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PAPER

Binaural Sound Source Localization in Noisy Reverberant
Environments Based on Equalization-Cancellation Theory

Thanh-Duc CHAU†a), Junfeng LI††b), Nonmembers, and Masato AKAGI†c), Member

SUMMARY Sound source localization (SSL), with a binaural input in
practical environments, is a challenging task due to the effects of noise
and reverberation. In psychoacoustic research field, one of the theories to
explain the mechanism of human perception in such environments is the
well-known equalization-cancellation (EC) model. Motivated by the EC
theory, this paper investigates a binaural SSL method by integrating EC
procedures into a beamforming technique. The principle idea is that the
EC procedures are first utilized to eliminate the sound signal component at
each candidate direction respectively; direction of sound source is then de-
termined as the direction at which the residual energy is minimal. The EC
procedures applied in the proposed method differ from those in traditional
EC models, in which the interference signals in rooms are accounted in E
and C operations based on limited prior known information. Experimental
results demonstrate that our proposed method outperforms the traditional
SSL algorithms in the presence of noise and reverberation simultaneously.
key words: binaural sound localization, equalization-cancellation model,
noisy reverberant environments, humanoid robot

1. Introduction

Binaural sound source localization (SSL) is the task of deter-
mining location of a sound source from a binaural input, of
which one of the important applications is humanoid robot.
In a human-robot communication system, source location
information, or at least direction of arrival (DOA) of the
observed sounds, is required to enable the robot to imitate
some basic human behaviors, such as facing the user when
it is called. SSL in such binaural systems is a challeng-
ing problem because sound signals observed at the receivers
(ears or microphones) are corrupted by noise and reverber-
ation in enclosed spaces, while the input is limited to only
two channels with the effects of head, torso and outer ear,
which is normally referred to as head-related transfer func-
tions (HRTFs). Specifically, reverberation smears the direct-
path sound in two main ways: self-masking caused by early
reflections and overlap-masking caused by late reflections,
in which the overlap-masking is a serious effect when rever-
beration is high. Together with reverberation, background
noise in rooms makes the sound source more difficult to be
correctly detected, especially when the noise is directional.
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In addition, HRTFs are dependent on the shape, size and
material of the robot. This may reduce the effectiveness of
general state-of-the-art SSL methods when applied in bin-
aural systems. Although binaural SSL has been researched
for many years, the problem of binaural SSL in noisy rever-
berant environments has still not been completely solved.
The work presented in this paper aims at a binaural DOA
estimation method, which is expected to work effectively
on binaural systems and be robust against background noise
and reverberation in rooms.

In the past decades, a large number of DOA estimation
methods have been introduced [1], [2], in which each one
differs from others by how localization cues are exploited.
Two most important cues for localization in horizontal plane
are interaural time difference (ITD) and interaural level dif-
ference (ILD). In practical conditions, these cues are cor-
rupted by noise and reverberation. The well-known GCC-
PHAT method [3], which is the combination of generalized
cross-correlation and phase transform weighting, does not
account well for noise. Therefore, although this method
was reported with relatively good DOA estimation on rever-
berant signals [4], its performance is degraded when both
noise and reverberation are simultaneously present. More-
over, since this method is based on ITD only, there has been
analysis showing that it suffers from binaural setups [5].

In order to effectively localize sound sources with a
binaural system, various azimuth-dependent models of bin-
aural cues have been investigated. Andersson et al. [6] and
Raspaud et al. [7] explicitly combined estimations of ITD
and ILD. They showed that the combination of both ITD
and ILD provides better azimuth estimation compared to
ITD alone. Other research considered employing these cues
implicitly. For example, Berglund et al. [8] extracted bin-
aural cues in a feature vector and mapped it to source loca-
tion using artificial neural network. In all of these methods,
since the effect of interference signals has not been taken
into account, their applicability in adverse noisy reverber-
ant environments is still limited. More recently, in the work
of Woodruff et al. [9], noise information was integrated into
a joint ITD-ILD statistical model. They achieved signifi-
cant improvement in comparison with the previous methods
in experimental conditions. However, this method requires
prior information of direct-to-residual ratio (DRR), which
is normally not available in practice.

Concerning SSL with the effect of HRTF, there have
been methods exploiting HRTF information directly. Key-
rouz et al. [10] used the inverse of HRTF at each ear as a fil-
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ter to recover the original sound emitted at the source. In this
way, the pair of inverse HRTFs corresponding to the direc-
tion of sound source should provide the most identical ‘re-
covered’ signals. A similar mechanism was applied by Mc-
Donald et al. [11] in which the observed signal at an ear is
filtered by the HRTF measured at the other ear. These meth-
ods, however, are highly dependent on HRTFs and suffer
from reverberation since HRTFs vary largely along rever-
beration levels due to the presence of multiple reflections.

In psychoacoustic research field, directional hearing
has been studied for more than a century and its mechanism
was simulated by a number of binaural models. Two seminal
binaural interaction models are the coincidences model of
Jeffress [12] and the equalization-cancellation (EC) model
of Durlarch [13], [14]. The others are supposed to be de-
rived from one (or in some cases both) of these models
(see [15]). The coincidences model is commonly realized
as cross-correlation (CC) model, which was the principle of
the standard GCC-PHAT [3] and a large number of GCC-
based methods (e.g. [16]–[19]). The EC model was origi-
nally proposed to explain the mechanism of binaural detec-
tion in noise [13]. However, its concept can be extended to
selective hearing in the presence of multiple sound signals,
which is usually referred to as the ‘cocktail party effect’
[20]. This suggested that the EC model has potential for
sound localization and segregation in the presence of multi-
ple interference signals.

Inspired by the EC model, in this study, we propose a
binaural DOA estimation method by integrating the EC pro-
cedures into a beamforming technique. Specifically, a null is
steered to each candidate direction by first compensating for
interaural phase difference (IPD) and ILD so as to equalize
the signal components observed from that direction at both
ears, then the total ‘equalized’ signal at one ear is subtracted
from that at the other ear. Direction of sound source is de-
termined as the candidate at which the residual energy of the
null reaches the minimum. This work was partly presented
in [21], namely EC-BEAM, in which we briefly introduced
the idea and examined it in low noise conditions. In this pa-
per, we refine the method with insight analysis, identify its
problem in the presence of noise and reverberation, and sug-
gest two strategies to overcome the problem. Specifically,
one strategy is to deal with background noise by learning its
effect on EC operations, provided that noise is stable in time
and noise-only periods can be prior obtained. We account
for not only diffuse noise but also directional noise, which
is rarely considered in previous SSL research. The other
strategy is to reduce the effect of reverberation, particularly
the effect of late refection component, based on a hypothe-
sis that late reflections are not correlated with target signal
and together uncorrelated at both channels. We show that
the EC-BEAM algorithm with combination of both strate-
gies, named as Robust EC-BEAM, can perform effectively
in noisy reverberant conditions.

Our proposed method shares the common point with
the methods in [6]–[11] by a training step to learn the inter-
aural differences under the effect of HRTFs. However, the

proposed method is more applicable than [6]–[8], [10], [11]
by taking the effect of noise and reverberation into consid-
eration. Our algorithm is more flexible than [10], [11] as it
is not strictly dependent on HRTFs. The mechanism to ac-
count for interference signals of our method is more reason-
able than that of the method in [9] since DRR is not required.
In addition, the proposed method is motivated by psychoa-
coustic model [13], [14] and its mechanism to adapt to inter-
ference effect is supported by psychoacoustic research [22],
which revealed that perception of the human hearing system
is improved when being in room for a relatively short time.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the concept of the EC model.
In Sect. 3, first the basic idea of integrating the EC model
into SSL (EC-BEAM) is presented; then the effect of noise
and reverberation on EC-BEAM is analyzed and two strate-
gies are suggested to overcome this problem (Robust EC-
BEAM). In Sect. 4, we evaluate performance of each sug-
gested strategy individually and further compare perfor-
mance of the proposed Robust EC-BEAM algorithm with
those of the well-known SRP-PHAT method [2] and the
HRTF-based algorithm introduced in [11]. Discussion is
given in Sect. 5 to provide an insight understanding of the
proposed method, followed by a summary in Sect. 6.

2. Equalization-Cancellation Model

The equalization-cancellation (EC) model was originally
developed by Durlach [13], [14]. In the original EC model,
when a subject is presented with a binaural stimulus (target)
masked by another one (masker), the auditory system at-
tempts to eliminate the masking components by transform-
ing the stimuli presented to the two ears, so as to equalize
the masking components (the E operation), then subtract-
ing (the C operation). This mechanism was originally ap-
plied to signal detection [13]. It was shown that the EC
model is able to predict a large set of binaural masking
level differences (BMLDs), where the BMLD is defined as
the difference in the detection threshold between binaural
and monaural conditions. The model was further improved
by Culling and Summerfield [23], in which the EC proce-
dures are performed independently in each frequency band.
Due to its ability to explain the perception mechanism in
‘cocktail party’ scenarios, the EC model has been exten-
sively utilized in a number of signal processing tasks, such
as speech intelligibility prediction [24], [25], sound separa-
tion [26], speech enhancement [27] and source distance es-
timation [28]. The idea of application of EC model to sound
localization was also mentioned in the work of Durlach [14],
however, there has been lack of information on how this idea
can be realized in practice.

3. Proposed EC-Based Sound Localization

3.1 Principle of EC-Based SSL

A null is steered to each candidate direction by using EC
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operations to eliminate the signal component from that di-
rection. Once the null is steered to the true sound source,
the residual energy should be minimal. This principle was
implemented in our previously-proposed SSL algorithm,
namely EC-BEAM [21]. In this section, we explain it on
a theoretical review point rather than focusing on technical
implementation aspect.

For each interest direction θ on the horizontal plane, an
equalizer is constructed so as if the source locates at θ, the
signals observed at the two ear can be (or at least approxi-
mately) equalized,

XL(ω, θ, t) −W(ω, θ)XR(ω, θ, t) ≈ 0, (1)

where ω and t respectively denote the frequency bin index
and frame index, XL(ω, θ, t) and XR(ω, θ, t) are the short-time
Fourier transforms (STFTs) of the signals observed from the
source at left and right receivers, and W(ω, θ) is the equal-
izer at the direction θ. Essentially, W(ω, θ) represents the
IPD and ILD of the sound components observed from the
source. In the frequency domain, the signal observed at each
receiver is related to its transfer function by

Xi(ω, θ, t) = Hi(ω, θ)S (ω, t), i = L,R, (2)

where S (ω, t) and Hi(ω, θ) are respectively the sound signal
emitted at the source, and the transfer function representing
the propagation of sound from the source to each receiver.
Therefore, the equalizer in Eq. (1) can be rewritten as

W(ω, θ) =
HL(ω, θ)
HR(ω, θ)

. (3)

From Eq. (3), W(ω, θ) is specified by only the transfer func-
tions at θ and independent of sound signals. In the case the
receivers are integrated in a dummy head, Hi(ω, θ) becomes
the head-related transfer function and W(ω, θ) is equivalent
to the concept of interaural transfer function in binaural
hearing studies [15].

The equalizers are obtained by pre-training in anechoic
condition where only one sound source is present at each
interest direction respectively. Each equalizer is constructed
independently in frequency bands, which is consistent with
the modified EC model suggested by Culling and Summer-
field [23]. The signal-independence property of equalizer
guarantees that an equalizer trained with some sound sig-
nal is able to perform with other unknown sound signals. In
training, the equalizers are calibrated using normalized least
mean square (NLMS) method, which is given by

Wt+1 = Wt + μ
X∗R(t)

|XR(t)|2 [XL(t) −WtXR(t)] , (4)

where ω and θ are omitted for easy reading, the superscript ∗
denotes the conjugate operator and μ is a scalar value spec-
ifying the step size to update the value of equalizer at each
frame t until it is converged. In experiment, μ is set to 0.01.

In the stage of DOA estimation, in order to localize the
sound source at an unknown direction φ, a null is steered to

Fig. 1 Illustration of null steering in EC-BEAM. Target source locates at
−40◦ in clean-anechoic condition.

each candidate direction by using EC operations to eliminate
the target signal components. After a cancellation process
through all candidates, direction of sound source is specified
as the direction at which the residual energy of the null is
minimal, as shown in Fig. 1. That is

φ̂(t) = argmin
θ

CX(θ, t), where

CX(θ, t) =
∑
ω

|XL(ω, φ, t) −W(ω, θ)XR(ω, φ, t)|2. (5)

3.2 Robust EC-BEAM in Noisy Reverberant Conditions

In ideal condition, residual energy of the null should drop to
minimum when the steering direction reaches the direction
of target source. However, this may not hold when noise and
reverberation are present. In practice, observed signal may
consist of target sound signal and either noise or reverbera-
tion (hereafter t and φ are omitted for simplicity),

Yi(ω) = Xi(ω) + Ri(ω) + Ni(ω), i = L,R, (6)

where Yi(ω) is the sound signal observed at each receiver in
noisy reverberant conditions, Xi(ω) is the direct-path com-
ponent (target signal), Ri(ω) is the total reverberated compo-
nents via indirect paths, and Ni(ω) represents the total noise
in room (including its reverberation), which is assumed as
uncorrelated with Xi(ω) and Ri(ω). Reverberation is built
up from multiple reflections, in which each reflection can be
considered as a delayed and decayed instance of the direct-
path signal, that is

Ri(ω) =
∫ ∞
τ>0

Xi(ω)αi(τ)e
− jωτdτ, (7)

in which τ and αi(τ) are respectively the time delay after the
direct-path and the decay coefficient due to the absorption
of air, walls and other objects in room. The cancellation
operation in these conditions is performed by

CY (θ) =
∑
ω

|YL(ω) −W(ω, θ)YR(ω)|2 . (8)

Since the total effect of noise and reverberation on this op-
eration is complicated, we consider two scenarios in which
noise and reverberation are treated separately.

3.2.1 Robust EC-BEAM against Noise

For simplicity, reverberation component is omitted in this
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Fig. 2 Outputs of C operation with target, noise, and noisy signal. Target
source locates at −40◦; noise consists of diffuse noise and directional noise
(at 40◦) with equivalent energies; SNR of noisy signal is 0 dB.

scenario. Observed signal in Eq. (6) is represented as

Yi(ω) = Xi(ω) + Ni(ω), i = L,R, (9)

in which Ni(ω) may include diffuse noise and directional
noise. With the assumption of uncorrelation between target
signal and noise, the C operation in Eq. (8) can be rewritten
as follows (see Appendix for further explanations):

CY(θ) =
∑
ω

|XL(ω) −W(ω, θ)XR(ω)|2

+
∑
ω

|NL(ω) −W(ω, θ)NR(ω)|2

� CX(θ) +CN(θ). (10)

In Eq. (10), the C operation is applied to not only target sig-
nal but also noise. Due to the compensation of W(ω, θ), the
residual noise CN(θ) varies along the steering direction θ and
affects the final output of the C process, especially when
the noises at two channels are correlated (directional noise).
Figure 2 demonstrates an example of this effect. Because
of the considerable variation of CN(θ), although the resid-
ual of target, CX(θ), yields a quite good minimum to specify
the DOA, the total output of C operation on both target and
noise is not minimal at the direction of sound source.

In order to adapt to the effect of noise on the C oper-
ation, we additionally use a noise compensation coefficient
κ(θ) for each steering direction θ so as the cancellation out-
puts of noise at all steering directions are equalized, that is

κ(θm)CN(θm) = κ(θn)CN(θn), ∀m, n. (11)

In this manner, κ(θ) is a scalar value characterizing for the
distribution of noise energy at each direction. The coeffi-
cient κ(θ) specified as in Eq. (11) is independent of noise
level. In implementation, κ(θ) is calibrated before DOA es-
timation by first performing the C operation with non-target
signal period (where only noise is present) to obtain CN(θ)
at all directions, then by setting κ(θ) to 1 at 0◦, i.e. κ(0◦) = 1,
κ(θ) at other directions are specified by

κ(θ) =
CN(0◦)
CN(θ)

, ∀θ. (12)

The C operation of EC-BEAM with consideration of noise,

Fig. 3 Outputs of the C operation incorporated with noise compensating
coefficient κ(θ) performed on noise and noisy signal. Configuration is same
as in Fig. 2.

named as EC-BEAM/N, is suggested as follows:

CN
Y (θ) = κ(θ)

∑
ω

|YL(ω) −W(ω, θ)YR(ω)|2

= κ(θ)CX(θ) + κ(θ)CN(θ). (13)

Since the equalizers satisfy Eq. (1), the output of target can-
cellation should drops to approximately zero when the steer-
ing direction matches the direction of target source. As a
result, the residual energy of the null at the direction of tar-
get source consists of only the energy of (equalized) residual
noise, i.e. CN

Y (φ) = κ(φ)CN(φ), and the minimum is yielded
at the direction of sound source, as illustrated in Fig. 3.

It is clear that EC-BEAM/N can work well with noise
as long as the coefficients κ(θ) are properly obtained. In
fact, κ(θ) can be constructed for background noise even in
the case it contains directional noise, provided that the noise
sources are fixed and the energy of each source is relatively
stable in time. Such kind of noise is popular in normal
room conditions, for example the noise from fans and air-
conditioners. However, this strategy is not able to deal with
reverberation because its effect cannot be learned in the ab-
sence of target signal.

3.2.2 Robust EC-BEAM against Reverberation

Similarly to the first strategy, in this scenario, we omit noise
component for simplicity. Sound emitted in reverberant en-
vironments arrives at receivers via multiple paths because
of reflection. We conceptually divide the signal component
observed from the target source into two components: early
response and late response:

Yi(ω) = Xi(ω) + RE
i (ω) + RL

i (ω)

= XE
i (ω) + XL

i (ω), i = L,R, (14)

in which the early response XE
i (ω) includes the direct-

path sound component Xi(ω) and the total early reflections,
RE

i (ω), which arrive within a time delay t0 after Xi(ω), while
late response XL

i (ω) consists of all late reflections, RL
i (ω), ar-

riving after t0. When reverberation is high, XL
i (ω) is one of

the serious components effecting sound localization and per-
ception [29]. Therefore, the strategy in this scenario mainly
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aims at reducing the effect of this component on EC-BEAM.
Because the component XL

i (ω) at each receiver can be as-
sumed as uncorrelated with XE

i (ω) and together uncorrelated
at both channels, the C operation in Eq. (8) can be rewritten
as follows (see Appendix):

CY(θ) =
∑
ω

∣∣∣XE
L (ω) −W(ω, θ)XE

R (ω)
∣∣∣2

+
∑
ω

[
|XL

L(ω)|2 + |W(ω, θ)|2|XL
R(ω)|2

]
. (15)

Equation (15) shows that cancellation output of late re-
sponse component varies along the steering directions only
because of the amplitude of the equalizers, which corre-
sponds to the ILD of target signals. Therefore, the C op-
eration of suggested EC-BEAM against late reverberation,
named as EC-BEAM/R, is executed without ILD compen-
sation as follows:

CR
Y (θ) =

∑
ω

∣∣∣∣∣ YL(ω)
|YL(ω)| −

W(ω, θ)
|W(ω, θ)|

YR(ω)
|YR(ω)|

∣∣∣∣∣2

=
∑
ω

∣∣∣∣∣∣ X
E
L (ω)

|YL(ω)| −
W(ω, θ)
|W(ω, θ)|

XE
R (ω)

|YR(ω)|
∣∣∣∣∣∣
2

+
∑
ω

⎡⎢⎢⎢⎢⎢⎢⎣
∣∣∣∣∣∣X

L
L(ω)

YL(ω)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣X
L
R(ω)

YR(ω)

∣∣∣∣∣∣
2⎤⎥⎥⎥⎥⎥⎥⎦ . (16)

As a result, the residual of late response component in
Eq. (16) is independent of steering directions and does not
affect the minimum of cancellation output. DOA is now
specified based on the minimum of cancellation of the early
response component only. Note that although EC-BEAM/R
is proposed to deal with late reverberation, it is also ef-
fective with other interference having similar characteristic
with this component, such as diffuse noise.

3.2.3 Robust EC-BEAM in Noisy Reverberant Environ-
ment

In order to estimate DOA in the presence of noise and rever-
beration simultaneously, we propose to integrate both strate-
gies into EC-BEAM algorithm to improve its performance,
namely Robust EC-BEAM. Final DOA estimate is decided
based on the residual energies of EC-BEAM/N and EC-
BEAM/R. As CN

Y (θ) and CR
Y (θ) vary over different ranges,

we empirically combine them as follows:

CRobust(θ) = λ log CN
Y (θ) + (1 − λ) log CR

Y (θ), (17)

where λ is the combination coefficient specifying whether
noise or reverberation is the important factor affecting esti-
mation performance. In experiment, λ is set to 0.5, which
indicates that noise and reverberation are equally treated.

4. Evaluation

4.1 Materials and Configuration

In evaluation, we simulate various reverberant conditions by

using the ROOMSIM package [30]. The ROOMSIM soft-
ware utilizes the HRTF measurements obtained by KEMAR
dummy head [31] to generate simulated reverberant binau-
ral room impulse responses (BRIRs) based on the image
method [32]. BRIRs generated in this way are expected to
represent reliable simulations since the software uses real
measured HRTFs. Reverberant BRIRs are generated in a
10 × 10 × 3 (m3) room with reverberation times (T60) from
0 to 0.8 s, depending on experiments. Anechoic BRIRs are
selected directly from HRTF measurements without simula-
tion. Source location varies from −90◦ to 90◦ with the step
of 5◦, at the distances from 1 to 4 m with the step of 1 m.

Speech data are selected from ATR Japanese database
[33]. Six speech sentences with an average length of 10 sec-
onds are chosen, in which three are uttered by males and
the others are uttered by females. These speech sentences
are convolved with the simulated BRIRs to generate direc-
tional sound signals. Simulated background noise is added
into directional signals to produce noisy reverberant data.
The background noise consists of diffuse noise and direc-
tional noise, in which diffuse noise is generated by first fil-
tering sounds recorded from an air-conditioner by BRIRs at
all directions then summing, while directional noise is cre-
ated by filtering a sound from a fan with the BRIRs at 40◦.
As these recorded noises have some different characteris-
tics, the source of directional noise can still be perceived
after mixing. The energies of two kinds of noise in the mix-
ture are kept to be about the same. When adding the total
noise to reverberant signals, the power of noise is controlled
to obtained signal-to-noise energy ratio (SNR) from −5 dB
to 15 dB (step of 5 dB).

The equalizer at each direction is trained using clean-
anechoic signal generated from a speech sentence and used
to estimate DOA of signals generated from other five sen-
tences in all the experiment conditions. Training process
is conducted using NLMS method as specified in Eq. (4).
The noise compensation coefficient κ(θ) is calibrated as de-
scriptions in Sect. 3.2 by using one-second period of noise.
As κ(θ) is independent of noise level, it is calibrated only
one time and applied to all SNR conditions. In test, we use
a window length of 0.1 s with 50% overlapping and inte-
grate the response energy over 0.5 s for each estimate. We
evaluate the performance of SSL via the ratio of incorrect
estimates to all estimates (error rate), where an incorrect
estimate is defined as one having absolute error over 10◦.

4.2 Experiment 1: Effectiveness of Improving Strategies

In this experiment, we evaluate the effectiveness of the
strategies to improve EC-BEAM proposed in Sect. 3.2.
Four algorithms are examined, including the original EC-
BEAM, the EC-BEAMs using individual strategies to deal
with noise (EC-BEAM/N) and reverberation (EC-BEAM/R)
and the EC-BEAM combining both strategies (Robust EC-
BEAM). Test data are generated following the descriptions
in Sect. 4.1 with a source distance of 3 m.

Figure 4 and Fig. 5 respectively demonstrate the im-
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Fig. 4 Performance of original EC-BEAM and EC-BEAM/N in noisy
anechoic condition. Sound source locates at the distance of 3 m.

Fig. 5 Performance of original EC-BEAM and EC-BEAM/R in rever-
berant conditions. Source distance is at 3 m and no noise is present.

provements of EC-BEAM/N and EC-BEAM/R in compar-
ison with the original EC-BEAM. Figure 4 shows the er-
ror rates of the original EC-BEAM and EC-BEAM/N along
SNRs in anechoic condition. The original EC-BEAM can
localize sound source relatively well at low noise condi-
tions. However, its error rate rapidly increases as noise level
gets higher. This is due to the effect of noise as analyzed in
Sect. 3.2.1. By learning and adapting to the effect of noise,
the error rate of EC-BEAM/N is dramatically reduced. Sim-
ilar results are observed in Fig. 5, which represents the er-
ror rates of original EC-BEAM and EC-BEAM/R along re-
verberation time in the absence of noise. We can see that
the original EC-BEAM also suffers from the effect of rever-
beration while the EC-BEAM/R is quite robust against this
effect. These results indicate that each strategy works effi-
ciently in the condition that it is designed for, i.e. noise or
reverberation is present individually.

We further examine both strategies and their combina-
tion in the conditions where both noise and reverberation are
concurrently present. Figure 6 shows the error rates of the
four algorithms in the case T60 = 0.5 s and SNR varies from
−5 dB to 15 dB. It can be observed that the performances
of the original EC-BEAM, EC-BEAM/N and EC-BEAM/R
are degraded in comparison with their performances in the
conditions where noise or reverberation is present alone.
However, EC-BEAM/N and EC-BEAM/R still work con-

Fig. 6 Performance of the four algorithms in noisy reverberant condi-
tions. Source distance is at 3 m and T60 = 0.5 s.

siderately better the original EC-BEAM. This indicates that
the strategy to deal with an interference component does
not much suffer from other interference component. EC-
BEAM/N performs better than EC-BEAM/R in high noise
conditions as it can well adapt to noise. When the SNR is
higher than 5 dB, EC-BEAM/R outperforms EC-BEAM/N
as it can account for reverberation. The Robust EC-BEAM
algorithm makes fully use of the advantages of both strate-
gies and achieves the best performance through all SNR
conditions. This supports that integrating the two strategies
into EC-BEAM is reasonable and the Robust EC-BEAM al-
gorithm is able to deal with noise and reverberation simul-
taneously.

4.3 Experiment 2: Superiority of Robust EC-BEAM

In this section, we evaluate the proposed Robust EC-BEAM
algorithm in various noisy reverberant conditions and fur-
ther compare it with the standard SRP-PHAT algorithm [2]
and the HRTF-based algorithm, namely Cross HRTF, intro-
duced in [11]. Reverberation time is set to 0.5 s, while dis-
tance of sound source varies from 1 to 4 m (step of 1 m).
In implementation, the SRP-PHAT method uses IPDs cal-
culated in anechoic condition at each direction to perform
beamforming. The Cross HRTF method is executed using
directly the HRTFs measured in anechoic condition.

Figure 7 shows the average error rates of Cross HRTF,
SRP-PHAT and Robust EC-BEAM respectively across all
distances. It can be observed that the Cross HRTF method
yields highest error rates among the three algorithms. The
Cross HRTF has the advantage that it possesses the HRTFs,
which provide the propagation information at each candi-
date direction. Therefore, it was reported with relatively ac-
curate estimation in low interference (noise and reverbera-
tion) conditions [11]. However, as it does not account for in-
terference effects, its performance is dramatically degraded
in the presence of either high noise or high reverberation.
Moreover, since this method is strictly dependent on HRTFs,
its applicability to practice may be limited because accu-
rately measuring these information in an arbitrary binaural
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Fig. 7 Performance of Cross HRTF, SRP-PHAT and Robust EC-BEAM
along SNRs. Error rate at each SNR is mean of error rates through distances
from 1 m to 4 m.

system is a time-consuming work.
The error rate of SRP-PHAT is consistently lower than

that of Cross HRTF in both high and low noise conditions.
This is partly because SRP-PHAT is quite robust against re-
verberation since it was shown as an approximation of maxi-
mum likelihood in low noise condition [4]. However, it still
suffers from high noise condition as its error rate dramati-
cally increases at low SNRs. This implies that SSL meth-
ods based on ITD (or IPD) only may not be fully adequate
to binaural systems because the ILD, which varies largely
through the azimuths due to the effect of HRTFs, is also a
very important cue to specify source direction.

The Robust EC-BEAM algorithm outperforms both
Cross HRTF and SRP-PHAT, especially in high noise con-
ditions. At the SNR of −5 dB, the proposed method im-
proves roughly 20% and 25% error rate comparing to SRP-
PHAT and Cross HRTF, respectively. In relatively low noise
conditions when SNR is higher 10 dB, our method performs
equivalently to SRP-PHAT but still improves about 8% er-
ror rate in comparison with Cross HRTF. This is because
both noise and reverberation are taken into consideration in
the proposed method. The noise adaption strategy makes
EC-BEAM more robust against background noise, while
the strategy for reverberation significantly reduces the ef-
fect of this factor, especially the late reflection component.
Besides, our method is more flexible than the Cross HRTF
method since training the equalizers with observed signals
should be easier than meticulously measuring HRTFs.

Figure 8 shows the error rates of the three algorithms
along the error thresholds in a typical case where SNR is
fixed at 5 dB. It can be observed that the error rate of Robust
EC-BEAM is lower than those of Cross HRFT and SRP-
PHAT at not only the defined 10◦-threshold but also at all
of other thresholds. This implies that our proposed method
is still better than the others in the case higher accuracy
is required, and the angular error of our wrong estimates
(whose error is higher than 10◦) is also smaller than those of
the other algorithms. Figure 9 further compares the robust-
ness of the three algorithms against reverberation. In the

Fig. 8 Error rates of Cross HRTF, SRP-PHAT and Robust EC-BEAM
along error thresholds at the fixed 5-dB SNR. Error rate at each threshold
is mean of error rates through distance from 1 m to 4 m.

Fig. 9 Performance of Cross HRTF, SRP-PHAT and Robust EC-BEAM
along distances. Error rate at each distance is mean of error rates through
SNRs from −5 dB to 15 dB.

same room condition, the energy of reverberation increases
relatively to that of direct component when the distance of
sound source increases [34]. As a result, the effect of rever-
beration on signals received from longer-distance source is
also higher. Observation from Fig. 9, the error rate of Cross
HRTF rises quickly through distances, indicating that this
method quite suffers from reverberation. Both error rates
of SRP-PHAT and Robust EC-BEAM increase slower than
that of Cross HRTF, in which the error rate of Robust EC-
BEAM is always below that of SRP-PHAT because it is able
to adapt to noise (including directional noise) in the room.

5. Discussion

The general principle of SSL is to exploit localization cues
to determine direction of sound source. Therefore, meth-
ods in binaural SSL differ from each other by the way of
how binaural cues are utilized. On mathematical view point,
these methods have some equivalences. The Cross HRTF
method [11] relies on the following principle:

xL(φ, t)�hR(φ) = hL(φ)� s(t)�hR(φ) = hL(φ)� xR(φ, t),

(18)
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where � denotes convolution operator, xi(φ, t) and hi(φ) are
respectively the observed signal and the transfer function (in
the time domain) at the receiver i (i = L,R), provided that
the source s(t) locates at the direction φ. As a result, DOA is
specified via looking for the pair of HRTFs minimizing the
dissimilarity of the cross HRTFs, that is

φ̂(t) = argmin
θ

e(θ, t), where

e(θ, t) =
∑

t

[xL(t) � hR(θ) − xR(t) � hL(θ)]2. (19)

Equation (19) can be rewritten in the frequency domain as
follows:

E(θ) =
∑
ω

|XL(ω)HR(ω, θ) − XR(ω)HL(ω, θ)|2

=
∑
ω

∣∣∣∣∣∣HR(ω, θ)

[
XL(ω) − HL(ω, θ)

HR(ω, θ)
XR(ω)

]∣∣∣∣∣∣
2

. (20)

From Eqs. (3), (5), (20), it can be realized that Cross HRTF
is a filtered version of original EC-BEAM, where HR(ω, θ)
is the filter in this manner. Because of the equivalence of
two methods, the Cross HRTF method would face simi-
lar problems with that of original EC-BEAM discussed in
Sect. 3.2. This is the reason why Cross HRTF performs
poorly in high noise and high reverberant conditions. Since
the Cross HRTF method strictly relies on HRTFs, it is hard
to understand the effect of undesired factors on this method
and it has less chance to be improved. From this point of
view, it would be interesting to investigate whether the pro-
posed strategies in this paper can improve Cross HRTF in
noisy reverberant environments.

In terms of sound localization using ITD, the Ro-
bust EC-BEAM against reverberation in Sect. 3.2.2 (EC-
BEAM/R) has a close relation with SRP-PHAT. The gen-
eralized SRP-PHAT maximizes the sum of weighted cross
correlation between each pair of N received signals, that is

P(θ) =
N∑

i=1

N∑
j=1

∑
ω

Yi(ω)Y∗j (ω)

|Yi(ω)Y∗j (ω)|e
jω(τi−τ j)

=
∑
ω

∣∣∣∣∣∣∣
N∑

i=1

Yi(ω)
|Yi(ω)|e

jωτi

∣∣∣∣∣∣∣
2

. (21)

In the case of two-microphone, SRP-PHAT becomes

P(θ) =
∑
ω

∣∣∣∣∣ YL(ω)
|YL(ω)|e

jωτL +
YR(ω)
|YR(ω)|e

jωτR

∣∣∣∣∣2

=
∑
ω

∣∣∣∣∣ YL(ω)
|YL(ω)| +

YR(ω)
|YR(ω)|e

jω(τR−τL)
∣∣∣∣∣2 . (22)

On the other hand, from Eq. (1), the phase component of the
equalizer is the IPD of target signal. Omitting the fact that
the time delay τi are frequency-dependent, we have

W(ω)
|W(ω)| = e jω(τR−τL). (23)

The EC-BEAM/R in Eq. (16) can be rewritten as follows:

CR
Y (θ) =

∑
ω

∣∣∣∣∣ YL(ω)
|YL(ω)| −

YR(ω)
|YR(ω)|e

jω(τR−τL)
∣∣∣∣∣2 . (24)

From Eq. (22) and Eq. (24), we can see that SRP-PHAT and
EC-BEAM/R are quite similar. The only difference between
the two methods is that one is based on the similarity of
observed signals at two channels by maximizing the beam-
former, the other is based on their dissimilarity by minimiz-
ing the null. These two methodologies are mentioned as the
equivalent approaches in DOA estimation [15] and should
provide similar results. The advantage of the proposed Ro-
bust EC-BEAM method in comparison with SRP-PHAT is
the strategy accounting for the effect of noise in rooms, i.e.
EC-BEAM/N. However, the this strategy is mainly effective
in high noise conditions. This explains why the proposed
Robust EC-BEAM algorithm localizes well at low SNRs
while its performance remains as good as that of SRP-PHAT
in the presence of reverberation at high SNRs.

Concerning to sound localization in a binaural system,
the effects on signal observed at each receiver may include
internal effect (such as HRTFs) and external effect (noise
and reverberation in rooms). An efficient SSL method on
such systems should be able to account for these effects.
Although SRP-PHAT performs quite well in normal micro-
phone array, this method may not be adequate to the present
system as it does not account for the internal shadow effect
and is low robust with noise. The methods based on HRTFs,
such as cross-channel HRTFs of McDonald [11] and inverse
HRTFs of Keyrouz [10], would be able to effectively ex-
ploit the internal effect. However, these methods are strictly
dependent on HRTFs and do not have a mechanism to ac-
count for noise and reverberation. The method of Woodruff
[9] considered these effects by building a binaural statisti-
cal model to exploit both binaural cues and monaural cues
as well as to account for noise and reverberation. Neverthe-
less, its applicability is limited by the assumption of know-
ing signal-to-residual energy ratio, which is normally not
available in real conditions. The algorithm proposed in this
paper is able to deal with the above effects by two strategies,
in which one is to learn and adapt to the effect of noise under
HRTFs, the other is to account for reverberation. The adap-
tation strategy is similar to the mechanism that human learns
the effect of reverberant room, which is mentioned as ‘room
learning’ concept in the research of Shin-Cunningham [22].
In addition, the assumption of knowing a short period of
noise in room would be reasonable since estimation of such
period is possible in practice.

6. Conclusion

Sound source localization in a binaural system in practical
environments is a challenging problem, since the observed
signals are corrupted by either noise or reverberation while
the input is limited to only two channels under HRTF ef-
fect. In the psychoacoustic research field, one of the mod-
els to explain the mechanism of human perception in such
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conditions is the equalization-cancellation model. In this
research, we proposed a binaural SSL method based on EC
model for application in noisy reverberant conditions. Two
different strategies were suggested to make the proposed
method robust against noise and reverberation: one is to
learn and adapt to the effect of noise under HRTFs, the other
is to reduce the effect of reverberation. Experimental results
showed that the proposed algorithm, which integrates both
strategies, outperformed the SRP-PHAT and cross-channel
HRTFs methods, and is promising for localization in ad-
verse binaural systems in noisy reverberant environments.
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Appendix

Given two signals X and Y in the frequency domain:
X = [X(ω1), X(ω2), . . . , X(ωn)], Y = [Y(ω1), Y(ω2), . . . ,
Y(ωn)]. If X and Y are uncorrelated, then∑

ω

|X(ω) + Y(ω)|2 =
∑
ω

[
|X(ω)|2 + |Y(ω)|2

]
. (A· 1)

Proof: Since (X,Y) is uncorrelated, (X,Y∗) and (X∗,Y) are
also uncorrelated, where the superscript ∗ denotes the con-
jugate operator. That means∑

ω

X(ω)Y(ω) =
∑
ω

X(ω)Y∗(ω) =
∑
ω

X∗(ω)Y(ω) = 0.

As a result,∑
ω

|X(ω)+Y(ω)|2=
∑
ω

[X(ω)+Y(ω)][X(ω)+Y(ω)]∗

=
∑
ω

[X(ω)+Y(ω)][X∗(ω)+Y∗(ω)]

=
∑
ω

[
X(ω)X∗(ω)+Y(ω)Y∗(ω)

]
=
∑
ω

[
|X(ω)|2+|Y(ω)|2

]
.
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