilePart>>

UPP2

 probability =0.3

p(X=0)=0.9

p(Y=true)=0.7

<<UsageProfilePart>>

UPP1

 probability =0.7

<<ServiceImplementation>>

S5

<<InternalActivity>>

START END

<<ServiceImplementation>>

S3

<<InternalActivity>>

START END

<<ServiceImplementation>>

S4

<<InternalActivity>>

START END

<<ComponentInstance>>

C4

<<ComponentInstance>>

C3

<<ComponentInstance>>

C1

()

2 0.13

3 0.19

4 0.68

Z p Z

Figure 3.12: An example of system reliability model.

structures and the discrete probability distribution (or the average value) of the loop

count of the looping structure.

3.2.2.3 System Reliability

Taking into account comprehensively different reliability-influencing factors described

above, our goal is to predict the probability of successful execution of the usage scenar-

ios given by the system reliability model. The aimed probability of successful execution

under a given usage scenario is the probability that the system completes its execution

and produces a correct output, given that the input of the system is correct (namely as

defined by its specification). Notice that, under a given usage scenario, the aimed prob-

ability is also the direct counterpart of the probability of failure on demand (POFOD):

1−POFOD. Then, the overall system reliability over all the usage scenarios is weighted

by the usage scenario probabilities.

The combined consideration of error propagation, software fault tolerance mechanisms,

and concurrently present errors enables the reflection of their interplay in the context

of the overall system architecture and system usage profile. Only an integrated analysis

can provide an accurate view on the relations between them all (see Chapter 4).

Chapter 3. Methodology and Reliability Modeling 52

Figure 3.13: Reliability modeling environment.

3.3 Implementation

This section shortly describes the implementation of the reliability modeling schema.

The implementation is based on the well-known XML Schema Definition (XSD)[83] for

expressing a set of predefined semantic constraints (e.g. the total probability of all usage

profile parts must be 1) to which system reliability models must conform in order to be

considered “valid” according to the schema. Thanks to this industrial base, the user can

create system reliability models through XML (eXtensible Markup Language) editors

as in Fig 3.13. An analysis method to evaluate the created models in order to obtain

reliability predictions is described in Chapter 4.

The implementation of the reliability modeling schema is open source and available at

our project website [82].

3.4 Summary

This chapter has developed the methodology of the RMPI approach, based on the basics

given in the previous chapter. It then focused on the reliability modeling capabilities

of the approach. More concretely, it described how to model component-based software

architectures using the reliability modeling schema, including modeling services, com-

ponents and service implementations, modeling failure models of different failure types

with their occurrence probabilities, modeling software fault tolerance mechanisms, as

Chapter 3. Methodology and Reliability Modeling 53

well as modeling system architectures and usage profiles. Finally, it shortly introduced

the implementation of the reliability modeling schema.

Chapter 4

Reliability Prediction and

Improvements

After software architects have assembled component reliability specifications to real-

ize the required functionality and specified a usage profile to form a system reliability

model, the RMPI approach can predict the reliability for the complete system. This

chapter presents in detail the prediction process of the approach (Section 4.1), includ-

ing an investigation of the complexity of the algorithm, and then describes shortly the

implementation of the algorithm for tool support (Section 4.2). Section 4.3 concludes

the chapter with an overview of model changes supported by the approach for reliability

improvements.

4.1 Reliability Prediction

The prediction process of the RMPI approach starts with the system reliability model

and the component reliability specifications, and ends with the system reliability pre-

diction output. The main result of the process is the probability of successful (in other

words, failure-free) execution of the given usage scenarios. In analogy to related ap-

proaches, the RMPI approach uses discrete-time Markov chains (DTMCs) to represent

the system under study and to predict its reliability. DTMCs are a well-established

means for the field of component-based software reliability modeling and prediction (see

Section 2.3). However, while other approaches use DTMCs to represent software com-

ponents and the transfer of control between them (see Section 2.4), the RMPI approach

additionally reflects the transfer of control and data flow at the intra-component (high-

level) and inter-component level, the user behavior, as well as multiple failure types via

DTMCs. As a result, this representation allows the RMPI approach to support a more

54

Chapter 4. Reliability Prediction and Improvements 55

System

reliability model

Component

reliability

specifications

Transforming each

usage profile part

Aggregate the

results

Transforming structures

into equivalent internal

activities

Overall system

reliability

All usage profile parts

transformed

Per-usage-profile-

part reliability

Next usage profile part

START

END

Recursively

1 2

1.1

Figure 4.1: RMPI prediction process overview.

comprehensive analysis, but it also leads to significantly large DTMCs. Therefore, to

ensure the feasibility of the process of creating and solving DTMCs, the RMPI approach

takes the following measures:

• Software developers do not need to go through the labored and error-prone process

of manually creating DTMCs as stated by a given set of rules. Instead, the RMPI

approach automatically transforms the system reliability model into DTMCs.

• The transformation is realized by the RMPI approach through a space-effective

transformation algorithm. The algorithm utilizes the specific structural properties

of a given system reliability model and produces compact DTMCs as its result.

4.1.1 RMPI Prediction Process Overview

Fig. 4.1 gives an overview of the RMPI prediction process. The process starts with

the System reliability model and the Component reliability components as its input, and

finishes with the Overall system reliability as its output. As described in Section 3.2.2.2,

the usage profile in a system reliability model can contain multiple usage profile parts,

and therefore, the process includes the Transforming each usage profile part (see Sec-

tion 4.1.2) to obtain the Per-usage-profile-part reliability, and the Aggregate the results

(see Section 4.1.3) over all usage profile parts of the usage profile.

Chapter 4. Reliability Prediction and Improvements 56

4.1.2 Transformation for Each Usage Profile Part

The transformation is to derive the reliability for the provided service to which the cur-

rent usage profile part refers. It starts with the service implementation of this provided

service. By design, in the reliability modeling schema of the RMPI approach: (1) a

service implementation can contain a structure of any structure type or an activity of

any activity type, (2) a structure’s inner part (i.e. SequentialPart, IfPart, ElsePart,

ParallelPart, LoopingPart, RetryPart, MultiTryCatchPart, or MVPPart) can contain a

structure of any structure type or an activity of any activity type, and (3) a calling

activity is actually a reference to another service implementation. Therefore, the trans-

formation is essentially a recursive procedure applied for structures. For a structure, the

transformation transforms it into an equivalent internal activity (IA, for short), and then

it uses the equivalent internal activity to transform the outer structure (cf. Fig. 4.1).

Details of the transformation for structure types are given in Sections 4.1.2.1, 4.1.2.2, ...,

and 4.1.2.7. Section 4.1.2.8 gives details of the transformation to derive the reliability

for the provided service to which the current usage profile part refers.

Example 4.1. Fig. 4.2 shows an example of Transformation for each usage profile part

for the only usage profile part in the system reliability model at the top of the figure.

1. The transformation starts with the service implementation of Service 1 and its

goal is to obtain the reliability of Service 1 under the current usage profile part’s

information.

2. As the service implementation of Service 2 is a single internal activity, the call-

ing activity to call Service 2 in the service implemetation of Service 1 is directly

replaced by the internal activity.

3. As the service implementation of Service 3 is a looping structure executing an

internal activity Y times, the looping structure is transformed into an equivalent

internal activity, and then the calling activity to call Service 3 in the service im-

plemetation of Service 1 is replaced by the equivalent internal activity.

4. The branching structure in the service implemetation of Service 1 is transformed

into an equivalent internal activity.

5. The sequential structure in the service implemetation of Service 1 is transformed

into an equivalent internal activity. Finally, the transformation derives the relia-

bility for Service 1 from the failure model of the equivalent internal activity.

Chapter 4. Reliability Prediction and Improvements 57

<<SystemArchitecture>>

Service 2

Service 3

Service 1

<<UsageProfile>>

p(X<=6)=0.2

average(Y)=3

<<UsageProfilePart>>

UPP

 probability=1.0

<<ServiceImplementation>>

Service 2

<<InternalActivity>>

START END

<<ComponentInstance>>

Component 1

<<ComponentInstance>>

Component 2

[X<=6]

[X>6]

<<InternalActivity>>

Service 1

<<InternalActivity>>

Service 2

[X<=6]

[X>6]

<<InternalActivity>>

Service 1

<<InternalActivity>>

Service 2

<<InternalActivity>>

Equivalent to the

Looping Structure of

Service 3

<<InternalActivity>>

Service 1

<<InternalActivity>>

Equivalent to the

Branching Structure

of Service 1

<<InternalActivity>>

Equivalent to the

Sequential Structure

of Service 1

<<CallingActivity>>

Service 3

START

START

END

END

ENDSTART

START END

<<ServiceImplementation>>

Service 1

<<CallingActivity>>

Service 2
[X<=6]

START END

[X>6]

<<CallingActivity>>

Service 3

<<InternalActivity>>

<<ServiceImplementation>>

Service 3

<<InternalActivity>>

START END

Y

1

2

3

4

5

Figure 4.2: Example of transformation for each usage profile part.

4.1.2.1 Sequential Structure

Considering a sequential structure with n sequential parts A1, A2, ..., An, its usage

inputs and outputs is shown in Fig. 4.3. The structure’s input is the input for sequential

part A1; the output of sequential part A1 is the input for sequential part A2; ...; the

output of sequential part An is the structure’s output.

The transformation transforms the sequential structure into an equivalent internal ac-

tivity in an accumulative manner, that is, it transforms the two sequential parts A1 and

Chapter 4. Reliability Prediction and Improvements 58

structure’s

input

<<SequentialStructure>>

<<SequentialPart>>

A1

...
<<SequentialPart>>

A2

<<SequentialPart>>

An

A1 A2 An...

structure’s

output

An’s

input

An’s

output

A1’s

input

A1’s

output

A2’s

input

A2’s

output

Figure 4.3: Using inputs and outputs in a sequential structure.

A2 into an equivalent internal activity A12, then transforms A12 and the sequential part

A3 into an equivalent internal activity A123, and so forth until all the sequential parts

of the sequential structure are transformed into an equivalent internal activity A12...n.

Let PrA12...k
(I, FO), I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the failure model for the

equivalent internal activity of the first k (with k < n) sequential parts. Fig. 4.4 shows the

Markov skeleton that reflects the execution paths for A12...k and Ak+1 in the sequential

structure with a given input I ∈ AIOS, a given signaled failure F ∈ AFS, a given

(correct or erroneous) output O′ ∈ AIOS, and a given erroneous output O ∈ AIOS \
{{F0}}. The complete Markov chain can be obtained by expanding the Markov skeleton

for all possible values of I, F , O′, and O. The Markov skeleton includes the following

elements:

• A state labeled “I, START” ([I, START], for short) as the global initial state.

• A Markov block MB (I, A12...k) that reflects A12...k’s execution paths for a signaled

failure F and an (correct or erroneous) output O′ . It contains a state [I, A12...k]

as the local initial state, a state [A12...k, F] as the state of signaled failure F , and

a state [A12...k, O
′] as the state of output O′. The probability of reaching state

[A12...k, F] from state [I, A12...k] is PrA12...k
(I, F), and the probability of reaching

state [A12...k, O
′] from state [I, A12...k] is PrA12...k

(I,O′).

• A Markov block MB (O′, Ak+1) that reflects Ak+1’s execution paths for a signaled

failure F , an erroneous output O, and a correct output {F0}. It contains a state

[O′, Ak+1] as the local initial state, a state [Ak+1, F] as the state of signaled failure

F , a state [Ak+1, O] as the state of erroneous output O, and a state [Ak+1, {F0}] as

the state of correct output {F0}. The probability of reaching state [Ak+1, F] from

state [O′, Ak+1] is PrAk+1
(O′, F), the probability of reaching state [Ak+1, O] from

Chapter 4. Reliability Prediction and Improvements 59

I,START

1.0

I,A12...k

A12...k,F A12...k,O’

12...
(,)

kAPr I F
12...

(, ')
kAPr I O

O’,Ak+1

Ak+1,F Ak+1,{F0}

1
(',)

kAPr O F

1 0',

kAPr O F

1.0

Ak+1,O

1

',
kAPr O O

F O {F0}

1.01.01.01.0

MB(I,A12...k) MB(O’,Ak+1)

A12...k Ak+1

Figure 4.4: Markov skeleton for A12...k and Ak+1 in a sequential structure.

state [O′, Ak+1] is PrAk+1
(O′, O), and the probability of reaching state [Ak+1, {F0}]

from state [O′, Ak+1] is PrAk+1
(O′, {F0}).

• A state [F] as the global state of signaled failure F , a state [O] as the global state

of erroneous output O, and a state [{F0}] as the global state of correct output

{F0}.

• A transition from state [I, START] to state [I, A12...k] with probability 1.0

• A transition from state [A12...k, O
′] to state [O′, Ak+1] with probability 1.0.

• A transition from state [A12...k, F] to state [F] with probability 1.0, a transition

from state [Ak+1, F] to state [F] with probability 1.0, a transition from state

[Ak+1, O] to state [O] with probability 1.0, and a transition from state [Ak+1, {F0}]
to state [{F0}] with probability 1.0.

Then, the failure model for the equivalent internal activity of the first k + 1 sequential

parts is calculated as follows.

• The first k + 1 sequential parts produce a correct output if the first k sequential

parts produce an output (correct or erroneous) and after receiving this output as

Chapter 4. Reliability Prediction and Improvements 60

its input, the (k + 1)− th sequential part produces a correct output:

PrA12...k+1
(I, {F0}) =

∑
O′∈AIOS

PrA12...k

(
I,O′

)
PrAk+1

(
O′, {F0}

)
(4.1)

• The first k+ 1 sequential parts signal a signaled failure of stopping failure type F

(with F ∈ AFS) if either (1) the first k sequential parts signal a signaled failure

of stopping failure type F or (2) the first k sequential parts produce an output

(correct or erroneous) and after receiving this output as its input, the (k+ 1)− th
sequential part signals a signaled failure of stopping failure type F :

PrA12...k+1
(I, F) = PrA12...k

(I, F) +
∑

O′∈AIOS
PrA12...k

(
I,O′

)
PrAk+1

(
O′, F

)
(4.2)

• The first k+1 sequential parts produce an erroneous output of propagating failure

types O ∈ AIOS\{{F0}} if the first k sequential parts produce an output (correct

or erroneous) and after receiving this output as its input, the (k+1)−th sequential

part produces an erroneous output of propagating failure types O:

PrA12...k+1
(I,O) =

∑
O′∈AIOS

PrA12...k

(
I,O′

)
PrAk+1

(
O′, O

)
(4.3)

By using Equations (4.1), (4.2), and (4.3), the transformation recursively calculates the

failure model for the equivalent internal activity of all n sequential parts (i.e. the failure

model for the equivalent internal activity of the sequential structure): PrIA (I, FO) =

PrA12...n (I, FO), I ∈ AIOS, FO ∈ (AFS ∪ AIOS). Notice that the goal of the Markov

skeleton as in Fig. 4.4 is just to support our argumentation in building the equations,

and the transformation directly uses the equations in its calculation.

4.1.2.2 Branching Structure

Considering a branching structure with n− 1 if parts A1, A2, ..., An−1 and a single else

part An, its usage of inputs and outputs is shown in Fig. 4.5. The structure’s input is

the input for all if parts and else part, and the structure’s output is the output of a if

part or else part.

Fig. 4.6 shows the Markov skeleton that reflects the execution paths for Ak (with 1 ≤
k < n) and An in the branching structure with a given input I ∈ AIOS, a given signaled

failure or (correct or erroneous) output FO ∈ (AFS ∪ AIOS). The complete Markov

chain can be obtained by expanding the Markov skeleton for all possible values of k, I,

and FO. The Markov skeleton includes the following elements:

Chapter 4. Reliability Prediction and Improvements 61

A1

An-1

An

......

...structure’s

input

structure’s

output

An’s input An’s output

A1’s input A1’s output

<<BranchingStructure>>

-branchingCondition:

bc1

<<IfPart>>

A1

...

-branchingCondition:

bcn-1

<<IfPart>>

An-1

<<ElsePart>>

An

...

p(bc1)=…

…

p(bcn-1)=...

<<UsageProfilePart>>

...

 probability =...

Figure 4.5: Using inputs and outputs in a branching structure.

I,START

p(bck)

I,Ak

Ak,FO

(,)
kAPr I FO

I,An

An,FO

(,)
nAPr I FO

FO

1.01.0

MB(I,Ak) MB(I,An)

Ak

[bck]

An

1

1

1
n

i

i

p bc

Figure 4.6: Markov skeleton for A12...k and An in a branching structure.

Chapter 4. Reliability Prediction and Improvements 62

• A state [I, START] as the global initial state.

• A Markov block MB (I, Ak) that reflects Ak’s execution paths for a signaled fail-

ure or (correct or erroneous) output FO. It contains a state [I, Ak] as the local

initial state, a state [Ak, FO] as the state of signaled failure or (correct or erro-

neous) output FO. The probability of reaching state [Ak, FO] from state [I, Ak]

is PrAk
(I, FO).

• A Markov block MB (I, An) that reflects An’s execution paths for a signaled fail-

ure or (correct or erroneous) output FO. It contains a state [I, An] as the local

initial state, a state [An, FO] as the state of signaled failure or (correct or erro-

neous) output FO. The probability of reaching state [An, FO] from state [I, An]

is PrAn(I, FO).

• A state [FO] as the global state of signaled failure or (correct or erroneous) output

FO.

• A transition from state [I, START] to state [I, An] with probability 1−
n−1∑
i=1

p (bci)

which is the execution probability of An, where p(bci) (with i = 1, 2, ..., n − 1) is

the probability of the branching condition bci (i.e. the execution probability of Ai)

which is obtained from the current usage profile part.

• A transition from state [I, START] to state [I, Ak] with probability p (bck).

• A transition from state [Ak, FO] to state [FO] with probability 1.0, and a transition

from state [An, FO] to state [FO] with probability 1.0.

Then, the equivalent internal activity of the structure has the failure model as follows

(with I ∈ AIOS, FO ∈ (AFS ∪ AIOS)):

PrIA (I, FO) =

n−1∑
i=1

p(bci)PrAi (I, FO) +

(
1−

n−1∑
i=1

p(bci)

)
PrAn (I, FO) (4.4)

where p(bci) (with i = 1, 2, ..., n − 1) is the probability of the branching condition bci

(i.e. the execution probability of the if part Ai) which is obtained from the current usage

profile part.

4.1.2.3 Parallel Structure

Considering a parallel structure with n parallel branches A1, A2, ..., An as in Fig. 4.7, the

transformation transforms it into an equivalent internal activity based on the following

arguments:

Chapter 4. Reliability Prediction and Improvements 63

<<ParallelStructure>>

<<ParallellPart>>

A1

...
<<ParallelPart>>

A2

<<ParallelPart>>

An

A1

A2

An

......

...

...structure’s

input

structure’s

output
An’s

input
An’s

output

A1’s

input
A1’s

output

Figure 4.7: Using inputs and outputs in a parallel structure.

• The parallel structure (therefore the equivalent internal activity) signals a signaled

failure if at least one parallel branch has a signaled failure.

• The parallel structure (therefore the equivalent internal activity) produces a correct

output if all parallel branches produce correct outputs.

• The parallel structure (therefore the equivalent internal activity) produces an er-

roneous output if no parallel branch has a signaled failure and at least one parallel

branch produces an erroneous output.

and the following assumptions:

• Reliability-related behaviors of parallel branches are independent.1

• In case a parallel structure receives an erroneous input of certain propagating

failure types, each of its parallel branch receives an erroneous input of the same

propagating failure types. And in case a parallel structure produces an erroneous

output, the propagating failure types of the parallel structure’s erroneous output

is a union of propagating failure types of the parallel branches’ erroneous outputs.

Fig. 4.7 shows a usage2 of inputs and outputs that satisfies the assumption for a

parallel structure: each Ak receives the whole input of the parallel structure as its

input, and all outputs of Ak(s) are joined to form the structure’s output.

1Our method does not explicitly consider errors caused by shared resource access or thread inter-
action, which can be removed by existing techniques before the analysis [84], or implicitly included in
probabilities of the failure models for internal activities in parallel branches.

2This is one of the most common scenarios in parallel executions. Our method for transforming
parallel structures can be extended to include other common scenarios in parallel executions.

Chapter 4. Reliability Prediction and Improvements 64

• When parallel branches signal signaled failures of different stopping failure types,

the stopping failure type of the signaled failure of the whole parallel structure is

the stopping failure type of the signaled failure of the lowest index parallel branch.3

Under all the stated assumptions, the transformation transforms the parallel structure

into an equivalent internal activity in an accumulative manner, that is, it transforms the

two parallel parts A1 and A2 into an equivalent internal activity A12, then transforms

A12 and the parallel part A3 into an equivalent internal activity A123, and so forth until

all the parallel parts of the parallel structure are transformed into an equivalent internal

activity A12...n.

Let PrA12...k
(I, FO), I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the failure model for the

equivalent internal activity of the first k (with k < n) parallel branches. Fig. 4.8 shows

the Markov skeleton that reflects the execution paths for A12...k and Ak+1 in the parallel

structure with a given input I ∈ AIOS, a given signaled failure F ∈ AFS, a given

(correct or erroneous) output O′ ∈ AIOS, a given erroneous output O ∈ AIOS \
{{F0}}, a given erroneous output O1 ∈ AIOS \ {{F0}}, a given erroneous output

O2 ∈ AIOS \ {{F0}}, and a given signaled failure or (correct or erroneous) output

FO ∈ (AFS ∪ AIOS). The complete Markov chain can be obtained by expanding the

Markov skeleton for all possible values of I, F , O′, O, O1, O2, and FO. The Markov

skeleton includes the following elements:

• A state labeled [I, START] as the global initial state.

• A Markov block MB (I, A12...k) that reflects the execution paths of A12...k and

Ak+1 for a signaled failure F , an (correct or erroneous) output O′, an erroneous

output O, an erroneous output O1, an erroneous output O2, a signaled failure or

(correct or erroneous) output FO, and a correct output {F0}. It contains the

following states and transitions:

– A state [(I, A12...k), (I, Ak+1)] as the local initial state.

– A state [(A12...k, {F0}), (Ak+1, {F0})] as the state that A12...k produces {F0}
and Ak+1 produces {F0}. The probability of reaching state [(A12...k, {F0}),

3It would have been possible for us to support modeling the concurrent presence of stopping failure
types caused by parallel branches signaling signaled failures of different stopping failure types (using
the same method as for propagating failure types). However, the fact that in practice, fault tolerance
mechanisms, if any, to handle errors of parallel executions are often put inside each parallel execution
could make the support useless in modeling fault tolerance mechanisms. Whereas, supporting modeling
the concurrent presences of both stopping failure types and propagating failure types could increase
quickly the danger of state-space explosion for our method. Moreover, using the stopping failure types of
the signaled failure of the lowest index parallel branch is simply our design choice to avoid introducing the
concurrent presence of stopping failure types. Another possible design choice could be using the highest
stopping failure type among different stopping failure types of signaled failures of parallel branches given
that the stopping failure types are sorted in a certain order (e.g. according to their severities).

Chapter 4. Reliability Prediction and Improvements 65

I,START

1.0

{F0}

MB((I,A12...k),(I,Ak+1))

A12...k

Ak+1

(I,A12...k),

(I,Ak+1)

(A12...k,{F0}),

(Ak+1,{F0})

1.0

(A12...k,F),

(Ak+1,FO)

F

1.0

(A12...k,O’),

(Ak+1,F)

1.0

(A12...k,{F0}),

(Ak+1,O)

(A12...k,O),

(Ak+1,{F0})

O

1.01.0

(A12...k,O1),

(Ak+1,O2)

1.0 | O1 ∪ O2 = O

12... 10 0, ,

k kA APr I F Pr I F

12... 1

, ,
k kA APr I F Pr I FO

12... 1

, ' ,
k kA APr I O Pr I F

12... 11 2, ,

k kA APr I O Pr I O

12... 1 0, ,

k kA APr I O Pr I F

12... 10, ,

k kA APr I F Pr I O

Figure 4.8: Markov skeleton for A12...k and Ak+1 in a parallel structure.

(Ak+1, {F0})] from state [(I, A12...k), (I, Ak+1)] is PrA12...k
(I, {F0})PrAk+1

(I,

{F0}).

– A state [(A12...k, F), (Ak+1, FO)] as the state that A12...k signals F and Ak+1

signals or produces FO. The probability of reaching state [(A12...k, F), (Ak+1,

FO)] from state [(I, A12...k), (I, Ak+1)] is PrA12...k
(I, F)PrAk+1

(I, FO).

– A state [(A12...k, O
′), (Ak+1, F)] as the state that A12...k produces O′ and Ak+1

signals F . The probability of reaching state [(A12...k, O
′), (Ak+1, F)] from

state [(I, A12...k), (I, Ak+1)] is PrA12...k
(I,O′)PrAk+1

(I, F).

– A state [(A12...k, {F0}), (Ak+1, O)] as the state that A12...k produces {F0} and

Ak+1 produces O. The probability of reaching state [(A12...k, {F0}), (Ak+1, O)]

from state [(I, A12...k), (I, Ak+1)] is PrA12...k
(I, {F0})PrAk+1

(I,O).

– A state [(A12...k, O), (Ak+1, {F0})] as the state that A12...k produces O and

Ak+1 produces {F0}. The probability of reaching state [(A12...k, O), (Ak+1,

{F0})] from state [(I, A12...k), (I, Ak+1)] is PrA12...k
(I,O)PrAk+1

(I, {F0}).

– A state [(A12...k, O1), (Ak+1, O2)] as the state that A12...k produces O1 and

Ak+1 produces O2. The probability of reaching state [(A12...k, O1), (Ak+1, O2)]

from state [(I, A12...k), (I, Ak+1)] is PrA12...k
(I,O1)PrAk+1

(I,O2).

Chapter 4. Reliability Prediction and Improvements 66

• A state [{F0}] as the global state of correct output {F0}, a state [F] as the global

state of signaled failure F , and a state [O] as the global state of erroneous output

O.

• A transition from state [I, START] to state [(I, A12...k) , (I, Ak+1)] with probability

1.0

• A transition from state [(A12...k, {F0}), (Ak+1, {F0})] to state [{F0}] with proba-

bility 1.0.

• A transition from state [(A12...k, F), (Ak+1, FO)] to state [F] with probability 1.0,

and a transition from state [(A12...k, O
′}), (Ak+1, F)] to state [F] with probability

1.0.

• A transition from state [(A12...k, {F0}), (Ak+1, O)] to state [O] with probability 1.0,

a transition from state [(A12...k, {F0}), (Ak+1, O)] to state [O] with probability 1.0,

and a transition from state [(A12...k, O1), (Ak+1, O2)] to state [O] with probability

1.0 if O1 ∪O2 = O.

Then, the failure model for the equivalent internal activity of the first k + 1 parallel

branches is calculated as follows.

• The first k + 1 parallel branches produce a correct output if the first k parallel

branches produce a correct output and the (k + 1) − th parallel branch produces

a correct output:

PrA12...k+1
(I, {F0}) = PrA12...k

(I, {F0})PrAk+1
(I, {F0}) (4.5)

• The first k+1 parallel branches signal a signaled failure of stopping failure type F

(with F ∈ AFS) if either (1) the first k parallel branches signal a signaled failure

of stopping failure type F or (2) the first k parallel branches produce an output

(correct or erroneous) and the (k+1)− th parallel branch signals a signaled failure

of stopping failure type F :

PrA12...k+1
(I, F) = PrA12...k

(I, F) +

(∑
O′∈AIOS

PrA12...k

(
I,O′

))
PrAk+1

(I, F)

(4.6)

• The first k + 1 parallel branches produce an erroneous output of propagating

failure types O ∈ AIOS \ {{F0}} if (1) the first k parallel branches produce a

correct output and the (k + 1)− th parallel branch produces an erroneous output

of propagating failure types O, or (2) the first k parallel branches produce an

Chapter 4. Reliability Prediction and Improvements 67

Table 4.1: An Example of Transformation Results.

Execution Results Transformation Results

A1 A2 Result Occurrence Probability
(with I ∈ AIOS)

F ∈ AFS - F PrA1 (I, F)

O ∈ AIOS F ∈ AFS F PrA1 (I,O)PrA2 (I, F)

{F0} O ∈ (AIOS \ {{F0}}) O PrA1 (I, {F0})PrA2 (I,O)

O ∈ (AIOS \ {{F0}}) {F0} O PrA1 (I,O)PrA2 (I, {F0})
{F0} {F0} {F0} PrA1 (I, {F0})PrA2 (I, {F0})

O1 ∈ (AIOS \ {{F0}}) O2 ∈ (AIOS \ {{F0}}) O1 ∪O2 PrA1 (I,O1)PrA2 (I,O2)

erroneous output of propagating failure types O and the (k + 1) − th parallel

branch produces a correct output, or (3) the first k parallel branches produce

an erroneous output of propagating failure types O1 ∈ AIOS \ {{F0}} and the

(k + 1) − th parallel branch produces an erroneous output of propagating failure

types O2 ∈ AIOS \ {{F0}} such that O1 ∪O2 = O:

PrA12...k+1
(I,O) = PrA12...k

(I, {F0})PrAk+1
(I,O)

+ PrA12...k
(I,O)PrAk+1

(I, {F0})
+

∑
O1 ∪O2 = O

O1, O2 ∈ AIOS \ {{F0}}

(
PrA12...k

(I,O1)PrAk+1
(I,O2)

)

(4.7)

By using Equations (4.5), (4.6), and (4.7), the transformation recursively calculates the

failure model for the equivalent internal activity of all n parallel branches (i.e. the failure

model for the equivalent internal activity of the parallel structure): PrIA (I, FO) =

PrA12...n (I, FO), I ∈ AIOS, FO ∈ (AFS ∪ AIOS).

Example 4.2. Assuming a parallel structure with two parallel branches A1 and A2,

each parallel branch has a failure model as in Example 3.4. Table 4.1 shows the trans-

formation results. From this table, the transformation can build up the failure model for

the equivalent internal activity of the parallel structure. For example, PrIA (I, {FS1}) =

PrA1 (I, {FS1})+

(∑
O∈AIOS

PrA1 (I,O)

)
PrA2 (I, {FS1}) for all I ∈ AIOS (as in Equa-

tion (4.6)).

4.1.2.4 Looping Structure

Considering a looping structure with a single looping part A1, in case the current usage

profile part contains the average value of the loop count, i.e. average (lc) = vL as shown

in Fig. 4.9, it can be seen as either a sequential structure with vL sequential parts A1 (if it

Chapter 4. Reliability Prediction and Improvements 68

<<SequentialStructure>>

<<SequentialPart>>

A1

...
<<SequentialPart>>

A1

<<SequentialPart>>

A1

-loopCount:

 lc

-loopType:

 sequential/parallel

<<LoopingStructure>>

<<LoopingPart>>

A1

vL times of A1

<<ParallelStructure>>

<<ParallellPart>>

A1

...
<<ParallelPart>>

A1

<<ParallelPart>>

A1

vL times of A1

-loopCount:

 lc

-loopType:

 sequential/parallel

<<LoopingStructure>>

<<LoopingPart>>

A1

...

<<UsageProfilePart>>

...

 probability =...

1 1

2 2

()

()

()

... ...

()t t

lc p lc

v p v

v p v

v p v

<<BranchingStructure>>

-branchingCondition:

 bc1

<<IfPart>>

B1

...

-branchingCondition:

 bct-1

<<IfPart>>

Bt-1

-loopCount:

 v1

-loopType:

 sequential/parallel

<<LoopingStructure>>

<<LoopingPart>>

A1

-loopCount:

 vt-1

-loopType:

 sequential/parallel

<<LoopingStructure>>

<<LoopingPart>>

A1

-loopCount:

 vt

-loopType:

 sequential/parallel

<<LoopingStructure>>

<<LoopingPart>>

A1

...

p(bc1)=p(v1) p(bct-1)=p(vt-1)

...

average(lc)=vL

<<UsageProfilePart>>

...

 probability =...

-branchingCondition:

 bct

<<IfPart>>

Bt

p(bct)=p(vt)

Figure 4.9: Looping structures and their equivalent structures.

is a sequential looping structure) or a parallel structure with vL parallel parts A1 (if it is

a parallel looping structure). Then, the failure model for the equivalent internal activity

of the looping structure can be calculated by applying the same transformation, as for a

sequential structure (or a parallel structure), to the equivalent structure of the looping

structure. Moreover, because all parts of the equivalent structure are the same A1, the

transformation also employs the exponentiation by squaring4 for fast transforming.

In case the current usage profile part contains the discrete probability distribution of

the loop count, i.e. all possible values for the loop count {v1, v2, ..., vt} ⊆ N and their

occurrence probabilities {p (v1) , p (v2) , ..., p (vt)} such that
t∑

i=1
p (vi) = 1, the looping

4http://en.wikipedia.org/wiki/Exponentiating by squaring

Chapter 4. Reliability Prediction and Improvements 69

<<RetryPart>>
RP

RP

(retry 0)

RP

(retry 1)

RP

(retry rc)

-retryCount: rc

-handledFailures: FH

<<RetryStructure>>

...

...

...

structure’s

input

structure’s

output

RP (retry rc)’s

input

RP (retry rc)’s

output

RP (retry 0)’s

input
RP (retry 0)’s

output

Figure 4.10: Using inputs and outputs in a RetryStructure.

structure can be seen as a branching structure of if parts as in Fig. 4.9. Each if part

Bi, i ∈ {1, 2, ..., t}, has its execution probability p (bci) = p (vi) and contains a looping

structure with the loop count value vi. Then, the failure model for the equivalent

internal activity of the looping structure can be calculated by applying (1) the same

transformation, as in case of an average value of the loop count, to the inner looping

structures, and then (2) the same transformation, as for a branching structure, to the

outer branching structure.

4.1.2.5 RetryStructure

Considering a RetryStructure, let rc be the retry count, FH ⊆ AFS be the set of handled

failures, PrRP (I, FO) for all I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the failure model of

RetryPart (abbreviated as RP).

Fig. 4.10 shows the usage of inputs and outputs in a RetryStructure. The structure’s

input is the input for all RetryPart ’s executions and the structure’s output is the out-

put of a RetryPart ’s execution. For the sake of uniformity, the first execution of the

RetryPart is considered as RP (retry 0).

For each possible input I ∈ AIOS of a RetryStructure, the transformation builds a

Markov model that reflects all the possible execution paths of the RetryStructure with

the input I and their corresponding probabilities, and then build up the failure model

for the equivalent internal activity from this Markov model.

Step 1 , the transformation builds a Markov block for each retry. The Markov Block

for the i-th retry (MB (I,RPi)) reflects its possible execution paths for signaled failures

(Fig. 4.11). It includes a state labeled “I,RPi” as an initial state, states [RPi, F] for all

Chapter 4. Reliability Prediction and Improvements 70

I,RPi

RPi,{FS1} RPi,{FS2} RPi,{FSu}

PrRP(I,{FS1})

PrRP(I,{FS2})

PrRP(I,{FSu})

...

MB(I,RPi)

Figure 4.11: Markov block for i-th retry.

F ∈ AFS as states of signaled failures. The probability of reaching state [RPi, F] from

state [I,RPi] is PrRP (I, F) for all F ∈ AFS.

Step 2 , the transformation assembles these Markov blocks into a single Markov model

that reflects all the possible execution paths of the RetryStructure with the input I ∈
AIOS as follows (following the semantics as illustrated as in Fig. 3.8).

• Add a state [I, START].

• Add states [F] for all F ∈ AFS.

• Add states [O] for all O ∈ AIOS

• Add a transition from state [I, START] to state [I,RP0] with probability 1.0.

• For all Markov block MB (I,RPi) with i ∈ {0, 1, ..., rc}, add transitions from

state [I,RPi] to state [O] with probability PrRP (I,O) for all O ∈ AIOS. This is

because a correct (resp. erroneous) output of the RetryPart ’s execution leads to a

correct (resp. erroneous) output of the whole RetryStructure.

• For Markov block MB (I,RPrc) (i.e. the Markov block of the last retry), add

transitions from state [RPrc, F] to state [F] with probability 1.0 for all F ∈ AFS.

• For other Markov blocks, i.e. MB (I,RPi) with i ∈ {0, 1, ..., rc− 1}, add transi-

tions from state [RPi, F] to (1) state [I,RPi+1] with probability 1.0 if F ∈ FH, or

otherwise to (2) state [F] with probability 1.0 for all F ∈ AFS, .

Step 3 , because the resulting Markov model is an absorbing Markov chain, the failure

model for the equivalent internal activity is built up as follows.

• For all F ∈ AFS, PrIA (I, F) is the probability of reaching absorbing state [F]

from transient state [I, START].

• For all O ∈ AIOS, PrIA (I,O) is the probability of reaching absorbing state [O]

from transient state [I, START].

Chapter 4. Reliability Prediction and Improvements 71

I,RP0

RP0,{FS1} RP0,{FS2}

PrRP(I,{FS1}) PrRP(I,{FS2})

MB(I,RP0)
I,RP1

RP1,{FS1} RP1,{FS2}

PrRP(I,{FS1}) PrRP(I,{FS2})

MB(I,RP1)

{F0} {FP1} {FP2} {FP1,FP2}

{FS1} {FS2}

1.0 1.0

1.0

I,START

1.0

PrRP(I,{F0}) PrRP(I,{FP1,FP2})

PrRP(I,{F0})

I,RP2

RP2,{FS1} RP2,{FS2}

PrRP(I,{FS1}) PrRP(I,{FS2})

MB(I,RP2)

1.0

1.01.0

<<RetryPart>>

RP

-retryCount: 2

-handledFailures: {FS2}

<<RetryStructure>>

Figure 4.12: An example of transformation for a RetryStructure.

The transition matrix for the generated Markov chain has the following format:

P =

(
Q R

0 I

)

where the upper left transition matrix Q is a square matrix representing one-step tran-

sitions between transient states [I, START], [I,RPi], and [RPi, F] for all F ∈ AFS
(with i ∈ {0, 1, ..., rc}), the upper right transition matrix R represents one-step transi-

tions from the transient states to absorbing states [F] for all F ∈ AFS and [O] for all

O ∈ AIOS, I is an identify matrix with size equal the number of the absorbing states.

Let B =(I−Q)−1R be the matrix computed from the matrices I, Q and R. Because

this is an absorbing Markov chain, the entry bij of the matrix B is the probability that

the chain will be absorbed in the absorbing state sj if it starts in the transient state si

[59]. Thus, the failure model of the equivalent IA can be obtained from the matrix B.

Example 4.3. Fig. 4.12 shows an example of transformation for a RetryStructure

(several transition probabilities are omitted for the sake of clarity). In this example,

it is assumed that the RetryPart has a failure model as in Example 3.4. Therefore,

AFS = {{FS1} , {FS2}} and AIOS = {{F0} , {FP1} , {FP2} , {FP1, FP2}}. rc of the

Chapter 4. Reliability Prediction and Improvements 72

<<MultiTryCatchPart>>
MT1

MT1

MT2

MTn

<<MultiTryCatchStructure>>

...

...

...
structure’s

input

structure’s

output

MT1’s

input
MT1’s

output

-handledFailures: FH2

<<MultiTryCatchPart>>
MT2

-handledFailures: FHn

<<MultiTryCatchPart>>
MTn

...

MTn’s

input

MTn’s

output

Figure 4.13: Using inputs and outputs in a MultiTryCatchStructure.

I,MTi

MTi,{FS1} MTi,{FS2} MTi,{FSu}
...

MB(I,MTi)

1(,{ })
iMT SPr I F

2(,{ })
iMT SPr I F

(,{ })
iMT SuPr I F

Figure 4.14: Markov block for MultiTryCatchPart i.

RetryStructure is 2 and FH of the RetryStructure is {{FS2}}. From the resulting

Markov model, the failure model for the equivalent internal activity of the RetryStruc-

ture can be built up, e.g. PrIA (I, {F0}) is the probability of reaching absorbing state

[{F0}] from transient state [I, START].

4.1.2.6 MultiTryCatchStructure

Considering a MultiTryCatchStructure, let n be the number of MultiTryCatchParts. For

each i ∈ {1, 2, ..., n}, let FHi ⊆ AFS be the set of handled failures of MultiTryCatchPart

i, PrMTi(I, FO) for all I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the failure model of

MultiTryCatchPart i (abbreviated as MTi).

Fig. 4.13 shows the usage of inputs and outputs in a MultiTryCatchStructure. The

structure’s input is the input for all MultiTryCatchParts’ executions and the structure’s

output is the output of a MultiTryCatchPart ’s execution.

Similar to the case of RetryStructures, for each possible input I ∈ AIOS of a MultiT-

ryCatchStructure, the transformation builds a Markov model that reflects all the possible

execution paths of the MultiTryCatchStructure with the input I and their correspond-

ing probabilities, and then build up the failure model for the equivalent internal activity

from this Markov model.

Chapter 4. Reliability Prediction and Improvements 73

Step 1 , the transformation builds a Markov block for each MultiTryCatchPart. The

Markov Block for the MultiTryCatchPart i (MB (I,MTi)) reflects its possible execution

paths for signaled failures (Fig. 4.14). It includes a state [I,MTi] as an initial state,

states [MTi, F] for all F ∈ AFS as states of signaled failures. The probability of reaching

state [MTi, F] from state [I,MTi] is PrMTi (I, F) for all F ∈ AFS.

Step 2 , the transformation assembles these Markov blocks into a single Markov model

that reflects all the possible execution paths of the MultiTryCatchStructure with the

input I ∈ AIOS as follows (following the semantics as illustrated as in Fig. 3.9).

• Add a state [I, START].

• Add states [F] for all F ∈ AFS.

• Add states [O] for all O ∈ AIOS

• Add a transition from state [I, START] to state [I,MT1] with probability 1.0.

• For all Markov blocks MB (I,MTi) with i ∈ {1, 2, ..., n}, add transitions from

state [I,MTi] to state [O] with probability PrMTi (I,O) for all O ∈ AIOS. This

is because a correct (resp. erroneous) output of a MultiTryCatchPart ’s execution

leads to a correct (resp. erroneous) output of the whole MultiTryCatchStructure.

• For Markov block MB (I,MTn) (i.e. the Markov block of the last MultiTryCatch-

Part), add transitions from state [MTn, F] to state [F] with probability 1.0 for all

F ∈ AFS.

• For other Markov blocks, i.e. MB (I,MTi) with i ∈ {1, 2, ..., n− 1}, add tran-

sitions from state [MTi, F] to (1) state [I,MTx] with probability 1.0 where x ∈
{i+ 1, i+ 2, ..., n} is the lowest index satisfying F ∈ FHx, or to (2) state [F] with

probability 1.0 if no such index x ∈ {i+ 1, i+ 2, ..., n} satisfying F ∈ FHx for all

F ∈ AFS.

Step 3 , with the resulting Markov chain, the failure model for the equivalent internal

activity is built up as follows.

• For all F ∈ AFS, PrIA (I, F) is the probability of reaching absorbing state [F]

from transient state [I, START].

• For all O ∈ AIOS, PrIA (I,O) is the probability of reaching absorbing state [O]

from transient state [I, START].

Chapter 4. Reliability Prediction and Improvements 74

I,MT1

MT1,{FS1} MT1,{FS2}

MB(I,MT1)
I,MT2

MT2,{FS1} MT2,{FS2}

MB(I,MT2)

{F0} {FP1} {FP2} {FP1,FP2}

{FS1} {FS2}

1.0

1.0

1.0

I,START

1.0

I,MT3

MT2,{FS1} MT2,{FS2}

MB(I,MT3)

1.0

1.01.0

<<MultiTryCatchPart>>
MT1

<<MultiTryCatchStructure>>

-handledFailures: {FS1}

<<MultiTryCatchPart>>
MT2

-handledFailures: {FS2}

<<MultiTryCatchPart>>
MT3

1 1(,{ })MT SPr I F 2 1(,{ })MT SPr I F

2 2(,{ })MT SPr I F
3 1(,{ })MT SPr I F

3 2(,{ })MT SPr I F

1 0(,{ })MTPr I F
3 1 2(,{ , })MT P PPr I F F

2 0(,{ })MTPr I F

Figure 4.15: An example of transformation for a MultiTryCatchStructure.

Example 4.4. Fig. 4.15 shows an example of transformation for a MultiTryCatchStruc-

ture (several transition probabilities are omitted for the sake of clarity). In this example,

it is assumed that each MultiTryCatchPart has a failure model as in Example 3.4. There-

fore, AFS = {{FS1} , {FS2}} and AIOS = {{F0} , {FP1} , {FP2} , {FP1, FP2}}. FH2 of

the MultiTryCatchPart 2 is {{FS1}} and FH3 of the MultiTryCatchPart 3 is {{FS2}}.
From the resulting Markov model, the failure model for the equivalent internal activity

of the MultiTryCatchStructure can be built up, e.g. PrIA (I, {F0}) is the probability of

reaching absorbing state [{F0}] from transient state [I, START].

4.1.2.7 MVPStructure

Considering a MVPStructure, let n be the number of MVPParts, maxTI be the value of

the field maxToleratedIncompletion, minMS be the value of the field minMajoritySize,

FsF ∈ AFS be the value of the field signaledFailure, FeO ∈ AIOS \ {{F0}} be the

value of the field erroneousOutput, EPVi be the error property vector for MVPPart i

with i ∈ {1, 2, ..., n} which is represented by
{
diEP

}
with EP ∈ AIOS \ {{F0}}, AEV

be the value of the field agreementOfErrorsVector which is represented by {py} with

Chapter 4. Reliability Prediction and Improvements 75

- maxToleratedIncompletion: maxTI - minMajoritySize: minMS

- erroneousOutput: FeO - signaledFailure: FsF

- agreementOfErrorsVector: AEV

- errorPropertyVectors:

<<MVPStructure>>

<<MVPPart>>
MV1

<<MVPPart>>
MV2

1
EPV

MV1

MV2

MVn

......

...

...

structure’s

output

MVn’s

input

MVn’s

output

MV1’s

input

MV1’s

output

2
EPV

n
EPV

<<MVPPart>>
MVn

...

...

Majority

voter

structure’s

input

Majority

voter’s

input

Majority

voter’s

output

Figure 4.16: Using inputs and outputs in a MVPStructure.

minMS ≤ y ≤ n, PrMVi(I, FO) for all I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the

failure model of MVPPart i (abbreviated as MVi).

Fig. 4.16 shows the usage of inputs and outputs in a MVPStructure. The structure’s

input is the input for all MVPParts’ executions and the structure’s output is the output

of the majority voter of the MVPStructure.

In order to transform a MVPStructure into an equivalent internal activity, for each

possible input I ∈ AIOS of the MVPStructure, the transformation calculates the prob-

abilities of the possibilities for the set of results of MVPParts’ executions (Step 1), and

then the probabilities for the voter to signal a signaled failure or to produce a correct

or erroneous output (Step 2) (following the semantics as illustrated in Fig. 3.11). Af-

ter that, the failure model for the equivalent internal activity can be derived from the

probabilities for the voter by the transformation (Step 3).

Step 1 , the transformation calculate the probabilities of the possibilities for the set

of results of MVPParts’ executions in an accumulative manner. After the executions

of the first k MVPParts, let (x, y, z)k be a possibility for the set of results of these

Chapter 4. Reliability Prediction and Improvements 76

MVPParts’ executions where x is the number of correct outputs, y is the number of

erroneous outputs, and z is the number of incomplete executions such that x+y+z = k,

let p ((x, y, z)k) be the probability of the possibility (x, y, z)k. Therefore, there are

(k + 2) (k + 1)/2 possibilities and the same number of probabilities. At the beginning,

there is one possibility (0, 0, 0)0 with probability p ((0, 0, 0)0) = 1.

After the executions of the first k+ 1 MVPParts, the set of results of these MVPParts’

executions is (x, y, z)k+1 if (1) x > 0, the set of results of the executions of the first k

MVPParts is (x− 1, y, z)k and the (k+ 1)− th MVPPart produces a correct output, or

(2) y > 0, the set of results of the executions of the first k MVPParts is (x, y − 1, z)k and

the (k+ 1)− th MVPPart produces an erroneous output, or (3) z > 0, the set of results

of the executions of the first k MVPParts is (x, y, z − 1)k and the (k+ 1)− th MVPPart

does not complete its execution in time. Therefore, the probability p
(
(x, y, z)k+1

)
is

calculated as follows:

p
(
(x, y, z)k+1

)
= p ((x− 1, y, z)k)PrMVk+1

(I, {F0})
∣∣x > 0

+ p ((x, y − 1, z)k)
∑

O′∈AIOS\{{F0}}
PrMVk+1

(I,O′)
(

1− dk+1
O′

)∣∣∣∣∣ y > 0

+ p ((x, y, z − 1)k)
∑

O′∈AIOS\{{F0}}
PrMVk+1

(I,O′) dk+1
O′

∣∣∣∣∣ z > 0

(4.8)

By using Equation 4.8, the transformation recursively calculates the probabilities for all

the possibilities of the set of results of n MVPParts’ executions.

Fig. 4.17 shows the Markov chain that supports our argumentation. It starts with

the state [(0, 0, 0)0], and ends with states [(n, 0, 0)n], [(n − 1, 1, 0)n], ..., [(0, n, 0)n],...,

[(0, 1, n− 1)n], [(0, 0, n)n]. From state [(x, y, z)k], there are there transitions, including a

transition to state [(x+ 1, y, z)k] with probability PrMVk+1
(I, {F0}) (i.e. the probability

that the (k+ 1)− th MVPPart produces a correct output), a transition to state [(x, y+

1, z)k] with probability
∑

O′∈AIOS\{{F0}}
PrMVk+1

(I,O′)
(

1− dk+1
O′

)
(i.e. the probability

that the the (k + 1) − th MVPPart produces an erroneous output), and a transition

to state [(x, y, z + 1)k] with probability
∑

O′∈AIOS\{{F0}}
PrMVk+1

(I,O′) dk+1
O′ (i.e. the

probability that the (k + 1)− th MVPPart does not complete its execution in time).

Step 2 , with the probabilities p ((x, y, z)n) for all the possibilities of the set of results

of n MVPParts’ executions, the transformation calculates the probabilities for the voter

as follows:

Chapter 4. Reliability Prediction and Improvements 77

(x,y,z)k

(x+1,y,z)k+1 (x,y+1,z)k+1 (x,y,z+1)k+1

1

0{{ }}

1(),
k

k

MV O

O F

Pr I O d

1

0{ }}

1

{

(, 1)()
k

k

MV O

O F

Pr I O d

1 0(,{ })
kMVPr I F

After the first k

MVPParts’ execution

After the first k+1

MVPParts’ execution

...

...

(0,0,0)0

At the

beginning

At the end - After n

MVPParts’ execution

(n,0,0)n (n-1,1,0)n ... (0,1,n-1)n (0,0,n)n

... ...

... ...

(0,n,0)n ...

Figure 4.17: Markov chain in a MVPStructure.

• The voter produces a correct output if in a possibility for the set of the results of

MVPParts’ executions, the number of incomplete executions is at most maxTI

and the number of correct outputs is at least minMS:

p ({F0}) =
∑

(x,y,z)n

p ((x, y, z)n)|z 6 maxIT, x > minMS (4.9)

• The voter produces an erroneous output of FeO if in a possibility for the set of

the results of MVPParts’ executions, the number of incomplete executions is at

most maxTI, the number of correct outputs is less than minMS, the number of

erroneous outputs is at least minMS, and there is an agreement of the majority

erroneous outputs:

p(FeO) =
∑

(x,y,z)n

p ((x, y, z)n) py|z 6 maxIT, x < minMS, y > minMS (4.10)

• The voter signals a signaled failure of FsF with probability:

p (FsF) = 1− p ({F0})− p (FeO) (4.11)

Chapter 4. Reliability Prediction and Improvements 78

Step 3 , the failure model for the equivalent internal activity can be derived from the

probabilities for the voter as follows:

PrIA (I, {F0}) = p ({F0})
PrIA (I, FeO) = p (FeO)

PrIA (I, FsF) = p (FsF)

(4.12)

4.1.2.8 The Reliability under the Usage Profile Part

As described in Section 3.2.2.3, under the current usage profile part, the reliability for a

provided service is 1−POFOD, where POFOD is the probability of failure on demand,

given that the input of the service provided by the system is correct (i.e., as defined by

its specification). Therefore, the reliability for the provided service to which the current

usage profile part refers is the probability that this service produces a correct output

given that it has received a correct input: PrIA ({F0} , {F0}) of the failure model for the

equivalent internal activity of the service implementation of this service. Notice that,

from this failure model, other reliability properties of the provided service, e.g. Internal

failure probabilities or Robustness, can also be derived (see Section 3.2.1.2).

4.1.3 Aggregation of Results

The results of the reliability of provided services to which the usage profile parts in

the usage profile refer are aggregated as follows: Let R(UPPj) be the reliability of

the provided service which usage profile part UPPj refers to, m be the number of usage

profile parts in the usage profile, Pj be the probability that users access with usage profile

part UPPj such that
m∑
j=1

Pj = 1, then the overall system reliability can be determined

as a weighted sum over all usage profile parts in the usage profile:

R =

m∑
j=1

Pj R(UPPj) (4.13)

Example 4.5. Continuing with Example 3.8, the overall system reliability is determined

as R = 0.7R(UPP1) + 0.3R(UPP2).

4.1.4 Complexity

Regarding space-effectiveness, by transforming a structure into an equivalent internal

activity, the transformation algorithm no longer needs to store the structure with its

Chapter 4. Reliability Prediction and Improvements 79

Table 4.2: Running Times of the Transformation Algorithm for Different Structure
Types.

Structure type Running time

Sequential structure O
(
nS |AIOS|2 (|AIOS|+ |AFS|)

)
Branching structure O (nB |AIOS| (|AIOS|+ |AFS|))
Parallel structure O

(
nP |AIOS|

(
|AIOS|2 + |AFS|

))
Sequential looping structure O

(
log2 (vL) |AIOS|2 (|AIOS|+ |AFS|)

)
Parallel looping structure O

(
log2 (vL) |AIOS|

(
|AIOS|2 + |AFS|

))
RetryStructure O

(
rc2 |AIOS| |AFS|2 (rc |AFS|+ |AIOS|)

)
MultiTryCatchStructure O

(
n2
MT |AIOS| |AFS|

2 (nMT |AFS|+ |AIOS|)
)

MVPStructure O
(
nMV |AIOS|

(
|AFS|+ |AIOS|+ n2

MV

))
inner parts in the memory, but can efficiently transform the outer structure using the

equivalent internal activity. Due to its recursive nature, the algorithm transforms a

structure as soon as its inner parts have been transformed into equivalent internal ac-

tivities, therefore, can efficiently reduce the possibility of state-space explosion.

At any point in time, the number of structures present in the memory is limited by the

maximum depth of the stack of called and nested structures throughout the whole system

model. The amount of memory required by the algorithm for a structure is almost equal

to the amount of memory required to store the equivalent internal activities of its inner

parts, apart from the fact that the algorithm requires an additional amount of memory

for (1) a Markov chain in case of a RetryStructure or a MultiTryCatchStructure, or (2)

the possibilities of the set of results of MVPParts’ executions and their probabilities in

case of a MVPStructure. The aggregation of results over all usage profile parts in the

usage profile can be calculated one after another, without the need to store each result

separately.

Regarding time-effectiveness, it is assumed that the running time of the transformation

algorithm is a function of the structure type, the number of stopping failure types, and

the number of propagating failure types. Based on Equations (4.1), (4.2), ..., (4.12), it is

possible to obtain the running times of the algorithm for the sequential, branching, par-

allel, looping, and MVPStructure structure types. The running times of the algorithm

for a RetryStructure or MultiTryCatchStructure can be obtained from the process of cre-

ating and solving Markov chains (see Section 4.1.2.5 or 4.1.2.6, respectively). Table 4.2

shows the running times of the algorithm for structure types given that their inner parts

have been transformed into equivalent internal activities. Abbreviations used in the

table are as follows:

Chapter 4. Reliability Prediction and Improvements 80

• |AFS|: cardinality of AFS, equal to u which is the number of stopping failure

types;

• |AIOS|: cardinality of AIOS, equal to 2v with v is the number of propagating

failure types;

• nS : number of sequential parts of a sequential structure;

• nB: number of branching parts (i.e. if and else parts) of a branching structure;

• vL: value of the loop count of a looping structure;

• nP : number of parallel parts of a parallel structure;

• rc: retry count of RetryStructure;

• nMT : number of MultiTryCatchParts of a MultiTryCatchStructure.

• nMV : number of MVPParts of a MVPStructure.

The running time of the algorithm for any structure type is exponential time in the

number of propagating failure types and polynomial time in the number of stopping

failure types. For a sequential, branching, or parallel structure, the running time of the

algorithm is linear time in nS , nB, or nP , respectively. Thanks to exponentiation by

squaring, the running time of the algorithm for a looping structure is logarithmic time

in vL. The fact that the algorithm for a RetryStructure (resp. MultiTryCatchStructure)

involves calculations on matrices (i.e. matrix subtraction, inversion, and multiplication)5

leads to a cubic time of the algorithm in rc (resp. nMT). The running time of the

algorithm for a MVPStructure is also cubic time in nMV . The aggregation of results

over m usage profile parts in the usage profile has a running time of O (m).

The complexity of the algorithm presents an issue regarding the scalability of the RMPI

approach. Therefore, scalability considerations are included in the case study (see Chap-

ter 5 for more details).

4.2 Implementation

The transformation algorithm has been implemented in the reliability prediction tool of

the RMPI approach. The tool receives a system reliability model as an input, validates

this input against a set of predefined semantic constraints in the reliability modeling

5It is assumed that the running time for subtracting two n× n matrices is O
(
n2

)
, the running time

for inverting one n×n matrix is O
(
n3

)
, and the running time for multiplying rectangular matrices (one

m× p matrix with one p× n matrix) is O (mpn).

Chapter 4. Reliability Prediction and Improvements 81

schema of the approach (e.g. the total probability of all usage profile parts must be

1), and produces the system reliability prediction as an output. This output includes

not only the predicted system reliability but also predicted failure probabilities of user-

defined failure types.

As a part of the tool, a reliability simulator has also been implemented. It also receives a

system reliability model as an input. It has the abilities to control the execution of each

internal activity to follow its failure model, and the execution of each provided service to

follow its implementation and the provided usage profile. To simulate the failure model

for an internal activity, a method is implemented as follows: (1) The method receives an

input, returns an output and may throw exceptions, (2) If the method receives an input

marked as I ∈ AIOS, it throws an exception marked as F ∈ AFS with probability

PrIA (I, F) or returns an output marked as O ∈ AIOS with probability PrIA (I,O).

A method is also implemented to simulate each provided service of a component. This

method also receives an input, returns an output and may throw exceptions. The body

of this method includes statements directing the data and control flow according to the

provided service’s implementation and the provided usage profile. Finally, the simulator

determines the system reliability as the ratio of successful service executions (starting

with inputs marked as correct {F0} and ending with outputs marked as correct {F0})
to the overall execution count.

Compared to our analytical method, the simulation is significantly slower and cannot be

used as our main prediction method. However, it can be used for validation purposes. By

comparing prediction results obtained by our analytical method with simulations of the

systems, it is possible for us to provide evidence for the correctness of the transformation

algorithm and the validity of prediction results (see Chapter 5 for more details).

Fig. 4.18 shows a screenshot of the reliability prediction tool with its command-line user

interface. The tool is open source and available at our project website [82].

4.3 Reliability Improvements with RMPI

This section gives an overview of possible model changes for reliability improvements,

and describes how to reflect these changes in the RMPI approach.

If the prediction result shows that the given reliability goal cannot be met, it is possible

to apply model changes or architectural tactics [85] to improve the system reliability

(cf. Fig. 3.1). These changes usually come with extra costs and likely downgrade

other quality attributes of the system. Therefore, software architects are responsible to

Chapter 4. Reliability Prediction and Improvements 82

Figure 4.18: Reliability prediction tool support.

Table 4.3: Reliability Improvements Collection.

Name Type Short Description Non-reliability Refections in
Impacts Modeling

Change
component
connectors

Topological Change component con-
nectors in such a way
that services are pro-
vided by less reliability-
sensitive components

Impacts on other qual-
ity attributes, e.g. per-
formance

Change the system ar-
chitecture model

High relia-
bility com-
ponents

Scalar Apply high quality de-
velopment processes to
components for higher
reliability

More testing and im-
plementation efforts

Decrease failure proba-
bilities of internal activi-
ties

Design di-
versity

Scalar/
Topological

Recovery Blocks, N-
version programming

Extra costs for mul-
tiple designs, impacts
on performance be-
cause of redundant
computations

Decrease directly failure
probabilities of internal
activities/Introduce
MultiTryCatchStruc-
tures, MVPStructures
as additional compo-
nents

Restart
and retry
techniques

Scalar/
Topological

Restart and retry com-
ponents to ensure high
reliability

Impacts on perfor-
mance because of
restarts and retries

Decrease directly fail-
ure probabilities of inter-
nal activities/Introduce
RetryStructures as addi-
tional components

evaluate different possible solutions and decide an optimal trade-off between all existing

goals of quality attributes and costs.

There are two types of model improvements supported by the RMPI approach, namely,

topological improvements and scalar improvements. Topological improvements change

the structure of the system architecture for improved reliability, e.g. changing com-

ponent connectors in such a way that services are provided by less reliability-sensitive

components. Scalar improvements cover changes to values of the input model param-

eters, e.g. changing failure probabilities of internal activities. It is possible to apply

changes independently.

Chapter 4. Reliability Prediction and Improvements 83

Table 4.3 shows a collection of model improvements, including their short descriptions,

possible impacts on other quality attributes and costs, and reflections in modeling. The

type and number of changes reflected in modeling are dependent on the concrete model

improvements. For example, considering a replacement of a component by n redundant

components for improved reliability, this replacement can be reflected in modeling by

directly decreasing the failure probabilities of the internal activities of the original com-

ponent (i.e. a scalar improvement) or by modeling the redundant components and then

introducing a fault tolerance structure, e.g. a MultiTryCatchStructure or MVPStruc-

ture, as an additional component (i.e. a topological improvement). However, not every

change to the model is an improvement, e.g. replacing a component with an alternative

can have both positive and negative influence on the system reliability, depending on

the specific system architecture. The case studies in Chapter 5 illustrate the application

of different model improvements.

Being based on a system model rather than the actual system, the RMPI approach

allows evaluating the influence of changes on the system reliability, without reimple-

mentation, reconfiguration, and execution of the actual system. The task of software

architects is to evaluate possible changes and choose the most beneficial one. The task

is repeated gradually from the initial system model until a system model satisfying the

existing goals of quality attributes and costs. Notice that the influence of a single change

on the system reliability may depend the order of applying changes, e.g. it is more bene-

ficial to introduce fault tolerance structures for a component after decreasing the failure

probabilities of propagating failure types of its internal activities.

4.4 Summary

This chapter has described the analysis method provided by the RMPI approach for

the reliability evaluation. More concretely, it described how to conduct transformations

for usage profile parts and for structure types, and how to aggregate the transformation

results for the reliability evaluation. It also investigated the complexity of the algorithm.

It briefly introduced the implementation of the algorithm for tool support. Finally,

it presented an overview of model changes supported by the approach for reliability

improvements.

Chapter 5

Case Study Evaluation

5.1 Goals and Settings

The goal of the case study evaluation described in this chapter is (1) to assess the validity

of prediction results of the RMPI approach and (2) to demonstrate the capabilities of

the approach in supporting design decisions.

There are several aspects to validate a reliability prediction result. First, varying the

input parameters should result in a reasonable change of the prediction result. Second,

the accuracy of the prediction results should be validated, in an ideal manner, against

measured values. However, validating prediction results against measured values is such

a strong challenge that, in practice, validations of prediction results are much weaker

and mostly are only done at a reasonable level (i.e. with sensitivity analyses, relia-

bility simulations) (e.g. [12, 16–18, 23, 63]). The main reason lies in the difficulty of

estimating reliability-related probabilities (e.g. failure probabilities, error propagation

probabilities) for a software system. It is well known that setting tests to achieve a

statistically significant amount of measurement on which the estimation can be based

is non-trivial for high-reliability software systems [86] because the necessary number of

tests and the necessary time for this are prohibitive. Therefore, in this dissertation, we

validate prediction results of the RMPI approach at a reasonable level, i.e. by compar-

ing the prediction results against the results of reliability simulations and by conducting

sensitivity analyses to variations in the input parameters.

In the following, we describe the predictions for the reporting service (Section 5.2), the

WebScan system (Section 5.3), and the DataCapture system (Section 5.4), and present

the scalability of the RMPI approach (Section 5.5).

84

Chapter 5. Case Study Evaluation 85

<<SystemArchitecture>>

<<ComponentInstance>>

ReportingEngine

<<UsageProfile>>

<<ServiceImplementation>>

processReportRequest

<<CallingActivity>>

generateReport

[requestType=generate]

START END

[requestType=view]

<<CallingActivity>>

viewRecentReports

<<InternalActivity>>

P(requestType=generate)=0.25

P(aboutPendingDocuments=true)=0.47

average(numberOfRecentReports)=4

<<UsageProfilePart>>

Manager

 probability =0.2

P(requestType=generate)=0.78

P(aboutPendingDocuments=true)=0.56

average(numberOfRecentReports)=2

<<UsageProfilePart>>

Staff

 probability =0.8

<<ServiceImplementation>>

getReleasedDocumentInfoFromDB

<<InternalActivity>>

START END

<<ServiceImplementation>>

getAttachmentDocumentInfo

<<InternalActivity>>

START END

<<ServiceImplementation>>

viewRecentReports

<<RetryPart>>

-retryCount: 1

-handledFailures:

 {ViewingReportFailure}

<<RetryStructure>>

<<InternalActivity>>

START END

numberOfRecentReports

<<ServiceImplementation>>

getReleasedDocumentInfoFromLogs

<<InternalActivity>>

START END

<<ComponentInstance>>

DestinationManager

<<ComponentInstance>>

SourceManager

<<ServiceImplementation>>

getFileDocumentInfo

<<InternalActivity>>

START END

<<ComponentInstance>>

ReportingMediator

<<ServiceImplementation>>

generateReport

<<CallingActivity>>

getAttachmentDocumentInfo

<<CallingActivity>>

getFileDocumentInfo

[aboutPendingDocuments=true]

START END

[aboutPendingDocuments=false]

<<InternalActivity>>

2

<<InternalActivity>>

1

<<MultiTryCatchPart>>
1

<<MultiTryCatchStructure>>

-handledFailures:

 {InfoFromLogFailure}

<<MultiTryCatchPart>>
2

<<CallingActivity>>

getReleasedDocumentInfoFromDB

<<CallingActivity>>

getReleasedDocumentInfoFromLogs

Figure 5.1: The system reliability model of the reporting service (overview).

5.2 Case Study I: Reporting Service of a Document Ex-

change Server

5.2.1 Description of the Case Study

The program chosen for the first case study is the reporting service of a document

exchange server. The document exchange server is an industrial system which was

designed in a service-oriented way. Its reporting service allows generating reports about

pending documents or released documents.

The system reliability model of the reporting service1 is shown in Fig. 5.1 using the reli-

ability modeling schema of the RMPI approach. At the architecture level, the reporting

1The model can be retrieved from our project website [82].

Chapter 5. Case Study Evaluation 86

Table 5.1: Reporting Service: Different Propagating Failure Types and their Symbols.

Propagating Failure Type Symbol

ContentPropagatingFailure FP1

TimingPropagatingFailure FP2

Table 5.2: Reporting Service: Different Stopping Failure Types and their Symbols.

Stopping Failure Type Symbol

ProcessingRequestFailure FS1

ViewingReportFailure FS2

GeneratingReportFailure FS3

AttachmentInfoFailure FS4

FileInfoFailure FS5

InfoFromLogFailure FS6

InfoFromDBFailure FS7

service consists of four components: ReportingMediator, ReportingEngine, SourceMan-

ager, and DestinationManager. The component SourceManager provides two services

to get information about pending documents: getAttachmentDocumentInfo to get in-

formation about pending documents attached in emails and getFileDocumentInfo to

get information about pending documents stored in file systems. The component Des-

tinationManager provides two services to get information about released documents:

getReleasedDocumentInfoFromLogs to get the information from the logs, getReleased-

DocumentInfoFromDB to get the information from the database (DB). The component

ReportingEngine provides two services: generateReport to generate a new report (either

about pending documents (aboutPendingDocuments=true) or about released documents

(aboutPendingDocuments=false)) and viewRecentReports to view recently generated re-

ports (with the number of reports specified by numberOfRecentReports). The component

ReportingMediator provides the service processReportRequest for handling incoming re-

port request from clients. An incoming report request can be about generating a new re-

port (requestType=generate) or viewing recently generated reports (requestType=view).

In this case study, we are interested in validity of the predictions and sensitivity analyses.

We set the usage profile for the reporting service as shown in Fig. 5.1. The usage profile

contains two usage profile parts that present different usage scenarios of the service.

Staffs use the service mainly for generating reports while managers use the service mainly

for viewing recently generated reports.

There are different errors which may occur in the component instances during the

operation of the reporting service. For example, during processing client requests in

service processReportRequest, errors can arise because of its internal activity’s faults.

When these errors are detected and signaled with a warning signaled by the error

detection of the internal activity, then a signaled failure of a stopping failure type

Chapter 5. Case Study Evaluation 87

Table 5.3: Reporting Service: Internal Activities, their Symbols, and Involved Failure
Types.

Symbol Provided service/Internal activity (IA) Involved Failure Types

a1 processReportRequest/IA FS1, FP1, FP2

a2 viewRecentReports/IA FS2, FP1, FP2

a3 generateReport/IA 1 FS3, FP1, FP2

a8 generateReport/IA 2 FS3, FP1, FP2

a4 getAttachmentDocumentInfo/IA FS4, FP1, FP2

a5 getFileDocumentInfo/IA FS5, FP1, FP2

a6 getReleasedDocumentInfoFromLogs/IA FS6, FP1, FP2

a7 getReleasedDocumentInfoFromDB/IA FS7, FP1, FP2

Input

Possible signaled failures

(Stopping failure types)

{FSx}

P
o

s
s

ib
le

 e
rr

o
n

e
o

u
s

 i
n

p
u

ts

(P
ro

p
a

g
a

ti
n

g
 f

a
il
u

re
 t

y
p

e
s

)
C

o
rr

e
c

t
in

p
u

t

Possible erroneous outputs

(Propagating failure types)
Correct output

{F0} {FP1} {FP1,FP2}{FP2}

{F0}

{FP1}

{FP1,FP2}

{FP2}

0.000107 0.000213 0.9989510.000310

0.000301 0.000180 0.0002700.998839

0.000257 0.998692 0.0001870.000382

0.999021 0.000125 0.0001190.000114

0.000419

0.000410

0.000482

0.000621

Figure 5.2: Reporting service: Failure model for internal activity ai.

occurs: {ProcessingRequestFailure}. Otherwise, the internal activity produces an er-

roneous output of different propagating failure types: {ContentPropagatingFailure},
{TimingPropagatingFailure}, or {ContentPropagatingFailure,TimingPropagatingFailure}.
Different propagating (resp. stopping) failure types and their symbols are given in Ta-

ble 5.1 (resp. Table 5.2). Table 5.3 shows internal activities, their symbols, and involved

failure types.

Determining the probabilities of the failure models for the internal activities is beyond

the scope of this dissertation. However, in order to make our model as realistic as

possible, we aligned the probabilities with the remarks by Cortellessa et al. [13]: (1)

With modern testing techniques, it is practically always possible to produce a software

component with a failure probability lower than 0.001, and (2) It is very likely to find

and build software components with values of error propagation probabilities very close

to 1. For the sake of simplicity, we assumed the probabilities of the failure model for

the internal activity ai (with i ∈ {1, 2, ..., 8}) as in Fig. 5.2 where FSx is the involved

stopping failure type for ai.

Chapter 5. Case Study Evaluation 88

Table 5.4: Reporting Service: Predicted vs. Simulated Reliability

Predicted reliability Simulated reliability Difference Error(%)

0.996527 0.996652 0.000125 0.012542

In the system reliability model, there are two fault tolerance structures. The first is

the RetryStructure in the implementation of service viewRecentReports. This structure

has the ability to retry in case there is a signaled failure of {ViewingReportFailure}.
The number of times to retry of this structure is 1 (retryCount=1). The second is the

MultiTryCatchStructure in the implementation of service generateReport. This struc-

ture has the ability to handle a signaled failure of {InfoFromLogFailure} of the service

getReleasedDocumentInfoFromLogs by redirecting calls to the service getReleasedDocu-

mentInfoFromDB.

5.2.2 Validity of Predictions

To validate the accuracy of prediction results of the RMPI approach, we used the system

reliability model of the reporting service as an input for the reliability prediction tool of

the approach to get the reliability prediction result, then compared this prediction result

to the result of a reliability simulation. Notice that the goal of the validation is not to

justify the probabilities of the failure models for internal activities. Instead, we validate

that the method of the approach produces an accurate system reliability prediction if

the system reliability model is provided accurately.

With the system reliability model of the reporting service as an input, the reliability

prediction tool predicted the system reliability as 0.996527 after 1 second on an Intel Core

2 Duo 2.26 GHz and 4 GB of RAM while the simulation took more than 30 minutes to

run with overall execution count 1,000,000 and produced the simulated system reliability

0.996652.

Table 5.4 shows the comparison between the predicted reliability and the reliability from

the simulation. From this comparison, we deem that for the system reliability model

described in this dissertation, the analytical method of the RMPI approach is sufficiently

accurate.

5.2.2.1 Sensitivity Analyses and the Impacts of Fault Tolerance Structures

To demonstrate the capabilities of the RMPI approach in supporting design decisions,

we present the results of sensitivity analyses of the reliability of the reporting service to

Chapter 5. Case Study Evaluation 89

changes in probabilities of failure models of internal activities, and the analysis of how

the predicted reliability of the reporting service varies for fault tolerance variants.

First, we conducted a sensitivity analysis modifying probabilities PrIA ({F0} , {FSx}) of

the internal activities (Fig. 5.3(a)). The reliability of the reporting service is most sen-

sitive to the probability of internal activity a1 of service processReportRequest provided

by the component instance of ReportingMediator because its corresponding curve has

the steepest slope. The reliability of the reporting service is most robust to the proba-

bilities of internal activities a2, a6, a7 of the services related to the two fault tolerance

structures, namely service viewRecentReports containing the RetryStructure; service ge-

tReleasedDocumentInfoFromLogs and service getReleasedDocumentInfoFromDB in the

MultiTryCatchStructure. Based on this information, the software architect can decide to

put more testing effort into component ReportingMediator, to exchange the component

with another component from a third party vendor, or run the component redundantly.

Second, we conducted a sensitivity analysis modifying probabilities PrIA ({F0} , {FP1 ,

FP2}) of the internal activities (Fig. 5.3(b)). Again, the reliability of the reporting ser-

vice is most sensitive to the probability of internal activity a1 because its corresponding

curve has the steepest slope. However, the reliability of the reporting service is not

as robust to the probabilities of internal activities a2, a6, a7 of the services related to

the two fault tolerance structures as in the first sensitivity analysis because the fault

tolerance structures cannot provide error handling for erroneous outputs of propagating

failure types {FP1, FP2}. Among these three internal activities a2, a6, a7, the reliabil-

ity of the reporting service is most sensitive to the probability of internal activity a2.

This information may be valuable to the software architect when considering putting

more development effort to improve the error detection (therefore limit the ability to

produce erroneous outputs) of internal activities within the fault tolerance structures in

the system.

Third, we conducted an analysis of how the predicted reliability of the reporting service

varies for fault tolerance variants. These variants include: without the fault tolerance

structures (Variant 1), using only the RetryStructure (Variant 2), using only the Mul-

tiTryCatchStructure (Variant 3) and using both the fault tolerance structures (Variant

4) (Fig. 5.3(c)). In general, introducing fault tolerance structures brings increases in

reliability for staffs, managers, or all (when aggregated). Variant 4 is predicted as being

the most reliable. Comparing between Variant 2 and Variant 3 shows that using the

RetryStructure brings higher reliability impact than using the MultiTryCatchStructure

in this case. From the result of this type of analysis, the software architect can assess the

impact on the system reliability of fault tolerance variants and hence can decide whether

the additional costs for introducing fault tolerance structures, increasing the number of

Chapter 5. Case Study Evaluation 90

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

0 0.02 0.04 0.06 0.08 0.1

Sy
st

e
m

 r
e

lia
b

ili
ty

PrIA({F0},{FSx}) of internal activity

System reliability vs. PrIA({F0},{FSx}) of internal activities

a₁

a₂

a₃

a₄

a₅

a₆

a₇

a₈

(a)

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

0 0.02 0.04 0.06 0.08 0.1

Sy
st

e
m

 r
e

lia
b

ili
ty

PrIA({F0},{FP1,FP2}) of internal activity

System reliability vs. PrIA({F0},{FP1,FP2}) of internal activities

a₁

a₂

a₃

a₄

a₅

a₆

a₇

a₈

(b)

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

Variant 1 Variant 2 Variant 3 Variant 4

Sy
st

e
m

 r
e

lia
b

ili
ty

System configurations

System reliability vs. System configurations

Staff

Manager

Aggregated

(c)

Figure 5.3: Reporting service: Sensitivity analyses.

Chapter 5. Case Study Evaluation 91

Table 5.5: WebScan System: Propagating Failure Type and Its Symbol.

Propagating Failure Type Symbol

ContentPropagatingFailure FP1

retry times in a RetryStructure, adding replicated instances in a MultiTryCatchStructure,

... are justified.

With this type of analysis, it is also possible to see the ability to reuse modeling parts of

the RMPI approach for evaluating the reliability impacts of fault tolerance variants or

system configurations. For Variant 3, only a single modification to the RetryStructure is

necessary (namely, setting the handledFailures of the structure to ∅ or the retryCount of

the structure to 0 to disable the structure). For Variant 2, also only a single modification

to the MultiTryCatchStructure is necessary (namely, setting the handledFailures of the

second MultiTryCatchPart to ∅ to disable the structure). For Variant 1, the two above

modifications are included.

5.3 Case Study II: WebScan System

As the second case study, we analyzed the reliability of a WebScan system. The system

allows users at desktop to scan one or more images into a document management system

using a browser, such as Internet Explorer, and a locally attached TWAIN scanner.

Fig. 5.4 shows the system reliability model for this system2.

The WebScan system can be accessed via provided service serveClientRequest of the

instance of component ClientInteraction. An incoming request can be a request to

configure the settings of the scanner (clientRequest=configure) or a request to scan

(clientRequest=scan). With a request to scan, it can be a request to scan a single page

(scanType=singlePage) or a request to scan multiple pages (scanType=multiPage). With

a request to scan multiple pages, numberOfPages is to specify the number of pages.

About the system architecture, the system includes three core components, namely Cli-

entInteraction, WebScanControl, and DocumentManager. Component DocumentMan-

ager provides services: createNewDocument to create a new document, addPageToDoc-

ument to add a page to a document, and saveDocument to save a document. All these

three provided services are modeled through single internal activities. Component Web-

ScanControl provides services: configureScanSettings to configure the settings of the

scanner, and scan to scan.

2The model can also be retrieved from our project website [82].

Chapter 5. Case Study Evaluation 92

<<SystemArchitecture>>

<<UsageProfile>>

P(clientRequest=configure)=0.28

P(scanType=singlePage)=0.31

average(numberOfPages)=8

<<UsageProfilePart>>

Client

 probability =1.0

<<ServiceImplementation>>

createNewDocument

<<InternalActivity>>

START END

<<ServiceImplementation>>

addPageToDocument

<<InternalActivity>>

START END

<<ComponentInstance>>

ClientInteraction

<<ServiceImplementation>>

saveDocument

<<InternalActivity>>

START END

<<ServiceImplementation>>

configureScanSettings

<<InternalActivity>>

START END

<<ComponentInstance>>

DocumentManager

<<ServiceImplementation>>

scan

<<CallingActivity>>

addPageToDocument

[scanType=singlePage]

START END

[scanType=multiPage]

<<CallingActivity>>

saveDocument

<<CallingActivity>>

createNewDocument

<<InternalActivity>>

1

numberOfPages

<<CallingActivity>>

addPageToDocument

<<InternalActivity>>

2

<<ComponentInstance>>

WebScanControl

<<ServiceImplementation>>

configureScanSettings

<<RetryPart>>

-retryCount: 1

-handledFailures:

 {ConfiguringScanFailure}

<<RetryStructure>>

<<CallingActivity>>

configureScanSettings

<<ComponentInstance>>

WebScanControl

FaultTolerance

<<ServiceImplementation>>

serveClientRequest

<<CallingActivity>>

configureScanSettings

[clientRequest=configure]

START END

[clientRequest=scan]

<<CallingActivity>>

scan

<<InternalActivity>>

START END

Figure 5.4: The system reliability model of the WebScan system (overview).

Table 5.6: WebScan System: Different Stopping Failure Types and their Symbols.

Stopping Failure Type Symbol

ServingRequestFailure FS1

ConfiguringScanFailure FS2

ScanningFailure FS3

CreatingDocumentFailure FS4

AddingPageFailure FS5

SavingDocumentFailure FS6

Table 5.7: WebScan System: Internal Activities, their Symbols, and Involved Failure
Types.

Symbol Provided service/Internal activity (IA) Involved Failure Types

a1 serveClientRequest/IA FS1, FP1

a2 configureScanSettings/IA FS2, FP1

a3 scan/IA 1 FS3, FP1

a4 scan/IA 2 FS3, FP1

a5 createNewDocument/IA FS4, FP1

a6 addPageToDocument/IA FS5, FP1

a7 saveDocument/IA FS6, FP1

Chapter 5. Case Study Evaluation 93

Input

Possible

signaled

failures

{FSx}

P
o

s
s

ib
le

e
rr

o
n

e
o

u
s

in
p

u
ts

C
o

rr
e

c
t

in
p

u
t

Possible

erroneous

outputs

Correct

output

{F0} {FP1}

{F0}

{FP1}
c10(ai)=

1-c11(ai)-c12(ai)
c11(ai)

c00(ai)=

1-c01(ai)-c02(ai)
c01(ai)

c12(ai)

c02(ai)

Figure 5.5: WebScan system: Failure model for internal activity ai.

Table 5.8: WebScan System: Internal Activities and the Probabilities in their Failure
Models.

Internal activity c01 (ai) c02 (ai) c11 (ai) c12 (ai)

a1 0.0000205 0.000225 0.99908 0.000119

a2 0.000107 0.00151 0.99819 0.00171

a3 0.0000183 0.0000713 0.9991 0.000125

a4 0.0000209 0.0000737 0.9991 0.000114

a5 0.000027 0.000219 0.99901 0.000221

a6 0.0000199 0.0000693 0.99925 0.000101

a7 0.0000265 0.00021 0.99914 0.000108

During the operation of the WebScan system, there are different errors which may occur

in the involved component instances. For example, bugs in the code implementing the

internal activity of service addPageToDocument may lead to errors. If the error detec-

tion of the internal activity detects and signals these errors with a warning message, this

leads to a signaled failure of stopping failure type: {AddingPageFailure}. Otherwise,

an erroneous output of a propagating failure type is produced by the internal activity:

{ContentPropagatingFailure}. Table 5.5 shows a propagating failure type and its sym-

bol and Table 5.6 shows different stopping failure types and their symbols. Internal

activities, their symbols, and involved failure types are given in Table 5.7.

The usage profile consists of a single usage profile part with 28% of requests to configure

the settings of the scanner, probability of 31% for scanning a single page per request to

scan, an average of 8 pages per request to scan multiple pages.

For illustrative purpose, we set the probabilities of the failure model for the internal

activity ai (with i ∈ {1, 2, ..., 7}) as in Fig. 5.5 where FSx is the involved stopping failure

type for ai. Table 5.8 shows the specific values for the probabilities in the failure models

of the internal activities.

Chapter 5. Case Study Evaluation 94

Table 5.9: WebScan System: Predicted vs. Simulated Reliability

Predicted reliability Simulated reliability Difference Error(%)

0.998187 0.998041 0.000146 0.014629

A fault tolerance structure can be optionally introduced into the WebScan System,

in terms of an additional component which is shown in grey in Fig. 5.4. Component

WebScanControlFaultTolerance can be put in the middle of component WebScanControl

and component ClientInteraction. It has the ability to retry in case there is a signaled

failure of {ConfiguringScanFailure}. The number of times to retry of this structure is 1

(retryCount=1).

For a comparison between predicted system reliability and simulated system reliabil-

ity, we ran a simulation with execution count 1,000,000. The simulation produced the

simulated system reliability 0.998041 while the reliability modeling tool of the RMPI

approach predicted the system reliability as 0.998187. Table 5.9 compares the predicted

system reliability and the simulated system reliability. This comparison gives evidence

that the approach accurately predicts the system reliability in this case.

Fig. 5.6(a) provides more detail and shows the probability of a system failure due to a

certain failure type. {FS2}, {FS3}), and {FS5} are the most frequent failure types. Thus,

the software architect can recognize the need to introduce fault tolerance structures for

these failures. For example, the software architect puts an instance of component Web-

ScanControlFaultTolerance in the middle of the instance of component ClientInteraction

and the instance of component WebScanControl as in Fig. 5.4. With this modification,

the predicted reliability of the WebScan system increases by 0.042277%, from 0.998187

to 0.998609. Via this example, it is possible to see that a fault tolerance structure can

be introduced into the system without modifying the existing service implementations

and with just a few changes necessary while nearly all modeling parts can be reused.

Fig. 5.6(b) shows the impact of different PrIA ({F0} , {FP1}) of the internal activities to

the reliability of the WebScan system. The slopes of the curves indicate that the relia-

bility of the WebScan system is most sensitive to the probabilities of internal activities:

a4 of service scan provided by the instance of component WebScanControl and a6 of

service addPageToDocument provided by the instance of component DocumentManager.

Thus, it is most beneficial to focus on the improvements for these two services.

Fig. 5.6(c) shows the sensitivity of the failure probability per failure type to the number

of pages (i.e., a change to the usage profile). As expected, only the failure probabilities

for {FS3}, {FS5}, and {FP1} rise because they are the only failure types related to

activities within the looping structure with loop count numberOfPages.

Chapter 5. Case Study Evaluation 95

0.00%

0.01%

0.01%

0.02%

0.02%

0.03%

0.03%

0.04%

0.04%

0.05%

{Fs₁} {Fs₂} {Fs₃} {Fs₄} {Fs₅} {Fs₆} {Fp₁}

Fa
ilu

re
 p

ro
b

ab
ili

ty

Failure type

Failure probability per failure type

(a)

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0 0.02 0.04 0.06 0.08 0.1

Sy
st

e
m

 r
e

lia
b

ili
ty

PrIA({F0},{FP1}) of internal activity

System reliability vs. PrIA({F0},{FP1}) of internal activities

a₁

a₂

a₃

a₄

a₅

a₆

a₇

(b)

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

2 4 6 8 10 12 14

Fa
ilu

re
 p

ro
b

ab
ili

ty

Number of pages

Failure probability vs. Number of pages

{Fs₁}

{Fs₂}

{Fs₃}

{Fs₄}

{Fs₅}

{Fs₆}

{Fp₁}

(c)

Figure 5.6: WebScan system: Sensitivity analyses.

Chapter 5. Case Study Evaluation 96

<<SystemArchitecture>>

<<Component

Instance>>

UI

<<Component

Instance>>

DataCaptureControl

<<Component

Instance>>

OCREngineManager

doOCRWithEngine3

doOCRWithEngine2

doOCRWithEngine1

<<ServiceImplementation>>

captureData

START

END

- maxToleratedIncompletion: 1

- erroneousOutput: {ContentPropagatingFailure}

- agreementOfErrorsVector: (…, …)

- errorPropertyVectors:

<<MVPStructure>>

<<MVPPart>> 1 <<MVPPart>> 2 <<MVPPart>> 3

<<Internal

Activity>>

2

<<Internal

Activity>>

1

<<CallingActivity>>

storeData

<<CallingActivity>>

doOCRWithEngine3

<<Component

Instance>>

OCREngine1

<<Component

Instance>>

OCREngine2

<<Component

Instance>>

OCREngine3

<<ServiceImplementation>>

storeData

START END

<<Internal

Activity>>

<<CallingActivity>>

compressData

[isLargeDocument=true]

[isLargeDocument=false]

<<ServiceImplementation>>

doOCR

START END

<<Internal

Activity>>

<<ServiceImplementation>>

doOCR

START END

<<Internal

Activity>>

<<ServiceImplementation>>

handleClientRequest

START

<<CallingActivity>>

captureData

END

numberOfDocuments

<<Internal

Activity>>

<<Component

Instance>>

DataAccess
<<UsageProfile>>

average(numberOfDocuments)

p(isLargeDocument)

<<UsageProfilePart>>

Client

probability=1.0

<<ComponentInstance>>

DataCompress

<<ServiceImplementation>>

compressData

START END

<<Internal

Activity>>

<<ServiceImplementation>>

doOCR

START END

<<Internal

Activity>>

- minMajoritySize: 2

- signaledFailure: {OCRFailure}

<<CallingActivity>>

doOCRWithEngine2

<<CallingActivity>>

doOCRWithEngine1

Figure 5.7: The system reliability model of the DataCapture system (overview).

Table 5.10: DataCapture System: Propagating Failure Type and Its Symbol.

Propagating Failure Type Symbol

ContentPropagatingFailure FP1

5.4 Case Study III: DataCapture System

As the third case study, we analyzed the reliability of a DataCapture system. The system

allows clients to capture data from printed texts such as documents, invoices, receipts,

etc. using OCR (Optical Character Recognition) technology. Fig. 5.7 shows the system

reliability model3 for the standard system configuration with three OCR engines.

The system functionality is provided through four separated primitive components (UI,

DataCaptureControl, DataCompress, and DataAccess) and one composite component

(OCREngineManager) containing three nested primitive components (OCREngine1,

OCREngine2, and OCREngine3). During the operation of the DataCapture system,

3The model can also be retrieved from our project website [82].

Chapter 5. Case Study Evaluation 97

Table 5.11: DataCapture System: Different Stopping Failure Types and their Sym-
bols.

Stopping Failure Type Symbol

HandlingRequestFailure FS1

CapturingDataFailure FS2

DoingOCRFailure FS3

OCRFailure FS4

CompressingDataFailure FS5

StoringDataFailure FS6

Table 5.12: DataCapture System: Internal Activities, their Symbols, and Involved
Failure Types.

Symbol Provided service/Internal activity (IA) Involved Failure Types

a1 handlingClientRequest/IA FS1, FP1

a2 captureData/IA 1 FS2, FP1

a3 captureData/IA 2 FS2, FP1

a4 OCREngine1’s doOCR/IA FS3, FP1

a5 OCREngine2’s doOCR/IA FS3, FP1

a6 OCREngine3’s doOCR/IA FS3, FP1

a7 compressData/IA FS5, FP1

a8 storeData/IA FS6, FP1

Table 5.13: DataCapture System: Error Property Vectors.

Provided service/Fault tolerance structures Error property vector

captureData/MVPStructure
IncExe

{FP1} (0)

there are different errors which may occur in the involved component instances. For

example, bugs in the code implementing the internal activity of service doOCR may

lead to errors. If the error detection of the internal activity detects and signals these

errors with a warning message, this leads to a signaled failure of stopping failure type:

{DoingOCRFailure}. Otherwise, an erroneous output of a propagating failure type is

produced by the internal activity: {ContentPropagatingFailure}. Table 5.10 shows a

propagating failure type and its symbol. Table 5.11 shows different stopping failure

types and their symbols. Internal activities, their symbols, and involved failure types

are given in Table 5.12.

There is a fault tolerance structure in the system, namely the MVPStructure in the im-

plementation of service captureData of component DataCaptureControl. This structure

tolerates at most one incomplete execution from three doOCR services and requires at

least two results from these services to agree to produce an output. Besides a correct

output, the structure can produce an erroneous output of {ContentPropagatingFailure}

Chapter 5. Case Study Evaluation 98

Input

Possible

signaled

failures

{FSx}

P
o

s
s

ib
le

e
rr

o
n

e
o

u
s

in
p

u
ts

C
o

rr
e

c
t

in
p

u
t

Possible

erroneous

outputs

Correct

output

{F0} {FP1}

{F0}

{FP1}
c10(ai)=

1-c11(ai)-c12(ai)
c11(ai)

c00(ai)=

1-c01(ai)-c02(ai)
c01(ai)

c12(ai)

c02(ai)

Figure 5.8: DataCapture system: Failure model for internal activity ai.

or signal a signaled failure of {OCRFailure}. Because erroneous outputs of {Content-

PropagatingFailure} are content failures, the error property vectors for the three MVP-

Parts are the same and given in Table 5.13.

To observe the accuracy of the RMPI approach, we conduct a reliability measurement

on a prototype implementation of the system, then compare the measurement to a

reliability prediction to observe if there is a significant deviation caused by the modeling

abstractions. The implementation is written in Java, using an Apache Derby database

for storing the data and Java Native Access (JNA) wrappers for accessing native OCR

engines. For the measurement, the system is executed in a testbed that triggers usage

scenario runs and records the execution traces of all scenario runs.

To be able to conduct the measurements, several simplifications had to be included,

compared with a real-world field experiment. First, the total number of scenario runs is

limited to 12,000. Each scenario run consists of an average of 10 documents per call and

a probability of 40% for the documents to be large, i.e. requiring compression before

storing. Second, the system reliability is not measured due to real faults but rather

to faults which have been injected in an artificial manner, with externally controlled

occurrence probabilities.

By using a script, it is possible for us to determine the failure models for internal

activities, the field agreementOfErrorsVector of the MVPStructure, and the measured

system reliability from the execution traces. The probabilities of the failure model for the

internal activity ai (with i ∈ {1, 2, ..., 7}) are shown in Fig. 5.8 where FSx is the involved

stopping failure type for ai. The specific values for the probabilities in the failure models

of the internal activities are shown in Table 5.14. Because in scenarios runs, documents

used as inputs for the system were correct and no fault was injected into the two internal

activities a1 and a2, the probabilities in their failure models are assumed to be 0. As a

result, the inputs for the three internal activities a3, a4, and a5 are always correct, and

Chapter 5. Case Study Evaluation 99

Table 5.14: DataCapture System: Internal Activities and the Probabilities in their
Failure Models.

Internal activity c01 (ai) c02 (ai) c11 (ai) c12 (ai)

a1 0 0 0 0

a2 0 0 0 0

a3 0.000988052 0.002527356 0.99437751 0.00562249

a4 0.009980036 0.013947068 0 0

a5 0.070123629 0.012995678 0 0

a6 0.010028152 0.01903337 0 0

a7 0.000795795 0.00207256 0.992041712 0.007135016

a8 0.000399946 0.00200132 0.994810428 0.004456927

Table 5.15: DataCapture System: Predicted vs. Measured Reliability

Component Instance/ Predicted Measured Difference Error
Provided service reliability reliability (%)

UI /handleClientRequest 0.886311 0.8811 0.005211 0.59142

DataCapture

System

DataAccess’s

Selection

DataCompress’s

Selection

UI

DataCaptureControl

DataCompress

DataCompress

Capacity

DataCompress

FaultTolerance

DataAccess

DataAccess

Capacity

Mandatory

Optional

Alternative (xor)

DataAccess

FaultTolerance

OCREngineManager

OCREngine1

OCREngine2

OCREngine3

Or

Figure 5.9: Feature model of variants of the DataCapture system .

therefore the probabilities c11(ai) and c12(ai) (with i ∈ {4, 5, 6}) are also assumed to be 0.

The field agreementOfErrorsVector of the MVPStructure is (p2 = 0.1745, p3 = 0.3014).

For the predicted reliability of the system, a system reliability model is created with

the support from the reliability modeling schema and then used as the input for the

reliability prediction tool. Table 5.15 compares the predicted system reliability and the

measured system reliability. This comparison gives evidence that the RMPI approach

gives a reasonably accurate reliability prediction in this case.

Chapter 5. Case Study Evaluation 100

Beyond the standard system configuration, different variants are possible for the system.

Fig. 5.9 shows variants of the DataCapture system in terms of a feature model. They

are made by using the alternative implementations for components DataCompress and

DataAccess. The core functionality is provided via component types: UI, DataCapture-

Control, OCREngine1, OCREngine2, OCREngine3, DataCompress, and DataAccess as

the standard system configuration (cf. Fig. 5.7).

For the scope of this dissertation, we restricted the reliability analysis to the standard

system configuration (Standard variant) and two further variants. Variant 1 is identical

to the standard system configuration, except using component DataCompressCapac-

ity instead of DataCompress. Variant 2 uses component DataAccessCapacity instead

of DataCompress, and the other components are the same as in the standard system

configuration.

Further fault tolerance structures can be optionally introduced into each DataCap-

ture system variant, in terms of additional components which are shown in grey in

Fig. 5.10. For example, Component DataAccessFaultTolerance may be put in the mid-

dle of component DataCaptureControl and component DataAccess[Capacity]. It has

the ability to buffer storeData requests, to restart component DataAccess[Capacity],

and to retry the failed requests in case of signaled failures of {StoringDataFailure}.
Component DataCompressFaultTolerance may be used to handle signaled failures of

{CompressingDataFailure} of the main DataCompress component (i.e. component Dat-

aCompress in the Standard variant and Variant 2, or component DataCompressCapacity

in Variant 1) by redirecting calls to the backup DataCompress component (i.e. compo-

nent DataCompressCapacity in the Standard and Variant 2, or component DataCom-

press in Variant 1).

For illustrative purposes, we let a′7 be the internal activity of service compressData of

component DataCompressCapacity, its involved failure types and failure model are iden-

tical to those of internal activity a7, except that c01(a′7) and c02(a′7) rise to 0.001194 and

0.003109, respectively, because of the more complex compression algorithm compared

to the standard variant. Similarly, we let a′8 be the internal activity of service storeData

of component DataAccessCapacity, its involved failure types and failure model are iden-

tical to those of internal activity a8, except that c01(a′8) and c02(a′8) fall to 0.00025 and

0.001251, respectively.

To provide evidence about the possible design decision support for different design al-

ternatives, Fig. 5.11(a) shows the system reliability for each variant and fault tolerance

alternative. Variant 1 has the lowest reliability, because of component DataCompress-

Capacity. Variant 2 has the highest reliability, as a result of using component DataAc-

cessCapacity. Employing component DataAccessFaultTolerance has the highest effect

Chapter 5. Case Study Evaluation 101

<<SystemArchitecture>>

<<Component

Instance>>

UI

<<Component

Instance>>

DataCaptureControl

handle
Client
Request

compressData

capture
Data

<<Component

Instance>>

OCREngineManager

doOCR

doOCR

doOCR

doOCRWithEngine3

doOCRWithEngine2

doOCRWithEngine1

<<Component

Instance>>

OCREngine1

<<Component

Instance>>

OCREngine2

<<Component

Instance>>

OCREngine3

store
Data

<<Component

Instance>>

DataCompress

compressData

compressData1

<<ServiceImplementation>>

storeData

<<RetryPart>>

retryCount: 1

handledFailures:

 {StoringDataFailure}

<<RetryStructure>>

<<CallingActivity>>

storeData

START END

store
Data

<<Component

Instance>>

DataAccess

FaultTolerance

compressData2

compressData

<<ServiceImplementation>>

compressData

START END

<<MultiTryCatchPart>>
1

<<MultiTryCatchStructure>>

-handledFailures:

 {CompressingDataFailure}

<<MultiTryCatchPart>>
2

<<CallingActivity>>

compressData2

<<CallingActivity>>

compressData1

store
Data

<<Component

Instance>>

DataAccess

<<Component

Instance>>

DataCompress

FaultTolerance

<<ServiceImplementation>>

compressData

START END

<<Internal

Activity>>

<<Component

Instance>>

DataCompress

Capacity

<<ServiceImplementation>>

storeData

START END

<<Internal

Activity>>

<<Component

Instance>>

DataAccess

Capacity

Figure 5.10: Variants of the DataCapture system.

compared to the design alternatives without fault tolerance. Notice that fault tolerance

structures have different influences on variants, e.g. component DataCompressFaultTol-

erance is most effective for Variant 1.

Fig. 5.11(b) provides more detail and shows the probability of a system failure due

to a certain failure type. Because the MVPStructure prevents signaled failures of

{DoingOCRFailure} ({FS4}) of service doOCR of components OCREngines from man-

ifesting as signaled failures of {DoingOCRFailure} after the MVPStructure’s execution,

the probability that the system fails with a signaled failures of {DoingOCRFailure} is 0.

Chapter 5. Case Study Evaluation 102

86.50%

87.00%

87.50%

88.00%

88.50%

89.00%

89.50%

90.00%

90.50%

91.00%

Standard Variant 1 Variant 2

Sy
st

e
m

 r
e

lia
b

ili
ty

System variants

System reliability for design alternatives

No FTSs

DataCompress
FaultTolerance

DataAccess
FaultTolerance

(a)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

{Fs₁} {Fs₂} {Fs₃} {Fs₄} {Fs₅} {Fs₆} {Fp₁}

Fa
ilu

re
 p

ro
b

ab
ili

ty

Failure type

Failure probability per failure type

Standard

Variant 1

Variant 2

(b)

Figure 5.11: DataCapture system: Sensitivity analyses.

{FS2} and {FS4} are the most frequent failure types. Thus, the software architect can

recognize the need to introduce fault tolerance structures for these failures.

With this case study, it is also possible to see that nearly all modeling parts can be reused

throughout variants and fault tolerance alternatives. Only some component instances

need to be connected via additional component connectors, namely, component instance

of components DataCompressCapacity, DataAccessCapacity, DataCompressFaultToler-

ance, and DataAccessFaultTolerance.

5.5 Scalability Analyses

The scalability of the RMPI approach requires special attention. To examine it, for each

structure type, we generated a number of simple system reliability models with different

numbers of u, v, and nS , nB, vL, nP , rc, nMT , or nMV (cf. Section 4.1.4)), analyzed

these system reliability models using the reliability prediction tool of the approach,

and recorded the running times of the transformation algorithm. For example, for the

Chapter 5. Case Study Evaluation 103

0

50

100

150

200

250

300

350

400

450

10 16 22 28

R
u

n
n

in
g

ti
m

e
 (

in
 s

e
co

n
d

s)

Number of stopping failure types (u)

SequentialStructure
BranchingStructure
ParallelStructure
RetryStructure
MultiTryCatchStructure
MVPStructure
SequentialLoopingStructure
ParallelLoopingStructure

(a)

0

50

100

150

200

250

300

350

400

450

4 5 6 7

R
u

n
n

in
g

ti
m

e
 (

in
 s

e
co

n
d

s)

Number of propagating failure types (v)

SequentialStructure
BranchingStructure
ParallelStructure
RetryStructure
MultiTryCatchStructure
MVPStructure
SequentialLoopingStructure
ParallelLoopingStructure

(b)

0

50

100

150

200

250

300

350

400

450

10 15 20 25

Number of loops (vL)

R
u

n
n

in
g

ti
m

e
 (

in
 s

e
co

n
d

s)

Number of inner parts (nS, nB, nP, nMT, or nMV)
or number of retries (rc)

SequentialStructure
BranchingStructure
ParallelStructure
RetryStructure
MultiTryCatchStructure
MVPStructure
SequentialLoopingStructure
ParallelLoopingStructure

210 215 220 225

(c)

Figure 5.12: Scalability analyses.

Chapter 5. Case Study Evaluation 104

sequential structure type, with given numbers of u, v, and nS , the generated system

reliability model includes the following elements:

• u stopping failure types and v propagating failure types.

• One service.

• One component with a provided service referring the service. The service imple-

mentation for the provided service is a sequential structure of nS sequential parts.

Each of the sequential parts contains an internal activity with a failure model of

random probabilities.

• One system architecture with a component instance of the component.

• One user interface referring to the provided service of the component instance.

• One usage profile with a usage profile part referring to the user interface.

Fig. 5.12(a) shows the running times of the algorithm for structure types with different

numbers of u while v = 7, nS = nB = nP = rc = nMT = nMV = 25, and vL = 225.

With the same numbers of nS , nB, nP , rc, nMT , nMV , and vL as above, in Fig. 5.12(b)

are the running times of the algorithm for structure types with different numbers of v

while u = 28. The running times of the algorithm for structure types with different

numbers of nS , nB,nP , rc, nMT , nMV , and vL while u = 28 and v = 7 are shown

in Fig. 5.12(c). These results provide evidence for the correctness of our complexity

analysis for the transformation algorithm as in Section 4.1.4. For example, the running

time of the algorithm for a sequential structure increases linearly with the number of

stopping failure type (as in Fig. 5.12(a)), exponentially with the number of propagating

failure types (as in Fig. 5.12(b)), and linearly with the number of its inner parts (as in

Fig. 5.12(c)). The results also indicate that the algorithm can analyze system reliability

models with up to approximately 28 stopping failure types and 7 propagating failure

types within 20 minutes.

Based on the transformation algorithm (see Sections 4.1.2.1, 4.1.2.2, ..., and 4.1.2.7),

Table 5.16 shows the number of states of the equivalent underlying Markov chains for

different structure types. The number of states in formulas are shown in Column 2 of

the table. Column 3 of the table shows the number of states in values with u = 28,

v = 7, nS = nB = nP = rc = nMT = nMV = 25, and vL = 225.

Therefore, we deem that the capacity of the RMPI approach is sufficient for typical

small-sized and mid-sized software systems, including information systems (e.g. busi-

ness reporting systems), e-commerce applications (e.g. online shops), device control

Chapter 5. Case Study Evaluation 105

Table 5.16: Number of states of the Equivalent Underlying Markov Chains for Dif-
ferent Structure Types.

Structure type Number of states Number of states
(Formulas) (Values)

Sequential structure (nS + 2) 2v + u 3,484

Branching structure (nB + 2) 2v + u 3,484

Parallel structure 2v ((nP + 2) 2v + u) 445,952

Sequential looping (vL + 2) 2v + u 4,294,967,580
structure

Parallel looping 2v ((vL + 2) 2v + u) 549,755,850,240
structure

RetryStructure 2v (1 + (1 + u) (rc+ 1) + u+ 2v) 116,608

MultiTryCatchStructure 2v (1 + (1 + u)nMT + u+ 2v) 112,896

MVPStructure 1
62v (1 + nMV) (2 + nMV) (3 + nMV) 419,328

systems (e.g. the WebScan system introduced in Section 5.3), as well as other types of

software systems. A more effective strategy for large-scale software systems with more

propagating failure types remains as a goal for future research. In the meantime, for

large-scale software systems with large numbers of failure types, multiple failure types

can be grouped together and aggregated into one failure type before the analysis.

5.6 Summary

This chapter has presented the case study evaluation of the RMPI approach. It sets

up its validation goals and settings, and then described the predictions for three case

studies, including the reporting service, the WebScan system, and the DataCapture

system. These studies are served to demonstrate the reliability evaluation capabilities

of the approach, to compare the obtained prediction results against simulations and a

measurement conducted on a prototype implementation, as well as to provide evidence

for the ability to support design decisions and for the reusability of modeling artifacts

in evaluating different architecture variants under varying usage profiles. Finally, it

investigated the scalability of the approach.

Chapter 6

Conclusions

6.1 Summary

This dissertation has presented the RMPI approach, a reliability modeling and predic-

tion approach for component-based software systems, which considers explicitly error

propagation, software fault tolerance mechanisms, and concurrently present errors, and

supports design decisions for reliability improvements. The approach provides a relia-

bility modeling language that captures comprehensively different reliability-influencing

factors into a model of the system under study. Then, an analysis method evaluates

the system model and obtains a prediction result as the probability of successful service

execution.

With the support of the RMPI approach, software architects can assess the influence of

possible changes in the system architecture and usage on the system reliability. They

can identify the most critical parts in terms of reliability in the system architecture.

They can assess possible design alternatives of the system and rank them according to

their reliabilities. Being based on a system model rather than the actual system, the

approaches can be applied at early design stages when essential design decisions at the

architecture level are about to be made.

The RMPI approach belongs to the field of component-based software reliability model-

ing and prediction. While the approach receives benefits from the experiences gained in

the field, the state of the art in the field is enhanced by the approach via its contributions

as follows:

• Consideration of error propagation: The approach allows modeling error prop-

agation for multiple execution models, including sequential, parallel, and fault

106

Chapter 6. Conclusions 107

tolerance execution models. The approach considers how the error propagation

affects the system execution with different execution models, and it derives the

overall system reliability accounting for the error propagation impact.

• Consideration of software fault tolerance mechanisms: The approach offers en-

hanced fault tolerance expressiveness, explicitly and flexibly modeling how both

error detection and error handling of fault tolerance mechanisms influence the con-

trol and data flow within components. These capabilities enable modeling compre-

hensively different classes of existing fault tolerance mechanisms and evaluating

their impact on the system reliability.

• Consideration of Concurrently Present Errors: The approach is the first work to

support modeling concurrently present errors. With this capacity, it is possible

to cover system failures caused by the concurrent presence of errors, tending to

obtain accurate prediction results.

The reliability modeling language of the RMPI approach has been implemented in the

RMPI schema, offering a developer-friendly modeling notation. The language includes

modeling elements for expressing the following aspects: (1) the structure of a software

system in terms of its component instances and their interconnections, (2) the provid-

ed/required services of each software component, as well as its high-level internal control

and data flow, (3) the system’s usage profile in terms of a set of usage scenarios, where

each scenario describes the sequences of invoked system services, (4) the failure pos-

sibilities that the system comprises, and (5) the system’s capabilities to prevent the

occurrence of system failures through software fault tolerance mechanisms.

The analysis method of the approach, that transforms the system reliability models

based on the language into discrete-time Markov chains for reliability predictions and

sensitivity analyses, has been implemented in the RMPI tool, allowing for a fully auto-

mated analysis and the display of the obtained results.

The RMPI approach has been validated in three case studies, by modeling the reliabil-

ity, conducting reliability predictions and sensitivity analyses. Via these case studies,

the approach has demonstrated its ability in supporting design decisions for reliability

improvements and its reusability of modeling artifacts.

6.2 Assumptions and Limitations

In this section, we discuss assumptions and limitations of the RMPI approach, focusing

on three central issues: (1) The provision of proper inputs for the approach, (2) the

Chapter 6. Conclusions 108

Markovian assumption of the approach, and (3) the limitations in the expressiveness of

the model.

6.2.1 Provision of Inputs

Perhaps, the most critical assumption lies in the provision of inputs for the RMPI

approach. The predicted reliability can only be close to reality when inputs are provided

accurately for the method.

Call propagations in a component reliability specification can be provided by component

developers or determined through reverse engineering. Monitoring inputs and outputs

of the component by running it as a black box in a test-bed can be used to determine

call propagations in case the source code of the component is not available. Besides call

propagations, probabilities of the failure models for internal activities also need to be

given as an input for the method. Because failures and error propagations are rare events,

and the exact circumstances of their occurrences are unknown, it is difficult to measure

these probabilities. However, there are techniques [3, 4, 11, 86–88] that particularly

target the problem of estimating these probabilities, such as fault injection, statistic

testing, or software reliability growth models. Further sources of information can be

expert knowledge or historical data from components with similar functionalities. In case

these probabilities are only estimated roughly, our approach can be used in comparing

alternatives of system architectures or determining acceptable ranges for probabilities.

The RMPI approach assumes that software architects can provide a usage profile re-

flecting different usage scenarios of the system. Similar to the problem of estimating

probabilities of the failure models for internal activities, no methodology is always valid

to deal with the problem. In early phases of software development, the estimation can

be based on historical data from similar products or on high level information about

software architecture and usage obtained from specification and design documents [89].

In the late phases of the software development, when testing or field data become avail-

able, the estimation can be based on the execution traces obtained using profilers and

test coverage tools [3].

6.2.2 Markovian Assumption

The RMPI approach assumes that control transitions between components have the

Markov property. This means that operational and reliability-related behaviors of a

component are independent of its past execution history. This Markovian assumption

limits the applicability of the approach on different application domains. However, the

Chapter 6. Conclusions 109

Markovian assumption has been proved to be valid at the component level for many

software systems [8]. Moreover, the problem of the Markovian assumption in reliability

modeling and prediction was treated deeply by Goseva et al. [3], where the authors took

the execution histories of components into account by using higher order Markov chains

and recalled that a higher order Markov chain can be mapped into a first order Markov

chain. Therefore, the approach can also be adapted to any higher order Markov chains,

broadening the applicability of the approach to a large number of software systems.

6.2.3 Expressiveness of the Model

With regard to the expressiveness of the RMPI approach, we face a general trade-off

between the model complexity and its suitability for real-world software systems. A

more complex model not only increases the possibility of state-space explosion of the

underlying analytical model but also requires more modeling efforts as well as more

fine-grained inputs. Therefore, in analogy to related approaches (see [3–5]), we have

restricted our approach to the most important concepts from our point of view (see

Section 3.2). In particular, we do not distinguish between control flow and data flow,

and assume that data errors always propagate through control flow. Moreover, we

assume that probabilities of the failure models for internal activities are stochastically

independent. Currently, these probability values are fixed constants. They cannot be

adapted to take into consideration factors such as component state or system state at

run-time.

6.3 Future Work

This section provides pointers for research extending the work conducted in this dis-

sertation. It is divided into the following categories: (1) Enhanced methods for input

estimations, (2) Extensions of modeling capabilities, (3) Extensions of analysis capabil-

ities, and (4) Enhanced evaluation of prediction results.

6.3.1 Enhanced Methods for Input Estimations

Despite existing research efforts with regard to software reliability estimation, there are

still important and unsolved challenges. Therefore, in order to provide adequate inputs

at adequate granularity levels for the RMPI approach, new methods are required. They

should consider the application phase of the approach (e.g. early design phase, system

evolution) and the available sources of information in each phase. They should also focus

Chapter 6. Conclusions 110

on the question how to collect relevant statistical failure data during the development

process of the system and during the system operation, which can be used as a complete

source of information for the required input estimations. To obtain reliable results, they

should be validated in the development processes of real-world software systems.

6.3.2 Extensions of Modeling Capabilities

There are various directions to extend the existing modeling capabilities of the RMPI

approach. In general, an extension to the modeling capabilities not only requires more

input information but also enhanced analysis methods to deal with the extended model-

ing capabilities. Therefore, it is necessary to assess each possible extension with regard

to the potentially involved modeling and analysis efforts. From our point of view, the

following extensions could bring the most important benefits:

• Parametric specifications for input model parameters: Currently, the values for

input model parameters of the RMPI approach are fixed constant, while in real-

ity, the dependences between these input parameters do exist, e.g. a loop count

may change dynamically within the inner part of a looping structure. Therefore,

parametric specifications for input model parameters could extend the existing

modeling capabilities of the RMPI approach to obtain higher expressiveness of the

system behavior.

• Stochastic dependences between failure possibilities: The RMPI approach models

failure possibilities as being independent although there exist interdependences

between them in reality, e.g. during a scenarios run, multiple visits to the same

components may be stochastically dependent, indicating the first visit may influ-

ence the success and failure probabilities of all subsequent visits in a very serious

way. Although the approach could receive benefits from capturing such stochastic

dependences, in order to avoid overstraining modelers, the corresponding extension

should be done with caution.

• Variance of input estimations: The RMPI approach could be extended to take into

account the uncertainty that exists in the estimates of its required inputs. Based on

the involved variances, the approach could calculate the corresponding variances of

the prediction results. With this capability, it could provide the ranking of design

alternatives of the system with a degree of confidence. Although approaches in

the field of component-based software reliability modeling and prediction provide

uncertainty analyses, a new contribution to the field is still possible when extending

these analyses with a combined consideration of error propagation for multiple

execution models.

Chapter 6. Conclusions 111

6.3.3 Extensions of Analysis Capabilities

The existing analysis capabilities of the RMPI approach could be extended to consider

explicitly stochastic dependencies between multiple consecutive scenario runs, adding

further value to the approach. Also, the analysis could be extended to take into account

the possibility of multiple failure occurrences during a service execution, providing the

number of occurred failures along with existing failure probabilities for multiple failure

modes.

6.3.4 Enhanced Evaluation of Prediction Results

The case studies in this dissertation have shown that a single run of the analysis method

may produce a high number of individual prediction results, and many input model

parameters may exist whose values influence the results. It is apparently a challenge to

find the most important parameters and then to derive solid interpretations of the results.

Therefore, methods for automated selection of experiment runs and interpretation of the

prediction results would provide improved assistance for answering the design questions

concerning the system under study.

Author’s Publications

[PBD14] Thanh-Trung Pham, François Bonnet, and Xavier Défago. Reliability predic-

tion for component-based software systems with architectural-level fault tol-

erance mechanisms (Extended version). Journal of Wireless Mobile Networks,

Ubiquitous Computing, and Dependable Applications, 5(1):4–36, 2014.

[PD12] Thanh-Trung Pham and Xavier Défago. Reliability prediction for component-

based systems: Incorporating error propagation analysis and different execu-

tion models. In Proceedings of the 12th International Conference on Quality

Software (QSIC’12), pages 106–115, Xi’an, Shaanxi, China, 2012.

[PD13] Thanh-Trung Pham and Xavier Défago. Reliability prediction for component-

based software systems with architectural-level fault tolerance mechanisms. In

Proceedings of the 8th International Conference on Availability, Reliability and

Security (ARES’13), pages 11–20, Regensburg, Germany, 2013.

[PDH14] Thanh-Trung Pham, Xavier Défago, and Quyet-Thang Huynh. Reliability

prediction for component-based software systems: Dealing with concurrent

and propagating errors. Science of Computer Programming, 2014. (Accepted,

Online preprint).

[PHD12] Thanh-Trung Pham, Quyet-Thang Huynh, and Xavier Défago. Making relia-

bility modeling of component-based systems usable in practice (Fast abstract).

In Local Proceedings of The 18th IEEE Pacific Rim International Symposium

on Dependable Computing (PRDC’12), Niigata, Japan, 2012.

Remark The RMPI approach and its contributions have been described in multiple

peer-reviewed publications [PD12, PHD12, PD13, PBD14, PDH14]. The preliminary

work of the approach has been developed in [PD12, PHD12]. The most significant

work is an article in the Science of Computer Programming journal [PDH14], which

is currently accepted for publication and available in an online preprint version. The

112

Chapter 6. Conclusions 113

capabilities of the approach for the consideration of software fault tolerance mechanisms

are specifically covered in [PD13, PBD14].

Bibliography

[1] IEEE Reliabbility Society. IEEE Standard Glossary of Software Engineering Ter-

minology. IEEE Std 610.12-1990, pages 1–84, 1990.

[2] ACM SIGSOFT. RISKS Section. Software Engeering Notes, 18(1), 1993.

[3] K. Goseva-Popstojanova and K. S. Trivedi. Architecture-based approaches to soft-

ware reliability prediction. Computers and Mathematics with Applications, 46(7):

1023–1036, 2003.

[4] Swapna S. Gokhale. Architecture-based software reliability analysis: Overview and

limitations. IEEE Trans. Dependable Secur. Comput., 4(1):32–40, 2007.

[5] Anne Immonen and Eila Niemelä. Survey of reliability and availability prediction

methods from the viewpoint of software architecture. Software and Systems Mod-

eling, 7(1):49–65, 2008.

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-

sic concepts and taxonomy of dependable and secure computing. IEEE Trans.

Dependable Secur. Comput., 1(1):11–33, 2004.

[7] L.L. Pullum. Software fault tolerance techniques and implementation. Artech House,

2001.

[8] R. C. Cheung. A user-oriented software reliability model. IEEE Trans. Softw. Eng.,

6(2):118–125, 1980.

[9] Ralf H. Reussner, Heinz W. Schmidt, and Iman H. Poernomo. Reliability prediction

for component-based software architectures. J. Syst. Softw., 66(3):241–252, 2003.

[10] Vibhu Saujanya Sharma and Kishor S. Trivedi. Quantifying software performance,

reliability and security: An architecture-based approach. J. Syst. Softw., 80(4):

493–509, 2007.

114

Bibliography 115

[11] Leslie Cheung, Roshanak Roshandel, Nenad Medvidovic, and Leana Golubchik.

Early prediction of software component reliability. In Proceedings of the 30th in-

ternational conference on Software engineering, pages 111–120, Leipzig, Germany,

2008. ACM.

[12] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf Reussner. Architecture-

based reliability prediction with the Palladio Component Model. IEEE Transactions

on Software Engineering, 38(6):1319–1339, 2012.

[13] Vittorio Cortellessa and Vincenzo Grassi. A modeling approach to analyze the

impact of error propagation on reliability of component-based systems. In CBSE,

pages 140–156, 2007.

[14] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic. Error propagation in the relia-

bility analysis of component based systems. In 16th IEEE International Symposium

on Software Reliability Engineering (ISSRE 2005)., pages 53–62, 2005.

[15] Wen-Li Wang, Dai Pan, and Mei-Hwa Chen. Architecture-based software reliability

modeling. J. Syst. Softw., 79(1):132–146, 2006.

[16] Vittorio Cortellessa, Harshinder Singh, and Bojan Cukic. Early reliability assess-

ment of UML based software models. In Proceedings of the 3rd international work-

shop on Software and performance, pages 302–309, Rome, Italy, 2002. ACM.

[17] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez, D.E.M. Nassar,

H. Ammar, and A. Mili. Architectural-level risk analysis using UML. IEEE Trans-

actions on Software Engineering, 29(10):946 – 960, 2003.

[18] Vibhu Saujanya Sharma and Kishor S. Trivedi. Reliability and performance of

component based software systems with restarts, retries, reboots and repairs. In

Proceedings of the 17th International Symposium on Software Reliability Engineer-

ing, pages 299–310. IEEE Computer Society, 2006.

[19] K. Kanoun, M. Kaaniche, C. Beounes, J.-C. Laprie, and J. Arlat. Reliability growth

of fault-tolerant software. IEEE Transactions on Reliability, 42(2):205–219, Jun

1993.

[20] J. B. Dugan and M. R. Lyu. Dependability modeling for fault-tolerant software

and systems. In M. R. Lyu, editor, Software Fault Tolerance, pages 109–138. John

Wiley & Sons, 1995.

[21] S.S. Gokhale, M.R. Lyu, and K.S. Trivedi. Reliability simulation of fault-tolerant

software and systems. In Pacific Rim International Symposium on Fault-Tolerant

Systems (PRFTS), pages 167–173, 1997.

Bibliography 116

[22] M. Hamill and K. Goseva-Popstojanova. Common trends in software fault and

failure data. IEEE Transactions on Software Engineering, 35(4):484 –496, 2009.

[23] N. Sato and K. S. Trivedi. Accurate and efficient stochastic reliability analysis

of composite services using their compact Markov reward model representations.

IEEE International Conference on Services Computing, pages 114–121, 2007.

[24] Sherif Yacoub, Bojan Cukic, and Hany H. Ammar. A scenario-based reliability

analysis approach for component-based software. IEEE Trans. on Reliability, 53:

465–480, 2004.

[25] Genáına Rodrigues, David Rosenblum, and Sebastian Uchitel. Using scenarios to

predict the reliability of concurrent component-based software systems. In Proceed-

ings of the 8th international conference, held as part of the joint European Confer-

ence on Theory and Practice of Software conference on Fundamental Approaches

to Software Engineering, pages 111–126, Berlin, Heidelberg, 2005. Springer-Verlag.

[26] Alessandro Birolini. Reliability Engineering: Theory and Practice. Springer, 6th

edition, 2010.

[27] Haapanen Pentti and Helminen Atte. Failure mode and effects analysis of software-

based automation systems. In VTT Industrial Systems, STUK-YTO-TR 190, 2002.

[28] P. Lakey and A. Neufelder. System and software reliability assurance notebook. In

Rome Lab, FSC-RELI, 2002.

[29] K. Sharma, R. Garg, C.K. Nagpal, and R. K. Garg. Selection of optimal soft-

ware reliability growth models using a distance based approach. Reliability, IEEE

Transactions on, 59(2):266–276, 2010.

[30] John Musa. Software Reliability Engineering: More Reliable Software Faster and

Cheaper. AuthorHouse, 2nd edition, 2004.

[31] M.R. Lyu. Software reliability engineering: A roadmap. In Future of Software

Engineering, 2007. FOSE ’07, pages 153–170, 2007.

[32] Swapna S. Gokhale, W. Eric Wong, J. R. Horgan, and Kishor S. Trivedi. An analyt-

ical approach to architecture-based software reliability prediction. In IEEE Inter-

national Computer Performance and Dependability Symposium (IPDS’98), pages

13–22, 1998.

[33] H. Koziolek, B. Schlich, and C. Bilich. A large-scale industrial case study on

architecture-based software reliability analysis. In Software Reliability Engineer-

ing (ISSRE), 2010 IEEE 21st International Symposium on, pages 279–288, 2010.

Bibliography 117

[34] S. Apel. Software reliability growth prediction - state of the art. In Fraunhofer

IESE, Kaiserslautern, Research Report, 2005.

[35] A. Beckhaus, L.M. Karg, and G. Hanselmann. Applicability of software reliability

growth modeling in the quality assurance phase of a large business software vendor.

In Computer Software and Applications Conference, 2009. COMPSAC ’09. 33rd

Annual IEEE International, volume 1, pages 209–215, 2009.

[36] T.J. McCabe. A complexity measure. Software Engineering, IEEE Transactions

on, SE-2(4):308–320, 1976.

[37] Maurice H. Halstead. Elements of Software Science (Operating and Programming

Systems Series). Elsevier Science Inc., New York, NY, USA, 1977.

[38] A J Albrecht. Measuring application development productivity. In Proceedings of

the Joint SHARE, GUIDE, and IBM Application Development Symposium, pages

83–92, 1979.

[39] A. Veevers and A. Marshall. A relationship between software coverage metrics and

reliability. Software Testing, Verification and Reliability (STVR), 4(1):3–8, 1994.

[40] J.M. Voas and K.W. Miller. Software testability: the new verification. Software,

IEEE, 12(3):17–28, 1995.

[41] Michael Diaz and Joseph Sligo. How software process improvement helped motorola.

IEEE Softw., 14(5):75–81, 1997.

[42] John E. Gaffney. Estimating the number of faults in code. Software Engineering,

IEEE Transactions on, 10(4):459–464, 1984.

[43] B. T. Compton and C. Withrow. Prediction and control of ada software defects. J.

Syst. Softw., 12(3):199–207, 1990.

[44] N.E. Fenton and M. Neil. A critique of software defect prediction models. Software

Engineering, IEEE Transactions on, 25(5):675–689, 1999.

[45] Cagatay Catal and Banu Diri. A systematic review of software fault prediction

studies. Expert Systems with Applications, 36(4):7346–7354, 2009.

[46] Lionel C. Briand, Khaled El Emam, Bernd G. Freimut, and Oliver Laitenberger.

A comprehensive evaluation of capture-recapture models for estimating software

defect content. IEEE Trans. Softw. Eng., 26(6):518–540, 2000.

[47] Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Lukasz Radliński, and

Paul Krause. On the effectiveness of early life cycle defect prediction with bayesian

nets. Empirical Software Engineering, 13(5):499–537, 2008.

Bibliography 118

[48] Yan Ma, Lan Guo, and Bojan Cukic. Statistical framework for the prediction of

fault-proneness. In Advances in Machine Learning Applications in Software Engi-

neering. Idea Group, 2007.

[49] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes

to learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–13,

2007.

[50] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and

Brendan Murphy. Cross-project defect prediction: A large scale experiment on

data vs. domain vs. process. In Proceedings of the the 7th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, ESEC/FSE ’09, pages 91–100, New

York, NY, USA, 2009. ACM.

[51] John D. Musa, Anthony Iannino, and Kazuhira Okumoto. Software Reliability:

Measurement, Prediction, Application (Professional Ed.). McGraw-Hill, Inc., New

York, NY, USA, 1990.

[52] K.W. Miller, L.J. Morell, R.E. Noonan, S.K. Park, D.M. Nicol, B.W. Murrill, and

J.M. Voas. Estimating the probability of failure when testing reveals no failures.

Software Engineering, IEEE Transactions on, 18(1):33–43, 1992.

[53] D.R. Cox. Principles of Statistical Inference. Cambridge University Press, 2006.

[54] S. J. Prowell. JUMBL: A tool for model-based statistical testing. In Proceedings

of the 36th Annual Hawaii International Conference on System Sciences. Society

Press, 2003.

[55] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner, B. Sostawa,

R. Zölch, and T. Stauner. One evaluation of model-based testing and its automation.

In Proceedings of the 27th International Conference on Software Engineering, ICSE

’05, pages 392–401, New York, NY, USA, 2005. ACM.

[56] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-

based testing approaches. Softw. Test. Verif. Reliab., 22(5):297–312, 2012.

[57] Deshan Cooray, Sam Malek, Roshanak Roshandel, and David Kilgore. Resisting

reliability degradation through proactive reconfiguration. In Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, ASE

’10, pages 83–92, New York, NY, USA, 2010. ACM.

[58] Marko Palviainen, Antti Evesti, and Eila Ovaska. The reliability estimation, predic-

tion and measuring of component-based software. J. Syst. Softw., 84(6):1054–1070,

2011.

Bibliography 119

[59] Kishor Shridharbhai Trivedi. Probability and Statistics with Reliability, Queueing,

and Computer Science Applications, 2nd Edition. Wiley-Interscience, 2nd edition,

2001.

[60] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.

Program., 8(3):231–274, 1987.

[61] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 2006.

[62] Vincenzo Grassi. Architecture-based reliability prediction for service-oriented com-

puting. In Architecting Dependable Systems III, volume 3549 of Lecture Notes in

Computer Science, pages 279–299. Springer Berlin Heidelberg, 2005.

[63] Antonio Filieri, Carlo Ghezzi, Vincenzo Grassi, and Raffaela Mirandola. Reliability

analysis of component-based systems with multiple failure modes. In Proceedings

of the 13th international conference on Component-Based Software Engineering,

CBSE’10, pages 1–20, 2010.

[64] Zibin Zheng and Michael R. Lyu. Collaborative reliability prediction of service-

oriented systems. In Proceedings of the 32nd ACM/IEEE International Conference

on Software Engineering - Volume 1, pages 35–44, Cape Town, South Africa, 2010.

ACM.

[65] Liang Yin, M.A.J. Smith, and K.S. Trivedi. Uncertainty analysis in reliability mod-

eling. In Reliability and Maintainability Symposium, 2001. Proceedings. Annual,

pages 229–234, 2001.

[66] Katerina Goseva-Popstojanova and Sunil Kamavaram. Assessing uncertainty in re-

liability of component-based software systems. In Proceedings of the 14th Interna-

tional Symposium on Software Reliability Engineering, pages 307–320, Washington,

DC, USA, 2003. IEEE Computer Society.

[67] Simona Bernardi, Merseguer José, and Dorina C. Petriu. A dependability profile

within MARTE. Softw. Syst. Model., 10(3):313–336, 2011.

[68] Michael R. Lyu. Software Fault Tolerance. John Wiley & Sons, Inc., New York,

NY, USA, 1995.

[69] Jörg Kienzle. Software fault tolerance: An overview. In Proceedings of the 8th Ada-

Europe International Conference on Reliable Software Technologies, pages 45–67,

Berlin, Heidelberg, 2003. Springer-Verlag.

Bibliography 120

[70] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton. Software rejuvenation: analy-

sis, module and applications. In Fault-Tolerant Computing, 1995. FTCS-25. Digest

of Papers., Twenty-Fifth International Symposium on, pages 381–390, 1995.

[71] Neil B. Harrison and Paris Avgeriou. Incorporating fault tolerance tactics in soft-

ware architecture patterns. In Proceedings of the 2008 RISE/EFTS Joint Inter-

national Workshop on Software Engineering for Resilient Systems, SERENE ’08,

pages 9–18, New York, NY, USA, 2008. ACM.

[72] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. Filling the gap be-

tween design and performance/reliability models of component-based systems: A

model-driven approach. Journal of Systems and Software, 80(4):528–558, 2007.

[73] Michael W. Lipton and Swapna S. Gokhale. Heuristic component placement for

maximizing software reliability. In Recent Advances in Reliability and Quality in

Design, Springer Series in Reliability Engineering, pages 309–330. Springer London,

2008.

[74] Atef Mohamed and Mohammad Zulkernine. On failure propagation in component-

based software systems. In Proceedings of the 2008 The Eighth International Con-

ference on Quality Software, pages 402–411. IEEE Computer Society, 2008.

[75] Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism:

A tool for automatic verification of probabilistic systems. In TACAS, Lecture Notes

in Computer Science, pages 441–444. Springer, 2006.

[76] Franz Brosch, Barbora Buhnova, Heiko Koziolek, and Ralf Reussner. Reliability

prediction for fault-tolerant software architectures. In Proceedings of the joint ACM

SIGSOFT conference – QoSA and ACM SIGSOFT symposium – ISARCS on Qual-

ity of software architectures – QoSA and architecting critical systems – ISARCS,

pages 75–84, Boulder, Colorado, USA, 2011. ACM.

[77] Mark H. Klein, Rick Kazman, Leonard J. Bass, S. Jeromy Carrière, Mario Barbacci,

and Howard F. Lipson. Attribute-based architecture styles. In First Working IFIP

Conference on Software Architecture (WICSA1), pages 225–244, 1999.

[78] Rehab El-Kharboutly and Swapna S. Gokhale. Architecture-based reliability anal-

ysis of concurrent software applications using stochastic reward nets. In Proceedings

of the 23rd International Conference on Software Engineering & Knowledge Engi-

neering (SEKE’2011), pages 635–639, 2011.

[79] OMG. OMG Unified Modeling Language (OMG UML), Superstructure, v2.1.2.

Object Management Group, Inc, 2008.

Bibliography 121

[80] Thomas Kappler, Heiko Koziolek, Klaus Krogmann, and Ralf H. Reussner. Towards

automatic construction of reusable prediction models for component-based perfor-

mance engineering. In Proceedings of Software Engineering 2008 (SE’08), pages

140–154, 2008.

[81] Michael Kuperberg, Klaus Krogmann, and Ralf Reussner. Performance predic-

tion for black-box components using reengineered parametric behaviour models.

In Proceedings of the 11th International Symposium on Component-Based Software

Engineering (CBSE 2008), pages 48–63, 2008.

[82] RMPI. Reliability modeling, prediction, and improvement. http://rmpi.

codeplex.com/, 2014.

[83] World Wide Web Consortium (W3C). Xml schema definition. http://www.w3.

org/2001/XMLSchema, 2001.

[84] Ralf H. Reussner. Automatic component protocol adaptation with the CoConut/J

tool suite. Future Generation Computer Systems, 19(5):627–639, 2003.

[85] Suntae Kim, Dae-Kyoo Kim, Lunjin Lu, and Sooyong Park. Quality-driven archi-

tecture development using architectural tactics. J. Syst. Softw., 82(8):1211–1231,

2009.

[86] M.R. Lyu. Handbook of software reliability engineering. IEEE Computer Society

Press, 1996.

[87] W. Abdelmoez, D.M. Nassar, M. Shereshevsky, N. Gradetsky, R. Gunnalan, H.H.

Ammar, B. Yu, and A. Mili. Error propagation in software architectures. In In

Proceedings of the 10th International Symposium on Software Metrics, pages 384–

393, 2004.

[88] M. Hiller, A. Jhumka, and N. Suri. EPIC: profiling the propagation and effect of

data errors in software. IEEE Transactions on Computers, 53(5):512–530, 2004.

[89] James A. Whittaker and J. H. Poore. Markov analysis of software specifications.

ACM Trans. Softw. Eng. Methodol., 2(1):93–106, 1993.

http://rmpi.codeplex.com/
http://rmpi.codeplex.com/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Existing Solutions
	1.4 Contributions
	1.5 Validation
	1.6 Outline

	2 Software Components and Reliability: Basics and State-of-the-Art
	2.1 Software Reliability
	2.1.1 Basic Concepts
	2.1.2 Software Reliability Analyses

	2.2 Software Reliability Estimation
	2.2.1 Software Reliability Growth Models
	2.2.2 Software Defect Prediction Models
	2.2.3 Further Approaches to Software Reliability Estimation

	2.3 Markov Chains
	2.4 Component-based Software Reliability Modeling and Prediction
	2.5 Software Fault Tolerance Mechanisms
	2.6 Related Work
	2.6.1 Error Propagation Modeling
	2.6.2 Software Fault Tolerance Mechanisms Modeling
	2.6.3 Concurrently Present Errors Modeling
	2.6.4 Further Modeling and Prediction Approaches
	2.6.5 The RMPI Approach and the Field of Component-based Software Reliability Modeling and Prediction

	2.7 Summary

	3 Methodology and Reliability Modeling
	3.1 RMPI Methodology
	3.2 Reliability Modeling
	3.2.1 Component Reliability Specifications
	3.2.2 System Reliability Models

	3.3 Implementation
	3.4 Summary

	4 Reliability Prediction and Improvements
	4.1 Reliability Prediction
	4.1.1 RMPI Prediction Process Overview
	4.1.2 Transformation for Each Usage Profile Part
	4.1.3 Aggregation of Results
	4.1.4 Complexity

	4.2 Implementation
	4.3 Reliability Improvements with RMPI
	4.4 Summary

	5 Case Study Evaluation
	5.1 Goals and Settings
	5.2 Case Study I: Reporting Service of a Document Exchange Server
	5.2.1 Description of the Case Study
	5.2.2 Validity of Predictions

	5.3 Case Study II: WebScan System
	5.4 Case Study III: DataCapture System
	5.5 Scalability Analyses
	5.6 Summary

	6 Conclusions
	6.1 Summary
	6.2 Assumptions and Limitations
	6.2.1 Provision of Inputs
	6.2.2 Markovian Assumption
	6.2.3 Expressiveness of the Model

	6.3 Future Work
	6.3.1 Enhanced Methods for Input Estimations
	6.3.2 Extensions of Modeling Capabilities
	6.3.3 Extensions of Analysis Capabilities
	6.3.4 Enhanced Evaluation of Prediction Results

	Author's Publications
	Bibliography

