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Abstract

In this paper, we have examined the actual problems in the e-cash systems [14,15], and

then proposed two new untraceable o�-line e-cash systems. One is the new e-cash system

with the properties of the two blind signatures presented in [2,22], which are based on

Schnorr signature scheme [21], and is the system made by improving [13]. The other is the

new e-cash system with the feature of Nyberg-Rueppel signature [16,17], which provides

message recovery. Moreover, We have estimated the security in our e-cash systems from

the viewpoints of completeness, user's privacy in the payment, forgery of coins and double-

spending detection. Considering the cost of communication and computation, our systems

are more e�cient than other e-cash systems [3,11,12].
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Chapter 1

Introduction

Electronic cash systems (e-cash systems) have become one of the most important research

in both practical and theoretical viewpoints. The features of e-cash systems are the

following points:

1. A coin consists of some electronic data.

2. The coin can be transferred through networks.

E-cash systems mainly contain the following schemes:

� Withdrawal: A user withdraws an e-cash from a bank.

� Payment: Using the e-cash, the user buys something at a shop.

� Deposit: The shop deposits the e-cash to his bank account.

In addition, there are the following payment methods:

� On-line Payment: When a user buys something at a shop, the shop links to

a bank in order to check the validity of the received e-cash, and then deposits the

e-cash. That is, both payment and deposit are simultaneously executed in an on-line

manner.
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� O�-line Payment: When a user pays an e-cash to a shop, the procedure between

the user and the shop can be performed without linking to a bank. The shop deposits

the received e-cash afterward.

Some on-line e-cash systems have been proposed by [6,8,20]. However, since the on-

line e-cash systems require that the shop con�rms the validity of the received e-cash by

linking to the bank, their systems are not practical from the viewpoints of turn-around-

time, communication cost and database-maintenance cost. Therefore, the o�-line e-cash

systems are preferable from the practical viewpoint. Hereafter, we consider only o�-line

payment.

O�-line e-cash systems should also satisfy the following properties:

� Independence: The security of e-cash must not depend on any physical conditions.

Then, the coin can be transferred through networks.

� Security: Nobody can copy (reuse) or forge coins.

� Privacy (Untraceability): The privacy of a user should be protected in the

payment. That is, the relationship between the user and his purchases must be

untraceable by anyone else.

These points are considered by many e-cash systems [3,4,7],[11]-[13],[18,19,22]. From [4,5],

the e-cash system [4] allows the attacker to forge coins by executions of the scheme in

parallel. In other words, this system is weak in parallel attack. In [11,12], the withdrawal

scheme is not e�cient because of enormous communication cost. The e-cash systems

[18,19] realize the dividability that a coin can be subdivided into many pieces. However,

the e-cash system [18] utilizing cut and choose technique makes the coin which consists

of many terms (for example, 40 terms). Therefore, this system is very ine�cient. On the

other hand, the system [19] does not realize the unlinkability among coins divided from

the same coin.

In [22], Schoenmakers presented the blind signature scheme utilizing Schnorr signature

scheme [21]. This scheme has the following feature:
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� The signer makes the signature using the di�erent private key for each veri�er.

Moreover, Schoenmakers proposed the e-cash system [22] with this property.

In [1], Abe and Fujisaki introduced the concept of partially blind signature, which

holds the following property:

� Using the clear part in a message, which is the common information between a signer

and each veri�er, the signer creates the signature on the message. Therefore, he can

assure himself that the message contains accurate information, and then signs the

message.

This property has been already realized in the e-cash system [7] utilizing cut and choose

technique. Unfortunately, this scheme is very ine�cient in terms of communications during

the generation of a signature when reasonable security is required. On the other hand,

the previous e-cash systems [3,4,11,12,18,19,22] do not hold the feature of partially blind

signature, because when a bank signs a message (a coin) in the withdrawal, he must

assure himself that the message (the coin) contains accurate information without seeing

it. Afterward, Abe and Camenisch proposed partially blind signature scheme [2] based on

Schnorr signature scheme, which is related with the discrete logarithm problem.

In [14], Miyazaki and Sakurai presented the new e-cash system utilizing the two sig-

nature schemes [2,22]. However, this e-cash system allows anyone to forge coins. The

reason is that a user can make the coin, which satis�es the veri�cation equations, even if

he does not know the private keys a bank uses in the withdrawal scheme. Therefore, we

introduced the e-cash system [13] with the feature of the two signature [2,22], and then

solved the problem in the e-cash system [14]. Unfortunately, this system is in danger of

allowing a user to forge coin value in the withdrawal.

In [16,17], Nyberg and Rueppel introduced the signature scheme, which holds the

following feature:

� Message Recovery: A message can be conveyed within a signature and can be

recovered at a veri�er's site. That is, the message need not be hashed or sent along

with the signature, which saves storage space and communication bandwidth.
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The previous signature schemes based on the discrete logarithm problem, such as ElGamal

[9] and Schnorr signature schemes, cannot realize this property.

Utilizing the feature of this signature, Nguyen, Mu and Varadharajan proposed the

e-cash system [15] with message recovery unlike the previous e-cash systems [3,4,7],[11]-

[13],[18,19,22]. However, this e-cash system allows the forgery of coins as well as the

system presented in [14].

In this paper, we will �rst consider the actual problems in the e-cash systems [14,15].

Secondly, we will propose two new untraceable o�-line e-cash systems. One is the e-cash

system using the two blind signature schemes proposed in [2,22], which are based on

Schnorr signature scheme, and is the system made by improving [13]. The other is the

e-cash system with the property of Nyberg-Rueppel signature, which provides message

recovery. In addition, we will estimate the security and the performance in the two

proposed e-cash systems.

4



Chapter 2

Digital Signature Schemes

In this chapter, we introduces the important digital signature schemes.

2.1 Schnorr Signature Scheme [21]

The system parameters consist of two primes p and q, where qjp � 1, and an element

g 2 Z�p whose order is q. H is an appropriate hash function mapping into Zq. The signer's

private and public keys are x 2 Zq and h = gx, respectively. To sign a message m with

the private key x, the signer chooses k 2 Zq at random, and then computes the signature

(r; s) as follows:

r = H(m; gk);

s = rx+ k (mod q):

The validity of the signature (r; s) for the message m can be con�rmed if the following

equality holds:

gsh�r = gk:

2.1.1 Schoenmakers Blind Signature Scheme [22]

The system parameters p; q; g and the hash function H are the same as Schnorr signature

scheme. x 2 Zq is the signer's private key, which is di�erent for each veri�er. The signer's
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public key is h = gx. The process to obtain the signature (r; s) on a message m from the

signer can be achieved as follows:

Step1. The signer randomly selects k 2 Zq, and then sends � = hk to the veri�er.

Step2. The veri�er generates three random numbers y 2 Z�q and a; b 2 Zq, and then

computes � = hy and t = �gahb.

Step3. The veri�er calculates r = H(�;m; t), and then sends r0 = r + a (mod q) to the

signer.

Step4. The signer sends s0 = r0x�1 + k (mod q) to the veri�er.

Step5. The veri�er obtains s = (s0+ b)y�1 (mod q), and then veri�es the signature (r; s)

from the veri�cation equation, �sg�r = t.

2.1.2 Partially Blind Signature Scheme [2]

The system parameters p; q; g are the same as Schnorr signature scheme. H is a strong

hash function mapping from f0; 1g� to f0; 1g` (` � 128). The signer's private keys are

x1; x2 2 Z
�

q, while the corresponding public keys are h1 = gx1 ; h2 = gx2 . The process to

get the signature (r; s) on a message (c;m) from the signer can be performed as follows:

Step1. The veri�er sends the clear part c to the signer.

Step2. The signer randomly chooses k 2 Zq, and then sends � = gk to the veri�er.

Step3. The veri�er generates two random numbers a; b 2 Zq, and then computes t =

�ga(hc1h2)
b.

Step4. The veri�er calculates r = H(ckmkt), and then sends r0 = r � a (mod q) to the

signer.

Step5. The signer sends s0 =
k � r0

cx1 + x2
(mod q) to the veri�er.

Step6. The veri�er obtains s = s0 + b (mod q), and then con�rms the signature (r; s)

from the veri�cation equation, r = H(ckmkgr(hc1h2)
s).
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2.2 Nyberg-Rueppel Signature Scheme [16,17]

The system parameters p; q; g are the same as Schnorr signature scheme. The signer's

private key is x 2 Zq, while the corresponding public key is h = gx. To sign a message

m 2 Zp, the signer selects k 2 Zq at random, and then computes

r = mg�k;

ak = b+ cx (mod q);

where (a; b; c) is a permutation (�1;�r0;�s). If we ignore the � signs, then the signature

equation leads to the following six equations:

sk = 1 + r0x (mod q);

r0k = 1 + sx (mod q);

k = s+ r0x (mod q);

sk = r0 + x (mod q);

r0k = s+ x (mod q);

k = r0 + sx (mod q):

The pair (r; s) turns out to be the signature of the message m. The message can be

recovered by computing a veri�cation equation:

m = gb=ahc=ar:

7



Chapter 3

E-cash Systems [14,15]

In this chapter, we display the e-cash systems [14,15], and then consider the problems in

these systems.

3.1 E-cash System [14]

3.1.1 Preparation

Let p and q be primes with p = 2q+1. We suppose both are public. Moreover, we suppose

g 2 Gq is also public when Gq is a subset of Z�p, consisting of order-q elements. H is an

appropriate hash function. The bank B generates two private keys x1, x2 2 Z
�

q, and then

computes h1 = gx1 and h2 = gx2 , which are public keys. The user U has the private key

u sharing with B, which is the user identity, and the corresponding public key v = hu1h2.

c is the coin information consisting of value, expiration date and so on.

3.1.2 Withdrawal Scheme

When U wants to withdraw some coins, the following scheme is run:

Step1. B randomly picks up k1; k2 2 Zq, and then transfers c, �1 = gk1 and �2 = gk2 to

U .
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Step2. U generates �ve random numbers a,b,y,z1,z2 2 Zq, and then computes � = vy,

� = �2
y, t = �1(v�

c
2)

b(hc1h2)
a and m = h

z1
1 h

z2
2 .

Step3. U calculates r = H(�k�kmktkc), and then sends r0 = a� r (mod q) to B.

Step4. B sends s0 =
k1 + r0(cx1 + x2)

ux1 + x2 + ck2
(mod q) to U .

Step5. U obtains s = (s0 + b)y�1 (mod q), and then con�rms the validity of the coin

from the veri�cation equation, t = (��c)s(hc1h2)
r.

3.1.3 Payment Scheme

When U wants to pay the coin M = [�,�,m,r,s,c] to the shop S, the following scheme is

performed:

Step1. U sends the coin M to S.

Step2. S checks the coin from the veri�cation equation, r = H(�k�kmk(��c)s(hc1h2)
rkc),

and then transfers the challenge d 2 Zq to U .

Step3. U computes the response (r1,r2), where r1 = z1 + udy (mod q) and r2 = z2 + dy

(mod q), and then sends (r1,r2) to S.

Step4. S calculates the veri�cation equation, hr11 h
r2
2 = �dm. If the check is successful,

then the coin is regarded to be valid.

3.1.4 Deposit Scheme

When S wants to deposit the coin received from U , the following scheme is executed:

Step1. S sends the payment transcript (M ,d,r1,r2) to B.

Step2. B veri�es the two veri�cation equations, r = H(�k�kmk(��c)s(hc1h2)
rkc) and

hr11 h
r2
2 = �dm. If both are satis�ed, then B accepts the coin.
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3.2 E-cash System [15]

3.2.1 Preparation

Let p; q and g be two primes and a number, respectively, which satisfy gq = 1 (mod p).

Then, we suppose those are public. B has a private key x. B selects w1 and w2 at random,

and then computes g1 = gw1 and g2 = gw2 as well as h1 = gx1 and h2 = gx2 . Then, we

suppose g1, g2, h1 and h2 are also public. U has a pair of private and public keys (u; v),

where v = gu1g2. B registers the public key v as the user identity. U is given w = vx as

the bank certi�cate of the user identity.

3.2.2 Withdrawal Scheme

When U wants to withdraw some coins, B and U must go through some authentication

process. For each coin, the following scheme is run:

Step1. B chooses a random number k 2 Zq, and then transfers � = vk to U .

Step2. U randomly generates y; z1; z2 2 Z
�

q , and then computes � = wy, � = vy and

� = hz11 h
z2
2 .

Step3. Using a strong one-way hash function H, U forms the message m = H(�; �; �),

generates a; b 2 Z�q at random, calculates r = m�a�by, and then sends r0 = rb�1

(mod q) to B.

Step4. B sends s0 = r0x+ k (mod q) to U .

Step5. U removes the blind factor b, and then obtains s = s0b+ a (mod q).

Step6. U veri�es the validity of the coin by using the equation, H(�; �; �) = ��s�rr.

3.2.3 Payment Scheme

When U wants to pay the coin M =[�,�,�,r,s] to S, the following scheme is performed:

10



Step1. S sends the random challenge d = H(SkDatekTimek � � � ) to U .

Step2. U computes the response (r1,r2), where r1 = z1 + udy (mod q) and r2 = z2 + dy

(mod q), and then sends M and (r1; r2) to S.

Step3. S veri�es the received coin by using the two veri�cation equations, H(�; �; �) =

��s�rr and hr11 h
r2
2 = �d�. If the checks are successful, then the coin is regarded

to be valid.

3.2.4 Deposit Scheme

When S wants to deposit the coin M received from U , the following scheme is executed:

Step1. S sends the payment transcript (M;d; r1; r2) to B.

Step2. B con�rms the two veri�cation equations, H(�; �; �) = ��s�rr and hr11 h
r2
2 = �d�.

If both are satis�ed, then B accepts the coin.

3.3 Problems in the E-cash Systems [14,15]

In these systems, anyone can forge the coin. Because

� U can make the coin parameters satisfying the veri�cation equations even if he does

not know the B's private keys.

First of all, we show the attack on the e-cash system [14]. Considering the veri�cation

equation:

r = H(�k�kmk(��c)s(hc1h2)
rkc);

from r = H(�k�kmktkc), we can easily understand t = (��c)s(hc1h2)
r . In the withdrawal,

since � and � are the information which B do not know, it is possible for U to make �1

( 6= 0) which satis�es the equation:

��c = (hc1h2)
�1 :
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In addition, if U makes �2 (6= 0), where (hc1h2)
�2 = (��c)s(hc1h2)

r, he can determine

s = (�2 � r)�1
�1 regardless of r. Then, U can get t = (hc1h2)

�2 . Finally, if U calculates

r = H(�k�kmktkc) by using m = hz11 h
z2
2 , he can complete the forgery of the coin M =

[�,�,m,r,s,c]. In the payment, since U knows the powers of � and m, he can compute r1

and r2 satisfying h
r1
1 h

r2
2 = �dm. Consequently, U can pay the forged coin. Moreover, even

if the double-spending appears, B cannot detect the illegal user. We reveal the actual

example in Figure 3.1.

U

w1,w2,z1,z2 2R Zq

� hw1

1 h2

�  h1�w1c
�1

1

t (hc1h2)
w2

m hz11 h
z2
2

r  H(�k�kmktkc)

s w2 � r (mod q)

M  [�,�,m,r,s,c]

r1  z1 + w1d (mod q)

r2  z2 + d (mod q)

S

r
?
= H(�k�kmk(��c)s(hc1h2)

rkc)

d 2R Zq

hr11 h
r2
2

?
= �dm

M

d

r1,r2

-

�

-

Figure 3.1: Attack on the E-cash System [14]

Similarly, we show the attack on the e-cash system [15]. In the withdrawal, since �

and � are the information which B do not know, it is possible for U to make � = �� and

� = h�11 h
�2
2 (�; �1; �2 6= 0). After computing m = H(�; �; �) by using � = hz11 h

z2
2 , U makes

�3 (6= 0), and then calculates the equation:

r = m��3 :

Then, from the veri�cation equation, we can easily understand

r = m�s��r

= m�s��r:

12



Therefore, when U determines s as s = �r+�3, he can complete the forgery of the coin M

= [�,�,�,r,s]. In the payment, since U knows the powers of � and �, he can compute r1

and r2 satisfying hr11 h
r2
2 = �d�. Consequently, U can pay the forged coin. Moreover, even

if the double-spending appears, B cannot detect the illegal user. We reveal the actual

example in Figure 3.2.

U

t1,t2,z1,z2 2R Z
�

q

� �t1

�  h1h
t2
2

� hz11 h
z2
2

m H(�; �; �)
` 2R Zq

r  m�`

s t1r + ` (mod q)

M  [�,�,�,r,s]

r1  z1 + t1d (mod q)

r2  z2 + t1t2d (mod q)

S

d H(SkDatekTimek � � � )

��s�rr
?
= H(�; �; �)

hr11 h
r2
2

?
= �d�

d

M ,r1,r2

�

-

Figure 3.2: Attack on the E-cash System [15]

13



Chapter 4

New E-cash System 1

In this chapter, by the improvement of the system [13], we propose the new e-cash system

using the two blind signature schemes, which are Schoenmakers blind signature scheme

[22] and partially blind signature scheme [2], and then estimate the security and the

performance in the system.

4.1 System Setup

Let p and q be primes which satisfy qjp � 1. We suppose both are public. Moreover,

we suppose g 2 Gqnf1g is also public when Gq is a subgroup of Z�p of order q. H is the

strong one-way hash function mapping from f0; 1g� to f0; 1g` (` � 128). Let k denote

concatenation. B generates three private keys x, x1, x2 2 Z
�

q, and then computes h = gx,

h1 = gx1 and h2 = gx2 , which are public keys.

4.2 U 's Account Establishment

U shows (by physical or other means) u 2 Z�q to B. If h
u
1 6= 1 and hu1h2 6= 1 are satis�ed,

then B registers u. In other words, U is assumed to have in common with B the user

identity u.

14



4.3 Withdrawal Scheme

When U wants to withdraw some coins from B, he must prove the ownership of his account

by some means. Then, the following scheme is performed:

U

y 2R Z
�

q

� (hu1h2)
y

a; b; z1; z2 2R Zq

t �ga�b

m hz11 h
z2
2

r  H(ckmkt)
r0  a� r (mod q)

s s0y�1 + b (mod q)

r
?
= H(ckmkgrhH(c)�s)

B

k 2R Zq

�  (hu1h2)
k

s0  
r0 �H(c)x

ux1 + x2
+ k (mod q)

c; �

r0

s0

�

-

�

Figure 4.1: Withdrawal Scheme

Step1. B generates at random a number k 2 Zq, and then sends c and � = (hu1h2)
k to U .

c is the coin information consisting of value, expiration date and so on.

Step2. U calculates � = (hu1h2)
y after choosing y 2 Z�q at random. U also generates four

random numbers a; b; z1; z2 2 Zq, and then computes t = �ga�b and m = hz11 h
z2
2 .

Step3. U calculates r = H(ckmkt), and then sends r0 = a� r (mod q) to B.

Step4. B sends s0 =
r0 �H(c)x

ux1 + x2
+ k (mod q) to U .

Step5. U computes s = s0y�1 + b (mod q).

Step6. U accepts if and only if r = H(ckmkgrhH(c)�s).
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4.4 Payment Scheme

When U wants to pay the coin M = [�,c,m,r,s] to S, the following scheme is executed:

U

M  [�,c,m,r,s]

r1  z1 + udy (mod q)

r2  z2 + dy (mod q)

S

r
?
= H(ckmkgrhH(c)�s)

d H(MkIS)

hr11 h
r2
2

?
= �dm

M

d

r1; r2

-

�

-

Figure 4.2: Payment Scheme

Step1. U transfers the coin M to S.

Step2. S veri�es the equation, r = H(ckmkgrhH(c)�s), and then sends the challenge

d = H(MkIS) to U . IS contains data and time of the payment, the shop identity,

and possibly some random bits to deal with the problem of double-deposits.

Step3. U sends the response (r1; r2), where r1 = z1 + udy (mod q) and r2 = z2 + dy

(mod q), to S.

Step4. S checks the equation, hr11 h
r2
2 = �dm.

Step5. S accepts if and only if the two veri�cation equations are successful.

4.5 Deposit Scheme

When S wants to deposit the coin M at B, the following scheme is run:

Step1. S sends the payment transcript (M; IS ; r1; r2) to B.

Step2. B computes d = H(MkIS).

Step3. B accepts if and only if r = H(ckmkgrhH(c)�s) and hr11 h
r2
2 = �dm.
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S

M  [�,c,m,r,s]

B

d H(MkIS)

r
?
= H(ckmkgrhH(c)�s)

hr11 h
r2
2

?
= �dm

M; IS ; r1; r2-

Figure 4.3: Deposit Scheme

4.6 Security

This section is due to [4,22] to some extent. Following Feige, Fiat and Shamir [10], we

denote by Z a party Z that follows the schemes, and by eZ a party Z with unlimited

computing power that may deviate from the schemes in an arbitrary way. Z denotes

either one of these.

4.6.1 Completeness

We say that an e-cash system is complete if the system satis�es all the following properties:

(1) If U accepts in the withdrawal scheme, and sends the coin and the response in the

payment scheme, then S accepts.

(2) If S accepts in the payment scheme, and deposits the payment transcript in the

deposit scheme, then B accepts.

Proposition 1 New e-cash system 1 is complete.

Proof. First, we prove the property (1). S accepts if

r = H(ckmkgrhH(c)�s)

and

hr11 h
r2
2 = �dm:

17



In the withdrawal, U computes

r = H(ckmk�ga�b)

and

m = hz11 h
z2
2 :

Therefore, it su�ces to prove that

grhH(c)�s = �ga�b

and

hr11 h
r2
2 = �dhz11 h

z2
2

for the assignments made by U in the schemes.

The �rst equality follows from

grhH(c)�s = grgH(c)x � (hu1h2)
ys

= gr+H(c)x � gr
0
�H(c)x(hu1h2)

k�b

= grga�r(hu1h2)
k�b

= (hu1h2)
kga�b

(�)
= �ga�b

and the second from

hr11 h
r2
2 = h

z1+udy
1 h

z2+dy
2

= (hu1h2)
yd � hz11 h

z2
2

= �dm:

The substitution in (�) is allowed because U accepts in the withdrawal only if (hu1h2)
k =

g�r
0

hH(c)(hu1h2)
s0 = �.

The other property (2) is immediately clear from the fact that the shop identity in

IS di�ers per shop and S does not use the same value for IS in two di�erent payments,

since the veri�cation relations that are applied by B in the deposit scheme are the same

as those applied by S in the payment scheme.
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4.6.2 Privacy

We say that the an e-cash system protects the privacy of the user in the payment if the

system holds the following property:

� If U follows the schemes, and does not double-spend, then no shared information

can be developed between B and S in the executions of the withdrawal and payment

schemes that U takes part in.

First, we show the following lemma:

Lemma 1 For any U , for any possible view of eB in an execution of the withdrawal scheme

in which U accepts and for any possible view of eS in an execution of the payment scheme

in which the payer follows the scheme, there is exactly one set of random choices that U

could have made in the execution of the withdrawal scheme such that the views of eB and

eS correspond to the withdrawal and payment of the same e-cash.

Proof. We de�ne the following sets:

� Viewer( eB) = f(c,�,r0,s0) j � 2 Gq and r0; s0 2 Zq such that g�r
0

hH(c)(hu1h2)
s0 =

(hu1h2)
k = �g

� Viewer( eS) = f(�; c;m; r; s; d; r1; r2) j �;m 2 Gq, r; d 2 f0; 1g
` and s; r1; r2 2 Zq such

that r = H(ckmkgrhH(c)�s) and hr11 h
r2
2 = �dmg

� Choices(U) = f(a; b; y; z1; z2) j a; b; z1; z2 2 Zq and y 2 Z�q g

We have only to show that for all eB-view 2 Views( eB) and for all eS-view 2 Views( eS),
there is exactly one tuple (a; b; y; z1; z2) 2 Choices(U) such that eB-view and eS-view cor-

respond to the withdrawal and payment of the same e-cash.

First, y is uniquely determined from � and v = hu1h2 as y = logv �. From r1, u, d and

y, we see that the choice z1 = r1 � udy (mod q) must have been made, and from r2, d

and y, it follows that z2 = r2�dy (mod q) must have been chosen. The choice r together

with r0 determines a as a = r + r0 (mod q). Finally, the numbers s, s0 and y determine b

as b = s� s0y�1 (mod q).
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For these choices of the �ve variables, all the assignments and veri�cations in the two

scheme executions would be satis�ed by de�nition, except for the assignments t = �ga�b,

m = hz11 h
z2
2 and r = H(ckmkt) that must have been made by U in the withdrawal scheme.

To prove that these assignments hold as well, we notice that from eS-view 2 Views( eS) we
have that

r = H(ckmkgrhH(c)�s)

and

hr11 h
r2
2 = �dm:

Therefore, the proof is completed if

grhH(c)�s = �ga�b

and

hr11 h
r2
2 = �dhz11 h

z2
2

for (a; b; y; z1; z2) made above. This is obvious in the proof of proposition 1, considering

that in the case the substitution in (�) is allowed because eB-view 2 Views( eB).

Proposition 2 New e-cash system 1 protects the privacy of the user in the payment.

Proof. This is an immediate consequence of lemma 1 and the fact that U in the with-

drawal scheme generates (a; b; y; z1; z2) uniformly at random from Choices(U).

4.6.3 Forgery

To forge a coin, the two veri�cation equations, r = H(ckmkgrhH(c)�s) and hr11 h
r2
2 = �dm,

must be satis�ed. We say that illegal users cannot forge a coin in an e-cash system if the

system is protected from all the following attacks:
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� Forgery without the Withdrawal Scheme

{ [Attack 1] Some users make a coin without the use of coin parameters.

{ [Attack 2] Some users make a coin from two (or more) coins.

� Forgery in the Withdrawal Scheme

{ [Attack 3] A user executes the withdrawal scheme by himself, and then

frames up a coin.

{ [Attack 4] Two (or more) users simultaneously execute the withdrawal

scheme in parallel, and then frame up a coin with cooperation (parallel at-

tack).

Proposition 3 Illegal users cannot forge a coin in new e-cash system 1.

Proof.

[Attack 1]

In this attack, some users must make a coin only from the two veri�cation equations,

r = H(ckmkgrhH(c)�s) and hr11 h
r2
2 = �dm. First of all, considering hr11 h

r2
2 = �dm, since U

cannot know B's private keys (x,x1,x2) because of the di�culty of the discrete logarithm

problem, some users should determine � as � = h"11 h
"2
2 , where "1 6= 0 and "2 6= 0. Since

�; ga; �b and hH(c) are quite independent of r and s, from

grhH(c)�s = �ga�b;

some users can obtain the following equation:

gr(h"11 h
"2
2 )

s = gD;

where gD = �ga�bh�H(c). However, as

s =
D � r

"1x1 + "2x2
;

the relationship between r and s requires B's private keys (x1; x2).
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[Attack 2]

This is the attack that some users make a coin by mixing two (or more) di�erent coins.

Now, we suppose that two users UA and UB have two coins MA and MB, respectively,

where Mi = [�i; ci;mAB; ri; si] (i = A;B). Assuming that

r = H(ckmkgrhH(c)�s)

= H(�1cA + �2cBk(�1 + �2)mABkg
�1rA+�2rBhH(�1cA+�2cB)��1sA+�2sB);

where �1 6= 0 and �2 6= 0, UA and UB wish to satisfy the equation, r = �1rA + �2rB .

However, since

�1rA + �2rB = �1H(cAkmABkg
rAhH(cA)�

sA
A ) + �2H(cBkmABkg

rBhH(cB)�
sB
B );

we see that generally r 6= �1rA + �2rB .

[Attack 3]

As B's signature s0 contains
r0

ux1 + x2
, it is impossible for U to frame up the user identity

without B's private keys (x1; x2) in the withdrawal. Now, we consider the forgery of the

coin value. In the withdrawal scheme, U computes t = ��ga�b and r = H(�ckmkt), where

� 6= 0, and then sends r0 = (a�r)��1 (mod q) to B. Getting s0 =
r0 �H(c)x

ux1 + x2
+ k (mod q),

U calculates s = s0�y�1 + b (mod q), and then veri�es the following equation:

t = grhH(�c)�s

= grhH(�c) � ga�rh��H(c)���b

= thH(�c)��H(c):

However, we see that generally H(�c) 6= �H(c).

Remark:

This attack succeeds in the e-cash system [13]. The reason is that B determines s0

as s0 =
r0 � cx

ux1 + x2
+ k (mod q). Therefore, new e-cash system 1 prevents the attack by

s0 =
r0 �H(c)x

ux1 + x2
+ k (mod q).

[Attack 4]

Now, we suppose that two users UA and UB perform the withdrawal scheme in parallel.

First, UA and UB get (cA; �A) and (cB ; �B), respectively, where �i = (hui1 h2)
ki (i = A;B).
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Assuming that u includes uA and uB , they compute � = (hu1h2)
y, t = �

�
A�Bg

a�b and

r = H(�cA + cBkmkt), where � 6= 0. They send r0A = (a � r)(2�)�1 (mod q) and

r0B = (a � r)2�1 (mod q), respectively. After obtaining (s0A; s
0
B), respectively, where

s0i =
r0i �H(ci)x

uix1 + x2
+ ki (mod q) (i = A;B), they calculate s = (�s0A+s

0
B)y

�1+b (mod q),

and then con�rm the following equation:

t = grhH(�cA+cB)�s

= grhH(�cA+cB) � (hu1h2)
(a�r)2�1��H(cA)x

uAx1+x2
+

(a�r)2�1�H(cB )x

uBx1+x2
+�kA+kB�b

= grhH(�cA+cB)(hu1h2)
(a�r)2�1��H(cA)x

uAx1+x2
+

(a�r)2�1�H(cB)x

uBx1+x2
+�kA+kB � t�

��
A ��1B g�a

= t � gr�ahH(�cA+cB)(hu1h2)
(a�r)2�1��H(cA)x

uAx1+x2
+

(a�r)2�1�H(cB)x

uBx1+x2
+�kA+kB�

��
A �B

�1

= t � gr�a+H(�cA+cB)x(hu1h2)
(a�r)2�1��H(cA)x

uAx1+x2
+

(a�r)2�1�H(cB )x

uBx1+x2 h
u(�kA+kB)�(�kAuA+kBuB)
1 :

Then, the equation:

g�(hu1h2)
�1

uAx1+x2
+

�2
uBx1+x2 h

u(�kA+kB)�(�kAuA+kBuB)
1 = 1;

where

� = r � a+H(�cA + cB)x;

�1 = (a� r)2�1 � �H(cA)x;

�2 = (a� r)2�1 �H(cB)x;

must be satis�ed. Therefore, they can get the following equations:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

uAuB� + u(uA�2 + uB�1) = 0;

u(�1 + �2) + uA(� + �2) + uB(� + �1) = 0;

� + �1 + �2 = 0;

�kAuAuB(u� uA) + kBuAuB(u� uB) = 0;

�kA(uA + uB)(u� uA) + kB(uA + uB)(u� uB) = 0;

�kA(u� uA) + kB(u� uB) = 0:

However, it is possible to satisfy these equations only if uA = uB .
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4.6.4 Double-spending Detection

If U has double-spent a coin, B will be able to obtain the responses (r1; r2) and (r01; r
0

2)

for two di�erent challenges d and d0, where r1 = z1+udy (mod q), r2 = z2+ dy (mod q),

r01 = z1 + ud0y (mod q) and r02 = z2 + d0y (mod q). Then, B can compute

r1 � r01 = u(d� d0)y;

r2 � r02 = (d� d0)y:

From u(d � d0)y and (d � d0)y, B can easily obtain u. Therefore, B can determine the

double-spender.

4.7 Performance Evaluation

In this section, we compare the e�ciency of new e-cash system 1 with that of the o�-line

e-cash systems [3,11,12], which are famous and secure. The e�ciency of e-cash systems is

estimated by the cost of communication and computation. We suppose that the commu-

nication cost depends on the number of exponential operation in each scheme, and that

the computation cost relies on the communication amount of parameters in each scheme.

Now, we assume in Brands scheme [3], jpj = 1024, jqj = 160, in Ferguson scheme [11,12],

jnj = 1024, jvj = 160 and in our system, jpj = 1024, jqj = 160, jcj = 160, where j � j

denotes binary length. Then, we get the following results on Table 4.1.

Communication Amount [bits] Number of Exponentiation

Withdrawal Payment
Withdrawal Payment

U B U S

Brands System [3] 2368 5760 15 3 0 7

Ferguson System [11,12] 10880 4416 17 9 1 8

New E-cash System 1 1504 2944 10 3 0 6

Table 4.1: Comparison between E-cash Systems

In the withdrawal, the communication amount of our system is smaller than Ferguson

and Brands systems. Moreover, the number of exponential operation imposed on U is
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also smaller than other systems [3,11,12]. The number of exponential operation imposed

on B in our system is the same as Brands system, and the number in both systems is

smaller than that in Ferguson system.

In the payment, the communication amount of our system is smaller than other e-

cash systems [3,11,12]. In our system and Brands system, U do not need exponentiations.

The number of exponential operation imposed on S is smaller than Ferguson and Brands

systems.

Therefore, we see that new e-cash system 1 is more e�cient than other e-cash systems

[3,11,12].
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Chapter 5

New E-cash System 2

In this chapter, we propose the new e-cash system using Nyberg-Rueppel signature scheme

[16,17], which provides message recovery, and then estimate the security and the perfor-

mance in the system.

5.1 System Setup

Let p and q be primes which satisfy qjp � 1. We suppose both are public. Moreover,

we suppose g 2 Gqnf1g is also public when Gq is a subgroup of Z�p of order q. H is the

strong one-way hash function mapping from f0; 1g� to f0; 1g` (` � 128). Let k denote

concatenation. B generates three private keys x, x1, x2 2 Z
�

q, and then computes h = gx,

h1 = gx1 and h2 = gx2 , which are public keys.

5.2 U 's Account Establishment

U shows (by physical or other means) u 2 Z�q to B. If h
u
1 6= 1 and hu1h2 6= 1 are satis�ed,

then B registers u. In other words, U is assumed to have in common with B the user

identity u.
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5.3 Withdrawal Scheme

When U wants to withdraw some coins from B, he must prove the ownership of his account

by some means. Then, the following scheme is performed:

U

y 2R Z
�

q

� (hu1h2)
y

a; b; z1; z2 2R Zq

m hz11 h
z2
2

r  mga�b�

r0  r + a (mod q)

s s0y�1 + b (mod q)

��sgrrhH(c) ?
= m

B

k 2R Zq

�  (hu1h2)
k

s0  
r0 +H(c)x

ux1 + x2
+ k (mod q)

c; �

r0

s0

�

-

�

Figure 5.1: Withdrawal Scheme

Step1. B generates a random number k 2 Zq, and then sends c and � = (hu1h2)
k to U . c

is the coin information consisting of value, expiration date and so on.

Step2. U calculates � = (hu1h2)
y after choosing y 2 Z�q at random. U also generates four

random numbers a; b; z1; z2 2 Zq, and then computesm = hz11 h
z2
2 and r = mga�b�.

Step3. U sends r0 = r + a (mod q) to B.

Step4. B sends s0 =
r0 +H(c)x

ux1 + x2
+ k (mod q) to U .

Step5. U computes s = s0y�1 + b (mod q).

Step6. U accepts if and only if ��sgrrhH(c) = m.
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5.4 Payment Scheme

When U wants to pay the coin M = [�,c,r,s] to S, the following scheme is executed:

U

M  [�,c,r,s]

r1  z1 + udy (mod q)

r2  z2 + dy (mod q)

S

d H(MkIS)

hr11 h
r2
2 �

�d ?
= ��sgrrhH(c)

M

d

r1; r2

-

�

-

Figure 5.2: Payment Scheme

Step1. U transfers the coin M to S.

Step2. S sends the challenge d = H(MkIS) to U . IS contains data and time of the

payment, the shop identity, and possibly some random bits to deal with the

problem of double-deposits.

Step3. U sends the response (r1; r2), where r1 = z1 + udy (mod q) and r2 = z2 + dy

(mod q), to S.

Step4. S checks the equation, hr11 h
r2
2 �

�d = ��sgrrhH(c).

Step5. S accepts if and only if the veri�cation equation is successful.

5.5 Deposit Scheme

When S wants to deposit the coin M at B, the following scheme is run:

Step1. S sends the payment transcript (M; IS ; r1; r2) to B.

Step2. B computes d = H(MkIS).

Step3. B accepts if and only if hr11 h
r2
2 �

�d = ��sgrrhH(c).
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S

M  [�,c,r,s]

B

d H(MkIS)

hr11 h
r2
2 �

�d ?
= ��sgrrhH(c)

M; IS ; r1; r2-

Figure 5.3: Deposit Scheme

5.6 Security

The system parameters and de�nitions are the same as new e-cash system 1.

5.6.1 Completeness

We can see that the statement of the proposition in the previous chapter also hold for

new e-cash system 2.

Proposition 4 New e-cash system 2 is complete.

Proof. First, we prove the property (1). S accepts if

hr11 h
r2
2 �

�d = ��sgrrhH(c):

In the withdrawal, U computes

r = mga�b�

and

m = hz11 h
z2
2 = ��sgrrhH(c):

Therefore, it su�ces to prove that

�sg�rh�H(c) = ga�b�

and

hr11 h
r2
2 �

�d = hz11 h
z2
2
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for the assignments made by U in the schemes.

The �rst equality follows from

�sg�rh�H(c) = (hu1h2)
ys � g�rg�H(c)x

= gr
0+H(c)x(hu1h2)

k�b � g�rg�H(c)x

= gr+a�b(hu1h2)
kg�r

= ga�b(hu1h2)
k

(�)
= ga�b�

and the second from

hr11 h
r2
2 �

�d = h
z1+udy
1 h

z2+dy
2 � (hu1h2)

�yd

= h
z1+udy
1 h

z2+dy
2 � h

�udy
1 h

�dy
2

= hz11 h
z2
2

= m:

The substitution in (�) is allowed because U accepts in the withdrawal only if (hu1h2)
k =

(hu1h2)
s0g�r

0

h�H(c) = �.

The other property (2) is immediately clear from the fact that the shop identity

included in IS di�ers per shop and S does not use the same value for IS in two di�erent

payments, since the veri�cation relation that is applied by B in the deposit scheme is the

same as that applied by S in the payment scheme.

5.6.2 Privacy

We can see that the statements of the lemma and the proposition in the previous chapter

also hold for new e-cash system 2.

Lemma 2 For any U , for any possible view of eB in an execution of the withdrawal scheme

in which U accepts and for any possible view of eS in an execution of the payment scheme

in which the payer follows the scheme, there is exactly one set of random choices that U

could have made in the execution of the withdrawal scheme such that the views of eB and

eS correspond to the withdrawal and payment of the same e-cash.
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Proof. We de�ne the following sets:

� Viewer( eB) = f(c,�,r0,s0) j � 2 Gq and r0; s0 2 Zq such that (hu1h2)
s0g�r

0

h�H(c) =

(hu1h2)
k = �g

� Viewer( eS) = f(�; c; r; s; d; r1; r2) j �; r 2 Gq, d 2 f0; 1g
` and s; r1; r2 2 Zq such that

hr11 h
r2
2 �

�d = ��sgrrhH(c)g

� Choices(U) = f(a; b; y; z1; z2) j a; b; z1; z2 2 Zq and y 2 Z�q g

We have only to show that for all eB-view 2 Views( eB) and for all eS-view 2 Views( eS),
there is exactly one tuple (a; b; y; z1; z2) 2 Choices(U) such that eB-view and eS-view cor-

respond to the withdrawal and payment of the same e-cash.

First, y is uniquely determined from � and v = hu1h2 as y = logv �. From r1, u, d and

y, we see that the choice z1 = r1 � udy (mod q) must have been made, and from r2, d

and y, it follows that z2 = r2�dy (mod q) must have been chosen. The choice r together

with r0 determines a as a = r0 � r (mod q). Finally, the numbers s, s0 and y determine b

as b = s� s0y�1 (mod q).

For these choices of the �ve variables, all the assignments and veri�cations in the

two schemes executions would be satis�ed by de�nition, except for the assignments m =

hz11 h
z2
2 (= ��sgrrhH(c)) and r = mga�b� that must have been made by U in the withdrawal

scheme. To prove that these assignments hold as well, we notice that from eS-view 2
Views( eS) we have that

hr11 h
r2
2 �

�d = ��sgrrhH(c):

Therefore, the proof is completed if

�sg�rh�H(c) = ga�b�

and

hr11 h
r2
2 �

�d = hz11 h
z2
2
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for (a; b; y; z1; z2) made above. This is obvious in the proof of proposition 4, considering

that in the case the substitution in (�) is allowed because eB-view 2 Views( eB).

Proposition 5 New e-cash system 2 protects the privacy of the user in the payment.

Proof. This is an immediate consequence of lemma 2 and the fact that U in the with-

drawal scheme generates (a; b; y; z1; z2) uniformly at random from Choices(U).

5.6.3 Forgery

To forge a coin, the veri�cation equation, hr11 h
r2
2 �

�d = ��sgrrhH(c) (= m), must be

satis�ed. We consider that the attacks realizing the forgery are the same as new e-cash

system 1.

Proposition 6 Illegal users cannot forge a coin in new e-cash system 2.

Proof.

[Attack 1]

In this attack, some users must make a coin only from the veri�cation equation, hr11 h
r2
2 �

�d =

��sgrrhH(c). First of all, considering hr11 h
r2
2 �

�d = m, since U cannot know B's private keys

(x,x1,x2) because of the di�culty of the discrete logarithm problem, some users should

determine � as � = h"11 h
"2
2 , where "1 6= 0 and "2 6= 0. Since �; ga; �b and hH(c) are quite

independent of r and s, from

�sg�rh�H(c) = ga�b�;

some users can obtain the following equation:

(h"11 h
"2
2 )

sg�r = gD;

where gD = ga�b�hH(c). However, as

s =
D + r

"1x1 + "2x2
;
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the relationship between r and s requires B's private keys (x1; x2).

[Attack 2]

This is the attack that some users make a coin by mixing two (or more) di�erent coins.

Now, we suppose that two users UA and UB have two coins MA and MB, respectively,

where Mi = [�i; ci;mAB; ri; si] (i = A;B). Assuming that

r = mg�r�sh�H(c)

= (�1 + �2)mABg
��1rA��2rB��1sA+�2sBh�H(�1cA+�2cB);

where �1 6= 0 and �2 6= 0, UA and UB wish to satisfy the equation, r = �1rA + �2rB .

However, since

�1rA + �2rB = mAB(�1g
�rA�

sA
A h�H(cA) + �2g

�rB�
sB
B h�H(cB));

we see that generally r 6= �1rA + �2rB .

[Attack 3]

As B's signature s0 contains
r0

ux1 + x2
, it is impossible for U to frame up the user identity

without B's private keys (x1; x2) in the withdrawal. Now, we consider the forgery of the

coin value. In the withdrawal scheme, U computes r = mga�b��, where � 6= 0, and

then sends r0 = (r + a)��1 (mod q) to B. After getting s0 =
r0 +H(c)x

ux1 + x2
+ k (mod q), U

calculates s = s0�y�1 + b (mod q), and then veri�es the following equation:

m = ��sgrrhH(�c)

= g�(r+a)h��H(c)�����b � gr �mga�b�� � hH(�c)

= mhH(�c)��H(c):

However, we see that generally H(�c) 6= �H(c).

[Attack 4]

Now, we suppose that two users UA and UB perform the withdrawal scheme in parallel.

First, UA and UB get (cA; �A) and (cB ; �B), respectively, where �i = (hui1 h2)
ki (i = A;B).

Assuming that u includes uA and uB , they compute � = (hu1h2)
y and r = mga�b�

�
A�B ,

where � 6= 0. They send r0A = (r + a)(2�)�1 (mod q) and r0B = (r + a)2�1 (mod q),

respectively. Getting (s0A; s
0
B), respectively, where s0i =

r0i +H(ci)x

uix1 + x2
+ ki (mod q) (i =

33



A;B), they calculate s = (�s0A + s0B)y
�1 + b (mod q), and then con�rm the following

equation:

m = ��sgrrhH(�cA+cB)

= (hu1h2)
�(r+a)2�1��H(cA)x

uAx1+x2
+
�(r+a)2�1�H(cB)x

uBx1+x2
�(�kA+kB)��b � gr �mga�b�

�
A�B � h

H(�cA+cB)

= m � gr+ahH(�cA+cB)(hu1h2)
�(r+a)2�1��H(cA)x

uAx1+x2
+
�(r+a)2�1�H(cB)x

uBx1+x2
�(�kA+kB)

�
�
A�B

= m � gr+a+H(�cA+cB)x(hu1h2)
�(r+a)2�1��H(cA)x

uAx1+x2
+
�(r+a)2�1�H(cB)x

uBx1+x2 h
�kAuA+kBuB�u(�kA+kB)
1 :

Then, the equation:

g�(hu1h2)
�1

uAx1+x2
+

�2
uBx1+x2 h

�kAuA+kBuB�u(�kA+kB)
1 = 1;

where

� = r + a+H(�cA + cB)x;

�1 = �(r + a)2�1 � �H(cA)x;

�2 = �(r + a)2�1 �H(cB)x;

must be satis�ed. Therefore, they can obtain the following equations:8>>>>>>>>>>>><
>>>>>>>>>>>>:

uAuB� + u(uA�2 + uB�1) = 0;

u(�1 + �2) + uA(� + �2) + uB(� + �1) = 0;

� + �1 + �2 = 0;

�kAuAuB(u� uA) + kBuAuB(u� uB) = 0;

�kA(uA + uB)(u� uA) + kB(uA + uB)(u� uB) = 0;

�kA(u� uA) + kB(u� uB) = 0:

However, it is possible to satisfy these equations only if uA = uB .

5.6.4 Double-spending Detection

If U has double-spent a coin, B will be able to obtain the responses (r1; r2) and (r01; r
0

2)

for two di�erent challenges d and d0, where r1 = z1+udy (mod q), r2 = z2+ dy (mod q),

r01 = z1 + ud0y (mod q) and r02 = z2 + d0y (mod q). Then, B can compute

r1 � r01 = u(d� d0)y;

r2 � r02 = (d� d0)y:
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From u(d � d0)y and (d � d0)y, B can easily obtain u. Therefore, B can determine the

double-spender.

5.7 Performance Evaluation

In the previous chapter, we have understood that new e-cash system 1 is more e�cient

than the e-cash systems in [3,11,12]. Now, we compare new e-cash system 2 with new

e-cash system 1 from the viewpoint of e�ciency. When we assume in both systems,

jpj = 1024, jqj = 160, jcj = 160, we obtain the following results on Table 5.1.

Communication Amount [bits] Number of Exponentiation

Withdrawal Payment
Withdrawal Payment

U B U S

New E-cash System 1 1504 2944 10 3 0 6

New E-cash System 2 1504 1920 10 3 0 6

Table 5.1: Comparison between Proposed E-cash Systems

Compared with new e-cash system 1, we see that new e-cash system 2 improves the

communication amount in the payment. In other words, new e-cash system 2 decreases

the communication cost, and is more e�cient. This is because S can recover m even if U

do not send m to S. However, we will consider that new e-cash system 1 is a little securer

than new e-cash system 2 in point of accidental attacks.
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Chapter 6

Conclusion

In this paper, we have considered the actual problems in the e-cash systems [14,15], and

then proposed two new untraceable o�-line e-cash systems. One is new e-cash system 1

using the two blind signature schemes presented in [2,22], which are based on Schnorr

signature scheme [21], and is the system made by improving [13]. The other is new e-cash

system 2 using the property of Nyberg-Rueppel signature [16,17], which provides message

recovery. In addition, we have estimated the security of the two proposed e-cash systems,

which consists of completeness, privacy, forgery and double-spending detection. Our e-cash

systems are more e�cient than other e-cash systems [3,11,12].
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