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Abstract

Software sometimes has some bugs or errors since made by human. Some systems may
run correctly even it contains some errors, while some systems can cause the damage
to life even containing a tiny error. Therefore, we need to check that system does not
contain any fault by doing the software verification. Software verification is an vital part
for checking the correctness of system. It consists of two techniques for doing verification;
model checking and theorem proving. Model checking involves automatically exploring
the set of reachable states of model to ensure that some formulas needed to check holds.
On the other hand, theorem proving uses some theories to prove, and the theorem to
be proved need to be formulated as formulas involving some mathematics. The theorem
proving technique needs the guidance of human taking the form of lemmas while the
model checking can be automatically done. However, model checking can cause the state
explosion problem since it searches in the state space of the complex system.

This research aims to verify an algorithm for solving consensus problem in distributed
system. The algorithm for solving consensus is called consensus algorithm. The consensus
we focused is Paxos algorithm which is a family of consensus algorithms. We conduct the
Paxos model and specify it on both CafeOBJ language (by OTS) and maude language.
Then we verify Paxos that enjoys agreement property, which is a property of consensus
algorithms, by using proof scores in OTS/CafeOBJ and CITP in maude which considered
as a theorem proving technique.

Futhermore, we survey the related formal verification of an similar consensus algorithm
with Paxos (called LastVoting algorithm). They proposed the way to reduce the verifica-
tion problem to a small model checking problem by involving single phases of algorithm
configuration. They used some notions of round-based model to model asynchronous
consensus algorithm and reduced the model checking problem of some properties such as
agreement and termination to the satisfiability problem for a formula in some logic. They
used a Yices (Satisfiability Module Theories) to check the satisfiable of the formula. In
their experimental result, they only successfully verified the number of processes up to
around 10 processes. Difference from our approach that use theorem proving, we do not
need to bound any number of processes and it can be proved infinite number of processes.
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Chapter 1

Introduction

Software verification is an essential part for checking the correctness of system. Many
people use software verification to check many systems. This research intends to survey the
existing paper of formal verification of a LastVoting algorithm which is one of algorithms
to solve consensus problem in distributed system and similar to Paxos algorithm; the
well-known algorithm which has been used in the real world, and conducts a model to
verify the Paxos algorithm.

To understand the broad view of this research this chapter starts with the brief ex-
planation of software verification, consensus problem, and Paxos algorithm. Then our
purposed approach to survey and verify the Paxos is shortly explained. Finally, we pro-
vide a structure of this research.

1.1 Overview

1.1.1 Software Verification

Formal verification of hardware and software system has gained popularity in industry
since the advent of famous “Pentium bug” in 1994, which caused Intel to recall faulty chips
and take a loss of $475 million [CMMP95]. Since this event formal verification of hardware
and software systems has been commonplace using mostly model checkers but also using
theorem provers. The benefits reaped in the hardware sector has led the software sector to
consider whether similar benefits could be achieved in the context program correctness.
In the context of verifying program correctness, the correctness problem of software is
formally defined. Verifying the correctness of a program involves formulating a property
to be verified using suitable logic such as first order logic or temporal logic [BBF+10].

When assessing the correctness of the program, two distinct approaches using properties
are used - pre/post condition and invariant assertion. Pre/post condition approaches
formulate the correctness problem as the relationship between a formula that is assumed
to hold at the beginning of the program execution, and a formula that should hold at the
end of program execution. Approaches based on an invariant assertion define correctness
of a program as an invariant formula, which must be verified to hold throughout the
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program execution. Invariants can be specified by the user, denoted a specification, or
can be automatically inferred from the program code. Proofs of correctness are typically
achieved through the derivation of a theorem. However, software verification can also be
achieved without mathematical proofs. A popular approach to formal verification, called
model checking, is increasingly being used to verify software.

Software verification through model checking

The model checking problem involves the construction of an abstract model M, in the
form of variations on finite state automata, and the construction of specification formulas
φ, in the form of variations on temporal logic [BBF+10]. The model checking verification
problem involves establishing that the model semantically entails the specificationM |= φ.

The verification algorithm used in the model checking involves exploring the set of
reachable states of the model to ensure that the formula φ holds. If φ is an invariant
assertion, the model checking approach explores the entire state space to ensure that the
formula holds in all states. In order to guarantee termination, such as approach requires
that the set of reachable states be finite. Furthermore, verification by model checking has
gained popularity in industry because the verification procedure can be fully automated
and counter examples are automatically generated if the property being verified does
not hold. Since model checkers rely on exhaustive state space enumeration to establish
whether a property holds or does not hold, it can put immediate limits on the state space
problem that can be explored. This problem, known as the state explosion problem, is
an often cited drawback of verification by model checking [CGJ+01].

Software verification through theorem proving

Theorem provers used to prove program properties are based on variations of Hoare logic
[Hoa69]. It describes a calculus to reason about program correctness in term of pre and
post conditions. Hoare’s approach to proving correctness introduced the concept of a
“Hoare triple”, which is a formula in the form {φPRE}P{φPOST}. This formula can be
read as “if property φPRE holds before program P starts, φPOST holds after the execution
of P”. The program P can refer to an entire program or a single function call, depending
on the unit that is being verified. In Hoare’s calculus, axioms and rules of inference are
used to derive φPOST based on φPRE and P .

A key difference between the theorem approach and the model checking approach to
software verification is that theorem provers do not need to exhaustively visit the pro-
gram’s state space to verify properties. Consequently, a theorem prover approach can
reason about infinite state spaces and state spaces involving complex datatypes and re-
cursion. This can be achieved because a theorem prover reasons about constraints on
states, not instances of states. Theorem provers search for proofs in the syntactic domain,
which is typically much smaller than the semantic domain searched by model checkers.
Although theorem prover support fully automated analysis in restricted cases, some in-
ductive structures must perform by doing some mathematical induction (e.g. trees, lists,
or stacks). Nevertheless, this tradeoff is acceptable in certain instances since this type of
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analysis cannot be performed by model checkers, but is still important to the verification
effort.

1.1.2 Consensus

Distributed system is a collection of computers connected through a network and working
together as one large computer. Since, there are many computers, and some of them
may crash which may cause the whole system temporarily stop. Some systems do not
require high level of fault-tolerance while others, fault-tolerance is between life and death
such as medical and aviation applications. The consensus problem is a key aspect of fault
tolerance: ensuring that a system of processors makes the correct decision even if one or
more processors or links has failed.

Considering the airplane or spacecraft, if there is a controller to control the direction
turning left or right inside the airplane or spacecraft, and it does not respond when the
pilot controls to turn left or right, so the airplane or spacecraft could crash into something
or fall. The solution is to add several controllers and makes them deciding on a single
value even one or some controllers are saying the opposite, or not respond.

Therefore, consensus is the problem of getting all processes or nodes to agree on the
same decision. Each process is assumed to have a proposed value at the beginning and is
required to eventually decide on a value by some processes.

1.1.3 Paxos

Since, the fault-tolerance can be achieved through replication in distributed system. A
common approach is to use a consensus algorithm to ensure that all replicas are mutu-
ally consistent. Paxos is a flexible and fault tolerant protocol for solving the consensus
problem. Paxos can be used to solve the atomic problem in distributed transactions, or
to order client requests sent to a replicated state machine (RSM). An RSM provides fault
tolerance and high availability, by implementing a service as a deterministic state machine
and replicating it in different machines. Furthermore, Paxos is used in production systems
such as Chubby and ZooKeeper [CGR07, HKJR10] among many others. The detail about
Paxos algorithm is explained later in Chapter 2.

1.2 Proposed Approach

In this research we do a survey of formal verification in [TS11]. In, [TS11], authors
proposed a semi-automatic verification approach for asynchronous consensus algorithms
based on model checking techniques but we only focus on LastVoting consensus algorithm
which is similar with Paxos. However, the state space of doing model checking is huge,
often infinite, thus making model checking infeasible. Their approach is to reduce the
verification problem to small model checking problems that involve only single phases of
algorithm execution. Since a phase consists of finite number of rounds, it can be effectively
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solve these problem by using satisfy ability solving. Although the state space is bounded,
they can only model checked several consensus algorithms up to around 10 processes.

Besides surveying, we conduct a model of Paxos and do some specification and verifica-
tion used theorem proving technique for verication Paxos in OTS/CafeOBJ called proof
scores and CITP in maude to check that Paxos enjoys some desired properties.

1.3 Roadmap

This research is structured as the following. Chapter 2 provides the technical details of
consensus, Paxos, CafeOBJ and maude. Chapter 3 explains the existing verification of
consensus algorithm by using the satisfiability solving. Chapter 4 describes a case study
of Paxos by constructing a model, doing specification and verification in both CafeOBJ
with proof scores and Maude with CITP, and ends up with conclusion and future works
in Chapter 5
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Chapter 2

Technical Background

2.1 Consensus

Consensus is the problem of getting process to agree on the same decision whether some
faults occur. Consensus is central to the construction of fault-tolerant distributed systems.
For example, atomic broadcast, which is at the core of state machine replication, can be
implemented as a sequence of consensus instances [CT96]. Other services, such as view
synchrony and membership, can also be constructed using consensus [GS01]. Because
of its importance, many researchers have devoted to developing new algorithms for this
problem.

The consensus problem should satisfies the following properties:

• Validity: Any decision value is the proposed value of some process

• Agreement: No two different values are decided

• Termination : All processes eventually decide

2.2 Paxos Algorithm

Paxos is a family of very intriguing fault-tolerant distributed consensus algorithms. Paxos
was proposed by Lamport in his seminal paper [Lam98] and later gave a simplified descrip-
tion in [Lam01a]. Paxos can be used to solve the atomic commit problem in distributed
transactions, or to order client requests sent to a replicated state machine. The Paxos
algorithm can solve the consensus problem in an asynchronous model with the realistic
assumptions that (1) process can operate at arbitrary speed, (2) process may fail by stop-
ping and may restart (the information can be remembered) and (3) process cannot tell
a lie. Besides process, messages sending in network can (1) take arbitrarily long to be
delivered, (2) be duplicated and lost, but (3) cannot be corrupted.

The Paxos algorithm for solving consensus is used to implement a fault-tolerant sys-
tem, and it must satisfies the safety requirement of agreement and validity even if some
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processes may crash to fail. Progress is granted as long as a subset of processes is alive
and communicating normally.

In this research, we will focus on Basic Paxos which is the most basic of the Paxos
family, and it only tolerates crash-stop failures. However, it can be also modified to
survive byzantine failures [Lam01b, Lam02].

2.2.1 Agent

A distributed application that uses Paxos has different processes which are interested in
receiving values, submitting them, or both. It is described by three roles to perform by
three classes of agents: proposers, acceptors, and learners. A single process may act as
more than one agents.

Proposer

The proposer is responsible for proposing values submitted by the clients until those are
delivered. Proposers rely on an external leader election service, which should nominate
a coordinator or leader among them. Proposers which are not the current leader can be
idle; only leader can do the task.

The leader proposer sends client values through the broadcast to the set of acceptors.
For each client value submitted, it chooses the unique number (Nu) and bind the value
to it. The leader is the only one who connects the client when consensus is reached and
must deliver the consensus value to client.

Acceptor

The task of acceptor is relatively simple: it waits for messages from proposers and answers
to them or sends messages to all learners. For each instance, the acceptor keeps a state
record consisting of < Np, Na, Va >, where Np and Na is an type of integer related to the
highest-number proposal that was accepted from proposer, Va is a value from the leader
proposer.

Learner

Learner is responsible for listening to acceptors decisions, finding the consensus value, and
broadcasting the consensus value to all agents.

Whenever the learner realises that a majority of acceptors has been reached for an
instance, it must decide a value from values which is received from acceptors. All learners
must decide a value and that value is called a consensus value.

2.2.2 Messages

Since each agent has to communicate by sending messages to other agents, so that knowing
the context of messages is important. In Basic Paxos, there are four important messages;
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Leader

Acceptor 1

Acceptor 2

Acceptor 3

Learner

Phase 1 Phase 2

Prepare<Nu> Promise<Na,Va> Accept<Nu,V>

Learn<Va>

Figure 2.1: The phase of Basic Paxos algorithm

prepare, promise, accept, and learn using to communicate between agents. We ignore the
broadcast message sending a consensus value from learner to all agents.

Prepare Message

Prepare message consists of a unique number Prepare(Nu), where Nu is the proposal
number which is unique for each proposer. The prepare message sends from the leader
proposer to all of acceptors.

Promise Message

Promise message consists of two values for each acceptor Promise(Na, Va), where Na is
the highest-number proposal that acceptor has accepted, and Va is the value that acceptor
has accepted. The promise message sends from each acceptor to the leader proposer.

Accept Message

Accept message consists of two values Accept(Nu, V ), where V is the value from client
which a leader proposer proposes. The accept message sends from the leader proposer to
all of acceptors.

Learn Message

Learn message consists of a value Learn(Va) sending from each acceptor to learner. The
learn message is a responsible to tell all learners which value has been decided from the
majority of acceptors.
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Leader 1

Acceptor 1

Acceptor 2

Acceptor 3

Learner

Leader 2

<Nu1>

<Nu1>

<Nu1>

<0,null>

<0,null>

<0,null> <Nu2>

<Nu2>

<Nu2>

<0,null>

<0,null>

<0,null>

<Nu3>

<Nu3>

<Nu3>

<0,null>

<0,null>

<0,null>

<Nu2,V>

<Nu2,V>

<Nu2,V> <Nu4>

<0,null>

<0,null>

<Nu4>

<Nu4> <0,null>

Figure 2.2: The phase of Basic Paxos algorithm with a leader crash

2.2.3 Phases

The algorithm of Basic Paxos consists of two phases as figure 2.1:

Phase 1

Leader proposer selects a unique number(Nu) and sends Prepare(Nu) to the set of ac-
ceptors by putting into network. When the acceptor receives a Prepare(Nu), it compares
with the promise number(Np). If the received number is larger than or equal promise
number, the acceptor accepts and returns a Promise(Na, Va) to leader to promise that
acceptor will ignore all future message which unique number less than Np.

Phase 2

Leader waits for a majority of Promise(Na, Va) coming from a set of acceptors. When
the majority of promise messages are reached, the leader sends Accept(Nu, V ) which a
value V , among the promise messages with the highest accepted numberNa and selects
the value Va from a pair of < Na, Va >, or a value from client, to the set of acceptors.
When the acceptor receives Accept(Nu, V ), it compares between Nu and Np again. If the
condition (Nu not less than Np) is satisfied the acceptor updates the promise number(Np)
and accepted number(Na) to be equal to Nu, and accepted value(Va) to be equals to V .
Then acceptor sends Learn(Va) to all learners. When the learner receives the value, it
decides which value has been accepted by a majority of acceptors. After that the learner
broadcasts that value to all processes. So, every process has the same one output value.

However, a leader may crash and the system must select a new leader as in figure
2.2. Leader 1 crashes after receiving two promise messages of Acceptor 1 and 2, so the
Leader 1 cannot receive the promise message of Acceptor 3. Then the system selects a new
leader(Leader 2) and begins the Paxos algorithm with phase 1. The Leader 2 sends the
prepare message to all acceptors with its unique number (assume that Nu2 > Nu1). When
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the acceptor receives the prepare message, it replies the promise message. Before Leader
2 broadcasting the accept message, Leader 1 recovers and continues sending the prepare
message with a new unique number, which greater than the previous unique number
(Nu3 > Nu2), and receiving the promise messages from acceptors. Once acceptor receives
the prepare message with greater the promise number (Np = Nu2) that has been accepted,
then it updates the promise number(Np := Nu3) and replies the promise message back.
After that Leader 2 begins phase 2 and broadcasts the accept message with value V to
all acceptors, however acceptors cannot receive the accept messages. They have already
promised not to receive any messages which lower than their previous accepted number.
So they discard the accept messages and do not reply anything. When leader waits for
several times and messages have not come yet, it sends prepare message with new unique
number(Nu4 > Nu3) again. At this moment, there are two leaders in the system, and they
can compete to send their new unique numbers to all acceptors and acceptors finally do
not receive any accept message to decide the value. So, Basic Paxos only guarantee safety
property but not guarantee liveness property which is termination unless there is a single
leader in the system.

2.3 CafeOBJ

CafeOBJ [DF98] is an executable algebraic specification language, implementing equa-
tional logic by rewriting logic. Equations are treated as left to right rewrite rules. It can
also be used as a powerful interactive theorem prover with the proof scores method.

A module in CafeOBJ encapsulates definitions of a sort or a set of sorts. A module,which
declared with keywords mod{...}, consists of three parts as follows:

(1) importation of modules (e.g.pr(M))
where M is a previously defined module.

(2) signature which consists of sorts, subsorts and operators belonging to the sorts to be
specified ([s], [ s < s′ ], and op f : s1 · · · sn -> s .)
where s and s′ are sorts, [ s < s′ ] means that s is a sub sort of s′, f is defined as an
operation.

(3) axioms for giving semantic which consists of variables and equations (vars v v′ : s,
eq t = t′, ceq t = t′ if cond .)
where v and v′ are variables of sort s, t and t′ are defined as a term.

For example, we declare a functional module of natural number in CafeOBJ as follows:

mod! NAT{

-- sorts

[Zero NzNat < Nat]

-- operators

op 0 : -> Zero
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op s_ : Nat -> NzNat

op _+_ : Nat Nat -> Nat [assoc comm]

-- variables

vars X Y : Nat

-- equations

eq 0 + Y = Y .

eq s(X) + Y = s(X + Y) .

}

where 0 is a constant for zero in natural number, s_ means the successor of the input sort
Nat, + is an operator for addition in natural number, X and Y are variables of sort Nat .
Two equations are axioms that define the operator + in CafeOBJ.

Moreover, CafeOBJ provides built-in modules, and one of the most important mod-
ule is BOOL in which propositional logic is specified. BOOL is automatically imported by
almost every module unless otherwise stated. In BOOL, the sort is Bool which consists
of constants true and false, and operators denoting some basic logical connectives.
Among the operators are not_, _and_, _or_, _xor_, _implies_ and _iff_ denoting
negation(¬), conjuction(∧), disjunction(∨), exclusive disjunction(xor), implication(⇒)
and logical equivalence(⇔), respectively.

2.3.1 Observational Transition System (OTS)

In OTS, abstract data types are used to formalise values such as natural numbers, Boolean
value, and strings in software systems. System’s states are characterised by the values
that are returned by a special class of functions called observers, unlike traditional state
transition systems where states are represented as sets of variables. Transitions between
states are also specified by functions called transitions to differ them from ordinary func-
tions. We define the definition of OTS , Reachable states, and invariant as the same in
[OF06].

We suppose that all abstract data types have been predefined for the values used in a
system and denote them by D∗. Let Υ denote a universal state space.

Definition 1 (OTSs). An OTS S is a 〈O, I, T 〉 such that

– O: A finite set of observers . Each observer is a function ox1:Do1,...,xm:Dom : Υ→ Do

is an indexed function that has m indexes x1, . . . , xm whose types are Do1, . . . , Dom.
The equivalence relation (v1 =S v2) betweenn two states v1, v2 ∈ Υ is defined as
∀ox1,...,xm : O. (ox1,...,xm(v1) = ox1,...,xm(v2)), where ∀ox1,...,xm : O is the abbreviation
of ∀ox1,...,xm : O. ∀x1 : Do1 . . . ∀xm : Dom.

– I: The set of initial states such that I ⊆Υ.

– T : A finite set of transitions. Each transition ty1:Dt1,...,yn:Dtn : Υ→ Υ is an indexed
function that has n indexes y1, . . . , yn whose types are Dt1, . . . , Dtn provided that
ty1,...,yn(v1) =S ty1,...,yn(v2) for each [v] ∈ Υ/ =S , each v1, v2 ∈ [v] and each yk : Dtk

for k = 1, . . . , n. ty1,...,yn(v) is called the successor state of v wrt S. Each transition
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ty1,...,yn has the condition c-ty1:Dt1,...,yn:Dtn : Υ → Bool, which is called the effective
condition of the transition. If c-ty1,...,yn(v) does not hold, then ty1,...,yn(v) =S v.

OTSs can be specified in CafeOBJ as equational specifications. Each equation defined
for initial states is in the form of:
eq o(v0, x1, . . . , xm) = T [x1, . . . , xm].
Keyword eq is used to declare an equation in CafeOBJ. The above equation is defined

for an observer in the form of ox1:Do1,...,xm:Dom : Υ → Do, where v0, xj(j = 1, . . . ,m) are
variables of Υ and Doj respectively. T is a term of Do, representing the value observed
by o with arguments x1, . . . , xm in all initial states.

Each equation defined for an observer ox1:Do1,...,xm:Dom : Υ → Do and a transition
ty1:Dt1,...,yn:Dtn : Υ→ Υ is in the following form:
ceq o(t(v, y1, . . . , yn), x1, . . . , xm) = T [v, y1, . . . , yn, x1, . . . , xm] if c-t(v, y1, . . . , yn).
Keyword ceq is used to declare a conditional equation. The equation specifies all the

values observed by o in the state t(v, y1, . . . , yn), where yi(i = 1, . . . , n) is a variable of
Dti. The condition part is the effective condition of t, which says if the effective condition
holds, the values observed by o in the state t(v, y1, . . . , yn) are equal to those represented
by the term T . If the effective condition does not hold, the state t(v, y1, . . . , yn) is equal
to v, which is formalised by the following equation:
ceq t(v, y1, . . . , yn) = v if not c-t(v, y1, . . . , yn).
Definition 2 (Reachable states). Given an OTS S, reachable states wrt S are

inductively defined:

– Each vinit ∈ I is reachable wrt S.

– For each ty1,...,yn ∈ T and each yk : Dtk for k = 1, . . . , n, tx1,...,xn(v) is reachable wrt
S if v ∈ Υ is reachable wrt S.

Let RS be the set of all reachable states wrt S.
Predicates whose types are Υ → Bool are called state predicates. All properties con-

sidered are invariants.
Definition 3 (Invariants). Any state predicate p : Υ→ Bool is called invariant wrt
S, i.e. ∀v : RS .p(v).

We suppose that each state predicate p considered has the form ∀z1 : Dp1 . . . ∀za :
Dpa.P (v, z1, . . . , za), where v, z1, . . . , za are all variables in p and P (v, z1, . . . , za) does not
contain any quantifiers.

2.3.2 Verification in OTS/CafeOBJ Method

Generally, there are two ways of verifying systems’ properties in the OTS/CafeOBJ
method. One is by searching(or model checking), another is by theorem proving.
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Verification by Searching (Model Checking)

Searching is a technique for verifying properties in CafeOBJ. By searching, CafeOBJ
traverses the states that are reachable from a given initial state, and check which states
satisfy a specific condition. To check the condition for example safety property, it can be
checked by the negation of the property. Then the counterexamples will be shown if there
exists an execution path from an initial state to a state where the property does not hold,
which is considered as failure of the property.

Searching in CafeOBJ is an effective way to find counterexamples, and particularly
useful when the size of system’s states is reasonably small. A more efficient searching
functionality is implemented in Maude (a sibling language of CafeOBJ). Besides search-
ing, model checking facilities is implemented in Maude which are more efficient to find
counterexamples of invariant properties and even liveness properties.

Verification by Theorem Proving

Another technique is a verifying by theorem proving. The basic idea of verification is to
construct proof score in CafeOBJ for an invariant property by using CafeOBJ as a proof
assistant. Proof scores are instructions that can be executed in CafeOBJ. As we mentioned
before that to do verification by theorem proving, human guidance is needed. In CafeOBJ,
the user create proof plan in which proof should be performed. Then CafeOBJ evaluate
proof scores based on the proof plan. A desired property is proved if the proof scores are
successfully completed.

The strategy of constructing proof scores is by structural induction on system states
and case analysis. In the based case, we check whether the property being proved holds
in the initial states defined in an OTS. If it holds, we continue to deal with the induction
case. Otherwise, the proof fails. In the induction case, we make the induction hypothesis
for a state, for example s, and check whether it holds for all possible successor states of
s. If it is true, the proof is finished, otherwise it fails. During proving, we may need
some lemmas which are necessary to prove the main property, and if such that lemmas
are used, we also need to prove these lemmas.

2.4 Maude

Maude [CDE+11] is a language and tool which focuses on simplicity, expressiveness, and
performance. It is an algebraic specification, originated from OBJ family. The Maude
specification formalism is based on first-order equational and rewriting logic specification
techniques. Data types are dened by algebraic equational specifications in membership
equational logic, which contains order-sorted equational logic as a sublogic.

In Maude, a functional module is declared with keywords fmod ... endfm and contains
a set of declarations consisting of:

• importations of previously defined modules (e.g. protecting, including)

• declarations of sorts (sort s . or sorts s s′ .)
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• subsort declarations (subsort s < s′ .)

• declarations of function symbols (op f : s1 . . . sn -> s .)

• declarations of variables (vars v v′ : s .)

• unconditional equations (eq t = t′ .), and

• conditional equations (ceq t = t′ if cond .)

For example, we declare a functional module of natural number as follows:

fmod NAT is

protecting BOOL .

sorts Zero NzNat Nat .

subsort Zero NzNat < Nat .

op 0 : -> Zero [ctor] .

op s_ : Nat -> NzNat [ctor] .

endfm

where 0 is a constant for zero in natural number, and s_ means the successor of the input
value Nat. For instances, s 0 means the successor of 0, and it equals to “1” in natural
number.

Besides functional module, maude has a functional theories declared with the keywords
fth ... endfth. It can also do the same thing which functional module do such as declaring
sorts, operators, and variables, and can import other theories or modules. Theories have
a loose semantics, in the sense that any algebra satisfying the equations and membership
axioms in the theory is an acceptable model.

However, there is a full maude which is the extension of maude. Full maude’s syntax
is similar with maude but some syntax are different for example, the parenthesis to cover
the functional module or functional theories (fmod ... endfm) or (fth ... endfth).

2.4.1 Constructor-Based Inductive Theorem Prover (CITP)

CITP [GZCA13] is a tool (currently implemented in Maude) for proving inductive prop-
erties of software systems specified with constructor based logics. CITP is equipped with
a default proof strategy for the automated verification of OTS. The proof strategy can be
created by user or the basic tactics can be applied.

A goal SP ` E consists of a specification SP and set of formulas E. The proof rules

SP1 ` E1 . . . SPn ` En

SP ` E
of the specification can be regarded, upside down, as basic tactics for decomposing prob-
lems. By applying a tactic to a goal SP ` E, we obtain the set of goals {SP1 ` E1 . . . SPn `
En} if some preconditions are satisfied. The syntax to put a goal is as the follows:

(goal ModuleName |- EquationSet/RuleSet/MemAxSet .)
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where ModuleName is the name of a Maude program representing a specification, Equa-
tionSet, RuleSet and MemAxSet are the equations, rewriting rules and memberships, re-
spectively. After entering the goal, user only needs to give commands to discharge the
goal. The basic tactics commands of CITP consist of

• Simultaneous Induction (SI): applies induction to a goal SP ` E consisting of a
specification SP and a set of formulas E. The induction variables are specified by the
command (set ind on V arSet .). Each variable should be given with syntax con-
sisting of an identifier (X:Sort). This tactic can be applied by giving the command
(apply SI.).

• Case Analysis (CA): adds conditions to the specification of a goal from conditional
equations. Conditional equations marked with a string starting with "CA-" are used
for case analysis. This tactic can be applied by giving the command (apply CA .).

• Theorem of Constants (TC): instantiates variables appearing in the formula of the
goal by fresh constants. The constants are automatically generated, and sort infor-
mation of these constants are added to the specification. This tactic can be applied
by giving the command (apply TC .).

• Implication (IP): adds the condition of a quantifier-free sentence of a goal to the
specification of the goal, as assumption. This tactic can be applied by giving the
command (apply IP .).

• Reduction (RD): is applied automatically by the system. Any goal can be reduced
to the normal form if there are some equations or rewrite rules related to that goal.
This tactic can be applied by giving the command (apply RD .).

We can use the command (auto .) to discharge a goal automatically by applying the
order of commands.

Besides these commands, user can add lemmas to help discharging the goal. It is
considered as non-executable equations. It can enter into the CITP as follows:

(init Lemma by Substitution .)

Lemma is the label of a non-executable equation or rule that is initialized according to
Substitution which is of the form V1 <- T1 ; · · · ; Vn <- Tn, where Vi are variables and
Ti are ground terms.
Example: (init lemma-inv by X <- x ; Y <- y ; Z <- z .)

The axioms labeled by lemma-inv is initialised by substituting the constants x, y, and z

for X, Y, and Z, respectively.
In the case that the assumptions conflict or it cannot reduce to any normal form, we

can make critical pair by two equations to make it reducible. The command to make
critical pair is (cp equation1 . >< equation2 .). Then use the command (equation .)

to add the equation of critical pairs to the assumptions.
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Chapter 3

A Survey of Verification of
Consensus Algorithm

As we mentioned before that there are several algorithms to solve consensus problem. In
[TS11], authors proposed a semi-automatic verification approach for asynchronous con-
sensus algorithms by reducing the verification problem to small model checking problems
that involve only single phases of algorithm execution. The authors did experiment with
many consensus algorithms but we only focus on the LastVoting algorithm, which is similar
with Paxos algorithm, with verification of agreement property. To better understanding
of how they verify the LastVoting algorithm, we firstly explain their notation and a model
that easily to understand for the verification part.

3.1 Round-Based Model

The consensus algorithm expressed in the asynchronous system augmented with failure
detectors can be translated into a round-based consensus algorithm. We follows the
round-based model as in [TS11].

In round-based model, the computation consists of rounds of message exchange. In
each round r, each process p sends a message according to a sending function Sr

p to every
process. At the end of round r, computes a new state according to a state transition
function T r

p . The state transition function takes as input the set of messages received
in round r (a message sent in round r can only be received in round r) and the current
process state.

Also they used the notation introduced by the Heard-Of (HO) model [CBS09]. If Π is
the set of processes, HO(p, r) ⊆ Π denotes the set of processes from which p receives a
message in round r : HO(p, r) is the “heard of” set of p in round r. If q 6∈ HO(p, r) while
q sent a message to p in round r, then p does not receive any message from q in round r.
This can be due to the asynchrony of communication or process, or to a process or link
failure.

The round-based model can naturally be extended to accommodate coordinator-based
algorithms, by letting a communication predicate deal with not only HO sets but also
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with coordinators.
A process is usually coordinator for a sequence of rounds, and this sequence of rounds

is called a phase. We denote by k the number of rounds that compose a single phase.
Let Coord(p, φ) ∈ Π denote the coordinator of process p in phase φ, and assume that p
knows its coordinator Coord(p, φ) in phase φ and that the coordinator does not change
during that phase. The domain is the collection of HO(p, r) and Coord(p, φ), for all
p ∈ Π, r > 0, φ > 0. The sending function and the state transition function are now
represented as Sr

p(sp, Coord(p, φ)) and T r
p (Msg, sp, Coord(p, φ)), where φ is the phase

that round r belongs to.
Since the correctness of an algorithm can be considered as safety or liveness. The safety

is that in every phase no bad things happen, while the latter means that a single good
phase is required to satisfy termination.

3.2 The LastVoting Algorithm

They presented the LastVoting algorithm (figure C.1 in Appendix C) that is used as
a running example throughout the paper [CBS09]. LastVoting can be view as an HO
model-version of Paxos. It is also close to the ♦S consensus algorithm by Chandra and
Toueg [CT96].

In LastVoting a phase consists of four rounds. In the first round (round 4φ − 3),
coordinators collect the current estimate xp and the timestamp tsp from processes. If a
coordinator obtains these values from a majority of processes, then it picks up the estimate
that is associated with the greatest timestamp and set votep equal to that estimate. In
the second round (round 4φ − 2) the coordinator broadcasts votep to all processes. If a
process p receives this value, then it updates timestamp tsp to the current phase number
φ and then votes for that value by replying ack to the coordinator in the third round
(round 4φ − 1). If the coordinator obtains a majority of votes, then it again broadcasts
the value of votep in the fourth round (round4φ). If a process receives this value, then it
decides on this value.

For the LastVoting algorithm, agreement can never be violated no matter how bad the
HO set is; that is the algorithm is always safe, even in completely asynchronous runs. We
only focus on the agreement property which is considered as safety, so we ignore other
properties.

3.3 Verification of Agreement

This section is to verify the agreement property in LastVoting algorithm. It consists of two
levels; phase-level analysis, which shows that agreement verification can be accomplished
by examining only single phases of algorithm execution, and model checking of single
phases describes how model checking can be used to analyse the single phases at the
round level.
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3.3.1 Phase level analysis

The agreement holds if, whenever all correct processes decide in a phase, which the decided
values are the same (e.g. v). Formally, agreement holds if:

∀c ∈ Reachable : ∀〈c, d, c′〉 ∈ R :

d = ∅ ∨ ∃v : (d = {v} ∧ c′ is v-valent)
(3.1)

where 〈c, d, c′〉 corresponds to any phase that can occur such that: (1) c is the configuration
at the beginning of the phase number φ of c (denoted by φ(c)), (2) d is the set of all values
decided in the phase, and (3) c′ is the configuration at the beginning of the next phase
(phase φ(c′)). Reachable is the set of all configurations that can occur in a run R,
d = ∅ means that no decision is made in the phase, and ∃v : (d = {v} ∧ c′ is v-valent)
means that a single value v is decided in that phase and the next phase starts with a
v-valent configuration. The v-valent means that if the configuration decides the value v
in some phase, the next phase must not decide the different value. For example, when
the algorithm runs the sequence of run R can be infinite c1d1c2d2 · · · such that c1 is the
set of configurations that can occur at the beginning of phase 1. If the value v decides
in some phase (e.g. phase 5): c1d1c1d2c3d3c4d4c5d5 and d5 = v, then the next phase and
others c6d6c7d7 · · · the value of d6, d7, . . . must be equal to v. However, it is impractical
to directly check this formula, because obtaining Reachable is as hard as examining all
runs. So, the authors made an over-approximation of the set of reachable state, and it is
usually referred to as an invariant.

The authors used a technique to prove the invariant called k-induction [MRS]; a gen-
eralization of induction. The knowledge about k-induction can see from [Wah13]. Since,
they used the variation of k-induction to help verifying the invariant. So, the single phase
that they considered is an inductive step for verifying the property. In the agreement
verification, it is assumed that invariant Inv and a predicate U(v) is specified where Inv
is a set of configuration that is an invariant, Reachable ⊆ Inv, and U(v) is a subset of
v-valent reachable configurations.

Given Inv and U(v), the agreement is modified that agreement holds if

∀c ∈ Inv : ∀〈c, d, c′〉 ∈ R :

d = ∅ ∨ ∃v : (d = {v} ∧ c′ ∈ U(v))
(3.2)

3.3.2 Model checking of single phases

To model check the LastVoting, it can be used to determine if Formula 3.2 holds or not.
Model checking is the process of exploring a state transition system to determine whether
or not a given property holds. Since in this problem involves only single phases, it only
need to consider k consecutive state transitions of the LastVoting algorithm, where k
is the number of rounds per phase. To model check the agreement property in model
checker, the formula is changed as follows:

d = ∅ ∨ ∃v : (d = {v} ∧ ck+1 ∈ U(v)) (3.3)
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where d =
(
∪p∈Π,1≤i≤k{dvip}

)
\ {?}.

The ci is the configuration at the beginning of the i-th round of the phase. The dvip is
the value decided by each process p in the i-th round. If a process p does not decide in
the round, then dvip =?.

If the value of all processes have not been decided yet or have been decided the same
value. These show that agreement holds for this algorithm. This model checking problem
only concerns exactly k consecutive transitions. Because of this, bounded model checking
[CBRZ01] can be most effectively used to solve it. The idea of bounded model checking is
to reduce the model checking problem to the satisfiability problem for a formula in some
logic.

In order to check 3.3 with this model checking technique, they constructed the formulas
consisting of:

– X represents the behaviour of all one-phase executions.

– INV represents the invariant that c1 ∈ Inv.

– Agr represents a formula 3.3 holds.

where

X is composed as X , Dom ∧ T 1 ∧ T 2 ∧ · · · ∧ T k where
(1) Dom is a domain of one-phase executions. In the LastVoting algorithm one-phase
execution has four rounds by including the HO model as its implementation. Since the
logic of formula only allows integer and boolean variables. So, they mapped the possible
decided value V al to [1 . . .∞] and ? to 0. Consequently, the domain of LastVoting algo-
rithm is considered that, for example, the decided value must be either greater or equal 0,
the coordinator is between the process from 1 to n if there are n processes in the system.
(2) T i is a mathematical representation of i-th round of the algorithm. So, the value i is
four since the LastVoting algorithm has four rounds. In each round, it can be constructed
some mathematical formulas by considering sending and receiving messages.
INV specifies that c1 ∈ Inv. In the LastVoting algorithm c1 is considered that for all

process p, commitp and readyp are false and timestamp tsp is less than a phase number
φ at the first round.
Agr specifies that 3.3 holds. It can be explained that the majority of processes send

ack to the coordinator to agree on the same value and received by coordinator, then the
value has been decided. On the other hand, the coordinator does not receive the majority
of acks, then the value has not been decided yet.

From those mathematical formulas, the agreement verification can be checked by the
satisfiability of:

X ∧ INV ∧ ¬Agr (3.4)

This formula can only be satisfied by a value assignment corresponding to a one-phase
execution that (1) starts from Inv and (2) for which 3.3 does not hold. Therefore, every
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one-phase execution that starts from Inv meets 3.3 if and only if formula 3.4 is unsatis-
fiable.

Finally, they did some experiments with Yices [DdM06] satisfiability solver. The result
shows that this method can verified the agreement property of LastVoting algorithm with
around maximum 10 processes in the system. Difference from our approach that use
theorem proving technique that does not need to bound any number of system and can
be verified the infinite number of processes which is described in the Chapter 4.
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Chapter 4

A Paxos Case Study

After we surveying of Paxos algorithm, we decided to conduct the behaviour of Paxos
by modelling it which be described in the section Paxos Model. Then we formalized the
Paxos model in CafeOBJ by using OTS, and maude. After that we verified an agreement
property, which is one of safety properties in the consensus distributed system, by using
theorem proving technique (proof score in OTS/CafeOBJ and CITP in maude).

4.1 Paxos Model

This section described our model of Paxos by representing in a state diagram. The state
diagram can be divided into three parts by the role of agent in Paxos algorithm; proposer,
acceptor, and learner.

4.1.1 Model of Proposer

We formalized the model of proposer as a transition system Mp = 〈Qp, qinit−p, δp〉 where

(a) Qp is a finite set of state Mp for each q ∈ Qp, where

q = 〈p-lp, Nu−p, Vc−p, listp, nw〉

The meaning of each element in q are

(i) p-lp: a label indicating state of proposer p

(ii) Nu−p: a unique proposal number of proposer p

(iii) Vc−p: a value from client of proposer p

(iv) listp: a list of proposer p to receive promise messages

(v) nw: a network in the system

(b) qinit−p is the initial state of Mp where the initial value of each element is:
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p0 p1 p2

bc-prepare bc-accept

r-promise

timeout

timeout

Figure 4.1: State transition system of proposer

(i) p-lp:= p0

(ii) Nu−p:= unique number (e.g. process id)

(iii) Vc−p:= v, where v is the value which come from client

(iv) listp:= empty list

(v) nw := empty

(c) δp is transition rules which δp can be represented in Figure 4.1 where δp = (q, q′) if

q = 〈p-lp, Nu−p, Vc−p, listp, nw〉
q′ = 〈p-l′p, N ′u−p, V ′c−p, list′p, nw′〉

The transition rules of δp are defined as action(left) and transition rule(right) divided
by the symbol “:”.

(i) bc-prepare : p-lp = p0 ∧ p-l′p := p1 ∧ nw′ := Prepare < Nu−p > ∪ nw
(ii) r-promise : p-lp = p1 ∧ p-l′p := p1 ∧ Promise < Na−ac, Va−ac >∈ nw ∧ list′p :=

update(Na−ac, Va−ac, listp),
where Na−ac is a number of proposal that has been accepted by acceptor ac, and
Va−ac is a accepted value of acceptor ac

(iii) bc-accept : p-lp = p1 ∧ p-l′p := p2 ∧ |listp| ≥ d#Acceptor
2
e ∧ nw′ := Accept <

Nu−p, V >,
where |listp| is a length of listp, and #Acceptor is the number of acceptors in
the system, and V may be Vc−p or Va−ac from promise messages

(iv) timeout : (p-lp = p1∨ p-lp = p2)∧ p-l′p := p0∧ list-ld′p := empty list∧N ′u−p :=
Nu−p + #process,
where #process is the total number of processes in the system
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The state transition system of Paxos in Figure 4.1 shows behaviour of leader proposer
in the system. Beginning with state p0, the leader proposer puts the prepare message
into the network with its unique number to all of acceptors. Then it goes to the state p1
waiting the promise messages. Each acceptor receives the prepare message depending on
a condition, and replies the promise message back with the accepted number (Na) and
accepted value (Va), which initial vale are 0 and null, respectively. The leader proposer
receives the promise message by updating the content of message into its list. Since the
majority of promise messages arrive, the leader proposer can decide the value depending
on the content of promise messages. It selects the value with the highest proposal number
among the promise message, but if the value is null, it chooses the value from client (Vc).
After that it broadcasts the accept message to all acceptors again, go to state p2, and
waits for consensus value from learner.

Timeout can occur since the assumption of network that message can be loss. The
leader proposer may not receive majority of promise messages in p1 or accept message is
loss when the leader is in p2. When timeout occurs, the leader must go to state p0 and
starts sending a prepare message with new unique number again.

4.1.2 Model of Acceptor

The model of acceptor was focused as the a transition system Ma = 〈Qa, qinit−a, δa〉 where

(a) Qa is a finite set of state Ma for each q ∈ Qa, where

q = 〈a-lac, Np−ac, Na−ac, Va−ac, nw〉

The meaning of each element in q are

(i) a-lac: a label indicating state of acceptor ac

(ii) Np−ac: a promise number of acceptor ac

(iii) Na−ac: an accepted number of acceptor ac

(iv) Va−ac: an accepted value of acceptor ac

(v) nw: a network in the system

(b) qinit−a is the initial state of Ma where the initial value of each element is:

(i) a-lac:= a0

(ii) Np−ac:= 0

(iii) Na−ac:= 0

(iv) Va−ac:= null

(v) nw := empty

(c) δa is transition rules which δa can be represented in Figure 4.2 where δa = (q, q′) if
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a0 a1 a2

r&s-promise
r&s-learn

r&s-promise r&s-learn

r&s-promise

Figure 4.2: State transition system of acceptor

q = 〈a-lac, Np−ac, Na−ac, Va−ac, nw〉
q′ = 〈a-l′ac, N

′
p−ac, N

′
a−ac, V

′
a−ac, nw

′〉

The transition rules of δa are defined as action and transition rule.

(i) r&s-promise : (a-lac = a0∨a-lac = a1∨a-lac = a2)∧Prepare < Nu−p > ∈ nw
∧Nu−p ≥ Np−ac∧a-l′ac := a1∧N ′p−ac := Nup∧ nw′ := Promise < Na−ac, Va−ac >
∪ nw

(ii) r&s−learn : (a-lac = a1 ∨ a-lac = a2) ∧ Accept < Nu−p, V > ∈ nw ∧Nu−p ≥
Np−ac∧a-l′ac := a2∧N ′p−ac := Nup∧N ′a−ac := Nup∧V ′a−ac := V ∧ nw′ := Learn <
Va−ac > ∪ nw

Figure 4.2 shows how acceptors do when there are some prepare and accept messages
in the network by representing in the state transition system. By initial state the all ac-
ceptors are in state a0 and wait for a leader proposer sending the prepare message. Each
acceptor receives the message and check the content whether its promise number(Np−ac)
less than the unique number of proposerNu−p. If so, it updates its promise number to be
equal to the unique number(Np−ac := Nu−p), and sends a promise message containing ac-
cepted number(Na−ac) and accepted value(Va−ac) back to the leader proposer. Otherwise,
it rejects the message and does not reply anything.

Since there may be some situations that multiple leaders are in the system. In this case,
once each acceptor receives a prepare message and returns a promise message back, this
acceptor can accept other prepare messages from other leaders which have their unique
number greater than or equal to its promise number. That is why in a state a1, it has a
transition r&s-promise which is point out and go back to itself.

After sending a promise message, acceptor waits for accept message. When it comes,
acceptor checks with the same condition when it received the prepare message. If the
condition is satisfied, it updates their local values; consisting of promise number(Np−ac),
accepted number(Na−ac), and accepted value(Va−ac). These values is change to be equal
to Nu−p, Nu−p, and V respectively. Then each acceptor sends Learn < Va−ac > to all
learners, and change a state to a2.
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4.1.3 Model of Learner

The important part of Paxos is learner because they receive values from acceptors and
decide a value. This value must be a single value which is the same in all learners. Learner
has a responsible for broadcasting this value to all processes but we ignore this action. So,
the model of leaner can be represented as a transition system Ml = 〈Ql, qinit−l, δl〉 where

(a) Ql is a finite set of state Ml for each q ∈ Ql, where

q = 〈l-ll, listl, Vl−l, nw〉

The meaning of each element in q are

(i) l-ll: a label indicating state of learner l

(ii) listl: a list of learner l to receive learn messages

(iii) Vl−l: a consensus value of leaner l

(iv) nw: a network in the system

(b) qinit−l is the initial state of Ml where the initial value of each element is:

(i) l-ll:= l0

(ii) listl:= emptylist

(iii) Vl−l:= null

(iv) nw := empty

(c) δl is transition rules which δl can be represented in Figure 4.3 where δl = (q, q′) if

q = 〈l-ll, listl, Vl−l, nw〉
q′ = 〈l-l′l, list′l, V ′l−l, nw′〉

The transition rules of δl are defined as action and transition rule.

(i) r-learn : l-ll = l0 ∧ Learn < Na−ac, Va−ac > ∈ nw ∧Va−ac 6= null ∧ l-l′l :=
l0 ∧ list′l := update(Va−ac, listl)

(ii) decide : l-ll = l0∧|listl| ≥ d#Acceptor
2
e∧decideV (listl) 6= null∧ l-l′l := l1∧V ′l :=

decideV (listl),
where decideV is a function to return a majority of values in the listl

The transition system in Figure 4.3 shows that learner only receives a learn message
from all acceptors, and update its list(listl). If the majority of acceptors decided the same
value, then they send the same value by learn messages in the network. So, the majority
of element of list of learner will have the same value, and learner can decide a value based
on majority of received value from acceptors. The value, which sending from acceptors,
must not be null, and must be some proposed value from some leader proposers.

The model of Paxos can be represented as a transition system by combining the model
of proposer, acceptor, and learner Mpaxos = Mp ∧Ma ∧Ml where nw is a network for the
Paxos system.
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Figure 4.3: State transition system of learner

4.2 Specification of OTSs in CafeOBJ

This section describes how we formalized OTSs of a Paxos system in OTS/CafeOBJ. Υ is
denoted by a sort, says Sys. Each o ∈ O is denoted by an operator called an observation
operator declared as follows:

op o : Sys Do1 . . . Dom -> Do

where each D∗ is a sort corresponding to D∗.
An arbitrary initial state I is demoted by an operator declared as follows:

op init : -> Sys {constr}

For each o ∈ O, the following equation is declared:

eq o(init,X1, . . . ,Xm) = ToX1,...,Xm .

where each X∗ is a CafeOBJ variable of sort D∗ and ToX1,...,Xm is a term denoting the value
returned by o, together with any other parameters, in an arbitrary initial state.

Each t ∈ T is denoted by an operator called a transition operator declared as follows:

op t : Sys Dt1 . . . Dtn -> Sys {constr}

For each o and t, a conditional equation is declared:

ceq o(t(S,Y1,...,Yn),X1,...,Xm) = o-tS,Y1,...,Yn,X1,...,Xm if c-t(S,Y1,...,Yn) .

where c-t(S,...) corresponds to c-t(v, . . .), and o-tS,... is a term whose sort is the
same as the sort of o and does not use any transition operators. The equation says how
t changes the value observed by o if the effective condition holds. If o-tS,... is always
equal to o(S,X1,...,Xm), the condition may be omitted.

For each t, one more conditional equation is declared:

ceq t(S,Y1,...,Yn) = S if not c-t(S,Y1,...,Yn) .

which says that t changes nothing if the effective condition does not hold.
As indicated by constr, init and each t are constructors of Sys, which corresponds

to RS .
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4.2.1 Paxos Observers

Paxos is formalized as an OTS SPaxos. SPaxos uses 12 observers based on each role of
agents. The corresponding observation operators are declared as follows:

op p-l : Sys Proposer -> Label

op a-l : Sys Acceptor -> Label

op l-l : Sys Learner -> Label

op nw : Sys -> Network

op unique : Sys Proposer -> Num

op vClient : Sys Proposer -> Val

op list-Ld : Sys Proposer -> TriList

op n-p : Sys Acceptor -> Num

op n-a : Sys Acceptor -> Num

op v-a : Sys Acceptor -> Val

op list-Ln : Sys Learner -> PairList

op v-d : Sys Learner -> Val

where module Label is a label of state consisting of p0, p1, p2, a0, a1, a2, l0 and l1. The
module Network is a channel for sending and receiving messages. The module Num and
Val are number and value which has been describe in the Paxos algorithm. The module
TriList and PairList are list where element in the list are triple and pair, respectively.
For more information and better understanding of module used in Paxos can be found in
Appendix A.

Given a state s : Sys, proposer ID p : Proposer, acceptor ID a : acceptor, and learner
ID l : Learner.

• p-l(s, p), a-l(s, a) and l-l(s, l) denote the label at which process p, a and l are in
the state s.

• nw(s) denotes the shared network in the state s.

• unique(s, p) denotes the unique number of proposer p in the state s.

• vClient(s, p) denotes the client value of proposer p in the state s.

• list-Ld(s, p) denotes the list of triple < Ac : Acceptor,N : Num, V : V al > of
proposer p in the state s.

• n-p(s, a) denotes the promise number of acceptor a in the state s.

• n-a(s, a) denotes the accepted number of acceptor a in the state s.

• v-a(s, a) denotes the accepted value of acceptor a in the state s.

• list-Ln(s, l) denotes the list of pair < Ac : Acceptor, V : V al > of learner l in the
state s.
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• v-d(s, l) denotes the consensus value of learner l in the state s.

In the rest of this section, we declared the CafeOBJ variables as follows:

var S : Sys

vars Pp Pp1 : Proposer

vars Ac Ac1 : Acceptor

vars Ln Ln1 : Learner

var N : Num

var V : Val

And we have the following equations for init, the constant denoting an arbitrary initial
state:

op init : -> Sys

eq p-l(init,Pp) = p0 .

eq a-l(init,Ac) = a0 .

eq l-l(init,Ln) = l0 .

eq nw(init) = noMsg .

eq unique(init,Pp) = PpID .

eq vClient(init,Pp) = vc .

eq list-Ld(init,Pp) = tnil .

eq n-p(init,Ac:Acceptor) = 0 .

eq n-a(init,Ac:Acceptor) = 0 .

eq v-a(init,Ac:Acceptor) = null .

eq list-Ln(init,Ln:Learner) = pnil .

eq v-d(init,Ln:Learner) = null .

where noMsg is a constant denotes the empty channel in module the NETWORK (see in
Appendix A), PpID is a constant denotes the unique ID number of proposer, vc is a
constant denotes the client value, tnil and pnil is a constant denotes the empty list of
module TRILIST and PAIRLIST, respectively.

4.2.2 Paxos Transitions

SPaxos uses eight transitions. The corresponding transition operators are declared as
follows:

op bc-prepare : Sys Proposer -> Sys {constr}

op r-promise : Sys Proposer Acceptor Num Val -> Sys {constr}

op bc-accept : Sys Proposer -> Sys {constr}

op timeout : Sys Proposer -> Sys {constr}

op r&s-promise : Sys Acceptor Proposer Num -> Sys {constr}

op r&s-learn : Sys Proposer Acceptor Num Val -> Sys {constr}

op r-learn : Sys Acceptor Learner Num Val -> Sys {constr}

op decide : Sys Learner -> Sys {constr}
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Given a state s : Sys, proposer ID p : Proposer, acceptor ID a : acceptor, learner ID l :
Learner, number n : Num, and value v : Val.

• bc-prepare(s, p) denotes the successor state of s when p executes the statement at
label p0 in s

• r-promise(s, p, a, n, v) denotes the successor state of s when p executes the state-
ment of receiving Promise < n, v > which sending from a at label p1 in s

• bc-accept(s, p) denotes the successor state of s when p executes the statement at
label p1 in s

• timeout(s, p) denotes the successor state of s when p executes the statement at
label p1 or p2 in s

• r&s-promise(s, a, p, n) denotes the successor state of s when a executes the state-
ment of receiving Prepare < n > from p at label a0, a1 or a2 in s

• r&s-learn(s, p, a, n, v) denotes the successor state of s when a executes the state-
ment of receiving Accept < n, v > from p at label a1 or a2 in s

• r-learn(s, a, l, n, v) denotes the successor state of s when l executes the statement
of receiving Learn < v > from a at label l0 in s

• decide(s, l) denotes the successor state of s when l executes the statement at label
l0 in s

The set of equations for bc-prepare is as follows:

ceq p-l(bc-prepare(S,Pp1),Pp) = (if Pp1 = Pp then p1 else pc(S,Pp) fi)

if c-bc-prepare(S,Pp1) .

eq a-l(bc-prepare(S,Pp),Ac) = pc(S,Ac) .

eq l-l(bc-prepare(S,Pp),Ln) = pc(S,Ln) .

ceq nw(bc-prepare(S,Pp)) = prepare-m(Pp,unique(S,Pp)) nw(S) if c-bc-prepare(S,Pp) .

eq unique(bc-prepare(S,Pp1),Pp) = unique(S,Pp) .

eq vClient(bc-prepare(S,Pp1),Pp) = vClient(S,Pp) .

eq list-Ld(bc-prepare(S,Pp1),Pp) = list-Ld(S,Pp) .

eq n-p(bc-prepare(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(bc-prepare(S,Pp),Ac) = n-a(S,Ac) .

eq v-a(bc-prepare(S,Pp),Ac) = v-a(S,Ac) .

eq list-Ln(bc-prepare(S,Pp),Ln) = list-Ln(S,Ln) .

eq v-d(bc-prepare(S,Pp),Ln) = v-d(S,Ln) .

ceq bc-prepare(S,Pp) = S if not c-bc-prepare(S,Pp) .

where the operator c-bc-prepare is declared and defined as follows:
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op c-bc-prepare : Sys Proposer -> Bool

eq c-bc-prepare(S,Pp) = (p-l(S,Pp) = p0) .

The transition bc-prepare has a responsible for putting a prepare message prepare-m

into the network when the condition c-bc-prepare (proposer Pp is in a state at label p0)
is satisfied.

There are four messages in the system which has been describe in the module MESSAGE

as follows:

mod! MESSAGE {

pr(PROPOSER)

pr(ACCEPTOR)

pr(LEARNER)

pr(NUM)

pr(VALUE)

[Msg]

-- operators

op prepare-m : Proposer Num -> Msg {constr}

op promise-m : Acceptor Proposer Num Val -> Msg {constr}

op accept-m : Proposer Num Val -> Msg {constr}

op learn-m : Acceptor Num Val -> Msg {constr}

op _=_ : Msg Msg -> Bool {comm}

-- variables

vars N N1 : Num

vars V V1 : Val

vars Pp Pp1 : Proposer

vars Ac Ac1 : Acceptor

vars Ln Ln1 : Learner

-- equations

eq (prepare-m(Pp,N) = prepare-m(Pp1,N1)) = ((Pp = Pp1) and (N = N1)) .

eq (promise-m(Ac,Pp,N,V) = promise-m(Ac1,Pp1,N1,V1)) = ((Ac = Ac1)

and (Pp = Pp1) and (N = N1) and (V = V1)) .

eq (accept-m(Pp,N,V) = accept-m(Pp1,N1,V1)) = ((Pp = Pp1)

and (N = N1) and (V = V1)) .

eq (learn-m(Ac,N,V) = learn-m(Ac1,N1,V1)) = ((Ac = Ac1)

and (N = N1) and (V = V1)) .

eq (prepare-m(Pp,N) = promise-m(Ac,Pp1,N1,V)) = false .

eq (prepare-m(Pp,N) = accept-m(Pp1,N1,V)) = false .

eq (prepare-m(Pp,N) = learn-m(Ac,N1,V)) = false .

eq (promise-m(Ac,Pp,N,V) = accept-m(Pp1,N1,V1)) = false .

eq (promise-m(Ac,Pp,N,V) = learn-m(Ac1,N1,V1)) = false .

eq (accept-m(Pp,N,V) = learn-m(Ac,N1,V1)) = false .

}
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The module MESSAGE consists of four messages; prepare-m, promise-m, accept and
learn-m. Two messages can be the same message if the name and content of message are
the same. For example, prepare-m is not the same as promise-m. The message between
prepare-m(p1,n1) and prepare-m(p2,n2) are the same message if proposer p1 and p2

are the same proposer and same unique number (n1 = n2). Otherwise, the messages are
different.

The set of equations for r-promise is as follows:

ceq p-l(r-promise(S,Pp1,Ac,N,V),Pp) = (if Pp1 = Pp then p1 else p-l(S,Pp) fi)

if c-r-promise(S,Pp1,Ac,N,V) .

eq a-l(r-promise(S,Pp,Ac1,N,V),Ac) = a-l(S,Ac) .

eq l-l(r-promise(S,Pp,Ac,N,V),Ln) = l-l(S,Ln) .

eq nw(r-promise(S,Pp,Ac,N,V)) = nw(S) .

eq unique(r-promise(S,Pp1,Ac,N,V),Pp) = unique(S,Pp) .

eq vClient(r-promise(S,Pp1,Ac,N,V),Pp) = vClient(S,Pp) .

ceq list-Ld(r-promise(S,Pp1,Ac,N,V),Pp) = (if Pp1 = Pp then updateTri(< Ac , N , V >,

list-Ld(S,Pp)) else list-Ld(S,Pp) fi) if c-r-promise(S,Pp1,Ac,N,V) .

eq n-p(r-promise(S,Pp,Ac1,N,V),Ac) = n-p(S,Ac) .

eq n-a(r-promise(S,Pp,Ac1,N,V),Ac) = n-a(S,Ac) .

eq v-a(r-promise(S,Pp,Ac1,N,V),Ac) = v-a(S,Ac) .

eq list-Ln(r-promise(S,Pp,Ac,N,V),Ln) = list-Ln(S,Ln) .

eq v-d(r-promise(S,Pp,Ac,N,V),Ln) = v-d(S,Ln) .

ceq r-promise(S,Pp,Ac,N,V) = S if not c-r-promise(S,Pp,Ac,N,V) .

where the operator c-r-promise is declared and defined as follows:

op c-r-promise : Sys Proposer Acceptor Num Val -> Bool

eq c-r-promise(S,Pp,Ac,N,V) = ((p-l(S,Pp) = p1) and (member(promise-m(Ac,Pp,N,V),

nw(S)))) .

In the transition r-promise, the leader proposer updates its list-Ld with the content
of promise message receiving from network by using a function updateTri. However, the
leader must check a condition c-r-promise whether the condition (proposer Pp is in a
state at label p1 and promise-m is in nw) is satisfied.

The function updateTri is in the module TRILIST and it was defined as follows:

mod! TRILIST {

pr(LIST(X <= TRIV2TRI-ARY)

* {sort List -> TriList,

op nil -> tnil})

-- operator

op updateTri : Tri TriList -> TriList

-- variables

vars Ac Ac1 : Acceptor

30



vars N N1 : Num

vars V V1 : Val

var TL : TriList

-- equations

eq updateTri(< Ac , N , V >,tnil) = < Ac , N , V > | tnil .

ceq updateTri(< Ac , N , V >,< Ac , N1 , V1 > | TL)

= < Ac , N , V > | TL if N >= N1 .

ceq updateTri(< Ac , N , V >,< Ac , N1 , V1 > | TL)

= < Ac , N1 , V1 > | TL if N < N1 .

ceq updateTri(< Ac , N , V >,< Ac1 , N1 , V1 > | TL)

= < Ac1 , N1 , V1 > | updateTri(< Ac , N , V >,TL) if not(Ac = Ac1) .

}

This function is updating triple, which consists of <Ac,N,V> ; Acceptor, Num, Val, into
the list of triple TL. If TL is tnil, it updates by adding the element into the list, otherwise
checks the first element of triple. If the message comes from the same acceptor, it checks
the number N and N1 again. If N is less than N1, the updating is ignored. Otherwise, it
replaces the value N1 and V1 with N and V. Another case that message comes from different
acceptors, it checks again with other remaining element in the list.

The function member is in the module NETWORK and it was defined as follows:

mod! NETWORK {

pr(MULTISET(X <= TRIV2MESSAGE)

* {sort MSet -> Network,

op empty -> noMsg} )

-- operator

op member : Msg Network -> Bool

-- variables

var NW : Network

vars M M1 : Msg

-- equations

eq member(M,noMsg) = false .

eq member(M,M NW) = true .

ceq member(M,M1 NW) = member(M,NW) if not(M = M1) .

}

The function member just checks whether message is in the network NW. If the message
is in NW, it returns true, otherwise returns false.

The set of equations for bc-accept is as follows:

ceq p-l(bc-accept(S,Pp1),Pp) = (if Pp1 = Pp then p2 else p-l(S,Pp) fi)

if c-bc-accept(S,Pp1) .

eq a-l(bc-accept(S,Pp),Ac) = a-l(S,Ac) .

eq l-l(bc-accept(S,Pp),Ln) = l-l(S,Ln) .
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ceq nw(bc-accept(S,Pp)) = accept-m(Pp,unique(S,Pp),findV(list-Ld(S,Pp))) nw(S)

if (c-bc-accept(S,Pp) and not(findV(list-Ld(S,Pp)) = null)) .

ceq nw(bc-accept(S,Pp)) = accept-m(Pp,unique(S,Pp),vClient(S,Pp)) nw(S)

if (c-bc-accept(S,Pp) and (findV(list-Ld(S,Pp)) = null)) .

eq unique(bc-accept(S,Pp1),Pp) = unique(S,Pp) .

eq vClient(bc-accept(S,Pp1),Pp) = vClient(S,Pp) .

ceq list-Ld(bc-accept(S,Pp1),Pp) = (if Pp1 = Pp then tnil else list-Ld(S,Pp) fi)

if c-bc-accept(S,Pp1) .

eq n-p(bc-accept(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(bc-accept(S,Pp),Ac) = n-a(S,Ac) .

eq v-a(bc-accept(S,Pp),Ac) = v-a(S,Ac) .

eq list-Ln(bc-accept(S,Pp),Ln) = list-Ln(S,Ln) .

eq v-d(bc-accept(S,Pp),Ln) = v-d(S,Ln) .

ceq bc-accept(S,Pp) = S if not c-bc-accept(S,Pp) .

where the operator c-bc-accept is declared and defined as follows:

op c-bc-accept : Sys Proposer -> Bool

eq c-bc-accept(S,Pp) = ((p-l(S,Pp) = p1)

and ((len(list-Ld(S,Pp)) * 2) >= (nAcceptor + 1))) .

The transition bc-accept selects a value whether the value among the promise messages
in list-Ld or the value from client vClient depending on the value returned by function
findV. If the returned value of findV is null, broadcasts the vClient to all acceptors with
unique number. Otherwise, selects the value with the highest accepted number among
the promise messages and sends it with unique number by accept message in the network.
After broadcasting the accept message, list-Ld changes to be empty, and the state is
changed to label p2.

It can do the bc-accept when the condition c-bc-accept (proposer Pp is in a state at
label p1 and received the majority of promise messages from acceptors; it can be defined
by the length of list-Ld) is satisfied.

To select the value, it depends on the function findV in the module TRILIST which is
described as follows:

mod! TRILIST {

pr(LIST(X <= TRIV2TRI-ARY)

* {sort List -> TriList,

op nil -> tnil})

-- operator

op findV : TriList -> Val

-- variables

vars Ac Ac1 : Acceptor

vars N N1 : Num

vars V V1 : Val
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var TL : TriList

-- equations

eq findV(tnil) = null .

eq findV(< Ac , N , V > | tnil) = V .

ceq findV(< Ac , N , V > | < Ac1 , N1 , V1 > | TL)

= findV(< Ac , N , V > | TL) if N >= N1 .

ceq findV(< Ac , N , V > | < Ac1 , N1 , V1 > | TL)

= findV(< Ac1 , N1 , V1 > | TL) if N < N1 .

}

The function findV returns the value with the highest number from the list. Firstly,
if the list is empty return the value null. If it is not empty, finds the element in triple
with the highest number N or N1, and keeps this triple. It checks until there is only one
element triple in the list and returns only the value V from the triple.

The set of equations for timeout is as follows:

ceq p-l(timeout(S,Pp1),Pp) = (if Pp1 = Pp then p0 else p-l(S,Pp) fi)

if c-timeout(S,Pp1) .

eq a-l(timeout(S,Pp),Ac) = a-l(S,Ac) .

eq l-l(timeout(S,Pp),Ln) = l-l(S,Ln) .

eq nw(timeout(S,Pp)) = nw(S) .

ceq unique(timeout(S,Pp1),Pp) = (if Pp1 = Pp then (unique(S,Pp) + nProcess)

else unique(S,Pp) fi) if c-timeout(S,Pp1) .

eq vClient(timeout(S,Pp1),Pp) = vClient(S,Pp) .

ceq list-Ld(timeout(S,Pp1),Pp) = (if Pp1 = Pp then tnil else list-Ld(S,Pp) fi)

if c-timeout(S,Pp1) .

eq n-p(timeout(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(timeout(S,Pp),Ac) = n-a(S,Ac) .

eq v-a(timeout(S,Pp),Ac) = v-a(S,Ac) .

eq list-Ln(timeout(S,Pp),Ln) = list-Ln(S,Ln) .

eq v-d(timeout(S,Pp),Ln) = v-d(S,Ln) .

ceq timeout(S,Pp) = S if not c-timeout(S,Pp) .

where the operator c-timeout is declared and defined as follows:

op c-timeout : Sys Proposer -> Bool

eq c-timeout(S,Pp) = ((p-l(S,Pp) = p1) or (p-l(S,Pp) = p2)) .

Since, the assumption that message can be lost. The leader proposer may not receive
the majority of promise messages, and cause the leader waits forever. So, the leader must
have a time to count when it sends the prepare message to all acceptors. If it does not
receive a majority of messages in a period of time in a state p1 or p2, timeout occurs.
When the transition timeout occurs, everything must be reset. The unique number
unique must be increasing but still is unique. There are several ways to increment the
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unique number, one way is increment by the number of processes. The list list-Ld must
also be reset to be an empty list, and a state changes to p0 to start sending a prepare
message.

The set of equations for r&s-promise is as follows:

eq p-l(r&s-promise(S,Ac,Pp1,N),Pp) = p-l(S,Pp) .

ceq a-l(r&s-promise(S,Ac1,Pp,N),Ac) = (if Ac1 = Ac then a1 else a-l(S,Ac) fi)

if c-r&s-promise(S,Pp,Ac1,N) .

eq l-l(r&s-promise(S,Ac,Pp,N),Ln) = l-l(S,Ln) .

ceq nw(r&s-promise(S,Ac,Pp,N)) = promise-m(Ac,Pp,n-a(S,Ac),v-a(S,Ac)) nw(S)

if (c-r&s-promise(S,Pp,Ac,N) and N >= n-p(S,Ac)) .

ceq nw(r&s-promise(S,Ac,Pp,N)) = nw(S) if (c-r&s-promise(S,Pp,Ac,N)

and N < n-p(S,Ac)) .

eq unique(r&s-promise(S,Ac,Pp1,N),Pp) = unique(S,Pp) .

eq vClient(r&s-promise(S,Ac,Pp1,N),Pp) = vClient(S,Pp) .

eq list-Ld(r&s-promise(S,Ac,Pp1,N),Pp) = list-Ld(S,Pp) .

ceq n-p(r&s-promise(S,Ac1,Pp,N),Ac) = (if Ac1 = Ac then N else n-p(S,Ac) fi)

if (c-r&s-promise(S,Pp,Ac1,N) and N >= n-p(S,Ac1)) .

ceq n-p(r&s-promise(S,Ac1,Pp,N),Ac) = n-p(S,Ac) if (c-r&s-promise(S,Pp,Ac1,N)

and N < n-p(S,Ac1)) .

eq n-a(r&s-promise(S,Ac1,Pp,N),Ac) = n-a(S,Ac) .

eq v-a(r&s-promise(S,Ac1,Pp,N),Ac) = v-a(S,Ac) .

eq list-Ln(r&s-promise(S,Ac,Pp,N),Ln) = list-Ln(S,Ln) .

eq v-d(r&s-promise(S,Ac,Pp,N),Ln) = v-d(S,Ln) .

ceq r&s-promise(S,Ac,Pp,N) = S if not c-r&s-promise(S,Pp,Ac,N) .

where the operator c-r&s-promise is declared and defined as follows:

op c-r&s-promise : Sys Proposer Acceptor Num -> Bool

eq c-r&s-promise(S,Pp,Ac,N) = (((a-l(S,Ac) = a0) or (a-l(S,Ac) = a1)

or (a-l(S,Ac) = a2)) and member(prepare-m(Pp,N),nw(S))) .

The transition r&s-promise checks whether the prepare message is in the network, and
then changes state to a1. To put the promise message into the network, it must check the
number N, which came from the prepare message. If N is less than the promise number
n-p, it does not reply and update anything. Otherwise, it updates the local number n-p to
be equal to N, and sends the promise message back with value n-a and v-a for promising
not accepting the messages with lower number than n-p.

The set of equations for r&s-learn is as follows:

eq p-l(r&s-learn(S,Pp1,Ac,N,V),Pp) = p-l(S,Pp) .

ceq a-l(r&s-learn(S,Pp,Ac1,N,V),Ac) = (if Ac1 = Ac then a2 else a-l(S,Ac) fi)

if(c-r&s-learn(S,Pp,Ac1,N,V)) .

eq l-l(r&s-learn(S,Pp,Ac,N,V),Ln) = l-l(S,Ln) .
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ceq nw(r&s-learn(S,Pp,Ac,N,V)) = learn-m(Ac,N,V) nw(S)

if (c-r&s-learn(S,Pp,Ac,N,V) and N >= n-p(S,Ac)) .

ceq nw(r&s-learn(S,Pp,Ac,N,V)) = nw(S) if (c-r&s-learn(S,Pp,Ac,N,V)

and N < n-p(S,Ac)) .

eq unique(r&s-learn(S,Pp1,Ac,N,V),Pp) = unique(S,Pp) .

eq vClient(r&s-learn(S,Pp1,Ac,N,V),Pp) = vClient(S,Pp) .

eq list-Ld(r&s-learn(S,Pp1,Ac,N,V),Pp) = list-Ld(S,Pp) .

ceq n-p(r&s-learn(S,Pp,Ac1,N,V),Ac) = (if Ac1 = Ac then N else n-p(S,Ac) fi)

if (c-r&s-learn(S,Pp,Ac1,N,V) and N >= n-p(S,Ac1)) .

ceq n-p(r&s-learn(S,Pp,Ac1,N,V),Ac) = n-p(S,Ac) if (c-r&s-learn(S,Pp,Ac1,N,V)

and N < n-p(S,Ac1)) .

ceq n-a(r&s-learn(S,Pp,Ac1,N,V),Ac) = (if Ac1 = Ac then N else n-a(S,Ac) fi)

if (c-r&s-learn(S,Pp,Ac1,N,V) and N >= n-p(S,Ac1)) .

ceq n-a(r&s-learn(S,Pp,Ac1,N,V),Ac) = n-a(S,Ac) if (c-r&s-learn(S,Pp,Ac1,N,V)

and N < n-p(S,Ac1)) .

ceq v-a(r&s-learn(S,Pp,Ac1,N,V),Ac) = (if Ac1 = Ac then V else v-a(S,Ac) fi)

if (c-r&s-learn(S,Pp,Ac1,N,V) and N >= n-p(S,Ac1) and not(V = v-a(S,Ac))) .

ceq v-a(r&s-learn(S,Pp,Ac1,N,V),Ac) = (if Ac1 = Ac then V else v-a(S,Ac) fi)

if (c-r&s-learn(S,Pp,Ac1,N,V) and N >= n-p(S,Ac1) and V = v-a(S,Ac)) .

ceq v-a(r&s-learn(S,Pp,Ac1,N,V),Ac) = v-a(S,Ac) if (c-r&s-learn(S,Pp,Ac1,N,V)

and N < n-p(S,Ac1)) .

eq list-Ln(r&s-learn(S,Pp,Ac,N,V),Ln) = list-Ln(S,Ln) .

eq v-d(r&s-learn(S,Pp,Ac,N,V),Ln) = v-d(S,Ln) .

ceq r&s-learn(S,Pp,Ac,N,V) = S if not c-r&s-learn(S,Pp,Ac,N,V) .

where the operator c-r&s-learn is declared and defined as follows:

op c-r&s-learn : Sys Proposer Acceptor Num Val -> Bool

eq c-r&s-learn(S,Pp,Ac,N,V) = (((a-l(S,Ac) = a1) or (a-l(S,Ac) = a2))

and member(accept-m(Pp,N,V),nw(S))) .

The transition r&s-learn checks whether accept message is in the network, then change
a state to a2. Before putting the learn message into the network. A condition which the
number N from accept-m(Pp,N,V) must greater or equal to the promise number n-p

should be satisfied. If the condition is satisfied, then the acceptor updates its promise
number (n-p) and accepted number (n-a) to be equal to N, and accepted value (v-a) to
be equal to V when the value V is not the same as v-a, and also put the learn message
(learn-m(Ac,N,V)) into the network . Otherwise, it does not change anything.

The set of equations for r-learn is as follows:

eq p-l(r-learn(S,Ac,Ln,N,V),Pp) = p-l(S,Pp) .

eq a-l(r-learn(S,Ac1,Ln,N,V),Ac) = a-l(S,Ac) .

ceq l-l(r-learn(S,Ac,Ln1,N,V),Ln) = (if Ln1 = Ln then l0 else l-l(S,Ln) fi)

if c-r-learn(S,Ac,Ln1,N,V) .
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eq nw(r-learn(S,Ac,Ln,N,V)) = nw(S) .

eq unique(r-learn(S,Ac,Ln,N,V),Pp) = unique(S,Pp) .

eq vClient(r-learn(S,Ac,Ln,N,V),Pp) = vClient(S,Pp) .

eq list-Ld(r-learn(S,Ac,Ln,N,V),Pp) = list-Ld(S,Pp) .

eq n-p(r-learn(S,Ac1,Ln,N,V),Ac) = n-p(S,Ac) .

eq n-a(r-learn(S,Ac1,Ln,N,V),Ac) = n-a(S,Ac) .

eq v-a(r-learn(S,Ac1,Ln,N,V),Ac) = v-a(S,Ac) .

ceq list-Ln(r-learn(S,Ac,Ln1,N,V),Ln) = (if (Ln1 = Ln) then

updateTri(< Ac , N , V >,list-Ln(S,Ln1)) else list-Ln(S,Ln) fi)

if c-r-learn(S,Ac,Ln1,N,V) and not(V = null) .

eq v-d(r-learn(S,Ac,Ln1,N,V),Ln) = v-d(S,Ln) .

ceq r-learn(S,Ac,Ln,N,V) = S if not c-r-learn(S,Ac,Ln,N,V) .

where the operator c-r-learn is declared and defined as follows:

op c-r-learn : Sys Acceptor Learner Num Val -> Bool

eq c-r-learn(S,Ac,Ln,N,V) = ((l-l(S,Ln) = l0)

and member(learn-m(Ac,N,V),nw(S))) .

The transition r-learn only updates the list of learner list-Ln by using the func-
tion updateTri. It can be updated the list when the network nw has a learn message
learn-m(Ac,N,V) and when the value V is not equal to null.

The set of equations for decide is as follows:

eq p-l(decide(S,Ln),Pp) = p-l(S,Pp) .

eq a-l(decide(S,Ln),Ac) = a-l(S,Ac) .

ceq l-l(decide(S,Ln1),Ln) = (if Ln1 = Ln then l1 else l-l(S,Ln) fi)

if c-decide(S,Ln1) .

eq nw(decide(S,Ln)) = nw(S) .

eq unique(decide(S,Ln),Pp) = unique(S,Pp) .

eq vClient(decide(S,Ln),Pp) = vClient(S,Pp) .

eq list-Ld(decide(S,Ln),Pp) = list-Ld(S,Pp) .

eq n-p(decide(S,Ln),Ac) = n-p(S,Ac) .

eq n-a(decide(S,Ln),Ac) = n-a(S,Ac) .

eq v-a(decide(S,Ln),Ac) = v-a(S,Ac) .

eq list-Ln(decide(S,Ln1),Ln) = list-Ln(S,Ln) .

ceq v-d(decide(S,Ln1),Ln) = (if (Ln1 = Ln) then decideV(list-Ln(S,Ln1))

else v-d(S,Ln) fi) if c-decide(S,Ln1) .

ceq decide(S,Ln) = S if not c-decide(S,Ln) .

where the operator c-decide is declared and defined as follows:

op c-decide : Sys Learner -> Bool

eq c-decide(S,Ln) = ((l-l(S,Ln) = l0)

and ((majN(ctoPL(list-Ln(S,Ln))) * 2) >= (nAcceptor + 1))

and not(decideV(list-Ln(S,Ln)) = null)) .
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The transition decide is very important part of the Paxos system because it has a re-
sponsible to decide the same value for all learners. Each learner decides a value when the
majority of acceptors agree on the same value and the decided value is not null. That can
be represented by a function ((majN(ctoPL(list-Ln(S,Ln))) * 2) >= (nAcceptor + 1))

and not(decideV(list-Ln(S,Ln)) = null). If the condition is satisfied, learner decides
a value. Both functions majN and decideV are in a module PAIRLIST.

The module PAIRLIST was defined as follows:

mod! PAIRLIST {

pr(LIST(X <= TRIV2PAIR)

* {sort List -> PairList,

op nil -> pnil})

pr(TRILIST)

-- observers

op decideV : TriList -> Val

op ctoPL : TriList -> PairList

op incV : Val PairList -> PairList

op majV : PairList -> Val

op majN : PairList -> Nat

-- variables

vars Ac Ac1 : Acceptor

vars V V1 : Val

vars Nu : Num

vars N N1 : Nat

var PL : PairList

vars TL : TriList

-- equations

eq decideV(TL) = majV(ctoPL(TL)) .

eq ctoPL(tnil) = pnil .

eq ctoPL(< Ac , Nu , V > | TL) = incV(V,ctoPL(TL)) .

eq incV(V,pnil) = < V , 1 > | pnil .

eq incV(V,< V , N > | PL) = < V , N + 1 > | PL .

ceq incV(V,< V1 , N > | PL) = < V1 , N > | incV(V,PL) if not(V = V1) .

eq majV(pnil) = null .

eq majV(< V , N > | pnil) = V .

ceq majV(< V , N > | < V1 , N1 > | PL) = majV(< V , N > | PL)

if (N > N1) .

ceq majV(< V , N > | < V1 , N1 > | PL) = majV(< V1 , N1 > | PL)

if (N <= N1) .

eq majN(pnil) = 0 .
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eq majN(< V , N > | pnil) = N .

ceq majN(< V , N > | < V1 , N1 > | PL) = majN(< V , N > | PL)

if (N > N1) .

ceq majN(< V , N > | < V1 , N1 > | PL) = majN(< V1 , N1 > | PL)

if (N <= N1) .

Function ctoPL do changing the TriList to PairList by only keeping the value V from
the element <Ac,N,V> in the list of triple, and counts the number of occurrences of value
V in the list by the auxiliary function incV. The result of ctoPL is the list of pair where
the element of list consists of two values < V,N >; V for value, and N for number of
occurrences of V . For example, if there are five acceptors and three of them decide the
same value V 1, others decides value V 2, and all acceptors sent learn message to a learner.
The result of function ctoPL by input is the list of learner is <V1,3> | <V2,2> | pnil

The function majV and majN are similar. Both of them take the list of pair (PairList)
as input, do the same algorithm; finding the maximum occurrences of value V , but return
different result. The function majV returns the value V , however majN returns the number
N of occurrences of V . So, the function decideV returns the value with the number of
occurrences of value V is the highest in list of pair.

One of properties that Paxos should enjoy is the agreement property, which can be
expressed as an invariant wrt SPaxos. The state predicate concerned is denoted by the
operator declared and defined as follows:

op inv1 : Sys Learner Learner -> Bool

eq inv1(S,Ln,Ln1) = (not(v-d(S,Ln) = null) and not(v-d(S,Ln1) = null)

implies v-d(S,Ln) = v-d(S,Ln1)) .

To verify that Paxos enjoys the agreement property, all we have to do is to prove that
(∀l, l1 : Learner) inv1(s, l, l1) is an invariant wrt SPaxos.

We suppose that SPaxos is specified as a module PAXOS, and operators denoting state
predicate such as inv1 are declared in a module PRED-PAXOS that imports PAXOS (see in
Appendix A).

4.3 Verification

4.3.1 Verification by Proof Scores

In the OTS/CafeOBJ method, invariants are proved by writing proof scores in CafeOBJ
and executing them with its processor. We use the proof of (∀s : Sys)(∀l, l1 : Learner)
inv1(s, l, l1) as a case study to describe proof scores in the OTS/CafeOBJ method.

We do a proof score on Paxos specification (see in Appendix B). We prove the invariant
inv1(s, l, l1) by structural induction on s. To do the prove by induction, we need to split
into two cases; base case and induction case.

Base case, a state s takes place by an initial state init, and we do a proof score as
follows:
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--> base case

open INV1

-- arbitrary objects

ops l l1 : -> Learner .

red inv1(init,l,l1) .

close

Since, the initial value v-d for both l and l1 are null. CafeOBJ returns true for the
initial case.

Induction case, we assume the induction hypothesis that an invariant (inv1(s, l, l1))
is true in the state s, then we do a proof score for a successor state of each transition;
bc-prepare, r-promise, bc-accept, timeout, r&s-prepare, r&s-learn, r-learn, and
decide. All transitions except for a transitiondecide, CafeOBJ easily returns true because
the predicate inv1 is related to v-d of learner which will have a value after transition
decide. Some examples of proof score of the transition bc-prepare and r&s-promise are
shown as below:

--> bc-prepare

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op pp : -> Proposer .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(bc-prepare(s,pp),l,l1) .

close

--> r&s-promise

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op pp : -> Proposer .

op ac : -> Acceptor .

op n : -> Num .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(r&s-promise(s,ac,pp,n),l,l1) .

close

where inv1(bc-prepare(s,pp),l,l1) and inv1(r&s-promise(s,ac,pp,n),l,l1) de-
note the formula to prove in the induction case, and inv1(s,l,l1) denotes instances of
the induction hypothesis used.
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While the transition decide has to do a case analysis by dividing into seven sub-cases
as follows:

1. c-decide(s,l2) = true, l = l2, l1 = l2

2. c-decide(s,l2) = true, l = l2, (l1 = l2) = false, v-d(s,l1) = null

3. c-decide(s,l2) = true, l = l2, (l1 = l2) = false,

(v-d(s,l1) = null) = false

4. c-decide(s,l2) = true, (l = l2) = false, l1 = l2, v-d(s,l) = null

5. c-decide(s,l2) = true, (l = l2) = false, l1 = l2,

(v-d(s,l) = null) = false

6. c-decide(s,l2) = true, (l = l2) = false, (l1 = l2) = false

7. c-decide(s,l2) = false

where s, l, l1 and l2 are constants of Sys, Learner, Learner and Learner, respectively.
s is used to denote an arbitrary state, and l, l1 and l2 for arbitrary learners. Sub-cases
3 and 5 need to use other state predicates as assumptions. Other state predicates are
denoted by the operators declared and defined as follows:

op inv2 : Sys Learner Learner -> Bool

eq inv2(S,L,L1) = ((((majN(ctoPL(list-Ln(S,L))) * 2) >= (nAcceptor + 1))

and ((majN(ctoPL(list-Ln(S,L1))) * 2) >= (nAcceptor + 1)))

implies majV(ctoPL(list-Ln(S,L))) = majV(ctoPL(list-Ln(S,L1)))) .

op inv3 : Sys Learner -> Bool

eq inv3(S,L) = (not(v-d(S,L) = null)

implies ((majN(ctoPL(list-Ln(S,L))) * 2) >= (nAcceptor + 1))) .

op inv4 : Sys Learner -> Bool

eq inv4(S,L) = (not(v-d(S,L) = null)

implies majV(ctoPL(list-Ln(S,L))) = v-d(S,L)) .

For example, proving the sub-cases 3, we apply these three state predicates as follows:

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

-- variables

var S : Sys

vars L L1 : Learner

-- assumptions

eq l-l(s,l2) = l0 .

eq ((majN(ctoPL(list-Ln(s,l2))) * 2) >= (nAcceptor + 1)) = true .

eq (majV(ctoPL(list-Ln(s,l2))) = null) = false .
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eq l = l2 .

eq (l1 = l2) = false .

eq (v-d(s,l1) = null) = false .

-- inv2

ceq majV(ctoPL(list-Ln(s,l2))) = majV(ctoPL(list-Ln(s,l1)))

if (((majN(ctoPL(list-Ln(s,l2))) * 2) >= (nAcceptor + 1))

and ((majN(ctoPL(list-Ln(s,l1))) * 2) >= (nAcceptor + 1))) .

-- inv3

ceq ((majN(ctoPL(list-Ln(s,l1))) * 2) >= (nAcceptor + 1)) = true

if not(v-d(s,l1) = null) .

-- inv4

ceq majV(ctoPL(list-Ln(s,l1))) = v-d(s,l1) if not(v-d(s,l1) = null) .

-- |=

-- check if the predicate is true.

red inv1(decide(s,l2),l,l1) .

close

by replacing variables S, L and L1 with the constants s, l2 and l1 in inv2(S,L,L1),
respectively, and also replacing variables S and L with constants s and l1 in inv3(S,L)

and inv4(S,L), respectively. The result of reduction inv1(decide(s,l2),l,l1) is true.
Proving of inv1(S,L,L1) is not successful since proving inv1(S,L,L1) needs three

more invariants (inv2, inv3, and inv4). So, we need to continue proving these three
invariants by doing proof scores. If we successfully prove them, in that case we can say
that the inv1(S,L,L1) (agreement property) holds for Paxos.

4.3.2 Verification by CITP

Besides proof scores in CafeOBJ, we also do proving of agreement property of Paxos in
CITP (see in Appendix E). To do that we specified the Paxos in maude (see in Apeendix
D) which is similar to implementing in OTS/CafeOBJ.

To do a proof in CITP, firstly we set an invariant of agreement as a goal.

(goal GOAL |- ceq (v-d(S:Sys,L:Learner) ~ v-d(S:Sys,L1:Learner))

= true if (v-d(S:Sys,L:Learner) ~ null) = false

/\ (v-d(S:Sys,L1:Learner) ~ null) = false ; )

To discharge the goal, we need other invariants as we used in proof scores which defined
in the module as follows:

(fth GOAL is

inc PAXOS .

var S : Sys .

vars L L1 : Learner .

ceq [lemma1] : majV(ctoPL(list-Ln(S,L))) = majV(ctoPL(list-Ln(S,L1)))
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if ((majN(ctoPL(list-Ln(S,L))) * 2) >= (nAcceptor + 1)) = true

/\ ((majN(ctoPL(list-Ln(S,L1))) * 2) >= (nAcceptor + 1)) = true [nonexec] .

ceq [lemma2] : ((majN(ctoPL(list-Ln(S,L))) * 2) >= (nAcceptor + 1)) = true

if (v-d(S,L) ~ null) = false [nonexec] .

ceq [lemma3] : majV(ctoPL(list-Ln(S,L))) = v-d(S,L)

if (v-d(S,L) ~ null) = false [nonexec] .

endfth)

where inv2, inv3 and inv4 are considered in CITP as lemma1, lemma2 and lemma3,
respectively.

Figure 4.4: Sub-goal of transition decide

We use induction technique to prove by setting induction on S (set ind on S:Sys .).
Then use command to do the induction (apply SI .). CITP returns the nine sub-goals
since there are nine transition in Paxos including an initial state.
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As the same in proof scores in OTS/CafeOBJ, we have to use lemma1, lemma2 and
lemma3 to discharge the sub-goal of transition decide in Paxos. For example, in the
Figure 4.4

We apply these three lemmas to this sub-goal by entering the constant to each variable
as follows:

(init lemma1 by (S:Sys <- x#1 ;) (L:Learner <- z#2 ;) (L1:Learner <- L1#4 ;) .)

(init lemma2 by (S:Sys <- x#1 ;) (L:Learner <- L1#4 ;) .)

(init lemma3 by (S:Sys <- x#1 ;) (L:Learner <- L1#4 ;) .)

To apply lemma1 to discharge a sub-goal, we use the command init lemma1 to add
lemma1 as assumption by replacing all variables of S, L and L1 with the constant x#1, z#2
and L1#4, respectively.

To add lemma2 and lemma3 as assumptions, we do the same as lemma1. Then we apply
the reduction (apply RD .) to prove this sub-goal. The CITP returns that this sub-goal
is proved.

Except the transition decide, others can easily prove by using the basic commands in
CITP.

4.4 Result of Verification

To do verification, we sometimes need to look back and check the specification whether it
is correct or not. After re-checking on specification many times, we incidentally found a
counterexample for our Paxos model. The counterexample shows the situation that there
are two leader proposers in the system and they compete to send their prepare message.
Since the asynchronous system, messages can take arbitrary long to be delivered. So there
is a situation that two learners can decide different values.

The counterexample begins with Leader 1 sends Prepare < 1 > to all acceptors (figure
4.5). Each acceptor checks the condition between Np and NuLeader1

= 1. However, the
initial value ofNp andNa are 0, and Va is null, so that each acceptor replies the Promise <
0, null > to Leader 1 but these promise messages take arbitrary long and have not been
received by Leader 1. Also timeout of Leader 1 occurs and starts a new round.

Since Paxos can have multiple leaders, and in figure 4.6 a new leader proposer (Leader 2)
is active and sends Prepare < 2 > to all acceptors. Since acceptors have not received any
accept message yet, they also reply Promise < 0, null > to Leader 2. After considering
the value among promise messages, Leader 2 sends the value from its client V 2 to all
acceptors. Acceptors update their local values and sends Learn < V 2 > to all learners.
In this case, only Learner 1 receives the learn messages and decide a consensus value
V 2. Because of message delay, Learner 2 have not received the learn messages from all
acceptors.

Figure 4.7 shows that after timeout, Leader 1 selects new unique number (3) and sends
it to all acceptors again. At this time, all acceptors have already accepted the accept
message from Leader 2, so they reply Promise < 2, V 2 > to Leader 1 but Leader 1 have
not received these promise messages yet.
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Leader 1

Acceptor 1

Acceptor 2

Acceptor 3

Learner 1

Leader 2

<1>

<1>

<1>

<0,null>

<0,null>

<0,null>

Learner 2

Figure 4.5: Conterexample of agreement property1

Leader 1

Acceptor 1

Acceptor 2

Acceptor 3

Learner 1

Leader 2

Learner 2

<2>

<2>

<2> <0,null>

<0,null>

<0,null>

<2,V2>

<2,V2>

<2,V2>

<V2>

<V2>

<V2>

v-d = V2

Figure 4.6: Conterexample of agreement property2
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Leader 1

Acceptor 1

Acceptor 2

Acceptor 3

Learner 1

Leader 2

<3>

<3>

<3>

<2,V2>

<2,V2>

<2,V2>

Learner 2

Figure 4.7: Conterexample of agreement property3

Leader 1

Acceptor 1

Acceptor 2

Acceptor 3

Learner 1

Leader 2

Learner 2

<0,null>

<0,null>

<0,null> <3,V1>

<3,V1>

<3,V1>

<V1>

<V1>

<V1>

v-d = V1

v-d = V2

Figure 4.8: Conterexample of agreement property4
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Since Paxos is asynchronous model, message from previous round can be received in
these round. In figure 4.8, Leader 1 receives Promise < 0, null > from previous round,
then it selects the value from its client V 1 because all values in the promise messages are
null. It sends Accept < 3, V 1 > to all acceptors, and acceptors receive and update their
local value since Nu = 3 greater than Np = 2. Acceptors broadcast the new decided value
V 1 to all learners. At this time, only Learner 2 receives and decides the consensus value
V 1 which the value V 1 can be different from V 2 in Learner 1. Therefore, the agreement
property that all learners decide the same value is violated.

The problem is that the content of promise message do not have the round number
value to tell which round of the message sending by acceptors. So, we have to re-check
with the original Paxos algorithm in [Lam01a].

The Paxos algorithm in [Lam01a] did not describe that the promise message should
have one more parameter of Np in both main part of Paxos algorithm and proof. It
only describes mostly the end of paper that “The Paxos consensus algorithm is precisely
the one described above, where requests and responses are sent as ordinary messages.
(Response messages are tagged with the corresponding proposal number to prevent con-
fusion.)”. Moreover, we found another paper [MM13] describes the pseudocode (Figure
4.9) of Paxos algorithm that promise message consists of three parameters (rnd, vrnd,
and vval which are Np, Na, and Va, respectively).

Therefore, we modified our model that promise message consists of three values Promise <
Np, Na, Va >, and continue to do the verification.

Figure 4.9: Pseudocode of Paxos proposer
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Chapter 5

Conclusion and Future work

5.1 Conclusion

Proof score and CITP are some techniques doing the theorem prover. The verification
will be correct when we have the correct specification. However, specification is made by
human which easily cause some bugs or errors, and when doing a proof, the proof may
not be correct. So, in this section we describe the problem of conducting Paxos. Then
conclude our research and plan for continue proving in future work section.

5.1.1 Research Problem

The specification may not correct since made by human, and may cause some errors in
the verification part. Once the specification is made, human sometimes does not check
it carefully, and it is probably that some part of specification are not correct. They may
do not know that their specification are wrong if thier verification part do not say any
errors, and it seems that lemmas (from doing verification) are true. One way of checking
the correctness of these lemmas is using another tool for automatically checking. In our
case, we finished proving the agreement property by getting two lemmas after doing a
proof score in OTS/CafeOBJ, and these two lemmas seems correct. However, we did
double check in CITP and know that just two lemmas do not enough to verify agreement
since our specification of OTS/CafeOBJ is not correct. Therefore, we start doing proof
again after fixing some mistakes in the specification, and we currently get three lemmas
to prove the agreement. We also have to prove these three lemmas. However, when
we re-checked the specification, we found a counterexample that the agreement does not
hold for our model. However, in the mostly final part of the paper of Paxos in [Lam01a]
described only a sentence covered with parenthesis that “Response messages are tagged
with the corresponding proposal number to prevent confusion.”. It can be referred that
promise message should include Np when it replies to leader proposer. So our model,
which consists of two parameters, should have one more to correctly prove the Paxos
enjoys the agreement property.
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5.1.2 Research Conclusion

In this research, we did surveying of formal verification of LastVoting algorithm (simi-
lar with Paxos algorithm) in the paper [TS11]. The authors in that paper proposed a
verification approach for asynchronous consensus algorithms by using the model checking
technique on single phases of the consensus algorithms. We only focused on the LastVot-
ing algorithm (see in Appendix C) consisting of four rounds in each phase. They used
the notion of round-based model and ho-model [CBS09] that only processes can receive
message within that round, otherwise the processes ignore the messages come from other
rounds. They also used some notations to create the formula of agreement property in
LastVoting algorithm and only concern the one-phase executions of the algorithm to re-
duce the model checking problem to the satisfiability problem. They used Yices [DdM06]
(Satisfiability Modulo Theories solver) to check the satisfiability of agreement formula.
Since verification by model checking must traverse in to a state space which can cause
the state exploded. However, their techniques can use bounded model checking which
bound some values, and the value that they bounded can only checked the agreement and
termination properties up to around 10 processes.

Besides doing a survey, we conducted the Paxos model in CafeOBJ in OTS style and
maude, and did some proof scores and CITP to check whether or not the agreement
property holds for Paxos. We use the notion of over approximation to model the Paxos.
For example, we did not implement the message loss in the network. In our specification
message loss can be act as the process did not see the message in the network which can
be implemented by using the notion of multi-set of network.

We considered agreement property as a safety property which can be refer to an invari-
ant property. We constructed the state predicate of agreement and prove it by proof score
of OTS/CafeOBJ. However, to prove this predicate, we need three lemmas which also can
be considered as other state predicate of invariants. The agreement cannot be proved
unless we successfully proved other three state predicates. Moreover, we used another
tool (CITP) for double checking our proving.

Now we currently have five lemmas for proving agreement property. Since doing the
verification, we sometimes look back and check the correctness of specification. After
re-checking the specification, we found a counterexample that the agreement property
does not hold based on our specification. However, our model is slightly different from
the original Paxos in [Lam01a]. Since this paper did not describe in more details of
the content of messages especially the promise message in both the main part of Paxos
algorithm and some proofs, it implicitly described in the mostly final part of the paper
with a sentence covered with parenthesis. Therefore, we need to modified our specification
and do the verification again.

5.2 Future works

We will revise the [Lam01a] paper again, then modified the specification and do the
verification to prove the agreement and conjecture lemmas to help verification. Some
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lemmas are not easy to get it without better understanding of the algorithm and some
mathematics, while some lemmas can easily get during the proof. Therefore, finding
lemmas may take several days or weeks to found it.

After successfully doing proof of agreement, we continue to prove another safety prop-
erty (validity); any consensus value comes from any proposed value. We do the prove by
proof score in OTS/CafeOBJ and CITP in maude for checking, and do some survey of
verification of other researches of consensus algorithm.

49



Appendix A

Paxos Specification in OTS/CafeOBJ

mod! MULTISET(X :: TRIV) {

[Elt.X < MSet]

op empty : -> MSet {constr}

op __ : MSet MSet -> MSet {constr comm assoc id: empty}

}

mod! VALUE {

pr(NAT)

[ValConst < Val]

op null : -> ValConst {constr}

op _=_ : Val Val -> Bool {comm}

vars N N1 : Nat

vars V V1 : Val

eq (V = V) = true .

}

mod! NUM {

pr(NAT * {sort Nat -> Num})

op _=_ : Num Num -> Bool {comm}

vars N N1 : Num

eq (N = N) = true .

eq (N = N1) = (N <= N1 and N >= N1) .

}

mod! LIST(X :: TRIV) {

pr(NAT)
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[List]

op nil : -> List {constr}

op _|_ : Elt.X List -> List {constr}

op _@_ : List List -> List

op len : List -> Nat

var E : Elt.X

vars L L1 L2 : List

-- _@_

eq nil @ L2 = L2 .

eq (E | L1) @ L2 = E | (L1 @ L2) .

-- len

eq len(nil) = 0 .

eq len(E | L) = 1 + len(L) .

}

mod! PROPOSER {

pr(NAT)

pr(NUM)

pr(VALUE)

[Proposer]

op PpID : -> Nat {constr}

op vc : -> Val {constr}

op _=_ : Proposer Proposer -> Bool {comm}

vars N N1 : Nat

vars P P1 : Proposer

eq (P = P) = true .

}

mod! ACCEPTOR {

pr(NAT)

[Acceptor]

op _=_ : Acceptor Acceptor -> Bool {comm}

vars N N1 : Nat

vars A A1 : Acceptor

eq (A = A) = true .

}
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mod! LEARNER {

pr(NAT)

[Learner]

op _=_ : Learner Learner -> Bool {comm}

vars N N1 : Nat

vars L L1 : Learner

eq (L = L) = true .

}

mod! MESSAGE {

pr(PROPOSER)

pr(ACCEPTOR)

pr(LEARNER)

pr(NUM)

pr(VALUE)

[Msg]

-- operators

op prepare -m : Proposer Num -> Msg {constr}

op promise -m : Acceptor Proposer Num Val -> Msg {constr}

op accept -m : Proposer Num Val -> Msg {constr}

op learn -m : Acceptor Num Val -> Msg {constr}

op _=_ : Msg Msg -> Bool {comm}

-- variables

vars N N1 : Num

vars V V1 : Val

vars Pp Pp1 : Proposer

vars Ac Ac1 : Acceptor

vars Ln Ln1 : Learner

-- equations

eq (prepare -m(Pp ,N) = prepare -m(Pp1 ,N1)) = ((Pp = Pp1) and (N =

N1)) .

eq (promise -m(Ac ,Pp ,N,V) = promise -m(Ac1 ,Pp1 ,N1 ,V1))

= ((Ac = Ac1) and (Pp = Pp1) and (N = N1) and (V = V1)) .

eq (accept -m(Pp ,N,V) = accept -m(Pp1 ,N1 ,V1))

= ((Pp = Pp1) and (N = N1) and (V = V1)) .

eq (learn -m(Ac ,N,V) = learn -m(Ac1 ,N1 ,V1))
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= ((Ac = Ac1) and (N = N1) and (V = V1)) .

eq (prepare -m(Pp ,N) = promise -m(Ac ,Pp1 ,N1 ,V)) = false .

eq (prepare -m(Pp ,N) = accept -m(Pp1 ,N1 ,V)) = false .

eq (prepare -m(Pp ,N) = learn -m(Ac ,N1 ,V)) = false .

eq (promise -m(Ac ,Pp ,N,V) = accept -m(Pp1 ,N1 ,V1)) = false .

eq (promise -m(Ac ,Pp ,N,V) = learn -m(Ac1 ,N1 ,V1)) = false .

eq (accept -m(Pp ,N,V) = learn -m(Ac ,N1 ,V1)) = false .

}

mod! TRI -ARY {

pr(ACCEPTOR)

pr(NUM)

pr(VALUE)

[Tri]

op <_,_,_> : Acceptor Num Val -> Tri {constr}

}

view TRIV2TRI -ARY from TRIV to TRI -ARY {

sort Elt -> Tri }

mod! TRILIST {

pr(LIST(X <= TRIV2TRI -ARY) * {sort List -> TriList , op nil ->

tnil})

op updateTri : Tri TriList -> TriList

op findV : TriList -> Val

vars Ac Ac1 : Acceptor

vars N N1 : Num

vars V V1 V2 : Val

vars TL TL1 : TriList

-- updateTri

eq updateTri(< Ac , N , V >,tnil) = < Ac , N , V > | tnil .

ceq updateTri(< Ac , N , V >,< Ac , N1 , V1 > | TL)

= < Ac , N , V > | TL if N >= N1 .

ceq updateTri(< Ac , N , V >,< Ac , N1 , V1 > | TL)
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= < Ac , N1 , V1 > | TL if N < N1 .

ceq updateTri(< Ac , N , V >,< Ac1 , N1 , V1 > | TL)

= < Ac1 , N1 , V1 > | updateTri(< Ac , N , V >,TL) if not(Ac

= Ac1) .

-- findV

eq findV(tnil) = null .

eq findV(< Ac , N , V > | tnil) = V .

ceq findV(< Ac , N , V > | < Ac1 , N1 , V1 > | TL)

= findV(< Ac , N , V > | TL) if N >= N1 .

ceq findV(< Ac , N , V > | < Ac1 , N1 , V1 > | TL)

= findV(< Ac1 , N1 , V1 > | TL) if N < N1 .

}

mod! PAIR {

pr(NAT)

pr(VALUE)

[Pair]

op <_,_> : Val Nat -> Pair {constr}

}

view TRIV2PAIR from TRIV to PAIR {

sort Elt -> Pair }

mod! PAIRLIST {

-- pr(LIST(X <= TRIV2PAIR) * {sort List -> PairList , op nil ->

pnil})

pr(LIST(X <= TRIV2PAIR) * {sort List -> PairList , op nil -> pnil

})

pr(TRILIST)

op decideV : TriList -> Val

op ctoPL : TriList -> PairList

op incV : Val PairList -> PairList

op majV : PairList -> Val

op majN : PairList -> Nat
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vars Ac Ac1 : Acceptor

vars V V1 : Val

vars Nu : Num

vars N N1 : Nat

var PL : PairList

vars TL TL1 : TriList

eq decideV(TL) = majV(ctoPL(TL)) .

eq ctoPL(tnil) = pnil .

eq ctoPL(< Ac , Nu , V > | TL) = incV(V,ctoPL(TL)) .

eq incV(V,pnil) = < V , 1 > | pnil .

eq incV(V,< V , N > | PL) = < V , N + 1 > | PL .

ceq incV(V,< V1 , N > | PL) = < V1 , N > | incV(V,PL) if not(V

= V1) .

eq majV(pnil) = null .

eq majV(< V , N > | pnil) = V .

ceq majV(< V , N > | < V1 , N1 > | PL) = majV(< V , N > | PL)

if (N > N1) .

ceq majV(< V , N > | < V1 , N1 > | PL) = majV(< V1 , N1 > | PL)

if (N <= N1) .

eq majN(pnil) = 0 .

eq majN(< V , N > | pnil) = N .

ceq majN(< V , N > | < V1 , N1 > | PL) = majN(< V , N > | PL)

if (N > N1) .

ceq majN(< V , N > | < V1 , N1 > | PL) = majN(< V1 , N1 > | PL)

if (N <= N1) .

}

view TRIV2MESSAGE from TRIV to MESSAGE {

sort Elt -> Msg }

mod! NETWORK {
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pr(MULTISET(X <= TRIV2MESSAGE)

* {sort MSet -> Network ,

op empty -> noMsg} )

-- operator

op member : Msg Network -> Bool

-- variables

var NW : Network

vars M M1 : Msg

-- equations

eq member(M,noMsg) = false .

eq member(M,M NW) = true .

ceq member(M,M1 NW) = member(M,NW) if not(M = M1) .

}

mod! LABEL {

[LabelConst < Label]

ops p0 p1 p2 a0 a1 a2 l0 l1 : -> LabelConst

pred (_=_) : Label Label {comm} .

var L : Label

eq (L = L) = true .

vars Lc1 Lc2 : LabelConst

eq (Lc1 = Lc2) = (Lc1 == Lc2) .

}

mod* PAXOS {

pr(NETWORK)

pr(LABEL)

pr(TRILIST)

pr(PAIRLIST)

[Sys]

-- any initial state

op init : -> Sys

-- constant value

op nAcceptor : -> Nat

op nProcess : -> Num

-- observations

op p-l : Sys Proposer -> Label
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op a-l : Sys Acceptor -> Label

op l-l : Sys Learner -> Label

op nw : Sys -> Network

op unique : Sys Proposer -> Num

op vClient : Sys Proposer -> Val

op list -Ld : Sys Proposer -> TriList

op n-p : Sys Acceptor -> Num

op n-a : Sys Acceptor -> Num

op v-a : Sys Acceptor -> Val

op list -Ln : Sys Learner -> TriList

op v-d : Sys Learner -> Val

-- actions

op bc -prepare : Sys Proposer -> Sys {constr}

op r-promise : Sys Proposer Acceptor Num Val -> Sys {constr}

op bc -accept : Sys Proposer -> Sys {constr}

op timeout : Sys Proposer -> Sys {constr}

op r&s-promise : Sys Acceptor Proposer Num -> Sys {constr}

op r&s-learn : Sys Proposer Acceptor Num Val -> Sys {constr}

op r-learn : Sys Acceptor Learner Num Val -> Sys {constr}

op decide : Sys Learner -> Sys {constr}

-- initial

eq p-l(init ,Pp:Proposer) = p0 .

eq a-l(init ,Ac:Acceptor) = a0 .

eq l-l(init ,Ln:Learner) = l0 .

eq nw(init) = noMsg .

eq unique(init ,Pp:Proposer) = PpID .

eq vClient(init ,Pp:Proposer) = vc .

eq list -Ld(init ,Pp:Proposer) = tnil .

eq n-p(init ,Ac:Acceptor) = 0 .

eq n-a(init ,Ac:Acceptor) = 0 .

eq v-a(init ,Ac:Acceptor) = null .

eq list -Ln(init ,Ln:Learner) = tnil .

eq v-d(init ,Ln:Learner) = null .

-- variables
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var S : Sys

vars Pp Pp1 : Proposer

vars Ac Ac1 : Acceptor

vars Ln Ln1 : Learner

var N : Num

var V : Val

-- Proposer

-- bc-prepare

op c-bc -prepare : Sys Proposer -> Bool

eq c-bc -prepare(S,Pp) = (p-l(S,Pp) = p0) .

ceq p-l(bc -prepare(S,Pp1),Pp) = (if Pp1 = Pp then p1 else p-l(S,

Pp) fi)

if c-bc -prepare(S,Pp1) .

eq a-l(bc -prepare(S,Pp),Ac) = a-l(S,Ac) .

eq l-l(bc -prepare(S,Pp),Ln) = l-l(S,Ln) .

ceq nw(bc -prepare(S,Pp)) = prepare -m(Pp ,unique(S,Pp)) nw(S)

if c-bc -prepare(S,Pp) .

eq unique(bc -prepare(S,Pp1),Pp) = unique(S,Pp) .

eq vClient(bc -prepare(S,Pp1),Pp) = vClient(S,Pp) .

eq list -Ld(bc -prepare(S,Pp1),Pp) = list -Ld(S,Pp) .

eq n-p(bc -prepare(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(bc -prepare(S,Pp),Ac) = n-a(S,Ac) .

eq v-a(bc -prepare(S,Pp),Ac) = v-a(S,Ac) .

eq list -Ln(bc -prepare(S,Pp),Ln) = list -Ln(S,Ln) .

eq v-d(bc -prepare(S,Pp),Ln) = v-d(S,Ln) .

ceq bc -prepare(S,Pp) = S if not c-bc -prepare(S,Pp) .

-- r-promise

op c-r-promise : Sys Proposer Acceptor Num Val -> Bool

eq c-r-promise(S,Pp ,Ac ,N,V) = ((p-l(S,Pp) = p1)

and (member(promise -m(Ac ,Pp ,N,V),nw(S)))) .

ceq p-l(r-promise(S,Pp1 ,Ac ,N,V),Pp) = (if Pp1 = Pp then p1 else

p-l(S,Pp) fi)

if c-r-promise(S,Pp1 ,Ac ,N,V) .
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eq a-l(r-promise(S,Pp ,Ac1 ,N,V),Ac) = a-l(S,Ac) .

eq l-l(r-promise(S,Pp ,Ac ,N,V),Ln) = l-l(S,Ln) .

eq nw(r-promise(S,Pp ,Ac ,N,V)) = nw(S) .

eq unique(r-promise(S,Pp1 ,Ac ,N,V),Pp) = unique(S,Pp) .

eq vClient(r-promise(S,Pp1 ,Ac ,N,V),Pp) = vClient(S,Pp) .

ceq list -Ld(r-promise(S,Pp1 ,Ac ,N,V),Pp)

= (if Pp1 = Pp then updateTri(< Ac , N , V >,list -Ld(S,Pp))

else list -Ld(S,Pp) fi) if c-r-promise(S,Pp1 ,Ac ,N,V) .

eq n-p(r-promise(S,Pp ,Ac1 ,N,V),Ac) = n-p(S,Ac) .

eq n-a(r-promise(S,Pp ,Ac1 ,N,V),Ac) = n-a(S,Ac) .

eq v-a(r-promise(S,Pp ,Ac1 ,N,V),Ac) = v-a(S,Ac) .

eq list -Ln(r-promise(S,Pp ,Ac ,N,V),Ln) = list -Ln(S,Ln) .

eq v-d(r-promise(S,Pp ,Ac ,N,V),Ln) = v-d(S,Ln) .

ceq r-promise(S,Pp ,Ac ,N,V) = S if not c-r-promise(S,Pp ,Ac ,N,V) .

-- bc-accept

op c-bc -accept : Sys Proposer -> Bool

eq c-bc -accept(S,Pp) = ((p-l(S,Pp) = p1)

and ((len(list -Ld(S,Pp)) * 2) >= (nAcceptor + 1))) .

ceq p-l(bc -accept(S,Pp1),Pp) = (if Pp1 = Pp then p2 else p-l(S,

Pp) fi)

if c-bc -accept(S,Pp1) .

eq a-l(bc -accept(S,Pp),Ac) = a-l(S,Ac) .

eq l-l(bc -accept(S,Pp),Ln) = l-l(S,Ln) .

ceq nw(bc -accept(S,Pp)) = accept -m(Pp ,unique(S,Pp),findV(list -Ld

(S,Pp))) nw(S)

if (c-bc -accept(S,Pp) and not(findV(list -Ld(S,Pp)) = null))

.

ceq nw(bc -accept(S,Pp)) = accept -m(Pp ,unique(S,Pp),vClient(S,Pp)

) nw(S)

if (c-bc -accept(S,Pp) and (findV(list -Ld(S,Pp)) = null)) .

eq unique(bc -accept(S,Pp1),Pp) = unique(S,Pp) .

eq vClient(bc -accept(S,Pp1),Pp) = vClient(S,Pp) .

ceq list -Ld(bc -accept(S,Pp1),Pp) = (if Pp1 = Pp then tnil else

list -Ld(S,Pp) fi)

if c-bc -accept(S,Pp1) .
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eq n-p(bc -accept(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(bc -accept(S,Pp),Ac) = n-a(S,Ac) .

eq v-a(bc -accept(S,Pp),Ac) = v-a(S,Ac) .

eq list -Ln(bc -accept(S,Pp),Ln) = list -Ln(S,Ln) .

eq v-d(bc -accept(S,Pp),Ln) = v-d(S,Ln) .

ceq bc -accept(S,Pp) = S if not c-bc -accept(S,Pp) .

-- timeout

op c-timeout : Sys Proposer -> Bool

eq c-timeout(S,Pp) = ((p-l(S,Pp) = p1) or (p-l(S,Pp) = p2)) .

ceq p-l(timeout(S,Pp1),Pp) = (if Pp1 = Pp then p0 else p-l(S,Pp)

fi)

if c-timeout(S,Pp1) .

eq a-l(timeout(S,Pp),Ac) = a-l(S,Ac) .

eq l-l(timeout(S,Pp),Ln) = l-l(S,Ln) .

eq nw(timeout(S,Pp)) = nw(S) .

ceq unique(timeout(S,Pp1),Pp) = (if Pp1 = Pp then (unique(S,Pp)

+ nProcess)

else unique(S,Pp) fi) if c-timeout(S,Pp1) .

eq vClient(timeout(S,Pp1),Pp) = vClient(S,Pp) .

ceq list -Ld(timeout(S,Pp1),Pp) = (if Pp1 = Pp then tnil else

list -Ld(S,Pp) fi)

if c-timeout(S,Pp1) .

eq n-p(timeout(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(timeout(S,Pp),Ac) = n-a(S,Ac) .

eq v-a(timeout(S,Pp),Ac) = v-a(S,Ac) .

eq list -Ln(timeout(S,Pp),Ln) = list -Ln(S,Ln) .

eq v-d(timeout(S,Pp),Ln) = v-d(S,Ln) .

ceq timeout(S,Pp) = S if not c-timeout(S,Pp) .

-- Acceptor

-- r&s-promise

op c-r&s-promise : Sys Proposer Acceptor Num -> Bool

eq c-r&s-promise(S,Pp ,Ac ,N) = (((a-l(S,Ac) = a0) or (a-l(S,Ac) =

a1)

or (a-l(S,Ac) = a2)) and member(prepare -m(Pp ,N),nw(S))) .
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eq p-l(r&s-promise(S,Ac ,Pp1 ,N),Pp) = p-l(S,Pp) .

ceq a-l(r&s-promise(S,Ac1 ,Pp ,N),Ac) = (if Ac1 = Ac then a1 else

a-l(S,Ac) fi)

if c-r&s-promise(S,Pp ,Ac1 ,N) .

eq l-l(r&s-promise(S,Ac ,Pp ,N),Ln) = l-l(S,Ln) .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = promise -m(Ac ,Pp ,n-a(S,Ac),v-a(S

,Ac)) nw(S)

if (c-r&s-promise(S,Pp ,Ac ,N) and N >= n-p(S,Ac)) .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = nw(S)

if (c-r&s-promise(S,Pp ,Ac ,N) and N < n-p(S,Ac)) .

eq unique(r&s-promise(S,Ac ,Pp1 ,N),Pp) = unique(S,Pp) .

eq vClient(r&s-promise(S,Ac ,Pp1 ,N),Pp) = vClient(S,Pp) .

eq list -Ld(r&s-promise(S,Ac ,Pp1 ,N),Pp) = list -Ld(S,Pp) .

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = (if Ac1 = Ac then N else n

-p(S,Ac) fi)

if (c-r&s-promise(S,Pp ,Ac1 ,N) and N >= n-p(S,Ac1)) .

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = n-p(S,Ac)

if (c-r&s-promise(S,Pp ,Ac1 ,N) and N < n-p(S,Ac1)) .

eq n-a(r&s-promise(S,Ac1 ,Pp ,N),Ac) = n-a(S,Ac) .

eq v-a(r&s-promise(S,Ac1 ,Pp ,N),Ac) = v-a(S,Ac) .

eq list -Ln(r&s-promise(S,Ac ,Pp ,N),Ln) = list -Ln(S,Ln) .

eq v-d(r&s-promise(S,Ac ,Pp ,N),Ln) = v-d(S,Ln) .

ceq r&s-promise(S,Ac ,Pp ,N) = S if not c-r&s-promise(S,Pp ,Ac ,N) .

-- r&s-learn

op c-r&s-learn : Sys Proposer Acceptor Num Val -> Bool

eq c-r&s-learn(S,Pp ,Ac ,N,V) = (((a-l(S,Ac) = a1) or (a-l(S,Ac)

= a2))

and member(accept -m(Pp ,N,V),nw(S))) .

eq p-l(r&s-learn(S,Pp1 ,Ac ,N,V),Pp) = p-l(S,Pp) .

ceq a-l(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = (if Ac1 = Ac then a2 else

a-l(S,Ac) fi)

if(c-r&s-learn(S,Pp ,Ac1 ,N,V)) .

eq l-l(r&s-learn(S,Pp ,Ac ,N,V),Ln) = l-l(S,Ln) .

ceq nw(r&s-learn(S,Pp ,Ac ,N,V)) = learn -m(Ac ,N,V) nw(S)
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if (c-r&s-learn(S,Pp ,Ac ,N,V) and N >= n-p(S,Ac)) .

ceq nw(r&s-learn(S,Pp ,Ac ,N,V)) = nw(S)

if (c-r&s-learn(S,Pp ,Ac ,N,V) and N < n-p(S,Ac)) .

eq unique(r&s-learn(S,Pp1 ,Ac ,N,V),Pp) = unique(S,Pp) .

eq vClient(r&s-learn(S,Pp1 ,Ac ,N,V),Pp) = vClient(S,Pp) .

eq list -Ld(r&s-learn(S,Pp1 ,Ac ,N,V),Pp) = list -Ld(S,Pp) .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = (if Ac1 = Ac then N else n

-p(S,Ac) fi)

if (c-r&s-learn(S,Pp ,Ac1 ,N,V) and N >= n-p(S,Ac1)) .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-p(S,Ac)

if (c-r&s-learn(S,Pp ,Ac1 ,N,V) and N < n-p(S,Ac1)) .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = (if Ac1 = Ac then N else n

-a(S,Ac) fi)

if (c-r&s-learn(S,Pp ,Ac1 ,N,V) and N >= n-p(S,Ac1)) .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-a(S,Ac)

if (c-r&s-learn(S,Pp ,Ac1 ,N,V) and N < n-p(S,Ac1)) .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = (if Ac1 = Ac then V else v

-a(S,Ac) fi)

if (c-r&s-learn(S,Pp ,Ac1 ,N,V) and N >= n-p(S,Ac1) and not(V

= v-a(S,Ac))) .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = (if Ac1 = Ac then V else v

-a(S,Ac) fi)

if (c-r&s-learn(S,Pp ,Ac1 ,N,V) and N >= n-p(S,Ac1) and V = v-

a(S,Ac)) .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = v-a(S,Ac)

if (c-r&s-learn(S,Pp ,Ac1 ,N,V) and N < n-p(S,Ac1)) .

eq list -Ln(r&s-learn(S,Pp ,Ac ,N,V),Ln) = list -Ln(S,Ln) .

eq v-d(r&s-learn(S,Pp ,Ac ,N,V),Ln) = v-d(S,Ln) .

ceq r&s-learn(S,Pp ,Ac ,N,V) = S if not c-r&s-learn(S,Pp ,Ac ,N,V) .

-- Learner

-- c-r-learn

op c-r-learn : Sys Acceptor Learner Num Val -> Bool

eq c-r-learn(S,Ac ,Ln ,N,V) = ((l-l(S,Ln) = l0)

and member(learn -m(Ac ,N,V),nw(S))) .

eq p-l(r-learn(S,Ac ,Ln ,N,V),Pp) = p-l(S,Pp) .
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eq a-l(r-learn(S,Ac1 ,Ln ,N,V),Ac) = a-l(S,Ac) .

ceq l-l(r-learn(S,Ac ,Ln1 ,N,V),Ln) = (if Ln1 = Ln then l0 else l-

l(S,Ln) fi)

if c-r-learn(S,Ac ,Ln1 ,N,V) .

eq nw(r-learn(S,Ac ,Ln ,N,V)) = nw(S) .

eq unique(r-learn(S,Ac ,Ln ,N,V),Pp) = unique(S,Pp) .

eq vClient(r-learn(S,Ac ,Ln ,N,V),Pp) = vClient(S,Pp) .

eq list -Ld(r-learn(S,Ac ,Ln ,N,V),Pp) = list -Ld(S,Pp) .

eq n-p(r-learn(S,Ac1 ,Ln ,N,V),Ac) = n-p(S,Ac) .

eq n-a(r-learn(S,Ac1 ,Ln ,N,V),Ac) = n-a(S,Ac) .

eq v-a(r-learn(S,Ac1 ,Ln ,N,V),Ac) = v-a(S,Ac) .

ceq list -Ln(r-learn(S,Ac ,Ln1 ,N,V),Ln) = (if (Ln1 = Ln) then

updateTri(< Ac , N , V >,list -Ln(S,Ln1)) else list -Ln(S,Ln)

fi)

if c-r-learn(S,Ac ,Ln1 ,N,V) and not(V = null) .

eq v-d(r-learn(S,Ac ,Ln1 ,N,V),Ln) = v-d(S,Ln) .

ceq r-learn(S,Ac ,Ln ,N,V) = S if not c-r-learn(S,Ac ,Ln ,N,V) .

-- c-decide

op c-decide : Sys Learner -> Bool

eq c-decide(S,Ln) = ((l-l(S,Ln) = l0)

and ((majN(ctoPL(list -Ln(S,Ln))) * 2) >= (nAcceptor + 1))

and not(decideV(list -Ln(S,Ln)) = null)) .

eq p-l(decide(S,Ln),Pp) = p-l(S,Pp) .

eq a-l(decide(S,Ln),Ac) = a-l(S,Ac) .

ceq l-l(decide(S,Ln1),Ln) = (if Ln1 = Ln then l1 else l-l(S,Ln)

fi)

if c-decide(S,Ln1) .

eq nw(decide(S,Ln)) = nw(S) .

eq unique(decide(S,Ln),Pp) = unique(S,Pp) .

eq vClient(decide(S,Ln),Pp) = vClient(S,Pp) .

eq list -Ld(decide(S,Ln),Pp) = list -Ld(S,Pp) .

eq n-p(decide(S,Ln),Ac) = n-p(S,Ac) .

eq n-a(decide(S,Ln),Ac) = n-a(S,Ac) .

eq v-a(decide(S,Ln),Ac) = v-a(S,Ac) .

eq list -Ln(decide(S,Ln1),Ln) = list -Ln(S,Ln) .
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ceq v-d(decide(S,Ln1),Ln) = (if Ln1 = Ln

then decideV(list -Ln(S,Ln1)) else v-d(S,Ln) fi)

if c-decide(S,Ln1) .

ceq decide(S,Ln) = S if not c-decide(S,Ln) .

}

mod INV1 {

pr(PAXOS)

-- declare a predicate to verify to be an invariant

pred inv1 : Sys Learner Learner

-- CafeOBJ variables

var S : Sys .

vars L L1 : Learner .

-- define inv1

eq inv1(S,L,L1) = ((not(v-d(S,L) = null) and not(v-d(S,L1) =

null))

implies v-d(S,L) = v-d(S,L1)) .

}
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Appendix B

Paxos Verication by Proof Score

--> Induction on S

--> base case

open INV1

-- arbitrary objects

ops l l1 : -> Learner .

red inv1(init ,l,l1) .

close

--> induction case

--> bc-prepare

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op pp : -> Proposer .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(bc -prepare(s,pp),l,l1) .

close

--> r-promise

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op pp : -> Proposer .

op ac : -> Acceptor .
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op n : -> Num .

op v : -> Val .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(r-promise(s,pp ,ac ,n,v),l,l1) .

close

--> bc-accept

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op pp : -> Proposer .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(bc -accept(s,pp),l,l1) .

close

--> timeout

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op pp : -> Proposer .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(timeout(s,pp),l,l1) .

close

--> r&s-promise

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op pp : -> Proposer .

op ac : -> Acceptor .

op n : -> Num .

-- |=

-- check if the predicate is true.
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red inv1(s,l,l1) implies inv1(r&s-promise(s,ac ,pp ,n),l,l1) .

close

--> r&s-learn

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op pp : -> Proposer .

op ac : -> Acceptor .

op n : -> Num .

op v : -> Val .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(r&s-learn(s,pp ,ac ,n,v),l,l1) .

close

--> r-learn

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

op ac : -> Acceptor .

op n : -> Num .

op v : -> Val .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(r-learn(s,ac ,l2 ,n,v),l,l1) .

close

--> decide , c-decide , l=l2 , l1=l2

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

-- assumptions

eq l-l(s,l2) = l0 .

eq ((majN(ctoPL(list -Ln(s,l2))) * 2) >= (nAcceptor + 1)) = true

.

eq (majV(ctoPL(list -Ln(s,l2))) = null) = false .
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eq l = l2 .

eq l1 = l2 .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(decide(s,l2),l,l1) .

close

--> decide , c-decide , l=l2 , ~l1=l2 , v-d(s,l1) = null

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

-- assumptions

eq l-l(s,l2) = l0 .

eq ((majN(ctoPL(list -Ln(s,l2))) * 2) >= (nAcceptor + 1)) = true

.

eq (majV(ctoPL(list -Ln(s,l2))) = null) = false .

eq l = l2 .

eq (l1 = l2) = false .

eq v-d(s,l1) = null .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(decide(s,l2),l,l1) .

close

--> decide , c-decide , l=l2 , ~l1=l2 , ~v-d(s,l1)=null ,lemmas

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

-- variables

var S : Sys

vars L L1 : Learner

-- assumptions

eq l-l(s,l2) = l0 .

eq ((majN(ctoPL(list -Ln(s,l2))) * 2) >= (nAcceptor + 1)) = true

.

eq (majV(ctoPL(list -Ln(s,l2))) = null) = false .

eq l = l2 .
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eq (l1 = l2) = false .

eq (v-d(s,l1) = null) = false .

ceq majV(ctoPL(list -Ln(s,l2))) = majV(ctoPL(list -Ln(s,l1))) if

((( majN(ctoPL(list -Ln(s,l2))) * 2) >= (nAcceptor + 1)) and

((majN(ctoPL(list -Ln(s,l1))) * 2) >= (nAcceptor + 1))) .

ceq ((majN(ctoPL(list -Ln(s,l1))) * 2) >= (nAcceptor + 1)) =

true if not(v-d(s,l1) = null) .

ceq majV(ctoPL(list -Ln(s,l1))) = v-d(s,l1) if not(v-d(s,l1) =

null) .

-- |=

-- check if the predicate is true.

red inv1(decide(s,l2),l,l1) .

close

--> decide , c-decide , ~l=l2 , l1=l2 , v-d(s,l)= null

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

-- assumptions

eq l-l(s,l2) = l0 .

eq ((majN(ctoPL(list -Ln(s,l2))) * 2) >= (nAcceptor + 1)) = true

.

eq (majV(ctoPL(list -Ln(s,l2))) = null) = false .

eq (l = l2) = false .

eq l1 = l2 .

eq v-d(s,l) = null .

-- |=

-- check if the predicate is true.

red inv1(decide(s,l2),l,l1) .

close

--> decide , c-decide , ~l=l2 , l1=l2 , ~v-d(s,l)=null , lemmas

open INV1

-- arbitrary objects

op s : -> Sys .

ops l ln1 l2 : -> Learner .
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-- assumptions

eq l-l(s,l2) = l0 .

eq ((majN(ctoPL(list -Ln(s,l2))) * 2) >= (nAcceptor + 1)) = true

.

eq (majV(ctoPL(list -Ln(s,l2))) = null) = false .

eq (l = l2) = false .

eq ln1 = l2 .

eq (v-d(s,l) = null) = false .

ceq majV(ctoPL(list -Ln(S,l2))) = majV(ctoPL(list -Ln(S,l))) if

((( majN(ctoPL(list -Ln(S,l))) * 2) >= (nAcceptor + 1)) and ((

majN(ctoPL(list -Ln(S,l2))) * 2) >= (nAcceptor + 1))) .

ceq ((majN(ctoPL(list -Ln(s,l))) * 2) >= (nAcceptor + 1)) = true

if not(v-d(s,l) = null) .

ceq majV(ctoPL(list -Ln(s,l))) = v-d(s,l) if not(v-d(s,l) = null

) .

-- |=

-- check if the predicate is true.

red inv1(decide(s,l2),l,ln1) .

close

--> decide , c-decide , ~l=l2 , ~l1=l2

open INV1

-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

-- assumptions

eq l-l(s,l2) = l0 .

eq ((majN(ctoPL(list -Ln(s,l2))) * 2) >= (nAcceptor + 1)) = true

.

eq (majV(ctoPL(list -Ln(s,l2))) = null) = false .

eq (l = l2) = false .

eq (l1 = l2) = false .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(decide(s,l2),l,l1) .

close

--> decide , ~c-decide

open INV1
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-- arbitrary objects

op s : -> Sys .

ops l l1 l2 : -> Learner .

-- assumptions

eq c-decide(s,l2) = false .

-- |=

-- check if the predicate is true.

red inv1(s,l,l1) implies inv1(decide(s,l2),l,l1) .

close
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Appendix C

LastVoting Algorithm
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Figure C.1: The LastVoting algorithm
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Appendix D

Paxos Specification in Maude

(fmod MULTISET{X :: TRIV} is

sort MSet .

subsorts X$Elt < MSet .

--- constructors

op empty : -> MSet [ctor] .

op __ : MSet MSet -> MSet [ctor assoc comm id: empty] .

endfm)

(fth VALUE is

inc BOOL .

sort Val .

--- constructors

op null : -> Val [ctor] .

op _~_ : Val Val -> Bool [comm] .

vars V V1 : Val .

eq V ~ V = true .

ceq V = V1 if V ~ V1 [nonexec] .

endfth)

(fth NUM is

inc NAT .

inc BOOL .

sort Num .

subsorts Nat < Num .

--- constructors

op _~_ : Num Num -> Bool [comm] .
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vars N N1 : Num .

eq N ~ N = true .

ceq N = N1 if N ~ N1 [nonexec] .

endfth)

(fmod LIST{X :: TRIV} is

inc NAT .

sort List .

op nil : -> List [ctor] .

op _|_ : X$Elt List -> List [ctor] .

op _@_ : List List -> List .

op len : List -> Nat .

var E : X$Elt .

vars L L1 L2 : List .

--- _@_

eq nil @ L2 = L2 .

eq (E | L1) @ L2 = E | (L1 @ L2) .

--- len

eq len(nil) = 0 .

eq len(E | L) = 1 + len(L) .

endfm)

(fth PROPOSER is

inc NUM .

inc VALUE .

sort Proposer .

--- constructors

op PpID : -> Num .

op vc : -> Val .

op _~_ : Proposer Proposer -> Bool [comm] .

vars P P1 : Proposer .

eq P ~ P = true .

ceq P = P1 if P ~ P1 [nonexec] .

endfth)

(fth ACCEPTOR is

inc BOOL .
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sort Acceptor .

op _~_ : Acceptor Acceptor -> Bool [comm] .

vars A A1 : Acceptor .

eq A ~ A = true .

ceq A = A1 if A ~ A1 [nonexec] .

endfth)

(fth LEARNER is

inc BOOL .

sort Learner .

op _~_ : Learner Learner -> Bool [comm] .

vars L L1 : Learner .

eq L ~ L = true .

ceq L = L1 if L ~ L1 [nonexec] .

endfth)

(fmod MESSAGE is

inc PROPOSER .

inc ACCEPTOR .

inc LEARNER .

inc NUM .

inc VALUE .

sort Msg .

op prepare -m : Proposer Num -> Msg [ctor] .

op promise -m : Acceptor Proposer Num Val -> Msg [ctor] .

op accept -m : Proposer Num Val -> Msg [ctor] .

op learn -m : Acceptor Num Val -> Msg [ctor] .

op _~_ : Msg Msg -> Bool [comm] .

vars N N1 : Num .

vars V V1 : Val .

vars Pp Pp1 : Proposer .

vars Ac Ac1 : Acceptor .

vars Ln Ln1 : Learner .

eq (prepare -m(Pp ,N) ~ prepare -m(Pp1 ,N1)) = ((Pp ~ Pp1) and (N ~

76



N1)) .

eq (promise -m(Ac ,Pp ,N,V) ~ promise -m(Ac1 ,Pp1 ,N1 ,V1)) = ((Ac ~

Ac1) and (Pp ~ Pp1) and (N ~ N1) and (V ~ V1)) .

eq (accept -m(Pp ,N,V) ~ accept -m(Pp1 ,N1 ,V1)) = ((Pp ~ Pp1) and (N

~ N1) and (V ~ V1)) .

eq (learn -m(Ac ,N,V) ~ learn -m(Ac1 ,N1 ,V1)) = ((Ac ~ Ac1) and (N ~

N1) and (V ~ V1)) .

eq (prepare -m(Pp ,N) ~ promise -m(Ac ,Pp1 ,N1 ,V)) = false .

eq (prepare -m(Pp ,N) ~ accept -m(Pp1 ,N1 ,V)) = false .

eq (prepare -m(Pp ,N) ~ learn -m(Ac ,N1 ,V)) = false .

eq (promise -m(Ac ,Pp ,N,V) ~ accept -m(Pp1 ,N1 ,V1)) = false .

eq (promise -m(Ac ,Pp ,N,V) ~ learn -m(Ac1 ,N1 ,V1)) = false .

eq (accept -m(Pp ,N,V) ~ learn -m(Ac ,N1 ,V1)) = false .

endfm)

(fmod TRI -ARY is

inc ACCEPTOR .

inc NUM .

inc VALUE .

sort Tri .

op <_;_;_> : Acceptor Num Val -> Tri [ctor] .

endfm)

(view TRIV2TRI -ARY from TRIV to TRI -ARY is

sort Elt to Tri .

endv)

(fth TRILIST is

inc LIST{TRIV2TRI -ARY} * (sort List to TriList , op nil to tnil)

.

op updateTri : Tri TriList -> TriList .

op findV : TriList -> Val .

vars Ac Ac1 : Acceptor .

vars N N1 : Num .

vars V V1 V2 : Val .
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vars TL TL1 : TriList .

--- updateTri

eq updateTri(< Ac ; N ; V >,tnil) = < Ac ; N ; V > | tnil .

ceq updateTri(< Ac ; N ; V >,< Ac ; N1 ; V1 > | TL) = < Ac ; N ;

V > | TL if N >= N1 .

ceq updateTri(< Ac ; N ; V >,< Ac ; N1 ; V1 > | TL) = < Ac ; N1

; V1 > | TL if N < N1 .

ceq updateTri(< Ac ; N ; V >,< Ac1 ; N1 ; V1 > | TL) = < Ac1 ;

N1 ; V1 > | updateTri(< Ac ; N ; V >,TL) if (Ac ~ Ac1) =

false .

--- findV

eq findV(tnil) = null .

eq findV(< Ac ; N ; V > | tnil) = V .

ceq findV(< Ac ; N ; V > | < Ac1 ; N1 ; V1 > | TL) = findV(< Ac

; N ; V > | TL) if N >= N1 .

ceq findV(< Ac ; N ; V > | < Ac1 ; N1 ; V1 > | TL) = findV(< Ac1

; N1 ; V1 > | TL) if N < N1 .

endfth)

(fmod PAIR is

inc NAT .

inc VALUE .

sort Pair .

op <_;_> : Val Nat -> Pair [ctor] .

endfm)

(view TRIV2PAIR from TRIV to PAIR is

sort Elt to Pair .

endv)

(fth PAIRLIST is

inc LIST{TRIV2PAIR} * (sort List to PairList , op nil to pnil) .

inc(TRILIST) .

op decideV : TriList -> Val .
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op ctoPL : TriList -> PairList .

op incV : Val PairList -> PairList .

op majV : PairList -> Val .

op majN : PairList -> Nat .

vars Ac Ac1 : Acceptor .

vars V V1 : Val .

vars Nu : Num .

vars N N1 : Nat .

var PL : PairList .

vars TL TL1 : TriList .

eq decideV(TL) = majV(ctoPL(TL)) .

eq ctoPL(tnil) = pnil .

eq ctoPL(< Ac ; Nu ; V > | TL) = incV(V,ctoPL(TL)) .

eq incV(V,pnil) = < V ; 1 > | pnil .

eq incV(V,< V ; N > | PL) = < V ; N + 1 > | PL .

ceq incV(V,< V1 ; N > | PL) = < V1 ; N > | incV(V,PL) if (V ~

V1) = false .

eq majV(pnil) = null .

eq majV(< V ; N > | pnil) = V .

ceq majV(< V ; N > | < V1 ; N1 > | PL) = majV(< V ; N > | PL)

if (N > N1) .

ceq majV(< V ; N > | < V1 ; N1 > | PL) = majV(< V1 ; N1 > | PL)

if (N <= N1) .

eq majN(pnil) = 0 .

eq majN(< V ; N > | pnil) = N .

ceq majN(< V ; N > | < V1 ; N1 > | PL) = majN(< V ; N > | PL)

if (N > N1) .

ceq majN(< V ; N > | < V1 ; N1 > | PL) = majN(< V1 ; N1 > | PL)

if (N <= N1) .

endfth)
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(view TRIV2MESSAGE from TRIV to MESSAGE is

sort Elt to Msg .

endv)

(fth NETWORK is

inc MULTISET{TRIV2MESSAGE} * (sort MSet to Network , op empty to

noMsg) .

op member : Msg Network -> Bool .

var NW : Network .

vars M M1 : Msg .

eq member(M,noMsg) = false .

eq member(M,M NW) = true .

ceq member(M,M1 NW) = member(M,NW) if not(M ~ M1) .

endfth)

(fmod LABEL is

sort Label .

ops p0 p1 p2 a0 a1 a2 l0 l1 : -> Label [ctor].

op _~_ : Label Label -> Bool [comm].

var L : Label .

eq L ~ L = true .

eq (p0 ~ p1) = false .

eq (p0 ~ p2) = false .

eq (p0 ~ a0) = false .

eq (p0 ~ a1) = false .

eq (p0 ~ a2) = false .

eq (p0 ~ l0) = false .

eq (p0 ~ l1) = false .

eq (p1 ~ p2) = false .

eq (p1 ~ a0) = false .

eq (p1 ~ a1) = false .

eq (p1 ~ a2) = false .

eq (p1 ~ l0) = false .

eq (p1 ~ l1) = false .

eq (p2 ~ a0) = false .
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eq (p2 ~ a1) = false .

eq (p2 ~ a2) = false .

eq (p2 ~ l0) = false .

eq (p2 ~ l1) = false .

eq (a0 ~ a1) = false .

eq (a0 ~ a2) = false .

eq (a0 ~ l0) = false .

eq (a0 ~ l1) = false .

eq (a1 ~ a2) = false .

eq (a1 ~ l0) = false .

eq (a1 ~ l1) = false .

eq (a2 ~ l0) = false .

eq (a2 ~ l1) = false .

eq (l0 ~ l1) = false .

ceq true = false if p0 = p1 .

ceq true = false if p0 = p2 .

ceq true = false if p0 = a0 .

ceq true = false if p0 = a1 .

ceq true = false if p0 = a2 .

ceq true = false if p0 = l0 .

ceq true = false if p0 = l1 .

ceq true = false if p1 = p2 .

ceq true = false if p1 = a0 .

ceq true = false if p1 = a1 .

ceq true = false if p1 = a2 .

ceq true = false if p1 = l0 .

ceq true = false if p1 = l1 .

ceq true = false if p2 = a0 .

ceq true = false if p2 = a1 .

ceq true = false if p2 = a2 .

ceq true = false if p2 = l0 .

ceq true = false if p2 = l1 .

ceq true = false if a0 = a1 .

ceq true = false if a0 = a2 .

ceq true = false if a0 = l0 .

ceq true = false if a0 = l1 .
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ceq true = false if a1 = a2 .

ceq true = false if a1 = l0 .

ceq true = false if a1 = l1 .

ceq true = false if a2 = l0 .

ceq true = false if a2 = l1 .

ceq true = false if l0 = l1 .

endfm)

(fth PAXOS is

inc LABEL .

inc TRILIST .

inc PAIRLIST .

inc NETWORK .

sort Sys .

--- initial

op init : -> Sys [ctor] .

--- constant values

op nAcceptor : -> Nat .

op nProcess : -> Num .

--- transitions

op bc -prepare : Sys Proposer -> Sys [ctor] .

op r-promise : Sys Proposer Acceptor Num Val -> Sys [ctor] .

op bc -accept : Sys Proposer -> Sys [ctor] .

op timeout : Sys Proposer -> Sys [ctor] .

op r&s-promise : Sys Acceptor Proposer Num -> Sys [ctor] .

op r&s-learn : Sys Proposer Acceptor Num Val -> Sys [ctor] .

op r-learn : Sys Acceptor Num Val Learner -> Sys [ctor] .

op decide : Sys Learner -> Sys [ctor] .

--- observers

op p-l : Sys Proposer -> Label .

op a-l : Sys Acceptor -> Label .

op l-l : Sys Learner -> Label .

op nw : Sys -> Network .

op unique : Sys Proposer -> Num .

op vUser : Sys Proposer -> Val .

op list -Ld : Sys Proposer -> TriList .
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op n-p : Sys Acceptor -> Num .

op n-a : Sys Acceptor -> Num .

op v-a : Sys Acceptor -> Val .

op list -Ln : Sys Learner -> TriList .

op v-d : Sys Learner -> Val .

--- variables

var S : Sys .

vars Pp Pp1 : Proposer .

vars Ac Ac1 : Acceptor .

vars Ln Ln1 : Learner .

var N : Num .

var V : Val .

--- initial

eq p-l(init ,Pp) = p0 .

eq a-l(init ,Ac) = a0 .

eq l-l(init ,Ln) = l0 .

eq nw(init) = noMsg .

eq unique(init ,Pp) = PpID .

eq vUser(init ,Pp) = vc .

eq list -Ld(init ,Pp) = tnil .

eq n-p(init ,Ac) = 0 .

eq n-a(init ,Ac) = 0 .

eq v-a(init ,Ac) = null .

eq list -Ln(init ,Ln) = tnil .

eq v-d(init ,Ln) = null .

--- Proposer

--- bc-prepare

ceq p-l(bc -prepare(S,Pp1),Pp) = p1 if p-l(S,Pp1) = p0 /\ Pp =

Pp1 [metadata "CA -prepare -pl1"] .

ceq p-l(bc -prepare(S,Pp1),Pp) = p-l(S,Pp) if Pp ~ Pp1 = false [

metadata "CA-prepare -pl2"] .

ceq p-l(bc -prepare(S,Pp1),Pp) = p-l(S,Pp) if p-l(S,Pp1) ~ p0 =

false [metadata "CA-prepare -pl3"] .

eq a-l(bc -prepare(S,Pp),Ac) = a-l(S,Ac) .

eq l-l(bc -prepare(S,Pp),Ln) = l-l(S,Ln) .
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ceq nw(bc -prepare(S,Pp)) = prepare -m(Pp ,unique(S,Pp)) nw(S) if p

-l(S,Pp) = p0 [metadata "CA-prepare -nw1"] .

ceq nw(bc -prepare(S,Pp)) = nw(S) if p-l(S,Pp) ~ p0 = false [

metadata "CA-prepare -nw2"] .

eq unique(bc -prepare(S,Pp1),Pp) = unique(S,Pp) .

eq vUser(bc -prepare(S,Pp1),Pp) = vUser(S,Pp) .

eq list -Ld(bc -prepare(S,Pp1),Pp) = list -Ld(S,Pp) .

eq n-p(bc -prepare(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(bc -prepare(S,Pp),Ac) = n-a(S,Ac) .

eq v-a(bc -prepare(S,Pp),Ac) = v-a(S,Ac) .

eq list -Ln(bc -prepare(S,Pp),Ln) = list -Ln(S,Ln) .

eq v-d(bc -prepare(S,Pp),Ln) = v-d(S,Ln) .

--- r-promise

ceq p-l(r-promise(S,Pp1 ,Ac ,N,V),Pp) = p1 if p-l(S,Pp1) = p1 /\

member(promise -m(Ac,Pp ,N,V),nw(S)) /\ Pp = Pp1 [metadata "CA -

promise -pl1"] .

ceq p-l(r-promise(S,Pp1 ,Ac ,N,V),Pp) = p-l(S,Pp) if Pp ~ Pp1 =

false [metadata "CA-promise -pl2"] .

ceq p-l(r-promise(S,Pp1 ,Ac ,N,V),Pp) = p-l(S,Pp) if not(member(

promise -m(Ac ,Pp ,N,V),nw(S))) [metadata "CA -promise -pl3"] .

ceq p-l(r-promise(S,Pp1 ,Ac ,N,V),Pp) = p-l(S,Pp) if p-l(S,Pp1) ~

p1 = false [metadata "CA -promise -pl4"] .

eq a-l(r-promise(S,Pp1 ,Ac ,N,V),Ac) = a-l(S,Ac) .

eq l-l(r-promise(S,Pp1 ,Ac ,N,V),Ln) = l-l(S,Ln) .

eq nw(r-promise(S,Pp1 ,Ac ,N,V)) = nw(S) .

eq unique(r-promise(S,Pp1 ,Ac ,N,V),Pp) = unique(S,Pp) .

eq vUser(r-promise(S,Pp1 ,Ac ,N,V),Pp) = vUser(S,Pp) .

ceq list -Ld(r-promise(S,Pp1 ,Ac ,N,V),Pp) = updateTri(< Ac ; N ; V

>,list -Ld(S,Pp1)) if p-l(S,Pp1) = p1 /\ member(promise -m(Ac ,

Pp ,N,V),nw(S)) /\ Pp = Pp1 [metadata "CA-promise -list -Ld1"] .

ceq list -Ld(r-promise(S,Pp1 ,Ac ,N,V),Pp) = list -Ld(S,Pp) if Pp ~

Pp1 = false [metadata "CA -promise -list -Ld2"] .

ceq list -Ld(r-promise(S,Pp1 ,Ac ,N,V),Pp) = list -Ld(S,Pp) if not(

member(promise -m(Ac ,Pp ,N,V),nw(S))) [metadata "CA -promise -

list -Ld3"] .

ceq list -Ld(r-promise(S,Pp1 ,Ac ,N,V),Pp) = list -Ld(S,Pp) if p-l(S
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,Pp1) ~ p1 = false [metadata "CA-promise -list -Ld4"] .

eq n-p(r-promise(S,Pp1 ,Ac ,N,V),Ac) = n-p(S,Ac) .

eq n-a(r-promise(S,Pp1 ,Ac ,N,V),Ac) = n-a(S,Ac) .

eq v-a(r-promise(S,Pp1 ,Ac ,N,V),Ac) = v-a(S,Ac) .

eq list -Ln(r-promise(S,Pp1 ,Ac ,N,V),Ln) = list -Ln(S,Ln) .

eq v-d(r-promise(S,Pp1 ,Ac ,N,V),Ln) = v-d(S,Ln) .

--- bc-accept

ceq p-l(bc -accept(S,Pp1),Pp) = p2 if p-l(S,Pp1) = p1 /\ ((len(

list -Ld(S,Pp1)) * 2) >= (nAcceptor + 1)) /\ Pp = Pp1 [

metadata "CA-accept -pl1"] .

ceq p-l(bc -accept(S,Pp1),Pp) = p-l(S,Pp) if Pp ~ Pp1 = false [

metadata "CA-accept -pl2"] .

ceq p-l(bc -accept(S,Pp1),Pp) = p-l(S,Pp) if not((len(list -Ld(S,

Pp1)) * 2) >= (nAcceptor + 1)) [metadata "CA -accept -pl3"] .

ceq p-l(bc -accept(S,Pp1),Pp) = p-l(S,Pp) if p-l(S,Pp1) ~ p1 =

false [metadata "CA-accept -pl4"] .

eq a-l(bc -accept(S,Pp1),Ac) = a-l(S,Ac) .

eq l-l(bc -accept(S,Pp1),Ln) = l-l(S,Ln) .

ceq nw(bc -accept(S,Pp)) = accept -m(Pp ,unique(S,Pp),findV(list -Ld

(S,Pp))) nw(S) if p-l(S,Pp) = p1 /\ ((len(list -Ld(S,Pp)) * 2)

>= (nAcceptor + 1)) /\ (findV(list -Ld(S,Pp)) ~ null) = false

[metadata "CA-accept -nw1"] .

ceq nw(bc -accept(S,Pp)) = accept -m(Pp ,unique(S,Pp),vUser(S,Pp))

nw(S) if p-l(S,Pp) = p1 /\ ((len(list -Ld(S,Pp)) * 2) >= (

nAcceptor + 1)) /\ (findV(list -Ld(S,Pp)) = null) [metadata "

CA-accept -nw2"] .

ceq nw(bc -accept(S,Pp)) = nw(S) if not((len(list -Ld(S,Pp)) * 2)

>= (nAcceptor + 1)) [metadata "CA -accept -nw3"] .

ceq nw(bc -accept(S,Pp)) = nw(S) if p-l(S,Pp) ~ p1 = false [

metadata "CA-accept -nw4"] .

eq unique(bc -accept(S,Pp1),Pp) = unique(S,Pp) .

eq vUser(bc -accept(S,Pp1),Pp) = vUser(S,Pp) .

eq list -Ld(bc -accept(S,Pp1),Pp) = list -Ld(S,Pp) .

eq n-p(bc -accept(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(bc -accept(S,Pp),Ac) = n-a(S,Ac) .

eq v-a(bc -accept(S,Pp),Ac) = v-a(S,Ac) .
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eq list -Ln(bc -accept(S,Pp),Ln) = list -Ln(S,Ln) .

eq v-d(bc -accept(S,Pp),Ln) = v-d(S,Ln) .

--- timeout

ceq p-l(timeout(S,Pp1),Pp) = p0 if (p-l(S,Pp1) = p1) /\ Pp = Pp1

[metadata "CA-timeout -pl1"] .

ceq p-l(timeout(S,Pp1),Pp) = p0 if (p-l(S,Pp1) = p2) /\ Pp = Pp1

[metadata "CA-timeout -pl2"] .

ceq p-l(timeout(S,Pp1),Pp) = p-l(S,Pp) if (Pp ~ Pp1) = false [

metadata "CA-timeout -pl3"] .

ceq p-l(timeout(S,Pp1),Pp) = p-l(S,Pp) if ((p-l(S,Pp1) ~ p1) =

false) /\ ((p-l(S,Pp1) ~ p2) = false) [metadata "CA-timeout -

pl4"] .

eq a-l(timeout(S,Pp),Ac) = a-l(S,Ac) .

eq l-l(timeout(S,Pp),Ln) = l-l(S,Ln) .

eq nw(timeout(S,Pp)) = nw(S) .

ceq unique(timeout(S,Pp1),Pp) = (unique(S,Pp) + nProcess) if (p-

l(S,Pp1) = p1) /\ Pp = Pp1 [metadata "CA-timeout -unique1 "] .

ceq unique(timeout(S,Pp1),Pp) = (unique(S,Pp) + nProcess) if (p-

l(S,Pp1) = p2) /\ Pp = Pp1 [metadata "CA-timeout -unique2 "] .

ceq unique(timeout(S,Pp1),Pp) = unique(S,Pp) if (Pp ~ Pp1) =

false [metadata "CA-timeout -unique3 "] .

ceq unique(timeout(S,Pp1),Pp) = unique(S,Pp) if ((p-l(S,Pp1) ~

p1) = false) /\ ((p-l(S,Pp1) ~ p2) = false) [metadata "CA -

timeout -unique4 "] .

eq vUser(timeout(S,Pp1),Pp) = vUser(S,Pp) .

ceq list -Ld(timeout(S,Pp1),Pp) = tnil if (p-l(S,Pp1) = p1) /\ Pp

= Pp1 [metadata "CA-timeout -list -Ld1"] .

ceq list -Ld(timeout(S,Pp1),Pp) = tnil if (p-l(S,Pp1) = p2) /\ Pp

= Pp1 [metadata "CA-timeout -list -Ld2"] .

ceq list -Ld(timeout(S,Pp1),Pp) = list -Ld(S,Pp) if (Pp ~ Pp1) =

false [metadata "CA-timeout -list -Ld3"] .

ceq list -Ld(timeout(S,Pp1),Pp) = list -Ld(S,Pp) if ((p-l(S,Pp1) ~

p1) = false) /\ ((p-l(S,Pp1) ~ p2) = false) [metadata "CA -

timeout -unique4 "] .

eq n-p(timeout(S,Pp),Ac) = n-p(S,Ac) .

eq n-a(timeout(S,Pp),Ac) = n-a(S,Ac) .
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eq v-a(timeout(S,Pp),Ac) = v-a(S,Ac) .

eq list -Ln(timeout(S,Pp),Ln) = list -Ln(S,Ln) .

eq v-d(timeout(S,Pp),Ln) = v-d(S,Ln) .

--- Acceptor

--- r&s-promise

eq p-l(r&s-promise(S,Ac ,Pp1 ,N),Pp) = p-l(S,Pp) .

ceq a-l(r&s-promise(S,Ac1 ,Pp ,N),Ac) = a1 if a-l(S,Ac1) = a0 /\

member(prepare -m(Pp,N),nw(S)) /\ Ac1 = Ac [metadata "CA -

rspromise -al1"] .

ceq a-l(r&s-promise(S,Ac1 ,Pp ,N),Ac) = a1 if a-l(S,Ac1) = a1 /\

member(prepare -m(Pp,N),nw(S)) /\ Ac1 = Ac [metadata "CA -

rspromise -al2"] .

ceq a-l(r&s-promise(S,Ac1 ,Pp ,N),Ac) = a1 if a-l(S,Ac1) = a2 /\

member(prepare -m(Pp,N),nw(S)) /\ Ac1 = Ac [metadata "CA -

rspromise -al3"] .

ceq a-l(r&s-promise(S,Ac1 ,Pp ,N),Ac) = a-l(S,Ac) if (Ac1 ~ Ac) =

false [metadata "CA-rspromise -al4"] .

ceq a-l(r&s-promise(S,Ac1 ,Pp ,N),Ac) = a-l(S,Ac) if not(member(

prepare -m(Pp ,N),nw(S))) [metadata "CA -rspromise -al5"] .

ceq a-l(r&s-promise(S,Ac1 ,Pp ,N),Ac) = a-l(S,Ac) if ((a-l(S,Ac1)

~ a0) = false /\ (a-l(S,Ac1) ~ a1) = false /\ (a-l(S,Ac1) ~

a2) = false) [metadata "CA -rspromise -al6"] .

eq l-l(r&s-promise(S,Ac ,Pp ,N),Ln) = l-l(S,Ln) .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = promise -m(Ac ,Pp ,n-a(S,Ac),v-a(S

,Ac)) nw(S) if a-l(S,Ac) = a0 /\ member(prepare -m(Pp,N),nw(S)

) /\ N >= n-p(S,Ac) [metadata "CA -rspromise -nw1"] .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = promise -m(Ac ,Pp ,n-a(S,Ac),v-a(S

,Ac)) nw(S) if a-l(S,Ac) = a1 /\ member(prepare -m(Pp,N),nw(S)

) /\ N >= n-p(S,Ac) [metadata "CA -rspromise -nw2"] .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = promise -m(Ac ,Pp ,n-a(S,Ac),v-a(S

,Ac)) nw(S) if a-l(S,Ac) = a2 /\ member(prepare -m(Pp,N),nw(S)

) /\ N >= n-p(S,Ac) [metadata "CA -rspromise -nw3"] .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = nw(S) if a-l(S,Ac) = a0 /\

member(prepare -m(Pp ,N),nw(S)) /\ N < n-p(S,Ac) [metadata "CA -

rspromise -nw4"] .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = nw(S) if a-l(S,Ac) = a1 /\
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member(prepare -m(Pp,N),nw(S)) /\ N < n-p(S,Ac) [metadata "CA -

rspromise -nw5"] .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = nw(S) if a-l(S,Ac) = a2 /\

member(prepare -m(Pp,N),nw(S)) /\ N < n-p(S,Ac) [metadata "CA -

rspromise -nw6"] .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = nw(S) if not(member(prepare -m(

Pp ,N),nw(S))) [metadata "CA -rspromise -nw7"] .

ceq nw(r&s-promise(S,Ac ,Pp ,N)) = nw(S) if ((a-l(S,Ac) ~ a0) =

false /\ (a-l(S,Ac) ~ a1) = false /\ (a-l(S,Ac) ~ a2) = false

) [metadata "CA -rspromise -nw8"] .

eq unique(r&s-promise(S,Ac ,Pp1 ,N),Pp) = unique(S,Pp) .

eq vUser(r&s-promise(S,Ac ,Pp1 ,N),Pp) = vUser(S,Pp) .

eq list -Ld(r&s-promise(S,Ac ,Pp1 ,N),Pp) = list -Ld(S,Pp) .

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = N if a-l(S,Ac1) = a0 /\

member(prepare -m(Pp ,N),nw(S)) /\ (N >= n-p(S,Ac1)) /\ Ac1 =

Ac [metadata "CA -rspromise -np1 "].

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = N if a-l(S,Ac1) = a1 /\

member(prepare -m(Pp ,N),nw(S)) /\ (N >= n-p(S,Ac1)) /\ Ac1 =

Ac [metadata "CA -rspromise -np2 "].

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = N if a-l(S,Ac1) = a2 /\

member(prepare -m(Pp ,N),nw(S)) /\ (N >= n-p(S,Ac1)) /\ Ac1 =

Ac [metadata "CA-rspromise -np3 "].

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = n-p(S,Ac) if a-l(S,Ac1) =

a0 /\ member(prepare -m(Pp,N),nw(S)) /\ (N < n-p(S,Ac1)) /\

Ac1 = Ac [metadata "CA -rspromise -np4"].

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = n-p(S,Ac) if a-l(S,Ac1) =

a1 /\ member(prepare -m(Pp,N),nw(S)) /\ (N < n-p(S,Ac1)) /\

Ac1 = Ac [metadata "CA -rspromise -np5"].

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = n-p(S,Ac) if a-l(S,Ac1) =

a2 /\ member(prepare -m(Pp,N),nw(S)) /\ (N < n-p(S,Ac1)) /\

Ac1 = Ac [metadata "CA -rspromise -np6"].

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = n-p(S,Ac) if (Ac1 ~ Ac) =

false [metadata "CA-rspromise -np7"].

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = n-p(S,Ac) if not(member(

prepare -m(Pp ,N),nw(S))) [metadata "CA -rspromise -np8"].

ceq n-p(r&s-promise(S,Ac1 ,Pp ,N),Ac) = N if ((a-l(S,Ac1) ~ a0) =

false /\ (a-l(S,Ac1) ~ a1) = false /\ (a-l(S,Ac1) ~ a2) =
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false) [metadata "CA-rspromise -np9"].

eq n-a(r&s-promise(S,Ac1 ,Pp ,N),Ac) = n-a(S,Ac) .

eq v-a(r&s-promise(S,Ac1 ,Pp ,N),Ac) = v-a(S,Ac) .

eq list -Ln(r&s-promise(S,Ac ,Pp ,N),Ln) = list -Ln(S,Ln) .

eq v-d(r&s-promise(S,Ac ,Pp ,N),Ln) = v-d(S,Ln) .

--- r&s-learn

eq p-l(r&s-learn(S,Pp1 ,Ac ,N,V),Pp) = p-l(S,Pp) .

ceq a-l(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = a2 if a-l(S,Ac1) = a1 /\

member(accept -m(Pp,N,V),nw(S)) /\ Ac1 = Ac [metadata "CA -

rslearn -al1"] .

ceq a-l(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = a2 if a-l(S,Ac1) = a2 /\

member(accept -m(Pp,N,V),nw(S)) /\ Ac1 = Ac [metadata "CA -

rslearn -al2"] .

ceq a-l(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = a-l(S,Ac) if (Ac1 ~ Ac) =

false [metadata "CA-rslearn -al3"] .

ceq a-l(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = a-l(S,Ac) if not(member(

accept -m(Pp ,N,V),nw(S))) [metadata "CA -rslearn -al4"] .

ceq a-l(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = a-l(S,Ac) if ((a-l(S,Ac1)

~ a1) = false /\ (a-l(S,Ac1) ~ a2) = false) [metadata "CA-

rslearn -al5"] .

eq l-l(r&s-learn(S,Pp ,Ac ,N,V),Ln) = l-l(S,Ln) .

ceq nw(r&s-learn(S,Pp ,Ac ,N,V)) = learn -m(Ac ,N,V) nw(S) if (a-l(S

,Ac) = a1) /\ member(accept -m(Pp ,N,V),nw(S)) /\ (N >= n-p(S,

Ac)) [metadata "CA -rslearn -nw1"] .

ceq nw(r&s-learn(S,Pp ,Ac ,N,V)) = learn -m(Ac ,N,V) nw(S) if (a-l(S

,Ac) = a2) /\ member(accept -m(Pp ,N,V),nw(S)) /\ (N >= n-p(S,

Ac)) [metadata "CA -rslearn -nw2"] .

ceq nw(r&s-learn(S,Pp ,Ac ,N,V)) = nw(S) if (a-l(S,Ac) = a1) /\

member(accept -m(Pp ,N,V),nw(S)) /\ (N < n-p(S,Ac)) [metadata "

CA -rslearn -nw3"] .

ceq nw(r&s-learn(S,Pp ,Ac ,N,V)) = nw(S) if (a-l(S,Ac) = a2) /\

member(accept -m(Pp ,N,V),nw(S)) /\ (N < n-p(S,Ac)) [metadata "

CA -rslearn -nw4"] .

ceq nw(r&s-learn(S,Pp ,Ac ,N,V)) = nw(S) if not(member(accept -m(Pp

,N,V),nw(S))) [metadata "CA-rslearn -nw5"] .

ceq nw(r&s-learn(S,Pp ,Ac ,N,V)) = nw(S) if ((a-l(S,Ac) ~ a1) =
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false /\ (a-l(S,Ac) ~ a2) = false) [metadata "CA-rslearn -nw6

"] .

eq unique(r&s-learn(S,Pp1 ,Ac ,N,V),Pp) = unique(S,Pp) .

eq vUser(r&s-learn(S,Pp1 ,Ac ,N,V),Pp) = vUser(S,Pp) .

eq list -Ld(r&s-learn(S,Pp1 ,Ac ,N,V),Pp) = list -Ld(S,Pp) .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = N if (a-l(S,Ac1) = a1) /\

member(accept -m(Pp,N,V),nw(S)) /\ (N >= n-p(S,Ac)) /\ Ac1 =

Ac [metadata "CA -rslearn -np1"] .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = N if (a-l(S,Ac1) = a2) /\

member(accept -m(Pp,N,V),nw(S)) /\ (N >= n-p(S,Ac)) /\ Ac1 =

Ac [metadata "CA -rslearn -np2"] .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-p(S,Ac) if (a-l(S,Ac1) =

a1) /\ member(accept -m(Pp ,N,V),nw(S)) /\ (N < n-p(S,Ac)) /\

Ac1 = Ac [metadata "CA -rslearn -np3"] .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-p(S,Ac) if (a-l(S,Ac1) =

a2) /\ member(accept -m(Pp ,N,V),nw(S)) /\ (N < n-p(S,Ac)) /\

Ac1 = Ac [metadata "CA -rslearn -np4"] .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-p(S,Ac) if (Ac1 ~ Ac) =

false [metadata "CA-rslearn -np5"] .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-p(S,Ac) if not(member(

accept -m(Pp ,N,V),nw(S))) [metadata "CA -rslearn -np6"] .

ceq n-p(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-p(S,Ac) if ((a-l(S,Ac1)

~ a1) = false /\ (a-l(S,Ac1) ~ a2) = false) [metadata "CA-

rslearn -np7"] .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = N if (a-l(S,Ac1) = a1) /\

member(accept -m(Pp,N,V),nw(S)) /\ (N >= n-p(S,Ac)) /\ Ac1 =

Ac [metadata "CA -rslearn -na1"] .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = N if (a-l(S,Ac1) = a2) /\

member(accept -m(Pp,N,V),nw(S)) /\ (N >= n-p(S,Ac)) /\ Ac1 =

Ac [metadata "CA -rslearn -na2"] .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-a(S,Ac) if (a-l(S,Ac1) =

a1) /\ member(accept -m(Pp ,N,V),nw(S)) /\ (N < n-p(S,Ac)) /\

Ac1 = Ac [metadata "CA -rslearn -na3"] .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-a(S,Ac) if (a-l(S,Ac1) =

a2) /\ member(accept -m(Pp ,N,V),nw(S)) /\ (N < n-p(S,Ac)) /\

Ac1 = Ac [metadata "CA -rslearn -na4"] .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-a(S,Ac) if (Ac1 ~ Ac) =
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false [metadata "CA-rslearn -na5"] .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-a(S,Ac) if not(member(

accept -m(Pp ,N,V),nw(S))) [metadata "CA -rslearn -na6"] .

ceq n-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = n-a(S,Ac) if ((a-l(S,Ac1)

~ a1) = false /\ (a-l(S,Ac1) ~ a2) = false) [metadata "CA-

rslearn -na7"] .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = V if (a-l(S,Ac1) = a1) /\

member(accept -m(Pp,N,V),nw(S)) /\ (N >= n-p(S,Ac)) /\ Ac1 =

Ac [metadata "CA -rslearn -va1"] .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = V if (a-l(S,Ac1) = a2) /\

member(accept -m(Pp,N,V),nw(S)) /\ (N >= n-p(S,Ac)) /\ Ac1 =

Ac [metadata "CA -rslearn -va2"] .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = v-a(S,Ac) if (a-l(S,Ac1) =

a1) /\ member(accept -m(Pp ,N,V),nw(S)) /\ (N < n-p(S,Ac)) /\

Ac1 = Ac [metadata "CA -rslearn -va3"] .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = v-a(S,Ac) if (a-l(S,Ac1) =

a2) /\ member(accept -m(Pp ,N,V),nw(S)) /\ (N < n-p(S,Ac)) /\

Ac1 = Ac [metadata "CA -rslearn -va4"] .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = v-a(S,Ac) if (Ac1 ~ Ac) =

false [metadata "CA-rslearn -va5"] .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = v-a(S,Ac) if not(member(

accept -m(Pp ,N,V),nw(S))) [metadata "CA -rslearn -va6"] .

ceq v-a(r&s-learn(S,Pp ,Ac1 ,N,V),Ac) = v-a(S,Ac) if ((a-l(S,Ac1)

~ a1) = false /\ (a-l(S,Ac1) ~ a2) = false) [metadata "CA-

rslearn -va7"] .

eq list -Ln(r&s-learn(S,Pp ,Ac ,N,V),Ln) = list -Ln(S,Ln) .

eq v-d(r&s-learn(S,Pp ,Ac ,N,V),Ln) = v-d(S,Ln) .

--- Learner

--- r-learn

eq p-l(r-learn(S,Ac ,N,V,Ln),Pp) = p-l(S,Pp) .

eq a-l(r-learn(S,Ac1 ,N,V,Ln),Ac) = a-l(S,Ac) .

ceq l-l(r-learn(S,Ac ,N,V,Ln1),Ln) = l0 if l-l(S,Ln1) = l0 /\

member(learn -m(Ac,N,V),nw(S)) /\ Ln = Ln1 [metadata "CA -learn

-pl1"] .

ceq l-l(r-learn(S,Ac ,N,V,Ln1),Ln) = l-l(S,Ln) if (Ln ~ Ln1) =

false [metadata "CA-learn -pl2"] .
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ceq l-l(r-learn(S,Ac ,N,V,Ln1),Ln) = l-l(S,Ln) if not(member(

learn -m(Ac ,N,V),nw(S))) [metadata "CA -learn -pl3"] .

ceq l-l(r-learn(S,Ac ,N,V,Ln1),Ln) = l-l(S,Ln) if l-l(S,Ln1) ~ l0

= false [metadata "CA-learn -pl4"] .

eq nw(r-learn(S,Ac ,N,V,Ln)) = nw(S) .

eq unique(r-learn(S,Ac ,N,V,Ln),Pp) = unique(S,Pp) .

eq vUser(r-learn(S,Ac ,N,V,Ln),Pp) = vUser(S,Pp) .

eq list -Ld(r-learn(S,Ac ,N,V,Ln),Pp) = list -Ld(S,Pp) .

eq n-p(r-learn(S,Ac1 ,N,V,Ln),Ac) = n-p(S,Ac) .

eq n-a(r-learn(S,Ac1 ,N,V,Ln),Ac) = n-a(S,Ac) .

eq v-a(r-learn(S,Ac1 ,N,V,Ln),Ac) = v-a(S,Ac) .

ceq list -Ln(r-learn(S,Ac ,N,V,Ln1),Ln) = updateTri(< Ac ; N ; V

>,list -Ln(S,Ln1)) if l-l(S,Ln1) = l0 /\ member(learn -m(Ac ,N,V

),nw(S)) /\ (V ~ null) = false /\ Ln = Ln1 [metadata "CA-

learn -list -Ln1"] .

ceq list -Ln(r-learn(S,Ac ,N,V,Ln1),Ln) = list -Ln(S,Ln) if (Ln ~

Ln1) = false [metadata "CA -learn -list -Ln2"] .

ceq list -Ln(r-learn(S,Ac ,N,V,Ln1),Ln) = list -Ln(S,Ln) if V =

null [metadata "CA -learn -list -Ln3"] .

ceq list -Ln(r-learn(S,Ac ,N,V,Ln1),Ln) = list -Ln(S,Ln) if not(

member(learn -m(Ac,N,V),nw(S))) [metadata "CA -learn -list -Ln4"]

.

ceq list -Ln(r-learn(S,Ac ,N,V,Ln1),Ln) = list -Ln(S,Ln) if l-l(S,

Ln1) ~ l0 = false [metadata "CA -learn -list -Ln5"] .

eq v-d(r-learn(S,Ac ,N,V,Ln1),Ln) = v-d(S,Ln) .

--- decide

eq p-l(decide(S,Ln),Pp) = p-l(S,Pp) .

eq a-l(decide(S,Ln),Ac) = a-l(S,Ac) .

ceq l-l(decide(S,Ln1),Ln) = l1 if l-l(S,Ln1) = l0 /\ Ln = Ln1 /\

((majN(ctoPL(list -Ln(S,Ln1))) * 2) >= (nAcceptor + 1)) /\ (

decideV(list -Ln(S,Ln)) ~ null) = false [metadata "CA -decide -

ll1"] .

ceq l-l(decide(S,Ln1),Ln) = l-l(S,Ln) if ((majN(ctoPL(list -Ln(S,

Ln1))) * 2) >= (nAcceptor + 1)) = false [metadata "CA -decide -

ll2"] .

ceq l-l(decide(S,Ln1),Ln) = l-l(S,Ln) if (Ln ~ Ln1) = false [
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metadata "CA-decide -ll3"] .

ceq l-l(decide(S,Ln1),Ln) = l-l(S,Ln) if decideV(list -Ln(S,Ln))

= null [metadata "CA-decide -ll4"] .

ceq l-l(decide(S,Ln1),Ln) = l-l(S,Ln) if (l-l(S,Ln1) ~ l0) =

false [metadata "CA-decide -ll5"] .

eq nw(decide(S,Ln)) = nw(S) .

eq unique(decide(S,Ln),Pp) = unique(S,Pp) .

eq vUser(decide(S,Ln),Pp) = vUser(S,Pp) .

eq list -Ld(decide(S,Ln),Pp) = list -Ld(S,Pp) .

eq n-p(decide(S,Ln),Ac) = n-p(S,Ac) .

eq n-a(decide(S,Ln),Ac) = n-a(S,Ac) .

eq v-a(decide(S,Ln),Ac) = v-a(S,Ac) .

eq list -Ln(decide(S,Ln1),Ln) = list -Ln(S,Ln) .

ceq v-d(decide(S,Ln1),Ln) = decideV(list -Ln(S,Ln1)) if l-l(S,Ln1

) = l0 /\ (decideV(list -Ln(S,Ln1)) ~ null) = false /\ ((majN

(ctoPL(list -Ln(S,Ln1))) * 2) >= (nAcceptor + 1)) /\ Ln = Ln1

[metadata "CA-decide -vd1"] .

ceq v-d(decide(S,Ln1),Ln) = v-d(S,Ln) if ((majN(ctoPL(list -Ln(S,

Ln1))) * 2) >= (nAcceptor + 1)) = false [metadata "CA -decide -

vd2"] .

ceq v-d(decide(S,Ln1),Ln) = v-d(S,Ln) if (Ln ~ Ln1) = false [

metadata "CA-decide -vd3"] .

ceq v-d(decide(S,Ln1),Ln) = v-d(S,Ln) if decideV(list -Ln(S,Ln1))

= null [metadata "CA-decide -vd4"] .

ceq v-d(decide(S,Ln1),Ln) = v-d(S,Ln) if (l-l(S,Ln1) ~ l0) =

false [metadata "CA-decide -vd5"] .

endfth)
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Appendix E

Paxos Verification by CITP

load ui

(fth GOAL is

inc PAXOS .

var S : Sys .

vars L L1 : Learner .

ceq [lemma1] : majV(ctoPL(list -Ln(S,L))) = majV(ctoPL(list -Ln(S

,L1))) if ((majN(ctoPL(list -Ln(S,L))) * 2) >= (nAcceptor +

1)) = true /\ ((majN(ctoPL(list -Ln(S,L1))) * 2) >= (

nAcceptor + 1)) = true [nonexec] .

ceq [lemma2] : ((majN(ctoPL(list -Ln(S,L))) * 2) >= (nAcceptor +

1)) = true if (v-d(S,L) ~ null) = false [nonexec] .

ceq [lemma3] : majV(ctoPL(list -Ln(S,L))) = v-d(S,L) if (v-d(S,L)

~ null) = false [nonexec] .

endfth)

(goal GOAL |- ceq (v-d(S:Sys ,L:Learner) ~ v-d(S:Sys ,L1:Learner))

= true if (v-d(S:Sys ,L:Learner) ~ null) = false /\ (v-d(S:Sys ,

L1:Learner) ~ null) = false ; )

(set ind on S:Sys .)

(apply SI .)

(auto .)

--- decide

(apply TC CA .)

(apply IP RD .)
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(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(init lemma1 by (S:Sys <- x#1 ;) (L:Learner <- z#2 ;) (L1:Learner

<- L1#4 ;) .)

(init lemma2 by (S:Sys <- x#1 ;) (L:Learner <- L1#4 ;) .)

(init lemma3 by (S:Sys <- x#1 ;) (L:Learner <- L1#4 ;) .)

(apply RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(init lemma1 by (S:Sys <- x#1 ;) (L:Learner <- z#2 ;) (L1:Learner

<- L#3 ;) .)

(init lemma2 by (S:Sys <- x#1 ;) (L:Learner <- L#3 ;) .)

(init lemma3 by (S:Sys <- x#1 ;) (L:Learner <- L#3 ;) .)

(apply RD .)

(apply CA IP RD .)

--- case1

(cp eq l-l(x#1,z#2) = l0 . >< eq l0 ~ l-l(x#1,z#2) = false .)

(equation .)

(apply RD .)

--- case2

(cp eq l-l(x#1,z#2) = l0 . >< eq l0 ~ l-l(x#1,z#2) = false .)

(equation .)

(apply RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)
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(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

(apply IP RD .)

--- others

(apply TC IP RD .)

(apply TC IP RD .)

(apply TC IP RD .)

(apply TC IP RD .)

(apply TC IP RD .)

(apply TC IP RD .)

(apply TC IP RD .)
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